
European Journal of Operational Research 312 (2024) 910–926

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

An actor-critic algorithm with policy gradients to solve the job shop

scheduling problem using deep double recurrent agents

Marta Monaci a , Valerio Agasucci a , Giorgio Grani b , ∗

a Sapienza University of Rome, Department of Computer Science, Control and Management Engineering, Rome, Italy
b Sapienza University of Rome, Department of Statistics, Rome, Italy

a r t i c l e i n f o

Article history:

Received 17 October 2021

Accepted 27 July 2023

Available online 31 July 2023

Keywords:

Scheduling

Machine learning

Reinforcement learning

Neural networks

a b s t r a c t

In this work, we present a method that applies Deep Reinforcement Learning, an approximate dynamic

programming procedure using deep neural networks, to the job shop scheduling problem (JSSP). The aim

is to show that a greedy-like heuristic trained on a subset of problems, can effectively generalize to some

extent to unseen instances, and be competitive compared to other methods. We model the JSSP as a

Markov Decision Process and we exploit the efficacy of reinforcement learning to solve the problem. We

adopt an actor-critic scheme based on policy gradients, specifically the Proximal Policy Gradient method,

where the action taken by the agent is influenced by policy considerations on the state-value function.

The procedures take into account the challenging nature of JSSP, where the state and the action space

change for every instance and after each decision. To tackle this variability, we introduced a novel model

based on two incident Long-Short Term Memory networks, followed by an encoding model, different in

structure for both the actor and the critic. Experiments show the algorithm reaches good solutions in a

short time, proving that is possible to generate new greedy heuristics just from learning-based method-

ologies. We compared our algorithms against several established heuristics, an adaptive method, a com-

mercial solver based on branch and cut, and another approach based on Deep Reinforcement Learning,

proving the validity of the proposed method in terms of time and makespan. The model can generalize,

to some extent, to larger problems originating from a different distribution.

© 2023 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1

O

l

p

t

t

l

w

v

i

o

t

i

b

t

e

h

m

t

s

p

S

b

o

p

a

i

J

f

p

p

h

0

. Introduction

There is a large amount of research being done in the fields of

perations Research and Mathematical optimization to solve prob-

ems related to scheduling. The ability to schedule tasks efficiently

ermeates a lot of human activities, from classical industrial or

ransportation applications to services, computer science, and even

o healthcare. The problem is so common that we encounter its so-

utions on a daily basis, like when consulting the board to choose

hich train to take, or on a website deciding a flight for our next

acation, or when ordering online and it gets assembled together

n one order and delivered to us. Basically, every processed good

n the market is a result of a set of operations, scheduled to get

he final product. Every respectful scheduling problem is character-

zed by a set of procedures, called tasks or operations, that has to

e executed in order to complete a job. Depending on the struc-

ure of this set (e.g. ordered or not) and where the task has to be
∗ Corresponding author.

E-mail address: g.grani@uniroma1.it (G. Grani) .

A

c

l

ttps://doi.org/10.1016/j.ejor.2023.07.037

377-2217/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article
xploited, for instance on a fixed location or dislocated points, we

ave a different type of scheduling problem. Other than that, one

ay add conditions related to the release or due date of an order,

he time window for which a certain processing point is available,

et-up times, or every other kind of business requirement. In this

aper, we will address the well-known minimum makespan Job

hop Scheduling problem (JSSP), where we have a certain num-

er of jobs needing to be completed, and each job is composed

f a list of operations that can be exploited in specific processing

oints, also referred as machines. The aim is to schedule the oper-

tions on the machines in order to minimize the makespan, which

s the delay accumulated by the entire system.

In 1977, Lenstra et al. showed in Lenstra et al. (1977) that the

SSP is NP-hard and, as reported in Blazewicz et al. (1996) , only a

ew specific cases are polynomially solvable. For instance, job shop

roblems with two jobs are efficiently solved by the geometric ap-

roach, described in Bruckner (1988) and originally presented in

kers (1956) . In Johnson (1953) , Johnson presented a simple de-

ision rule to optimally solve the two-machine flow shop prob-

em, in which each job must be executed on the machines in the
under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.ejor.2023.07.037
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2023.07.037&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:g.grani@uniroma1.it
https://doi.org/10.1016/j.ejor.2023.07.037
http://creativecommons.org/licenses/by/4.0/

M. Monaci, V. Agasucci and G. Grani European Journal of Operational Research 312 (2024) 910–926

s

a

w

t

(

l

a

o

L

t

i

h

i

h

j

w

1

I

l

c

a

m

o

t

(

s

t

fi

t

l

t

g

w

l

e

g

o

(

L

(

k

l

g

o

p

m

p

t

f

m

&

l

i

y

m

c

i

r

s

r

t

t

w

v

(

t

o

a

t

s

t

m

a

t

s

G

r

i

l

c

R

d

v

i

t

l

(

t

t

n

a

(

(

r

c

t

t

t

n

t

p

(

p

o

c

A

d

l

p

t

J

i

(

f

n

r

t

c

G

c

o

e

t

o

T

J

ame order. In order to extend this result, Jackson (1956) proposed

n efficient procedure to solve the two-machine job-shop problem

here each job is composed of at most two tasks by reducing it to

he flow shop case (see also Sotskov, 1991). Then, in Hefetz & Adiri

1982) , an efficient algorithm to solve two-machine job-shop prob-

ems with unit processing times is presented. The number of steps

nd the storage space of the method is linear in the total number

f operations, thus proving that the problem belongs to the P -class.

ater, Brucker (1994) developed a polynomial algorithm to solve

he two-machine job shop case with a fixed number of jobs, even

f machine repetition is allowed. In Brucker et al. (2007) , the NP-

ardness of scheduling problems with a fixed number of jobs was

nvestigated. Slight modifications to these categories of problems

ave been shown to be hard to solve. For instance, three-machine

ob shop problems where each job has at most two operations or

ith a fixed number of three jobs are NP-hard (Gonzalez & Sahni,

978; Lenstra & Rinnooy Kan, 1979; Sotskov & Shakhlevich, 1995).

n Garey et al. (1976) , it is shown that job shop scheduling prob-

ems with more than two machines are NP-complete.

Therefore, solving a JSSP instance can be, in general, quite

omplicated. Lots of researchers tried their best to build nice

nd performing algorithms, investigating tons of different opti-

ization strategies. It would be impossible for us to cover even

nly the most important papers in this context, so we will just

ake a glimpse of the overall picture, redirecting to Zhang et al.

2019) and Chaudhry & Khan (2016) for a couple of comprehen-

ive surveys. In principle, we divide the class of algorithms be-

ween exact and heuristic methods. The first group concentrates on

nding the optimal solution, the best schedule above all, according

o the objective. They should be used when the size of the prob-

em and the time required to find a solution are compatible with

he application. The second group focuses on finding something

ood enough in a reasonable short time, respecting feasibility, but

ith no guarantee of finding the optimum. Exact algorithms are

argely associated with mathematical integer programming. In lit-

rature a multitude of approaches has been applied, like column-

eneration in Gélinas & Soumis (2005) and Lancia et al. (2007) ,

r branch-and-bound in Carlier & Pinson (1989) and Brucker et al.

1994) , branch-and-cut in Karimi-Nasab & Modarres (2015) , and

agrangian relaxations as in Hoitomt et al. (1990) and Chen & Luh

2003) . On the heuristic side of the palisade, we can go through all

inds of known methods: simulated annealing, genetic algorithms,

ocal search, tabu search, and so on. A nice survey on swarm and

enetic algorithms can be found in Gao et al. (2019) , while one

n meta-heuristics in Mhasawade & Bewoor (2017) . Also, dynamic

rogramming plays a big role, but the complexity of the instances

akes it useful only in an approximate way. A review of dynamic

rogramming and JSSP is presented in Mohan et al. (2019) .

With more data being generated and more and more opera-

ions being automated, machine learning-based techniques have

ound their place within the JSSP community. This trend is com-

on to other aspects of optimization, as described in Bertsimas

 Dunn (2019) and Bengio et al. (2021) in the case of machine

earning, deep learning and combinatorial optimization. Every time

t is common to encounter some kind of approximation or when

ou need to solve several instances of the same type sequentially,

achine learning may play a role. The possible ways of the inter-

onnection of the two fields are countless, with researchers bring-

ng new ideas day by day. Sometimes, it is useful to approximate

eality or complex systems by using surrogate functions and in-

erting them directly into the formulation. The concept of a sur-

ogate model has been used for a long time in optimization, in

he form of linear or quadratic approximations, and it is now ex-

ended to more complex models. An example of using neural net-

orks to ease the, otherwise unbearable, complexity of the in-

olved physics in manufacturing can be found in Pfrommer et al.
911
2018) , whereas in Hottung et al. (2020a) there is a usage of au-

oencoders to detect useful embeddings for routing problems. On

ther occasions, we may use machine learning inside a complex

lgorithmic framework, improving some of the frequent decisions

aken through the process. For instance, we may estimate a score

uggesting the next variable to choose for branching, or which of

he several local heuristics fits more in the current iteration, or the

ost promising cuts to add. As anticipated, a great deal has been

chieved in the mixed-integer programming domain. Just to men-

ion a few works, in Khalil et al. (2016) the authors make use of

upport vector machines to mimic strong branching, whereas in

upta et al. (2020) they exploit a similar task but using deep neu-

al networks. Authors in Tang et al. (2020) chose the most promis-

ng Gomory’s cuts (see Wolsey & Nemhauser, 1999) by means of

ong-short term memory networks and reinforcement learning. Re-

ently, in Nair et al. (2020) , scientists from DeepMind and Google

esearch proposed a method combining deep branching and deep

iving in a branch-and-cut algorithm, taking advantage of super-

ised learning, graph convolutional neural networks, and alternat-

ng descent method of multipliers. Another important aspect is

o learn primal heuristics that return directly to near-optimal so-

utions. In Bertsimas & Stellato (2019) and Bertsimas & Stellato

2021) , this is done opportunely by studying some properties of

he optimization problem (the so-called voice of optimization), then

hey train a neural network to directly produce a solution, and fi-

ally, they use a projection technique to make it feasible, leading to

n extremely fast heuristic. For stochastic problems, in Bengio et al.

2020) the authors did something similar, whereas in Cauligi et al.

2020) this methodology has been used to generate robust trajecto-

ies in planning robot agents. Finally, in Hottung et al. (2020b) , this

oncept is extended to approximate bounds and inserted within a

ree search for solving the container pre-marshaling problem.

In some cases, one may learn a new algorithm from scratch

hanks to reinforcement learning (RL). We will also adopt RL

hrough this paper, and it will be described in detail later on. For

ow, consider it to be a greedy-like method, where decisions are

aken at each step by a learning-based operator. Just to cite a few

apers, in Gasse et al. (2019) ; Khalil et al. (2017) and Drori et al.

2020) the use of RL to solve directly optimization problem is ex-

loited with remarkable results. The three works differ in the type

f RL framework adopted (Q -learning, policy gradient, or actor-

ritic) and in the neural network structure. On the same page, in

gasucci et al. (2020) , we used Deep Q -learning to solve the train

ispatching problem, comparing two approaches: a centralized one

ooking at the overall rail network, and another decomposing the

roblem by train with a limited view of the surroundings.

After this brief description of machine learning and optimiza-

ion, we are ready to go back and discuss the intersection with

SSP. The problem has received interest from the machine learn-

ng community for a long time, as supported in Çali ̧s & Bulkan

2015) . This was before the deep learning era, so before efficient

ast-computing libraries were established as a standard for neural

etworks.

No more than ten years ago, scientists and professionals started

ealizing the great potential of deep learning to solve complex

asks. When we talk about deep learning, we refer to everything

onnected to neural networks with more than one hidden layer. In

oodfellow et al. (2016) , one may find a larger description of the

oncepts and methodologies of deep learning.

Most of the approaches linked to JSSP are also connected to RL

r to approximate dynamic programming in general. A remarkable

xample can be found in Shakhlevich et al. (1996) , where the au-

hors studied the strength of adaptive algorithms, taking advantage

f a particular graph structure to ease the computational effort.

he method was later extended to the case of parallel machines

SSP in Gholami & Sotskov (2014) . This methodology shares a lot of

M. Monaci, V. Agasucci and G. Grani European Journal of Operational Research 312 (2024) 910–926

e

w

a

r

s

t

R

c

o

h

(

r

s

e

w

e

T

g

m

a

a

d

o

T

b

a

d

(

s

i

e

t

p

c

c

S

i

e

1

w

p

2

(

i

P

2

l

s

m

t

(

p

o

p

t

a

t

t

s

a

t

s

t

a

W

t

(

t

i

i

c

m

l

c

s

s

m

t

2

a

e

a

T

i

o

t

a

s

s

o

g

o

&

p

(

o

a

t

a

t

d

lements with the RL approaches, including training. In Section 5 ,

e show a comparison between our proposed method and the

daptive algorithm, showing how RL approaches with Deep neu-

al networks are able to outperform the other on the proposed in-

tances. Another interesting work can be found in Zhang & Diet-

erich (1995) , where the authors present an innovative but shallow

L framework, to solve an extension of the JSSP for a real appli-

ation at NASA. In particular, they proposed a RL algorithm, based

n Temporal Difference Learning, aimed at learning ad-hoc repair

euristics to produce good conflict-free schedules. In Zhang et al.

2020) , the authors used a Deep RL apporach based on Graph Neu-

al Networks and Proximal Policy Optimization. We compared our-

elves with the work presented in Zhang et al. (2020) . In Tassel

t al. (2022) the authors used Neural Networks in combination

ith a RL method based on Natural Evolution Strategies (Wierstra

t al., 2014), to solve dispatching problems on an industrial scale.

This paper describes our proposal to tackle the JSSP using RL.

he algorithm adapts the Policy Proximal Optimization (PPO) al-

orithm firstly presented in Schulman et al. (2017) to the JSSP,

aking use of a suitable representation of the environment as

 Markov Decision Process (MDP). PPO belongs to the family of

ctor-critic RL algorithms, for which we developed two special

eep neural networks for both the actor and the critic, based

n two concatenated Long Short-Term Memory networks (LSTMs).

his architecture is proven to be effective and flexible to the num-

er of jobs, operations, and machines. We compared our algorithm

gainst standard JSSP heuristics (as resumed in Panwalkar & Iskan-

er, 1977), the adaptive algorithm presented in Shakhlevich et al.

1996) , the branch-and-cut algorithm implemented in the known

olver CPLEX from IBM (2021) , and the Deep Reinforcement learn-

ng algorithm described in Zhang et al. (2020) , obtaining good av-

rage results.

The paper is organized as follows: in Section 2 we formalize

he JSSP and we give the basic elements and ideas behind the

aradigm of reinforcement learning, with a special focus on actor-

ritic methods. In Section 3 , we describe the JSSP as a Markov de-

ision process, making the problem solvable by using RL. Then, in

ection 4 , we introduce the deep neural networks used as a learn-

ng model in our algorithm. Finally, in Section 5 , we illustrate the

xperiment.

.1. Our contribution

This work presents a policy proximal optimization algorithm

ith deep agents to tackle the JSSP. The major findings in this pa-

er are:

• A novel model both for the actor and the critic, using two

concatenated Long Short-Term Memory networks (LSTMs).
• The method is flexible and not related to a single appli-

cation. In particular, the Double LSTM structure allows to

vary arbitrarily the number of jobs, operations and machines

adopted.
• The models generalize to some extent for larger and more

complex instances maintaining good solution quality.
• The computational experience is conducted both on time

and solution quality against a commercial solver, an adap-

tive heuristic, 17 rule-based heuristics, and a Deep Re-

inforcement Learning approach , showing good average re-

sults.

. Preliminaries and notation

In this section, we describe the Job Shop Scheduling problem

JSSP) as an optimization problem and we enter the world of re-

nforcement learning (RL), actor-critic methods and the Proximal

olicy optimization algorithm (Schulman et al., 2017).
912
.1. The job shop scheduling problem

Scheduling is a decision-making process finding a temporal al-

ocation of shared and limited resources to activities to optimize

ome desired objective. In this project, we are tackling the n ×m

inimum makespan JSSP, denoted by Jm || C max according to the

hree-field notation introduced by Graham et al. Graham et al.

1979) . It will be referred to as JSSP throughout the rest of the pa-

er without loss of information.

In its standard form, we have a bunch of workers and a set of

perating stations doing some service. Each worker has a good to

rocess, and a list of ordered required operations to be performed

o get the final product. The point of JSSP is determining the ex-

ct timing for which each worker should go to an operative sta-

ion and perform some kind of process on the good, minimizing

he overall time for all the workers. From now on the operating

tations will be called machines , the processes tasks (or operations)

nd the list of ordered operations jobs .

Let J = { j} n
j=1

be the set of jobs, which has to be processed on

he set M = { k } m

k =1
of machines. Each job j has a given processing

equence of n j different machines, with n j ≤ m . A task (or opera-

ion) is the activity that job j ∈ J must execute on machine k ∈ M ,

nd it is denoted by the pair (j, k) .

Therefore, each job is a list of different tasks to be performed.

e adopt the notation for which (j, k) ≺ (j, h) , means that opera-

ion (j, k) , the ith operation of job j, precedes operation (j, h) , the

i + 1) th operation of job j, ∀ i = 1 , . . . , n j − 1 . These rules define

he precedence constraints for the problem. A processing time p jk
s associated to each operation (j, k) . The set of all the operations

s denoted by O.

We assume to be in a no-preemption regime so that operations

an not be interrupted. Moreover, each machine can not process

ore than one job at the same time, meaning there is no over-

ap. We call t jk the starting time of the operation (j, k) , and its

ompletion time C jk , which is the time interval elapsing from the

tart of the whole process to the execution of the operation it-

elf, i.e. C jk = t jk + p jk . The optimum is reached by minimizing the

akespan, denoted by C max , which is the maximum completion

ime of all the operations, i.e. C max = max (j,k) ∈O C jk .

.2. Reinforcement learning

Reinforcement learning (RL) is a paradigm of machine learning,

longside supervised and unsupervised learning. There are four el-

ments in an RL framework: agent, action, state, and reward. They

ll operate imitating the decision process in a real-world setting.

he agent is the decision-maker, the actions are the set of options

t is allowed to do, the state is an encoding of the environment it

perates into, and the reward is what it gets after making an ac-

ion. At every step, the agent observes the state, takes an action,

nd waits for the environment to return to its new form, the next

tate, alongside a reward for selecting that action. After that, the

ystem is ready for a new iteration. In RL, the agent learns from its

wn choices, step by step, game by game, self-generating data. The

oal of the agent is specified by an objective function, dependent

n the collected rewards.

RL can be formalized as a Markov Decision process, see Sutton

 Barto (2018) , and it can be seen as an approximate dynamic

rogramming method, see Bertsekas et al. (1995) and Bertsekas

2019) . Following the dynamic programming terminology, the goal

f RL is to learn an optimal strategy, called policy, allowing the

gent to solve the problem by maximizing its total reward. Unfor-

unately, we are not able to inspect the full tree of possibilities and

lternatives an agent may encounter, since the size of the decision

ree would be, for NP-hard problems like JSSP, unbearable for stan-

ard computational resources. For this reason, we discuss policies

M. Monaci, V. Agasucci and G. Grani European Journal of Operational Research 312 (2024) 910–926

Fig. 1. Actor-critic framework.

m

b

t

s

b

w

f

p

a

r

r

s

d

m

J

w

d

i

k

V

t

a

t

s

v

t

A

l

a

e

t

t

i

f

t

w

o

e

s

B

(

p

o

b

s

t

b

K

f

b

t

p

i

e

a

c

i

(

w

a

c

w

w

i

a

m

t

∇

t

i

e

c

v

m

s

s

m

o

L

a

t

m

w

a

d

β

w

r

aximizing the expected total reward, so that we infer optimality

y just observing a portion of the decision space.

An episode is an instance to be solved by an RL algorithm while

raining the agent. To complete an episode, the RL method goes

tep by step until reaching the T th state, where T is the last possi-

le iteration. Steps within an episode are indexed by t = 0 , 1 , . . . , T ,

here t = 0 is the initial state. We use the notation s t for states, a t
or actions and r t for rewards, all depending on t . The set of all the

ossible states is S , whereas A is the set of all the possible actions

nd R : S × A �→ R is a function associating states and actions to

ewards. A stochastic policy is identified by the function π(a t | s t) ,
epresenting the probability to take the action a t when the state

 t is observed where lim t→ inf π(a t , s t) will tend to be an optimal,

eterministic policy.

The expected cumulative reward is the objective function to be

aximized in the RL framework.

 = E π

[

T ∑

t=1

r t

]

, (1)

here E π is the expected value computed according to the policy

istribution π .

Several RL methods make use of the state-value function, which

s a measure of the expected cumulative reward from a certain step

 (also called expected reward-to-go) when observing a state s k .

 π (s k) = E π

[

T ∑

t= k +1

r t

∣∣∣S k = s k

]

For similar purposes, it is handy to define the advantage func-

ion, which evaluates the expected improvement when selecting

n action,taking as input an action a k and the state s k . This can be

hought of as a sort of differential measure over the reward-to-go,

ee Schulman et al. (2018) . We present a version of the formula

alid in the context of JSSP, where it is always possible to derive

he reward r k from the state and the taken action.

 π (a k , s k) = r k + V π (s k +1) − V π (s k) (2)

Among the numerous classes of RL algorithms available in the

iterature, we are going to focus on actor-critic methods, which

re characterized by having the agent separated into two decision

ntities: the actor and the critic. The reason behind this separa-

ion is to allow a policy improvement through an estimation of

he state-value function, combining both value-based and policy-

mprovement algorithms. The critic approximates the state-value

unction

ˆ V (s) , while the actor updates and improves a model of

he stochastic policy ˆ π by taking into account the critic estimation

hile maximizing the total expected reward.

Several algorithms in the actor-critic sense have been proposed

ver the last years, and the main difference lies in how to prop-
913
rly train the models describing the actor and the critic. For in-

tance, the update rule may be based on the Bellman equation (see

ellman (1966)), as proposed in Barto et al. (1983) ; Konda & Borkar

1999) and more recently in Lawhead & Gosavi (2019) . In this pa-

er, we will focus on actor-critic methods basing their updating

perations on policy gradient rules. One of the first examples can

e found in Konda & Tsitsiklis (2003) , where a class of two time-

cale algorithms is presented, in which the critic uses classical

emporal difference learning, and the actor uses policy gradient

ased on the critic estimation. More recently, in Kakade (2001) and

akade & Langford (2002) , the authors presented some properties

or a specific class of policies, allowing for the definition of a lower

ound over the difference between two policies. The update is ob-

ained by minimizing this bound so that the new policy will im-

rove as far as known using the previous information. This idea

s extended in the Trust Region Policy Gradient (TRPO) Schulman

t al. (2015) to more general policies, and an approach based on

 Kullback Liebler divergence trust region is shown to work effi-

iently. Finally, in Schulman et al. (2015) , the trust region approach

s abandoned to an unconstrained one in Proximal Policy Gradient

PPO). Since in the following of the paper we will discuss the PPO,

e will now discuss in more detail proximal policy gradient based

ctor-critic algorithms.

In the following, we will assume that both the actor and the

ritic models have as weights θ and ω, respectively.

For ease of explanation, we will keep this dependence clear

hen needed in our formulas. For instance, the total expected re-

ard presented in (1) can be rewritten as J θ = E πθ
[
∑ T

t=1 r t] , stress-

ng the dependency of the actor weights in the objective function.

To optimize the total reward function (1) , it is possible to derive

n estimator for the gradient, and use it in gradient-based opti-

ization methods. For computational efficiency reasons, we report

he formula in terms of log probabilities.

 θ J θ ∝ E πθ

(∑

a t

∇ log πθ (a t | s t) A ω (s t , a t)

)

(3)

The gradient depends on both the actor, π , and the critic, A , so

hat the log-probability associated with a state-action pair (s t , a t)

s proportional to the advantage of this pair and thus, the gradi-

nt indicates the direction of greatest improvement (locally). Actor-

ritic algorithms differ in how they compute the estimators, on the

ersion of the policy gradient they adopt, and finally, on the opti-

ization algorithm to improve the expected total reward. The basic

cheme of an actor-critic algorithm is illustrated in Fig. 1 .

In the PPO, the policy improvement is pursued through a

tochastic gradient ascent step over a surrogate function approxi-

ating the total expected reward (1) . The loss, called KL-penalized

bjective, is composed of a surrogate advantage and a Kullback–

eibler divergence multiplied by a negative penalty term −β . The

ctor is trained to maximize this objective, refining the approxima-

ion from a step to the other, as reported below:

ax
θ

E πθ

[
πθ (a t | s t)
πθold

(a t | s t) A ω (s t , a t) − βD KL

(
πθ (·| s t) , πθold

(·| s t)
)]

,

(4)

here πθold
indicates the policy parameters at the previous step,

nd the parameter β influences how much the new policy may

iverge from the old one according to the following rule:

=

⎧ ⎪ ⎨

⎪ ⎩

2 βold , if E πθ

[
D KL

(
πθ , πθold

)]
> 1 . 5 δ

βold / 2 , if E πθ

[
D KL

(
πθ , πθold

)]
< 1 . 5 /δ

βold , otherwise

, (5)

here δ is a target value chosen heuristically. During the algo-

ithm, the penalty coefficient β adapts rapidly, and, according to

M. Monaci, V. Agasucci and G. Grani European Journal of Operational Research 312 (2024) 910–926

Fig. 2. Graphical representation of the environment and its components.

S

c

e

r

m

w

f

i

g

t

s

p

p

c

3

m

o

I

e

fi

c

t

d

s

d

t

R

f

g

e

t

(

c

w

a

l

(

c

e

o

i

o

i

w

i

o

d

m

u

n

s

o

r

4

b

c

chulman et al. (2017) , its starting value does not affect signifi-

antly the training.

The critic is updated trough the minimization of a mean square

rror loss function, using the data collected by the actor in several

oll-outs. That is

in

ω
E t

[(
V ω (s t) − V t

target
)2

]
= min

ω
E t

[(
V ω (s t) − R t

)2
]
, (6)

here the rewards-to-go R t is the sum of the rewards collected

rom t to T .

The algorithm works in the following way: at each episode k ,

t performs N roll-outs, running the policy for T steps, therefore

enerating N · T samples. For each episode k , the rewards-to-go R t ,

 = 1 , . . . , T , are computed and stored. Then, the policy is updated

olving (4) with ADAM, Kingma & Ba (2014) , using the N · T sam-

les. Finally, the state-value function is updated according to (6) ,

erforming some iterations of ADAM. Algorithm 1 reports the pro-

edure.

Algorithm 1: Proximal policy optimization (PPO) with adap-

tive Kullback–Leibler penalty.

Input: number of roll-outs per episode N,termination step T ,stochastic

gradient ascent iterations L actor ,ADAM iterations L actor ,target KL divergence

δ, θ = θ0 , ω = ω 0 , β = β0 .

for episode k = 0 , 1 , . . . do

for roll-out i = 1 , . . . , N do

Run policy πθ in the environment for T time-steps.

Compute rewards-to-go R 1 , . . . , R T associated to the ith roll-out

and store them.

Compute advantages associated to the ith roll-out and store

them.

end

Update the actor parameters θ according to (4), performing L actor

iterations of ADAM.

Update β according to (5).

Update the critic parameters ω according to (6), performing L critic

iterations of ADAM.

end

. JSSP as a Markov decision process

JSSP can be solved in several ways, depending on which ele-

ent we are looking for to find a solution. Our idea is to choose

ne operation at a time, deciding whenever a machine is available.

n other words, we have a set of jobs, each one being a list of op-

rations to be addressed their specified machine, and we want to
914
nd a, possibly good, solution in a greedy fashion. Whenever a ma-

hine is available to accept jobs, we select one (and only one) job

hat can proceed in the queue. In this way, the total number of

ecisions is equal to the total number of tasks.

It turns out this process can be formulated as a Markov Deci-

ion process (MDP). With a notation similar to the one used to the

escribe RL in Section 2 , we characterize a finite MDP using the

uple (S, A , R , P) , where S is the set of states, A the set of actions,

 : S × A → R a reward function and P : S × A → S the transition

unction. The state s t ∈ S captures all the relevant information re-

arding the current iteration, in order to respect the Markov Prop-

rty and to have a fully observable system state. The data struc-

ure adopted is a list of jobs, with each job being a list of tasks

or operations) (j, k) , with j ∈ J being the job and k ∈ M the ma-

hine, as illustrated in Fig. 2 (a). A processing time p jk is associated

ith each operation (j, k) , representing the time spent by the job

j to complete the task on the machine k . If a task (j, k) is the first

vailable operation for a job, then we take into account the ear-

iest possible starting time s jk , defined as s jk = max (C jh , C ik) , where

j, h) ≺ (j, k) , (i, k) is the last operation scheduled using the ma-

hine k , and C jh and C ik are the corresponding completion times. At

ach decision step t , an action a t , representing the allocation of an

peration at a certain starting time, is taken and the correspond-

ng task is removed from the job and put into a list of scheduled

perations. The set A s t contains all the available actions at state s t ,

.e. the operations still to be scheduled, with no prior operations or

hose prior operations have been already scheduled, as illustrated

n Fig. 2 (b) and (c). The next state s t+1 is the state s t without the

peration scheduled at decision step t (see Fig. 2 (d)). Due to the

eterministic nature of the problem, the state transition is deter-

inistic and given a state-action pair (s t , a t) , the next state s t+1 is

niquely determined. In order to be coherent with the RL classical

otation, the reward r t+1 will be the negative contribution of the

elected operation to the current makespan C max t . If (j, k) is the

peration scheduled at decision step t , then

 t+1 =

{
−(C jk − C max t) , if C jk > C max t

0 , otherwise

In this way, it holds C max k
= −∑ k

t=1 r t , and C max = −∑ T
t=1 r t .

. Agents deep models

In this section, we describe the neural network infrastructures

ehind our algorithm. In particular, since we are adopting an actor-

ritic method, we need to specify two networks: the first, referred

M. Monaci, V. Agasucci and G. Grani European Journal of Operational Research 312 (2024) 910–926

Fig. 3. Deep neural infrastructures used.

Fig. 4. State-value function loss during training process.

t

t

O

i

m

r

s

f

a

w

s

i

g

o

t

i

a

m

s

fi

e

o

c

r

o

n

b

t

d

o as the actor, estimates the policy πθ (·, s t) , while the second,

he critic, provides an estimation of the state-value function V ω (s t) .

ur aim is to obtain a learned algorithm that is flexible concern-

ng the size of the JSSP instance, both in the number of jobs and

achines. According to the state defined in Section 3 , the state is

epresented by a list of tasks for each job, translatind to a data

tructure characterized by a list, variable in size, of lists, with dif-

erent lengths the one to the other. For these reasons, the actor

nd the critic networks make use of long short-term memory net-

orks (LSTMs), which are suitable for processing variable-length

equences. LSTMs process the information in sequence-structured

nput, by taking its elements one at a the time, eventually propa-

ating the information using special arcs. LSTMs belong to the class

f recurrent neural networks, and they deal with the problem of

he vanishing gradient thanks to these special arcs called self-loops
915
n the hidden layer, as described in Graves (2012) . The self-loops

re controlled by the network, which is able to adjust the infor-

ation flow. They take sequences as input, returning same-length

equences of embeddings.

The actor model is composed of two concatenated LSTMs. The

rst takes as input the state, producing an embedding for each op-

ration. We then consider only the embedding related to the last

peration of each job, since operations in a job are chronologi-

ally connected and the last element can be seen as a compressed

epresentation of the whole job. After that, a list with size |J | is

btained from the embeddings and passed the second LSTM. This

etwork combines the jobs information as a sequence of |J | em-

eddings. Each component is collapsed to a scalar, obtaining a vec-

or y ∈ R

|J | . This trick allows us to compress the information and

ealwith the two levels of variability of the data structure. Finally,

M. Monaci, V. Agasucci and G. Grani European Journal of Operational Research 312 (2024) 910–926

Fig. 5. Objective value gap during the training process.

w

v

i

e

σ

T

f

f

a

a

s

t

d

f

i

m

b

5

t

t

u

W

a

e use action masking and a softmax function, applying the mask

ector M, whose components are Boolean values filtering out the

nvalid actions at each state. The softmax is used to transform the

mbedding y into a probability distribution through the formula

(y, M) i =

e y i M i ∑ |J |
j=1

e y j M j

, i = 1 , . . . , |J |

he actor network is represented in Fig. 3 (a).

The critic model is composed of a double LSTM as in the actor,

ollowed by a deep feed-forward neural network (FFN). After being

ed with the output by the first LSTM, the second LSTM returns

 sequence of embeddings with cardinality |J | . Then, the vectors

re summed up, obtaining the vector z ∈ R

h , where h is the hidden

ize of the second LSTM. Finally, the FFN processes z, converging

o a scalar. The FFN has three fully connected hidden layers with a

ecreasing number of neurons, applying the ReLU as an activation

unction until the last layer, which is linear. The critic network is

llustrated in Fig. 3 (b).

Before feeding the two neural models, the input sequences

ust be padded to level equally their lengths within a single mini-

atch.
916
. Computational experience

The computational experience exploits both the training and

he testing phase. In the former, we give insights on the computa-

ional burden required for training, whereas in the latter, we eval-

ate our algorithm against:

• a branch-and-cut algorithm implemented in the commercial

optimization solver CPLEX v12.10, IBM (2021) , Section 5.2.1 ,
• an adaptive scheduling algorithm based on the mixed dis-

junctive graph model, proposed in Sotskov et al. (2013) and

Shakhlevich et al. (1996) , Section 5.2.2 ,
• 17 well-known scheduling heuristics, where at each step an

operation is scheduled according to a priority dispatching

rule (PDR), Panwalkar & Iskander (1977) , Section 5.2.3 ,
• the Deep Reinforcement learning approach based on

Graph Neural Networks proposed in Zhang et al. (2020) ,

Section 5.2.4 .

Our algorithm uses PyTorch v1.8, Pytorch (2021) , working on a

indows server with a11th Gen Intel(R) Core(TM) i7-11800H CPU

nd a single NVIDIA GeForce RTX 3060 GPU. In the following, we

M. Monaci, V. Agasucci and G. Grani European Journal of Operational Research 312 (2024) 910–926

Table 1

Training set.

Jobs × Machines 8 × 6 , 10 × 9 , 15 × 10 , 17 × 13 , 20 × 15

Instances 20 0 , 20 0 , 20 0 , 20 0 , 20 0

Gaussian processing times dist. p jk ∼ N (μ = 100 , σ = 10)

w

t

a

G

5

d

W

1

N

e

t

e

p

w

t

a

t

t

o

r

t

t

d

w

t

t

i

fi

t

w

t

1

G

5

i

i

c

o

(

p

1

P

p

Table 2

Test sets: Gaussian and Poisson sets.

Jobs × Machines 30 × 25 , 35 × 30 , 40 × 35 , 45 × 40 , 50 × 45

Instances 100 , 100 , 100 , 100 , 100

Gaussian processing times dist. p jk ∼ N (μ = 100 , σ = 10)

Poisson processing times dist. p jk ∼ P(λ = 100)

Table 3

Taillard’s benchmark set.

Jobs × Machines Instance IDs # instances

15 × 15 Ta01-10 10

20 × 15 Ta01-10 10

20 × 20 Ta01-10 10

30 × 15 Ta01-10 10

30 × 20 Ta01-10 10

(

w

a

s

5

C

r

I

P

s

t

o

i

w

e

a

p

c

e

s

s

t

i

s

a

T

a

e

t

ill use the notation Jobs × Machines to specify the dimension of

he JSSPs used.

The source code and the data of the experiments are available

t github.com/GiorgioGrani/JSSP _ actor-critic _ Agasucci _ Monaci _

rani .

.1. Training process

In the training process, we used a dataset composed of ran-

omly generated JSSP instances, with various, yet small, sizes.

e used five classes of JSSP problems, from (8 × 6) up to (20 ×
5) . The processing times are drawn from a Gaussian distribution

 (μ = 100 , σ = 10) . There is a total of 10 0 0 instances, having 200

lements per class. Table 1 summarizes the information regarding

he training set.

During the learning process, the agent has to balance between

xploration, i.e. trying new actions, and exploitation of the past ex-

erience. To prevent the agent from getting stuck in bad regions,

e inject the state-space exploration introducing the probability ε
o perform a random action. The value of ε is updated according to

 step function starting from ε = 0 . 20 and gradually decreases un-

il, at around the 70% of the total number of episodes, goes down

o ε = 0 . We ran the training over 50 0 0 episodes, with N = 10 roll-

uts per episode.

The actor-critic network configurations and training settings are

eported in the Appendix (Tables 20,21). The plot in Fig. 4 reports

he state-value function loss, showing both the single value and

he moving average over 100 episodes. The image indicates a ten-

ency in the reduction of the loss and the variability.

Since the total reward measure varies from instance to instance,

e define a relative objective value gap, φk , which is the ratio be-

ween the total reward obtained in the k th learning iteration for

he instance i (k) , and the best solution found trough the all train-

ng for the same instance i (k) .

φk =

R k

min

{
R h : h = 1 , . . . , 50 0 0 ∧ i (h) = i (k)

}
The graphs in Fig. 5 illustrate the moving average and the con-

dence interval for φk , divided by classes. There is a decreasing

rend with a jump around the 70% of the iterations, in accordance

ith the random choice probability ε.

Regarding the computational time required to perform the

raining, it takes around 8 hours on a Windows machine with a

1th Gen Intel(R) Core(TM) i7-11800H CPU and a single NVIDIA

eForce RTX 3060 GPU.

.2. Test process

The test phase has been conducted to demonstrate the abil-

ty of our algorithm to generalize over larger instances, general-

ze over different distributions, and maintain computational effi-

iency. To this aim, we tested the performances of our approach

n two sets with five JSSP classes each, going from (30 × 25) to

50 × 45) , with 100 instances per class. In the first dataset, the

rocessing times are derived from a Gaussian distribution N (μ =

00 , σ = 10) , while in the second they are drawn from a Poisson

(λ = 100) . Table 2 summarizes the specifics of the test sets.

In Sections 5.2.1, 5.2.3 , and 5.2.4 , we introduced some com-

arisons on 50 Taillard’s benchmark instances taken from Taillard
917
1993) . The size of these instances are resumed in Table 3 , and we

ill refer to them as the Taillard’s Benchmark set.

In Section 5.2.4 , we will introduce an additional set of gener-

ted Taillard instances, and we redirect the description of these

ets to the dedicated Section.

.2.1. Comparison with the branch-and-cut algorithm implemented in

PLEX

We tested out our algorithm against the branch-and-cut algo-

ithm implemented in the known commercial solver CPLEX v12.10,

BM (2021) , conducting two types of analyses:

• Objective value analysis , where we study the objective value,

i.e. the makespan C max , reached by the algorithm in CPLEX

when its time limit is locked to be no more than our timing.
• Computational time analysis , where we compare our timing

with the one required for the algorithm in CPLEX to reach a

solution as good as ours in terms of objective value, i.e. the

makespan C max .

The results of the objective value analysis on the Gaussian and

oisson sets are presented in Tables 4 and 5 , respectively. These

how statistics on objective value, pruned from outliers. We use

he statistic ρ to express the percentage of average improvement

f our algorithm in terms of the objective value C max . Let ρi be the

mprovement on the single i th instance

ρi =

C max CP i
− C max RL i

C max CP i

,

here C max X denotes the makespan of the algorithm X and X can

qual RL (the proposed RL method) or CP (short for the branch-

nd-cut procedure implemented in BC-CPLEX).

Our approach outperforms the branch and cut algorithm im-

lemented in CPLEX in terms of objective value. For the (40 × 35)

lass in the Gaussian set, our approach returns a makespan on av-

rage 91% better than the branch-and-cut one, and 87% in the Pois-

on set for the same class. It is worth mentioning that, for no in-

tance, the algorithm implemented in CPLEX terminated before the

ime limit. The values of ρ tend to improve for larger classes, since

nstances become more and more complex for the deterministic

olver.

The results of the computational time analysis on the Gaussian

nd Poisson sets are summarized in Tables 6 and 7 , respectively.

hese tables report the statistics on computational time for both

lgorithms. We use the statistic τ to express the percentage of av-

rage improvement of our algorithm in terms of the computational

ime. Let τi be the improvement on the single i th instance

τi =

t ime CP i − t ime RL i

time CP

,

i

https://www.github.com/GiorgioGrani/JSSP_actor-critic_Agasucci_Monaci_Grani

M. Monaci, V. Agasucci and G. Grani European Journal of Operational Research 312 (2024) 910–926

Table 4

RL vs. the branch-and-cut implemented in CPLEX (BC-CPLEX) on the Gaussian set: comparison on the makespan C max .

J × M # instances Mean Std dev Max Min Avg ρ (%)

RL BC-CPLEX RL BC-CPLEX RL BC-CPLEX RL BC-CPLEX

30 × 25 100 4785.3 29505.2 111.7 15261.5 5107.3 40408.4 4579.7 4307.1 63.1

35 × 30 100 5462.6 53883.9 115.1 11398.5 5702.0 60350.1 5180.4 5309.8 85.8

40 × 35 100 5989.5 68449.6 134.8 4592.1 6349.8 74838.7 5715.4 62320.4 91.2

45 × 40 100 6931.4 66026.5 130.2 38853.8 7304.9 99942.2 6599.8 6376.8 63.9

50 × 45 100 8663.5 93547.3 147.4 44467.5 9015.6 125757.1 8198.9 7827.4 71.6

Table 5

RL vs. branch-and-cut implemented in CPLEX (BC-CPLEX) on the Poisson set: comparison on the makespan C max .

J × M # instances Mean Std dev Max Min Avg ρ (%)

RL BC-CPLEX RL BC-CPLEX RL BC-CPLEX RL BC-CPLEX

30 × 25 100 4167.1 28079.9 93.7 12378.8 4404.0 36509.0 3939.0 4058.0 69.8

35 × 30 100 5249.4 43213.3 136.0 20358.0 5566.0 55073.0 4963.0 4609.0 69.8

40 × 35 100 5947.5 72325.4 111.9 16863.0 6194.0 78182.0 5735.0 5777.0 86.8

45 × 40 100 7815.5 71007.8 182.6 34066.1 8263.0 96754.0 7453.0 6702.0 68.9

50 × 45 100 8032.1 103049.2 181.9 40447.6 8410.0 129359.0 7697.0 7571.0 78.6

Table 6

RL vs. the branch-and-cut algorithm implemented in the known commercial solver CPLEX (BC-CPLEX) on the Gaussian set: comparison on the computational time (seconds).

J × M #instances Mean Std dev Max Min Avg τ (%)

RL BC-CPLEX RL BC-CPLEX RL BC-CPLEX RL BC-CPLEX

30 × 25 100 2.5 4.7 0.3 2.4 3.5 14.4 1.9 1.9 35.8

35 × 30 100 4.6 13.6 0.5 6.8 5.6 36.4 3.5 3.6 58.2

40 × 35 99 7.0 39.3 1.0 16.3 10.3 79.6 5.8 12.8 78.3

45 × 40 100 11.8 34.0 1.2 22.3 14.0 99.3 9.8 5.2 36.4

50 × 45 92 18.7 51.6 1.9 34.1 24.4 117.9 15.9 9.1 37.1

Table 7

RL vs. the branch-and-cut algorithm implemented in the known commercial solver CPLEX on the Poisson set: comparison on the computational time (seconds).

J × M #instances Mean Std dev Max Min Avg τ (%)

RL BC-CPLEX RL BC-CPLEX RL BC-CPLEX RL BC-CPLEX

30 × 25 100 2.4 5.6 0.4 2.7 4.7 13.2 1.8 1.9 48.3

35 × 30 100 4.4 8.7 0.5 4.3 6.1 27.2 3.4 3.3 39.6

40 × 35 100 7.2 28.4 0.9 15.1 10.7 91.8 6.0 6.9 66.9

45 × 40 100 11.3 30.8 1.1 20.0 14.1 79.4 9.7 5.4 37.5

50 × 45 98 17.1 57.2 1.2 34.1 20.2 106.0 15.0 11.8 54.3

w

a

b

s

t

i

6

i

i

t

a

s

w

w

a

o

t

p

i

g

a

t

s

τ

f

p

c

a

t

p

t

i

d

u

w

m

h

j

o

l

c

b

p

g

here time X denotes the computational time of the algorithm X

nd X can equal RL (the proposed RL method) or CP (short for the

ranch-and-cut algorithm implemented in the known commercial

olver BC-CPLEX).

For each class of both sets, our method is faster on average than

he optimization solver implemented in CPLEX, up to reach a 78%

mprovement for the (40 × 35) instances in the Gaussian set, and

7% for the Poisson set. For some classes, the number of instances

s less than 100 since the branch-and-cut algorithm implemented

n the known commercial solver CPLEX exceeded the time limit of

wo minutes.

In Fig. 6 , we report the performance profiles for the Gaussian

nd the Poisson set, considering the computational time analy-

is first, and the objective value afterwords. Performance profiles

ere initially introduced in Dolan & Moré (2002) as an additional

ay to compare different methods. Given a set of algorithms A

nd a set of problems P , the performance of an algorithm a ∈ A
n a problem p ∈ P is computed against the best performance ob-

ained by any other method in A on p. We consider the ratio ηp,a =
erformance p,a / min { performance p,a ′ : a ′ ∈ A} , where performance p,a

s the performance obtained on the pth problem by the a th al-

orithm. In our case, the performance is the computational time

t first, and then the objective value. We now consider a cumula-

ive function computing the number of times algorithm a ∈ A was
918
uccessful against the others, specifically γa (τ) = |{ p ∈ P : ηp,a ≤
}| / |P| . The performance profile is the plot of the function γa (τ)

or all a ∈ A , varying with τ .

The plots in Fig. 6 are self-explanatory, since our algorithm out-

erforms the branch-and-cut algorithm implemented in the known

ommercial solver CPLEX in every case. In particular, Fig. 6 (a)

nd (b) show that our approach is faster than 80% of all the

imes produced by the algorithm implemented in CPLEX, inde-

endently from the distribution. For Fig. 6 (c) and (d), the situa-

ion is even more accentuated, with our approach beating all the

nstances almost immediately, whereas the branch-and-cut proce-

ure in CPLEX requires a relatively high value of τ before stepping

p.

Despite the good performances shown in the previous results,

e should not forget that the branch-and-cut procedure imple-

ented in CPLEX is an exact algorithm, and therefore its usage as a

euristic is limited. To this aim, we report in Tables 8 and 9 the ob-

ective values obtained by CPLEX giving more time on the instances

f the Gaussian and the Poissone set respectively. As the time

imit increases the values obtained by the exact solver become in-

reasingly lower. Of course, the larger the instance, the larger the

ranching tree, which implies a longer time for the branch-and-cut

rocedure. As it is clear from the table, the decay of our solution

eneralizes better in terms of the computational time needed to

M. Monaci, V. Agasucci and G. Grani European Journal of Operational Research 312 (2024) 910–926

Fig. 6. Performance profiles.

Table 8

RL vs. the branch-and-cut algorithm implemented in the known commercial solver CPLEX on the Gaussian set: comparison on the objective value when the time limit is set

to 60 seconds.

J × M #instances Mean Std dev Max Min Avg ρ (%)

RL BC-CPLEX RL BC-CPLEX RL BC-CPLEX RL BC-CPLEX

30 × 25 100 4785.3 3722.3 111.7 82.3 5107.3 3915.0 4579.7 3502.5 −28.6

35 × 30 100 5462.6 4729.0 115.1 92.7 5702.0 4906.9 5180.4 4468.4 −15.6

40 × 35 100 5989.5 5723.9 134.8 143.0 6349.8 6367.7 5715.4 5410.8 −4.7

45 × 40 100 6931.4 10429.2 130.2 17501.5 7304.9 89850.7 6599.8 6007.8 −3.2

50 × 45 100 8663.5 47061.5 147.4 51146.6 9015.6 125070.6 8198.9 7286.8 28.3

Table 9

RL vs. the branch-and-cut algorithm implemented in the known commercial solver CPLEX on the Poisson set: comparison on the objective value when the time limit is set

to 60 seconds.

J × M #instances Mean Std dev Max Min Avg ρ (%)

RL BC-CPLEX RL BC-CPLEX RL BC-CPLEX RL BC-CPLEX

30 × 25 100 4167.1 3602.3 93.7 72.4 4404.0 3784.0 3939.0 3395.0 −15.7

35 × 30 100 5249.4 4655.6 136.0 63.0 5566.0 4814.0 4963.0 4488.0 −12.8

40 × 35 100 5947.5 5637.0 111.9 99.6 6194.0 5852.0 5735.0 5405.0 −5.5

45 × 40 100 7815.5 10683.9 182.6 17056.9 8263.0 87381.0 7453.0 6283.0 −10.2

50 × 45 100 8032.1 59159.0 181.9 54790.0 8410.0 128595.0 7697.0 7007.0 41.1

r

a

b

t

(

d

t

g

c

d

p

e

5

t

each that value, meaning our procedure could be implemented

s a starting point method to enhance the performances of the

ranch-and-cut procedure implemented in CPLEX.

Finally, to complete the analysis we performed an analysis on

he standard Taillard’s Benchmark instances derived from Taillard

1993) , comparing our approach with the branch-and-cut proce-

ure implemented in CPLEX setting the time limit to one and then

o five minutes. We report these results in Table 10 . As expected,

iven the small size of the instances, the values obtained by the

S

919
ommercial solver after one and five minutes of computation are

ominant to our approach. For completeness, the branch-and-cut

rocedure implemented in CPLEX terminated at the time limit for

very instance, both when the limit was set to one and to five.

.2.2. Comparison with the adaptive algorithm

As anticipated in the previous sections, we conducted a fur-

her comparison with the adaptive algorithm (ADA) described in

hakhlevich et al. (1996) (see also Sotskov et al., 2013). The ap-

M. Monaci, V. Agasucci and G. Grani European Journal of Operational Research 312 (2024) 910–926

Table 10

RL vs. BB-CPLEX on the Taillard benchmark instances: comparison on the on the makespan C max . BB-CPLEX 1 represent

the branch-and-cut procedure implemented in CPLEX with a time limit of one minute, while BB-CPLEX 5 stops after five

minutes.

J × M # instances Statistics Algorithm

BB-CPLEX 1 BB-CPLEX 5 RL

15 × 15 10 Mean 1286.2 1253.4 1488.9

Ta01-10 Std. Dev 41.7 33.3 49.0

Max 1359.0 1313.0 1590.0

Min 1190.0 1181.0 1439.0

20 × 15 10 Mean 1553.7 1479.0 1735.5

Ta11-20 Std. Dev 53.9 64.0 52.9

Max 1647.0 1619.0 1822.0

Min 1437.0 1405.0 1657.0

20 × 20 10 Mean 1859.7 1744.7 2094.6

Ta21-30 Std. Dev 55.1 48.8 114.4

Max 1960.0 1851.0 2312.0

Min 1789.0 1686.0 1968.0

30 × 15 10 Mean 2318.5 2194.0 2370.6

Ta31-40 Std. Dev 111.1 87.8 164.6

Max 2524.0 2350.0 2670.0

Min 2102.0 1985.0 2075.0

30 × 20 10 Mean 2709.8 2496.6 2764.1

Ta41-50 Std. Dev 114.7 91.7 147.9

Max 2949.0 2620.0 3080.0

Min 2526.0 2347.0 2511.0

Table 11

RL vs. ADA on the Gaussian set: comparison on the makespan C max .

J × M # instances Mean Std. Dev Max Min Avg ρ (%)

RL ADA RL ADA RL ADA RL ADA

30 × 25 100 4785.3 4961.1 111.7 364.0 5107.3 6166.9 4579.7 4263.8 3.0

35 × 30 100 5462.6 6273.9 115.1 500.0 5702.0 8063.0 5180.4 5127.1 12.4

40 × 35 100 5989.5 7698.5 134.8 535.0 6349.8 9312.9 5715.4 6277.4 21.8

45 × 40 100 6931.4 9414.1 130.2 596.2 7304.9 11075.4 6599.8 8262.2 26.1

50 × 45 100 8663.5 12007.4 147.4 883.6 9015.6 14312.1 8198.9 10351.4 27.5

Table 12

RL vs. ADA on the Poisson set: comparison on the makespan C max .

J × M # instances Mean Std. Dev Max Min Avg ρ (%)

RL ADA RL ADA RL ADA RL ADA

30 × 25 100 4167.1 4922.3 93.7 300.5 4404.0 5718.0 3939.0 4108.0 15.0

35 × 30 100 5249.4 6115.7 136.0 368.3 5566.0 7098.0 4963.0 5347.0 13.8

40 × 35 100 5947.5 7646.7 111.9 677.5 6194.0 9977.0 5735.0 6607.0 21.7

45 × 40 100 7815.5 9653.4 182.6 745.9 8263.0 11898.0 7453.0 7809.0 18.6

50 × 45 100 8032.1 10954.7 181.9 780.4 8410.0 13174.0 7697.0 9442.0 26.3

Table 13

RL vs. ADA on the Gaussian set: comparison on the computational time (seconds).

J × M # instances Mean Std. Dev Max Min Avg τ (%)

RL ADA RL ADA RL ADA RL ADA

30 × 25 100 2.5 7.3 0.3 0.5 3.5 9.2 1.9 6.7 66.2

35 × 30 100 4.6 17.1 0.5 0.5 5.6 18.7 3.5 16.5 73.2

40 × 35 100 7.0 29.7 1.0 0.7 10.3 32.0 5.7 28.5 76.3

45 × 40 100 11.8 72.7 1.2 4.7 14.0 100.3 9.8 67.2 83.8

50 × 45 100 18.7 138.4 1.9 2.3 24.4 147.8 15.9 129.1 86.5

Table 14

RL vs. ADA on the Poisson set: comparison on the computational time (seconds).

J × M # instances Mean Std. Dev Max Min Avg τ (%)

RL ADA RL ADA RL ADA RL ADA

30 × 25 100 2.4 7.5 0.4 0.4 4.7 8.7 1.8 6.5 68.4

35 × 30 100 4.4 16.5 0.5 0.7 6.1 18.8 3.4 15.6 73.4

40 × 35 100 7.2 31.1 0.9 0.9 10.7 33.9 6.0 29.1 76.9

45 × 40 100 11.3 68.3 1.1 2.0 14.1 75.0 9.7 63.6 83.4

50 × 45 100 17.1 121.9 1.2 3.0 20.2 128.3 15.0 115.4 86.0

920

M. Monaci, V. Agasucci and G. Grani European Journal of Operational Research 312 (2024) 910–926

Fig. 7. Performance profiles.

Table 15

PDR-based heuristics.

Priority rule Description

SPT Select the job with the shortest processing time

LPT Select the job with the longest processing time

SSO Select the job with the shortest processing time of subsequent operation

LSO Select the job with the longest processing time of subsequent operation

SRM Select the job with the shortest remaining processing time not including the processing time of the current operation

LRM Select the job with the longest remaining processing time not including the processing time of the current operation

FOPNR Select the job with fewest remaining operations

SPT + SSO Select the job with the minimum sum of the processing times of the current and subsequent operation

LPT + LSO Select the job with the maximum sum of the processing times of the current and subsequent operation

SPT ∗TWK Select the job with the minimum product of current operation processing time and total working time

LPT ∗TWK Select the job with the maximum product of current operation processing time and total working time

SPT/TWK Select the job with the minimum ratio of current operation processing time to total working time

LPT/TWK Select the job with the maximum ratio of current operation processing time to total working time

SPT ∗TWKR Select the job with the minimum product of current operation processing time to total remaining working time

LPT ∗TWKR Select the job with the maximum product of current operation processing time and total remaining working time

SPT/TWKR Select the job with the minimum ratio of current operation processing time to total remaining working time

LPT/TWKR Select the job with the minimum ratio of current operation processing time to total remaining working time

p

r

s

o

e

s

a

p

t

e

c

e

e

i

t

o

t

s

s

d

s

b

l

c

t

roach uses the weighted mixed disjunctive graph model to rep-

esent job shop scheduling problems and the conflict resolution

trategy is applied to build a feasible schedule. Trained on a sample

f job shop problems, the aim of the method is to produce knowl-

dge on a benchmark of priority dispatching rules in order to solve

imilar large-scale job-shop problems by applying, by analogy, the

cquired knowledge. In more detail, the adaptive algorithm pro-

osed is characterized by two phases: a learning and an examina-

ion stage. In the former, the training instances are solved by an

xact or approximate algorithm. Accordingly, information on suc-

essful decisions on conflict situations, represented by disjunctive

dges in the graph, is stored in a learning table. In particular, for

ach resolved conflict edge, the algorithm gathers some character-
921
stics based on priority dispatching rules and, along with the orien-

ation of the edge, it saves all the computed information in a row

f the learning database. In this way, it is possible to extract from

he table a composite decision rule to produce a comprehensive

pecific heuristic. In the examination stage, the adaptive scheduler

olves new unseen instances by adopting decisions based on the

erived heuristic.

As regard the learning stage, we trained the algorithm on the

ame instances reported in Table 1 and we solved them using the

ranch-and-cut algorithm implemented in CPLEX, by setting a time

imit equal to 420 seconds per instance. The time limit is a physi-

al requirement since the training instances were many and the to-

al training process would have been too time-consuming. During

M
.
 M

o
n

a
ci,
 V

.
 A

g
a

su
cci

 a
n

d
 G

.
 G

ra
n

i

E
u

ro
p

ea
n
 Jo

u
rn

a
l
 o

f
 O

p
era

tio
n

a
l
 R

esea
rch

 31
2
 (2

0
2

4
)
 9

10
–

9
2

6

Table 16

RL vs. HEURISTICS on the Gaussian set: results for the objective value, i.e. makespan C max .

J × M # instances Mean makespan ˆ C max

RL SPT LPT SSO LSO SRM LRM FOPNR SPT + SSO LPT + LSO SPT ∗TWK LPT ∗TWK SPT/TWK LPT/TWK SPT ∗TWKR LPT ∗TWKR SPT/TWKR LPT/TWKR

30 × 25 100 4785.2 27043.3 27522.2 27239.2 27288.8 39828.6 4704.8 40818.6 27207.9 25069.4 28159.7 28261.6 28015.4 28062.6 38418.9 7051.0 6461.5 38121.0

35 × 30 100 5462.5 38957.3 39576.3 39449.8 39629.7 58356.8 5613.1 57553.7 39286.9 36663.2 40637.9 39968.7 39989.2 40638.7 55808.8 9586.9 8581.0 55593.6

40 × 35 100 5989.4 50882.5 51497.9 50997.7 51235.2 74920.2 6417.3 75766.9 50176.3 48228.3 51956.8 52535.2 51826.4 52398.5 72103.3 11405.3 10155.9 71926.3

45 × 40 100 6931.4 67592.2 68130.0 67756.5 67755.1 101495.4 7181.2 97722.8 67400.7 64684.4 69874.5 69997.1 69245.4 69943.0 96495.7 14598.4 12757.1 96382.9

50 × 45 100 8663.5 88020.5 87741.0 88539.9 87247.4 126439.2 8168.0 127350.1 87411.1 84192.0 89840.5 89369.3 89151.4 89384.8 122160.7 18433.8 15937.8 122109.3

Table 17

RL vs. HEURISTICS on the Poisson set: results for the objective value, i.e. makespan C max .

J × M #instances Mean Makespan ˆ C max

RL SPT LPT SSO LSO SRM LRM FOPNR SPT + SSO LPT + LSO SPT ∗TWK LPT ∗TWK SPT/TWK LPT/TWK SPT ∗TWKR LPT ∗TWKR SPT/TWKR LPT/TWKR

30 × 25 100 4167.1 26094.0 27272.4 26676.2 27139.1 39473.4 4504.8 38448.4 26498.9 24493.9 27263.5 27263.5 27120.9 27445.1 37830.9 6749.6 6247.8 37762.4

35 × 30 100 5249.3 37867.5 38509.7 38401.7 38075.3 56306.4 5379.0 56190.3 37894.1 35910.0 39368.3 39368.3 38904.1 39545.2 53946.5 9092.5 8290.9 54070.7

40 × 35 100 5947.4 52884.2 53281.0 53186.9 53454.9 77287.6 6225.5 76786.0 52041.8 50473.1 53645.9 53645.9 53352.1 54144.3 74676.3 11563.9 10244.0 74043.8

45 × 40 100 7815.5 67844.4 68982.8 67885.8 69024.4 99289.5 7655.5 98925.0 68173.4 65585.7 69691.3 69691.3 69601.5 70168.4 94933.3 14873.2 13379.1 94795.6

50 × 45 100 8032.1 85492.6 87243.2 85696.6 86781.4 125574.0 8085.7 123372.0 85857.1 83168.9 87738.4 87738.4 87246.0 88250.1 120762.4 17430.5 15500.7 120368.1

9
2

2

M. Monaci, V. Agasucci and G. Grani European Journal of Operational Research 312 (2024) 910–926

Table 18

RL vs. Zhang et al. (2020) on the Taillard benchmark instances: comparison on the makespan C max .

J × M Instance IDs # instances Our RL Reported on Zhang et al. (2020)

Mean Std. Dev Max Min Mean

15 × 15 Ta01-10 10 1488.9 49.0 1590.0 1439.0 1547.7

20 × 15 Ta11-20 10 1735.5 52.9 1822.0 1657.0 1774.7

20 × 20 Ta21-30 10 2094.6 114.4 2312.0 1968.0 2128.1

30 × 15 Ta31-40 10 2370.6 164.6 2670.0 2075.0 2378.8

30 × 20 Ta41-50 10 2764.1 147.9 3080.0 2511.0 2603.9

Table 19

RL vs. Zhang et al. (2020) on the Taillard generated instances: comparison on the makespan C max .

J × M # instances Statistics Algorithm

Zhang et al.

(2020) 6 × 6

Zhang et al.

(2020) 10 × 10

Zhang et al.

(2020) 15 × 15

Zhang et al.

(2020) 20 × 20

Zhang et al.

(2020) 30 × 20

Our RL

6 × 6 100 Mean 581.9 574.5 571.7 573.2 570.8 544.7

Std. Dev 81.0 71.8 79.0 70.2 71.8 68.0

Max 814.0 804.0 804.0 775.0 804.0 814.0

Min 427.0 415.0 424.0 405.0 405.0 403.0

10 × 10 100 Mean 1051.5 995.9 996.8 998.0 991.8 938.0

Std. Dev 96.2 76.2 78.9 74.3 75.9 71.4

Max 1327.0 1187.0 1218.0 1242.0 1187.0 1133.0

Min 842.0 862.0 820.0 871.0 781.0 770.0

15 × 10 100 Mean 1306.9 1225.2 1229.0 1222.4 1222.0 1182.9

Std. Dev 106.9 100.8 92.6 92.1 95.2 96.4

Max 1573.0 1460.0 1504.0 1447.0 1440.0 1412.0

Min 1064.0 995.0 1007.0 1012.0 995.0 968.0

15 × 15 100 Mean 1636.6 1502.9 1505.1 1503.3 1503.1 1441.8

Std. Dev 103.8 105.1 107.1 96.3 97.6 98.9

Max 1864.0 1841.0 1898.0 1785.0 1861.0 1752.0

Min 1425.0 1321.0 1322.0 1311.0 1267.0 1261.0

20 × 10 100 Mean 1567.2 1474.6 1470.4 1476.2 1478.3 1436.4

Std. Dev 104.9 96.6 95.8 98.5 104.8 108.8

Max 1893.0 1682.0 1680.0 1755.0 1711.0 1756.0

Min 1367.0 1201.0 1147.0 1188.0 1178.0 1223.0

20 × 20 100 Mean 2216.2 1997.4 1993.2 1984.3 1996.7 2012.6

Std. Dev 127.3 106.3 95.8 98.6 114.8 93.2

Max 2528.0 2344.0 2253.0 2204.0 2355.0 2241.0

Min 1954.0 1778.0 1722.0 1790.0 1775.0 1746.0

t

e

O

t

i

r

l

r

p

a

r

t

r

t

i

m

t

p

r

G

a

F

t

s

e

t

5

f

h

p

w

t

o

t

o

i

L

t

5

o

2

m

o

w

m

o

he learning, we used as benchmark priority rules the SPT (Short-

st Processing Time), LPT (Longest Processing Time , FIFO (First In First

ut) and ECT (Earliest Completion Time) heuristics. In the examina-

ion stage, we tested the algorithm on unseen instances, described

n Table 2 , and, for each instance, due to the large amount of time

equired for the training, we randomly sampled 100 rows of the

earning table.

In Tables 11 , 12 , 13 and 14 , we compared the adaptive algo-

ithm with our approach on the Gaussian and Poisson test sets We

rovide ρ and τ values representing the percentage of the aver-

ge improvement in terms of makespan and computational time

espectively, where the single improvements of RL upon ADA on

he i th instance are computed as follows:

• ρi =

C max ADA i
− C max RL i

C max ADA i

• τi =

t ime ADA i
− t ime RL i

time ADA i

As we can see, our approach outperforms the adaptive algo-

ithm on the test sets and the performances are very similar be-

ween the two set of instances. On the Gaussian set, the ρ value

s between 3% and 27.5 % and increases as the problems become

ore complex. Similarly, in the Poisson case, it ranges from 15 % up

o 26.3 % . Concerning computational times, our RL approach out-

erforms the adaptive algorithm presenting an improvement in a

ange between 66 % and 86 % on both the test sets.

Finally, in Fig. 7 , we report the performance profiles for the

aussian and the Poisson set, considering the computational time

nalysis first, and the objective value afterwords. In particular,
923
ig. 7 (c) and (d) show that our approach beats more than 90% of all

he makespan returned by the ADA (both for gaussian and for pois-

on distribution). For Fig. 7 (a) and (b), the situation is even more

mphasized, with our approach faster than almost 100% of all the

imes produced by the ADA, independently from the distribution.

.2.3. Comparison with scheduling heuristics based on priority rules

We compared our algorithm with 17 well-known heuristic rules

or the JSSP, as described in Panwalkar & Iskander (1977) . These

euristics are based on a priority rule that selects the job to be

rocessed. In Table 15 , we provide a list of the addressed heuristics

ith a short description of the rule.

We evaluated our method against the 17 PR-based heuristics on

he Gaussian and Poisson test sets already described in the previ-

us sections. The results are reported in Tables 16 and 17 , respec-

ively. For each problem size, we report the average makespan C max

ver all the 100 instances of the same size.

The only heuristic that performs better than our RL approach

s the LRM (Longest Remaining Machining time). More in detail, the

RM heuristic defeats RL on the 30 × 25 and 50 × 45 instances of

he Gaussian set, reaching an improvement of around 1.7% and

.7% respectively. Concerning the Poisson set, LRM overcomes RL

nly on the 45 × 40 instances, with an improvement of around

%. The rules LPT ∗TWKR, SPT/TWKR and LPT/TWKR return average

akespans around 2 times higher than our approach, while all the

ther heuristics produces makespans 5 times or higher. Therefore

e may say that the proposed RL method has dominant perfor-

ances compared to the selected heuristics in almost every class

f test instances.

M. Monaci, V. Agasucci and G. Grani European Journal of Operational Research 312 (2024) 910–926

5

Z

Z

b

N

2

s

d

u

i

i

t

2

a

P

r

c

s

i

t

f

t

w

b

(

s

s

i

(

o

t

d

(

o

T

I

e

c

s

1

d

t

t

s

d

6

S

t

v

w

s

P

t

r

e

L

fi

s

p

c

s

e

w

u

p

c

a

r

r

i

l

A

J⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

)

Table 21

Training settings.

Parameter Setting

Number of episodes 5000

Roll-outs per episode 10

Random choice prob.ty From ε = 0 . 2 down to ε = 0

KL penalty coefficient β 15

Target KL divergence δ 0.05

Actor optimizer ADAM

Actor learning rate 10 −4

Actor optimization steps 1

Critic optimizer ADAM

Critic learning rate 10 −4

Critic optimization steps 3

Mini-batch size N · T
.2.4. Comparison with the reinforcement learning algorithm in

hang et al. (2020)

Finally, we compared our approach with the one presented in

hang et al. (2020) . In this work, the authors proposed a method

ased on Graph Neural Networks, a special class of Deep Neural

etwork models dealing with graph-structured data (see Wu et al.,

020; Zhou et al., 2020 for a comprehensive review). From the re-

ult in Bła ̇zewicz et al. (20 0 0) , the JSSP can be formulated as a

isjunctive graph and fed to the network. Differently from us, they

sed the PPO algorithm using a clipping loss to compute the pol-

cy.

The training and testing phases were performed by generat-

ng instances with the Taillard method (Taillard, 1993). The au-

hors created different classes of problems: 6 × 6 , 10 × 10 , 15 × 15 ,

0 × 15 , 20 × 20 , and 30 × 20 . Each class had 100 instances. The

uthors trained a different model for each class, performing 10,0 0 0

PO iterations using 4 trajectories each.

To compare our approach to the one in Zhang et al. (2020) , we

e-trained our model on the same Taillard instances, excluding the

lasses 30 × 15 and 30 × 20 for computational bounds on our re-

ources. Since the training of our model can handle different JSSP

nstances with heterogeneous sizes at the same time, we preferred

o perform a one-shot training using the sets of instances ranging

rom 6 × 6 to 20 × 20 . We performed 25,0 0 0 PPO iterations with 5

rajectories each.

We reported our results in Tables 18 and 19 . In the first Table,

e show the value obtained in terms of objective on the Taillard’s

enchmark set of known Taillard instances taken from Taillard

1993) (see Table 3). The results show that our model is able to

lightly beat the approach proposed in Zhang et al. (2020) . This is

urprising since the nature of our training tends to be less special-

zed on the single group of instances, as opposed to Zhang et al.

2020) where the results are generated using models trained only

n the class at hand. The classes 30 × 15 and 30 × 20 are included

o show the quality of our solution which was not trained on those

istributions, differently from the results proposed in Zhou et al.

2020) , which have specialized models for the 30 × 20 case.

In the second Table 19 , we compared the two approaches

n newly generated instances, obtained with the Taillard method

aillard (1993) , using the generator provided in Zhang et al. (2020) .

n the Table, we re-run the different models available from Zhang

t al. (2020) , and we computed the objective values for every new

lass. In particular, we created a total of 6 classes with 100 in-

tances each having the following specifics: 6 × 6 , 10 × 10 , 15 × 10 ,

5 × 15 , 20 × 10 , and 20 × 20 . Our approach is capable of beating

ifferent variations of the algorithm presented in Zhang & Diet-

erich (1995) up to the size of 30 × 20 , except for the instances in

he class 20 × 20 .

We included an analysis on timing in the Appendix (Table 22),

howing the computational times are comparable, with no relevant

ifference between the two approaches.

. Conclusions

In this paper, we investigated how to solve the Job Shop

cheduling problem (JSSP) through reinforcement learning, aiming

o make the learning agent flexible for tackling instances with a

ariable number of jobs, tasks, and machines.

We first formulated the JSSP as a Markov Decision Process,

hich was fundamental to inscribe the problem in an actor-critic

cheme. The method adopted takes inspiration from the Proximal

olicy Optimization, Schulman et al. (2017) , using a dynamic adap-

ation of the penalty term to facilitate exploitation over explo-

ation, and vice-versa, depending on the situation.

In the second phase, we studied several classes of deep mod-

ls that could fit the JSSP, eventually landing on a double incident
924
STM framework, where each LSTM works as a projection into a

xed space. The actor ends with an action masking to control fea-

ibility, combined with a soft-max function to recreate a discrete

robability distribution, aka the policy estimator. At its bottom, the

ritic has an encoder network, collapsing the embeddings of the

econd LSTM into a scalar, representing the state-value function

stimator.

Our algorithm can generalize to a certain extent to instances

ith larger sizes, and with different distributions, than the one

sed in the training phase. The approach shows a decisive im-

rovement towards the deterministic mixed-integer branch-and-

ut algorithm implemented in known solver CPLEX, the adaptive

lgorithm implemented in Shakhlevich et al. (1996) , 17 priority

ule-based heuristics, and a Deep Reinforcement learning algo-

ithm, especially in terms of the makespan value, finally proving

t is possible to generate new efficient greedy heuristics just from

earning-based methodologies.

ppendix A. Settings tables

JSSP Mixed-integer formulation

We used the following mixed-integer linear program for the

SSP in the solver CPLEX.

min t , x ,C max
C max

s.t. t jh −t jk ≥ p jk , ∀ (j, k) , (j, h) ∈ O, (j, k) ≺ (j, h

t jk − t ik ≥ p ik − Mx jik , ∀ (j, k) , (i, k) ∈ O, j < i

t ik − t jk ≥ p jk − M(1 − x jik) , ∀ (j, k) , (i, k) ∈ O, j < i

C max ≥ t jk + p jk , ∀ (j, k) ∈ O

t jk ≥ 0 , ∀ (j, k) ∈ O

x jik ∈ { 0 , 1 } , ∀ (j, k) , (i, k) ∈ O, j < i

Where:

• p jk are the processing times.
• M = � ∑

(j,k) ∈O p jk � is a Big-M value.
• C max is a continuous variable indicating the makespan.
• t jk are continuous variables indicating the non-negative

starting time of operation (j, k) .

Table 20

Actor-critic network configurations.

Parameter Setting

LSTM 1 hidden size 110

LSTM 2 hidden size 110 · 2

FFN number of hidden layers 3

FFN input size 110 · 20

FFN 1st hidden layer size 110 · 10

FFN 2nd hidden layer size 110 · 5

FFN 3rd hidden layer size 110

FFN output layer size 1

M. Monaci, V. Agasucci and G. Grani European Journal of Operational Research 312 (2024) 910–926

Table 22

RL vs. Zhang et al. (2020) on the Taillard generated instances: comparison on the computational time.

J × M # instances Statistic Algorithm

Zhang et al.

(2020) 6 × 6

Zhang et al.

(2020) 10 × 10

Zhang et al.

(2020) 15 × 15

Zhang et al.

(2020) 20 × 20

Zhang et al.

(2020) 30 × 20

Our RL

6 × 6 100 Mean 0.12 0.12 0.12 0.12 0.12 0.06

Std. Dev 0.08 0.05 0.05 0.04 0.04 0.01

Max 0.88 0.88 0.88 0.88 0.88 0.13

Min 0.10 0.10 0.10 0.09 0.09 0.04

10 × 10 100 Mean 0.31 0.32 0.32 0.32 0.32 0.17

Std. Dev 0.08 0.06 0.05 0.04 0.04 0.01

Max 1.02 1.02 1.02 1.02 1.02 0.19

Min 0.27 0.27 0.27 0.27 0.27 0.14

15 × 10 100 Mean 0.45 0.49 0.48 0.49 0.49 0.31

Std. Dev 0.07 0.08 0.07 0.07 0.07 0.01

Max 1.01 1.01 1.01 1.01 1.01 0.35

Min 0.37 0.37 0.37 0.37 0.37 0.30

15 × 15 100 Mean 0.67 0.75 0.77 0.78 0.79 0.72

Std. Dev 0.08 0.14 0.14 0.14 0.13 0.13

Max 1.30 1.47 1.47 1.47 1.47 1.14

Min 0.58 0.58 0.58 0.58 0.58 0.50

20 × 10 100 Mean 0.57 0.63 0.65 0.67 0.68 0.72

Std. Dev 0.07 0.10 0.10 0.12 0.12 0.06

Max 1.23 1.23 1.23 1.26 1.26 0.98

Min 0.53 0.53 0.53 0.53 0.53 0.64

20 × 20 100 Mean 1.42 1.52 1.54 1.56 1.58 1.94

Std. Dev 0.25 0.26 0.28 0.27 0.31 0.38

Max 2.00 2.35 2.78 2.78 3.58 3.52

Min 1.11 1.11 1.11 1.11 1.11 1.64

T

S

f

R

A

A

B

B
B

B

B

B

B

B

B

B

B

B

B

B

B

Ç

C

C

C

C

D

D

G

G

G

G

G

G

G

• x jik are binary variables defined as

x jik =

{
1 , if job j precedes job i on machine k
0 , otherwise

able of times for the comparison in Zhang et al. (2020)

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.ejor.2023.07.037 .

eferences

gasucci, V., Grani, G., & Lamorgese, L. (2020). Solving the single-track train
scheduling problem via deep reinforcement learning. arXiv preprint arXiv:2009.

00433
kers, S. B. (1956). Letter to the editor—A graphical approach to production schedul-

ing problems. Operations Research, 4 (2), 244–245. https://doi.org/10.1287/opre.4.

2.244 .
arto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike adaptive elements

that can solve difficult learning control problems. IEEE Transactions on Systems,
Man, and Cybernetics , (5), 834–846 .

ellman, R. (1966). Dynamic programming. Science, 153 (3731), 34–37 .
engio, Y., Frejinger, E., Lodi, A., Patel, R., & Sankaranarayanan, S. (2020). A learn-

ing-based algorithm to quickly compute good primal solutions for stochastic in-

teger programs. In International conference on integration of constraint program-
ming, artificial intelligence, and operations research (pp. 99–111). Springer .

engio, Y., Lodi, A., & Prouvost, A. (2021). Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Re-

search, 290 (2), 405–421 .
ertsekas, D. P. (2019). Reinforcement learning and optimal control . Athena Scientific

Belmont, MA .

ertsekas, D. P., Bertsekas, D. P., Bertsekas, D. P., & Bertsekas, D. P. (1995). Dynamic
programming and optimal control : vol. 1–2. Athena scientific Belmont, MA .

ertsimas, D., & Dunn, J. (2019). Machine learning under a modern optimization lens .
Dynamic Ideas LLC .

ertsimas, D., & Stellato, B. (2019). Online mixed-integer optimization in millisec-
onds. arXiv preprint arXiv:1907.02206

ertsimas, D., & Stellato, B. (2021). The voice of optimization. Machine Learning,
110 (2), 249–277 .

lazewicz, J., Domschke, W., & Pesch, E. (1996). The job shop scheduling problem:

Conventional and new solution techniques. European Journal of Operational Re-
search, 93 (1), 1–33. https://doi.org/10.1016/0377- 2217(95)00362- 2 .

ła ̇zewicz, J., Pesch, E., & Sterna, M. (20 0 0). The disjunctive graph machine repre-
sentation of the job shop scheduling problem. European Journal of Operational

Research, 127 (2), 317–331 .
925
rucker, P. (1994). A polynomial algorithm for the two machine job-shop scheduling

problem with a fixed number of jobs. Operations-Research-Spektrum, 16 , 5–7 .
rucker, P., Jurisch, B., & Sievers, B. (1994). A branch and bound algorithm for

the job-shop scheduling problem. Discrete Applied Mathematics, 49 (1), 107–127.
https://doi.org/10.1016/0166- 218X(94)90204- 6 . Special Volume Viewpoints on

Optimization

rucker, P., Sotskov, Y., & Werner, F. (2007). Complexity of shop-scheduling prob-
lems with fixed number of jobs: A survey. Mathematical Methods of Operational

Research, 65 , 461–481. https://doi.org/10.10 07/s0 0186-0 06-0127-8 .
ruckner, P. (1988). An efficient algorithm for the job-shop problem with two jobs.

Computing, 40 (4), 353–359. https://doi.org/10.1007/BF02276919 .
ali ̧s , B., & Bulkan, S. (2015). A research survey: Review of ai solution strate-

gies of job shop scheduling problem. Journal of Intelligent Manufacturing, 26 (5),

961–973 .
arlier, J., & Pinson, E. (1989). An algorithm for solving the job-shop problem. Man-

agement Science, 35 (2), 164–176 .
auligi, A., Culbertson, P., Stellato, B., Bertsimas, D., Schwager, M., &

Pavone, M. (2020). Learning mixed-integer convex optimization strategies
for robot planning and control. In 2020 59th IEEE conference on decision and

control (CDC) (pp. 1698–1705). IEEE .

haudhry, I. A., & Khan, A. A. (2016). A research survey: Review of flexible job shop
scheduling techniques. International Transactions in Operational Research, 23 (3),

551–591 .
hen, H., & Luh, P. B. (2003). An alternative framework to lagrangian relaxation ap-

proach for job shop scheduling. European Journal of Operational Research, 149 (3),
499–512 .

olan, E., & Moré, J. (2002). Benchmarking optimization software with performance

profiles. Mathematical Programming, 91 , 201–213 .
rori, I., Kharkar, A., Sickinger, W. R., Kates, B., Ma, Q., Ge, S., Dolev, E., Dietrich,

B., Williamson, D. P., & Udell, M. (2020). Learning to solve combinatorial op-
timization problems on real-world graphs in linear time. arXiv preprint arXiv:

2006.03750
ao, K., Cao, Z., Zhang, L., Chen, Z., Han, Y., & Pan, Q. (2019). A review on swarm

intelligence and evolutionary algorithms for solving flexible job shop scheduling
problems. IEEE/CAA Journal of Automatica Sinica, 6 (4), 904–916 .

arey, M., Johnson, D., & Sethi, R. (1976). Complexity of flowshop and jobshop

scheduling. Mathematics of Operations Research, 1 (2), 117–129. https://doi.org/10.
1287/moor.1.2.117 .

asse, M., Chételat, D., Ferroni, N., Charlin, L., & Lodi, A. (2019). Exact combinatorial
optimization with graph convolutional neural networks. arXiv preprint arXiv:

1906.01629
élinas, S., & Soumis, F. (2005). Dantzig–Wolfe decomposition for job shop schedul-

ing. In Column generation (pp. 271–302). Springer .

holami, O., & Sotskov, Y. N. (2014). Solving parallel machines job-shop scheduling
problems by an adaptive algorithm. International Journal of Production Research,

52 (13), 3888–3904 .
onzalez, T., & Sahni, S. (1978). Flowshop and jobshop schedules: Complexity and

approximation. Operations Research, 26 (1), 36–52. https://doi.org/10.1287/opre.
26.1.36 .

oodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning . MIT press .

https://doi.org/10.1016/j.ejor.2023.07.037
http://arxiv.org/abs/2009.00433
https://doi.org/10.1287/opre.4.2.244
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0002
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0003
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0004
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0005
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0006
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0007
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0008
http://arxiv.org/abs/1907.02206
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0009
https://doi.org/10.1016/0377-2217(95)00362-2
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0011
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0012
https://doi.org/10.1016/0166-218X(94)90204-6
https://doi.org/10.1007/s00186-006-0127-8
https://doi.org/10.1007/BF02276919
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0016
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0017
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0018
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0019
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0020
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0021
http://arxiv.org/abs/2006.03750
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0022
https://doi.org/10.1287/moor.1.2.117
http://arxiv.org/abs/1906.01629
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0024
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0025
https://doi.org/10.1287/opre.26.1.36
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0027

M. Monaci, V. Agasucci and G. Grani European Journal of Operational Research 312 (2024) 910–926

G

G

G

H

H

H

H

I

J

J

K

K

K

K

K

K

K

K

L

L

L

L

M

M

N

P

P

P

S

S

S

S

S

S

S

S

T

T

T

W

W

W

Z

Z

Z

Z
raham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1979). Optimiza-
tion and approximation in deterministic sequencing and scheduling: A survey.

In P. Hammer, E. Johnson, & B. Korte (Eds.), Discrete optimization II . In Annals
of discrete Mathematics: vol. 5 (pp. 287–326). Elsevier. https://doi.org/10.1016/

S0167- 5060(08)70356- X .
raves, A. (2012). Long short-term memory. In Supervised sequence labelling with

recurrent neural networks (pp. 37–45). Springer .
upta, P., Gasse, M., Khalil, E. B., Kumar, M. P., Lodi, A., & Bengio, Y. (2020). Hybrid

models for learning to branch. arXiv preprint arXiv:2006.15212

efetz, N., & Adiri, I. (1982). An efficient optimal algorithm for the two-machines
unit-time jobshop schedule-length problem. Mathematics of Operations Research,

7 , 354–360 .
oitomt, D. J., Luh, P. B., & Pattipati, K. R. (1990). A lagrangian relaxation approach

to job shop scheduling problems. In Proceedings., ieee international conference on
robotics and automation (pp. 1944–1949). IEEE .

ottung, A., Bhandari, B., & Tierney, K. (2020a). Learning a latent search space for

routing problems using variational autoencoders. In International conference on
learning representations .

ottung, A., Tanaka, S., & Tierney, K. (2020b). Deep learning assisted heuristic tree
search for the container pre-marshalling problem. Computers and Operations Re-

search, 113 , 104781 .
BM (2021). Cplex v12.10.01. http://www.ibm.com/analytics/cplex-optimizer .

ackson, J. R. (1956). An extension of Johnson’s results on job IDT scheduling.

Naval Research Logistics Quarterly, 3 (3), 201–203. https://doi.org/10.1002/nav.
380 0 030307 .

ohnson, S. M. (1953). Optimal two- and three-stage production schedules with setup
time included . Santa Monica, CA: RAND Corporation .

akade, S., & Langford, J. (2002). Approximately optimal approximate reinforcement
learning. In In proc. 19th international conference on machine learning . Citeseer .

akade, S. M. (2001). A natural policy gradient. In Advances in neural information

processing systems: vol. 14 .
arimi-Nasab, M., & Modarres, M. (2015). Lot sizing and job shop scheduling with

compressible process times: A cut and branch approach. Computers and Indus-
trial Engineering, 85 , 196–205 .

halil, E., Dai, H., Zhang, Y., Dilkina, B., & Song, L. (2017). Learning combinatorial op-
timization algorithms over graphs. In Advances in neural information processing

systems (pp. 6348–6358) .

halil, E., Le Bodic, P., Song, L., Nemhauser, G., & Dilkina, B. (2016). Learning to
branch in mixed integer programming. In Proceedings of the AAAI conference on

artificial intelligence: vol. 30 .
ingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980
onda, V. R., & Borkar, V. S. (1999). Actor-critic–type learning algorithms for Markov

decision processes. SIAM Journal on control and Optimization, 38 (1), 94–123 .

onda, V. R., & Tsitsiklis, J. N. (2003). Onactor-critic algorithms. SIAM journal on Con-
trol and Optimization, 42 (4), 1143–1166 .

ancia, G., Rinaldi, F., & Serafini, P. (2007). A compact optimization approach for
job-shop problems. In Proceedings of the 3rd multidisciplinary international con-

ference on scheduling: theory and applications (MISTA) (pp. 293–300) .
awhead, R. J., & Gosavi, A. (2019). A bounded actor-critic reinforcement learning

algorithm applied to airline revenue management. Engineering Applications of
Artificial Intelligence, 82 , 252–262 .

enstra, J. K., & Rinnooy Kan, A. H. G. (1979). Computational complexity of discrete

optimization problems. In Annals of discrete mathematics: vol. 4 (pp. 121–140).
Elsevier .

enstra, J. K., Rinnooy Kan, A. H. G., & Brucker, P. (1977). Complexity of machine
scheduling problems. In P. Hammer, E. Johnson, B. Korte, & G. Nemhauser (Eds.),

Studies in integer programming . In Annals of discrete mathematics: vol. 1 (pp. 343–
362). Elsevier. https://doi.org/10.1016/S0167- 5060(08)70743- X .

hasawade, S., & Bewoor, L. (2017). A survey of hybrid metaheuristics to min-

imize makespan of job shop scheduling problem. In 2017 international con-
ference on energy, communication, data analytics and soft computing (ICECDS)

(pp. 1957–1960). IEEE .
926
ohan, J., Lanka, K., & Rao, A. N. (2019). A review of dynamic job shop scheduling
techniques. Procedia Manufacturing, 30 , 34–39 .

air, V., Bartunov, S., Gimeno, F., von Glehn, I., Lichocki, P., Lobov, I., O’Donoghue, B.,
Sonnerat, N., Tjandraatmadja, C., Wang, P. et al. (2020). Solving mixed integer

programs using neural networks. arXiv preprint arXiv:2012.13349
anwalkar, S. S., & Iskander, W. H. (1977). A survey of scheduling rules. Operations

Research, 25 , 45–61 .
frommer, J., Zimmerling, C., Liu, J., Kärger, L., Henning, F., & Beyerer, J. (2018). Op-

timisation of manufacturing process parameters using deep neural networks as

surrogate models. Procedia CiRP, 72 , 426–431 .
ytorch (2021). Pytorch v1.8. pytorch.org.

chulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust region policy
optimization. In International conference on machine learning (pp. 1889–1897).

PMLR .
chulman, J., Moritz, P., Levine, S., Jordan, M. I., & Abbeel, P. (2018). High-

dimensional continuous control using generalized advantage estimation. arXiv:

1506.02438v6
chulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal pol-

icy optimization algorithms. arXiv preprint arXiv:1707.06347
hakhlevich, N., Sotskov, Y. N., & Werner, F. (1996). Adaptive scheduling algorithm

based on mixed graph model. IEE Proceedings-Control Theory and Applications,
143 (1), 9–16 .

otskov, Y. (1991). The complexity of shop-scheduling problems with two or three

jobs. European Journal of Operational Research, 53 (3), 326–336. https://doi.org/10.
1016/0377-2217(91)90066-5 .

otskov, Y. N., Gholami, O., & Werner, F. (2013). Solving a job-shop scheduling
problem by an adaptive algorithm based on learning. IFAC Proceedings Volumes,

46 (9), 1352–1357. https://doi.org/10.3182/20130619- 3- RU- 3018.00126 . 7th IFAC
Conference on Manufacturing Modelling, Management, and Control

otskov, Y. N., & Shakhlevich, N. V. (1995). NP-hardness of shop-scheduling prob-

lems with three jobs. Discrete Applied Mathematics, 59 (3), 237–266. https://doi.
org/10.1016/0166-218X(93)E0169-Y .

utton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction . MIT Press .
aillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of

Operational Research, 64 (2), 278–285 .
ang, Y., Agrawal, S., & Faenza, Y. (2020). Reinforcement learning for integer pro-

gramming: Learning to cut. In International conference on machine learning

(pp. 9367–9376). PMLR .
assel, P., Kovács, B., Gebser, M., Schekotihin, K., Kohlenbrein, W., & Schrott-Kost-

wein, P. (2022). Reinforcement learning of dispatching strategies for large-scale
industrial scheduling. In Proceedings of the international conference on automated

planning and scheduling: vol. 32 (pp. 638–646) .
ierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J., & Schmidhuber, J. (2014).

Natural evolution strategies. The Journal of Machine Learning Research, 15 (1),

949–980 .
olsey, L. A., & Nemhauser, G. L. (1999). Integer and combinatorial optimization :

vol. 55. John Wiley & Sons .
u, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S. Y. (2020). A comprehen-

sive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32 (1), 4–24 .

hang, C., Song, W., Cao, Z., Zhang, J., Tan, P. S., & Chi, X. (2020). Learning to dispatch
for job shop scheduling via deep reinforcement learning. Advances in Neural In-

formation Processing Systems, 33 , 1621–1632 .

hang, J., Ding, G., Zou, Y., Qin, S., & Fu, J. (2019). Review of job shop scheduling
research and its new perspectives under industry 4.0. Journal of Intelligent Man-

ufacturing, 30 (4), 1809–1830 .
hang, W., & Dietterich, T. G. (1995). A reinforcement learning approach to job-shop

scheduling. In Ijcai: vol. 95 (pp. 1114–1120). Citeseer .
hou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., . . . Sun, M. (2020). Graph neural

networks: A review of methods and applications. AI Open, 1 , 57–81 .

https://doi.org/10.1016/S0167-5060(08)70356-X
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0029
http://arxiv.org/abs/2006.15212
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0030
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0031
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0032
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0033
http://www.ibm.com/analytics/cplex-optimizer
https://doi.org/10.1002/nav.3800030307
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0035
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0036
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0037
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0038
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0039
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0040
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0041
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0042
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0043
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0044
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0045
https://doi.org/10.1016/S0167-5060(08)70743-X
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0047
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0048
http://arxiv.org/abs/2012.13349
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0049
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0050
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0051
http://arxiv.org/abs/1506.02438v6
http://arxiv.org/abs/1707.06347
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0052
https://doi.org/10.1016/0377-2217(91)90066-5
https://doi.org/10.3182/20130619-3-RU-3018.00126
https://doi.org/10.1016/0166-218X(93)E0169-Y
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0056
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0057
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0058
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0059
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0060
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0061
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0062
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0063
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0064
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0065
http://refhub.elsevier.com/S0377-2217(23)00595-7/sbref0066

	An actor-critic algorithm with policy gradients to solve the job shop scheduling problem using deep double recurrent agents
	1 Introduction
	1.1 Our contribution

	2 Preliminaries and notation
	2.1 The job shop scheduling problem
	2.2 Reinforcement learning

	3 JSSP as a Markov decision process
	4 Agents deep models
	5 Computational experience
	5.1 Training process
	5.2 Test process
	5.2.1 Comparison with the branch-and-cut algorithm implemented in CPLEX
	5.2.2 Comparison with the adaptive algorithm
	5.2.3 Comparison with scheduling heuristics based on priority rules
	5.2.4 Comparison with the reinforcement learning algorithm in Zhang et al. (2020)

	6 Conclusions
	Appendix A Settings tables
	Supplementary material
	References

