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In this work, we present a method that applies Deep Reinforcement Learning, an approximate dynamic 

programming procedure using deep neural networks, to the job shop scheduling problem (JSSP). The aim 

is to show that a greedy-like heuristic trained on a subset of problems, can effectively generalize to some 

extent to unseen instances, and be competitive compared to other methods. We model the JSSP as a 

Markov Decision Process and we exploit the efficacy of reinforcement learning to solve the problem. We 

adopt an actor-critic scheme based on policy gradients, specifically the Proximal Policy Gradient method, 

where the action taken by the agent is influenced by policy considerations on the state-value function. 

The procedures take into account the challenging nature of JSSP, where the state and the action space 

change for every instance and after each decision. To tackle this variability, we introduced a novel model 

based on two incident Long-Short Term Memory networks, followed by an encoding model, different in 

structure for both the actor and the critic. Experiments show the algorithm reaches good solutions in a 

short time, proving that is possible to generate new greedy heuristics just from learning-based method- 

ologies. We compared our algorithms against several established heuristics, an adaptive method, a com- 

mercial solver based on branch and cut, and another approach based on Deep Reinforcement Learning, 

proving the validity of the proposed method in terms of time and makespan. The model can generalize, 

to some extent, to larger problems originating from a different distribution. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

There is a large amount of research being done in the fields of 

perations Research and Mathematical optimization to solve prob- 

ems related to scheduling. The ability to schedule tasks efficiently 

ermeates a lot of human activities, from classical industrial or 

ransportation applications to services, computer science, and even 

o healthcare. The problem is so common that we encounter its so- 

utions on a daily basis, like when consulting the board to choose 

hich train to take, or on a website deciding a flight for our next 

acation, or when ordering online and it gets assembled together 

n one order and delivered to us. Basically, every processed good 

n the market is a result of a set of operations, scheduled to get 

he final product. Every respectful scheduling problem is character- 

zed by a set of procedures, called tasks or operations, that has to 

e executed in order to complete a job. Depending on the struc- 

ure of this set (e.g. ordered or not) and where the task has to be
∗ Corresponding author. 
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xploited, for instance on a fixed location or dislocated points, we 

ave a different type of scheduling problem. Other than that, one 

ay add conditions related to the release or due date of an order, 

he time window for which a certain processing point is available, 

et-up times, or every other kind of business requirement. In this 

aper, we will address the well-known minimum makespan Job 

hop Scheduling problem (JSSP), where we have a certain num- 

er of jobs needing to be completed, and each job is composed 

f a list of operations that can be exploited in specific processing 

oints, also referred as machines. The aim is to schedule the oper- 

tions on the machines in order to minimize the makespan, which 

s the delay accumulated by the entire system. 

In 1977, Lenstra et al. showed in Lenstra et al. (1977) that the 

SSP is NP-hard and, as reported in Blazewicz et al. (1996) , only a

ew specific cases are polynomially solvable. For instance, job shop 

roblems with two jobs are efficiently solved by the geometric ap- 

roach, described in Bruckner (1988) and originally presented in 

kers (1956) . In Johnson (1953) , Johnson presented a simple de- 

ision rule to optimally solve the two-machine flow shop prob- 

em, in which each job must be executed on the machines in the 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ame order. In order to extend this result, Jackson (1956) proposed 

n efficient procedure to solve the two-machine job-shop problem 

here each job is composed of at most two tasks by reducing it to 

he flow shop case (see also Sotskov, 1991 ). Then, in Hefetz & Adiri

1982) , an efficient algorithm to solve two-machine job-shop prob- 

ems with unit processing times is presented. The number of steps 

nd the storage space of the method is linear in the total number 

f operations, thus proving that the problem belongs to the P -class. 

ater, Brucker (1994) developed a polynomial algorithm to solve 

he two-machine job shop case with a fixed number of jobs, even 

f machine repetition is allowed. In Brucker et al. (2007) , the NP- 

ardness of scheduling problems with a fixed number of jobs was 

nvestigated. Slight modifications to these categories of problems 

ave been shown to be hard to solve. For instance, three-machine 

ob shop problems where each job has at most two operations or 

ith a fixed number of three jobs are NP-hard ( Gonzalez & Sahni, 

978; Lenstra & Rinnooy Kan, 1979; Sotskov & Shakhlevich, 1995 ). 

n Garey et al. (1976) , it is shown that job shop scheduling prob-

ems with more than two machines are NP-complete. 

Therefore, solving a JSSP instance can be, in general, quite 

omplicated. Lots of researchers tried their best to build nice 

nd performing algorithms, investigating tons of different opti- 

ization strategies. It would be impossible for us to cover even 

nly the most important papers in this context, so we will just 

ake a glimpse of the overall picture, redirecting to Zhang et al. 

2019) and Chaudhry & Khan (2016) for a couple of comprehen- 

ive surveys. In principle, we divide the class of algorithms be- 

ween exact and heuristic methods. The first group concentrates on 

nding the optimal solution, the best schedule above all, according 

o the objective. They should be used when the size of the prob- 

em and the time required to find a solution are compatible with 

he application. The second group focuses on finding something 

ood enough in a reasonable short time, respecting feasibility, but 

ith no guarantee of finding the optimum. Exact algorithms are 

argely associated with mathematical integer programming. In lit- 

rature a multitude of approaches has been applied, like column- 

eneration in Gélinas & Soumis (2005) and Lancia et al. (2007) , 

r branch-and-bound in Carlier & Pinson (1989) and Brucker et al. 

1994) , branch-and-cut in Karimi-Nasab & Modarres (2015) , and 

agrangian relaxations as in Hoitomt et al. (1990) and Chen & Luh 

2003) . On the heuristic side of the palisade, we can go through all

inds of known methods: simulated annealing, genetic algorithms, 

ocal search, tabu search, and so on. A nice survey on swarm and 

enetic algorithms can be found in Gao et al. (2019) , while one 

n meta-heuristics in Mhasawade & Bewoor (2017) . Also, dynamic 

rogramming plays a big role, but the complexity of the instances 

akes it useful only in an approximate way. A review of dynamic 

rogramming and JSSP is presented in Mohan et al. (2019) . 

With more data being generated and more and more opera- 

ions being automated, machine learning-based techniques have 

ound their place within the JSSP community. This trend is com- 

on to other aspects of optimization, as described in Bertsimas 

 Dunn (2019) and Bengio et al. (2021) in the case of machine 

earning, deep learning and combinatorial optimization. Every time 

t is common to encounter some kind of approximation or when 

ou need to solve several instances of the same type sequentially, 

achine learning may play a role. The possible ways of the inter- 

onnection of the two fields are countless, with researchers bring- 

ng new ideas day by day. Sometimes, it is useful to approximate 

eality or complex systems by using surrogate functions and in- 

erting them directly into the formulation. The concept of a sur- 

ogate model has been used for a long time in optimization, in 

he form of linear or quadratic approximations, and it is now ex- 

ended to more complex models. An example of using neural net- 

orks to ease the, otherwise unbearable, complexity of the in- 

olved physics in manufacturing can be found in Pfrommer et al. 
911 
2018) , whereas in Hottung et al. (2020a) there is a usage of au- 

oencoders to detect useful embeddings for routing problems. On 

ther occasions, we may use machine learning inside a complex 

lgorithmic framework, improving some of the frequent decisions 

aken through the process. For instance, we may estimate a score 

uggesting the next variable to choose for branching, or which of 

he several local heuristics fits more in the current iteration, or the 

ost promising cuts to add. As anticipated, a great deal has been 

chieved in the mixed-integer programming domain. Just to men- 

ion a few works, in Khalil et al. (2016) the authors make use of 

upport vector machines to mimic strong branching, whereas in 

upta et al. (2020) they exploit a similar task but using deep neu- 

al networks. Authors in Tang et al. (2020) chose the most promis- 

ng Gomory’s cuts (see Wolsey & Nemhauser, 1999 ) by means of 

ong-short term memory networks and reinforcement learning. Re- 

ently, in Nair et al. (2020) , scientists from DeepMind and Google 

esearch proposed a method combining deep branching and deep 

iving in a branch-and-cut algorithm, taking advantage of super- 

ised learning, graph convolutional neural networks, and alternat- 

ng descent method of multipliers. Another important aspect is 

o learn primal heuristics that return directly to near-optimal so- 

utions. In Bertsimas & Stellato (2019) and Bertsimas & Stellato 

2021) , this is done opportunely by studying some properties of 

he optimization problem (the so-called voice of optimization ), then 

hey train a neural network to directly produce a solution, and fi- 

ally, they use a projection technique to make it feasible, leading to 

n extremely fast heuristic. For stochastic problems, in Bengio et al. 

2020) the authors did something similar, whereas in Cauligi et al. 

2020) this methodology has been used to generate robust trajecto- 

ies in planning robot agents. Finally, in Hottung et al. (2020b) , this 

oncept is extended to approximate bounds and inserted within a 

ree search for solving the container pre-marshaling problem. 

In some cases, one may learn a new algorithm from scratch 

hanks to reinforcement learning (RL). We will also adopt RL 

hrough this paper, and it will be described in detail later on. For 

ow, consider it to be a greedy-like method, where decisions are 

aken at each step by a learning-based operator. Just to cite a few 

apers, in Gasse et al. (2019) ; Khalil et al. (2017) and Drori et al.

2020) the use of RL to solve directly optimization problem is ex- 

loited with remarkable results. The three works differ in the type 

f RL framework adopted ( Q -learning, policy gradient, or actor- 

ritic) and in the neural network structure. On the same page, in 

gasucci et al. (2020) , we used Deep Q -learning to solve the train

ispatching problem, comparing two approaches: a centralized one 

ooking at the overall rail network, and another decomposing the 

roblem by train with a limited view of the surroundings. 

After this brief description of machine learning and optimiza- 

ion, we are ready to go back and discuss the intersection with 

SSP. The problem has received interest from the machine learn- 

ng community for a long time, as supported in Çali ̧s & Bulkan 

2015) . This was before the deep learning era, so before efficient 

ast-computing libraries were established as a standard for neural 

etworks. 

No more than ten years ago, scientists and professionals started 

ealizing the great potential of deep learning to solve complex 

asks. When we talk about deep learning, we refer to everything 

onnected to neural networks with more than one hidden layer. In 

oodfellow et al. (2016) , one may find a larger description of the 

oncepts and methodologies of deep learning. 

Most of the approaches linked to JSSP are also connected to RL 

r to approximate dynamic programming in general. A remarkable 

xample can be found in Shakhlevich et al. (1996) , where the au- 

hors studied the strength of adaptive algorithms, taking advantage 

f a particular graph structure to ease the computational effort. 

he method was later extended to the case of parallel machines 

SSP in Gholami & Sotskov (2014) . This methodology shares a lot of 
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lements with the RL approaches, including training. In Section 5 , 

e show a comparison between our proposed method and the 

daptive algorithm, showing how RL approaches with Deep neu- 

al networks are able to outperform the other on the proposed in- 

tances. Another interesting work can be found in Zhang & Diet- 

erich (1995) , where the authors present an innovative but shallow 

L framework, to solve an extension of the JSSP for a real appli- 

ation at NASA. In particular, they proposed a RL algorithm, based 

n Temporal Difference Learning, aimed at learning ad-hoc repair 

euristics to produce good conflict-free schedules. In Zhang et al. 

2020) , the authors used a Deep RL apporach based on Graph Neu- 

al Networks and Proximal Policy Optimization. We compared our- 

elves with the work presented in Zhang et al. (2020) . In Tassel 

t al. (2022) the authors used Neural Networks in combination 

ith a RL method based on Natural Evolution Strategies ( Wierstra 

t al., 2014 ), to solve dispatching problems on an industrial scale. 

This paper describes our proposal to tackle the JSSP using RL. 

he algorithm adapts the Policy Proximal Optimization (PPO) al- 

orithm firstly presented in Schulman et al. (2017) to the JSSP, 

aking use of a suitable representation of the environment as 

 Markov Decision Process (MDP). PPO belongs to the family of 

ctor-critic RL algorithms, for which we developed two special 

eep neural networks for both the actor and the critic, based 

n two concatenated Long Short-Term Memory networks (LSTMs). 

his architecture is proven to be effective and flexible to the num- 

er of jobs, operations, and machines. We compared our algorithm 

gainst standard JSSP heuristics (as resumed in Panwalkar & Iskan- 

er, 1977 ), the adaptive algorithm presented in Shakhlevich et al. 

1996) , the branch-and-cut algorithm implemented in the known 

olver CPLEX from IBM (2021) , and the Deep Reinforcement learn- 

ng algorithm described in Zhang et al. (2020) , obtaining good av- 

rage results. 

The paper is organized as follows: in Section 2 we formalize 

he JSSP and we give the basic elements and ideas behind the 

aradigm of reinforcement learning, with a special focus on actor- 

ritic methods. In Section 3 , we describe the JSSP as a Markov de-

ision process, making the problem solvable by using RL. Then, in 

ection 4 , we introduce the deep neural networks used as a learn- 

ng model in our algorithm. Finally, in Section 5 , we illustrate the 

xperiment. 

.1. Our contribution 

This work presents a policy proximal optimization algorithm 

ith deep agents to tackle the JSSP. The major findings in this pa- 

er are: 

• A novel model both for the actor and the critic, using two 

concatenated Long Short-Term Memory networks (LSTMs). 
• The method is flexible and not related to a single appli- 

cation. In particular, the Double LSTM structure allows to 

vary arbitrarily the number of jobs, operations and machines 

adopted. 
• The models generalize to some extent for larger and more 

complex instances maintaining good solution quality. 
• The computational experience is conducted both on time 

and solution quality against a commercial solver, an adap- 

tive heuristic, 17 rule-based heuristics, and a Deep Re- 

inforcement Learning approach , showing good average re- 

sults. 

. Preliminaries and notation 

In this section, we describe the Job Shop Scheduling problem 

JSSP) as an optimization problem and we enter the world of re- 

nforcement learning (RL), actor-critic methods and the Proximal 

olicy optimization algorithm ( Schulman et al., 2017 ). 
912
.1. The job shop scheduling problem 

Scheduling is a decision-making process finding a temporal al- 

ocation of shared and limited resources to activities to optimize 

ome desired objective. In this project, we are tackling the n ×m 

inimum makespan JSSP, denoted by Jm || C max according to the 

hree-field notation introduced by Graham et al. Graham et al. 

1979) . It will be referred to as JSSP throughout the rest of the pa-

er without loss of information. 

In its standard form, we have a bunch of workers and a set of 

perating stations doing some service. Each worker has a good to 

rocess, and a list of ordered required operations to be performed 

o get the final product. The point of JSSP is determining the ex- 

ct timing for which each worker should go to an operative sta- 

ion and perform some kind of process on the good, minimizing 

he overall time for all the workers. From now on the operating 

tations will be called machines , the processes tasks (or operations) 

nd the list of ordered operations jobs . 

Let J = { j} n 
j=1 

be the set of jobs, which has to be processed on

he set M = { k } m 

k =1 
of machines. Each job j has a given processing

equence of n j different machines, with n j ≤ m . A task (or opera- 

ion) is the activity that job j ∈ J must execute on machine k ∈ M ,

nd it is denoted by the pair ( j, k ) . 

Therefore, each job is a list of different tasks to be performed. 

e adopt the notation for which ( j, k ) ≺ ( j, h ) , means that opera-

ion ( j, k ) , the ith operation of job j, precedes operation ( j, h ) , the

i + 1) th operation of job j, ∀ i = 1 , . . . , n j − 1 . These rules define

he precedence constraints for the problem. A processing time p jk 
s associated to each operation ( j, k ) . The set of all the operations

s denoted by O. 

We assume to be in a no-preemption regime so that operations 

an not be interrupted. Moreover, each machine can not process 

ore than one job at the same time, meaning there is no over- 

ap. We call t jk the starting time of the operation ( j, k ) , and its

ompletion time C jk , which is the time interval elapsing from the 

tart of the whole process to the execution of the operation it- 

elf, i.e. C jk = t jk + p jk . The optimum is reached by minimizing the

akespan, denoted by C max , which is the maximum completion 

ime of all the operations, i.e. C max = max ( j,k ) ∈O C jk . 

.2. Reinforcement learning 

Reinforcement learning (RL) is a paradigm of machine learning, 

longside supervised and unsupervised learning. There are four el- 

ments in an RL framework: agent, action, state, and reward. They 

ll operate imitating the decision process in a real-world setting. 

he agent is the decision-maker, the actions are the set of options 

t is allowed to do, the state is an encoding of the environment it 

perates into, and the reward is what it gets after making an ac- 

ion. At every step, the agent observes the state, takes an action, 

nd waits for the environment to return to its new form, the next 

tate, alongside a reward for selecting that action. After that, the 

ystem is ready for a new iteration. In RL, the agent learns from its 

wn choices, step by step, game by game, self-generating data. The 

oal of the agent is specified by an objective function, dependent 

n the collected rewards. 

RL can be formalized as a Markov Decision process, see Sutton 

 Barto (2018) , and it can be seen as an approximate dynamic 

rogramming method, see Bertsekas et al. (1995) and Bertsekas 

2019) . Following the dynamic programming terminology, the goal 

f RL is to learn an optimal strategy, called policy, allowing the 

gent to solve the problem by maximizing its total reward. Unfor- 

unately, we are not able to inspect the full tree of possibilities and 

lternatives an agent may encounter, since the size of the decision 

ree would be, for NP-hard problems like JSSP, unbearable for stan- 

ard computational resources. For this reason, we discuss policies 
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Fig. 1. Actor-critic framework. 
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aximizing the expected total reward, so that we infer optimality 

y just observing a portion of the decision space. 

An episode is an instance to be solved by an RL algorithm while 

raining the agent. To complete an episode, the RL method goes 

tep by step until reaching the T th state, where T is the last possi-

le iteration. Steps within an episode are indexed by t = 0 , 1 , . . . , T ,

here t = 0 is the initial state. We use the notation s t for states, a t 
or actions and r t for rewards, all depending on t . The set of all the

ossible states is S , whereas A is the set of all the possible actions

nd R : S × A �→ R is a function associating states and actions to

ewards. A stochastic policy is identified by the function π(a t | s t ) ,
epresenting the probability to take the action a t when the state 

 t is observed where lim t→ inf π(a t , s t ) will tend to be an optimal, 

eterministic policy. 

The expected cumulative reward is the objective function to be 

aximized in the RL framework. 

 = E π

[ 

T ∑ 

t=1 

r t 

] 

, (1) 

here E π is the expected value computed according to the policy 

istribution π . 

Several RL methods make use of the state-value function, which 

s a measure of the expected cumulative reward from a certain step 

 (also called expected reward-to-go) when observing a state s k . 

 π (s k ) = E π

[ 

T ∑ 

t= k +1 

r t 

∣∣∣S k = s k 

] 

For similar purposes, it is handy to define the advantage func- 

ion, which evaluates the expected improvement when selecting 

n action,taking as input an action a k and the state s k . This can be

hought of as a sort of differential measure over the reward-to-go, 

ee Schulman et al. (2018) . We present a version of the formula 

alid in the context of JSSP, where it is always possible to derive 

he reward r k from the state and the taken action. 

 π (a k , s k ) = r k + V π (s k +1 ) − V π (s k ) (2)

Among the numerous classes of RL algorithms available in the 

iterature, we are going to focus on actor-critic methods, which 

re characterized by having the agent separated into two decision 

ntities: the actor and the critic. The reason behind this separa- 

ion is to allow a policy improvement through an estimation of 

he state-value function, combining both value-based and policy- 

mprovement algorithms. The critic approximates the state-value 

unction 

ˆ V (s ) , while the actor updates and improves a model of 

he stochastic policy ˆ π by taking into account the critic estimation 

hile maximizing the total expected reward. 

Several algorithms in the actor-critic sense have been proposed 

ver the last years, and the main difference lies in how to prop- 
913 
rly train the models describing the actor and the critic. For in- 

tance, the update rule may be based on the Bellman equation (see 

ellman (1966) ), as proposed in Barto et al. (1983) ; Konda & Borkar 

1999) and more recently in Lawhead & Gosavi (2019) . In this pa- 

er, we will focus on actor-critic methods basing their updating 

perations on policy gradient rules. One of the first examples can 

e found in Konda & Tsitsiklis (2003) , where a class of two time- 

cale algorithms is presented, in which the critic uses classical 

emporal difference learning, and the actor uses policy gradient 

ased on the critic estimation. More recently, in Kakade (2001) and 

akade & Langford (2002) , the authors presented some properties 

or a specific class of policies, allowing for the definition of a lower 

ound over the difference between two policies. The update is ob- 

ained by minimizing this bound so that the new policy will im- 

rove as far as known using the previous information. This idea 

s extended in the Trust Region Policy Gradient (TRPO) Schulman 

t al. (2015) to more general policies, and an approach based on 

 Kullback Liebler divergence trust region is shown to work effi- 

iently. Finally, in Schulman et al. (2015) , the trust region approach 

s abandoned to an unconstrained one in Proximal Policy Gradient 

PPO). Since in the following of the paper we will discuss the PPO, 

e will now discuss in more detail proximal policy gradient based 

ctor-critic algorithms. 

In the following, we will assume that both the actor and the 

ritic models have as weights θ and ω, respectively. 

For ease of explanation, we will keep this dependence clear 

hen needed in our formulas. For instance, the total expected re- 

ard presented in (1) can be rewritten as J θ = E πθ
[ 
∑ T 

t=1 r t ] , stress-

ng the dependency of the actor weights in the objective function. 

To optimize the total reward function (1) , it is possible to derive 

n estimator for the gradient, and use it in gradient-based opti- 

ization methods. For computational efficiency reasons, we report 

he formula in terms of log probabilities. 

 θ J θ ∝ E πθ

( ∑ 

a t 

∇ log πθ (a t | s t ) A ω (s t , a t ) 

) 

(3) 

The gradient depends on both the actor, π , and the critic, A , so

hat the log-probability associated with a state-action pair (s t , a t ) 

s proportional to the advantage of this pair and thus, the gradi- 

nt indicates the direction of greatest improvement (locally). Actor- 

ritic algorithms differ in how they compute the estimators, on the 

ersion of the policy gradient they adopt, and finally, on the opti- 

ization algorithm to improve the expected total reward. The basic 

cheme of an actor-critic algorithm is illustrated in Fig. 1 . 

In the PPO, the policy improvement is pursued through a 

tochastic gradient ascent step over a surrogate function approxi- 

ating the total expected reward (1) . The loss, called KL-penalized 

bjective, is composed of a surrogate advantage and a Kullback–

eibler divergence multiplied by a negative penalty term −β . The 

ctor is trained to maximize this objective, refining the approxima- 

ion from a step to the other, as reported below: 

ax 
θ

E πθ

[
πθ (a t | s t ) 
πθold 

(a t | s t ) A ω (s t , a t ) − βD KL 

(
πθ (·| s t ) , πθold 

(·| s t ) 
)]

, 

(4) 

here πθold 
indicates the policy parameters at the previous step, 

nd the parameter β influences how much the new policy may 

iverge from the old one according to the following rule: 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

2 βold , if E πθ

[
D KL 

(
πθ , πθold 

)]
> 1 . 5 δ

βold / 2 , if E πθ

[
D KL 

(
πθ , πθold 

)]
< 1 . 5 /δ

βold , otherwise 

, (5) 

here δ is a target value chosen heuristically. During the algo- 

ithm, the penalty coefficient β adapts rapidly, and, according to 
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Fig. 2. Graphical representation of the environment and its components. 
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chulman et al. (2017) , its starting value does not affect signifi- 

antly the training. 

The critic is updated trough the minimization of a mean square 

rror loss function, using the data collected by the actor in several 

oll-outs. That is 

in 

ω 
E t 

[ (
V ω (s t ) − V t 

target 
)2 

] 
= min 

ω 
E t 

[ (
V ω (s t ) − R t 

)2 
] 
, (6) 

here the rewards-to-go R t is the sum of the rewards collected 

rom t to T . 

The algorithm works in the following way: at each episode k , 

t performs N roll-outs, running the policy for T steps, therefore 

enerating N · T samples. For each episode k , the rewards-to-go R t , 

 = 1 , . . . , T , are computed and stored. Then, the policy is updated

olving (4) with ADAM, Kingma & Ba (2014) , using the N · T sam-

les. Finally, the state-value function is updated according to (6) , 

erforming some iterations of ADAM. Algorithm 1 reports the pro- 

edure. 

Algorithm 1: Proximal policy optimization (PPO) with adap- 

tive Kullback–Leibler penalty. 

Input: number of roll-outs per episode N,termination step T ,stochastic 

gradient ascent iterations L actor ,ADAM iterations L actor ,target KL divergence 

δ, θ = θ0 , ω = ω 0 , β = β0 . 

for episode k = 0 , 1 , . . . do 

for roll-out i = 1 , . . . , N do 

Run policy πθ in the environment for T time-steps. 

Compute rewards-to-go R 1 , . . . , R T associated to the ith roll-out 

and store them. 

Compute advantages associated to the ith roll-out and store 

them. 

end 

Update the actor parameters θ according to (4), performing L actor 

iterations of ADAM. 

Update β according to (5). 

Update the critic parameters ω according to (6), performing L critic 

iterations of ADAM. 

end 

. JSSP as a Markov decision process 

JSSP can be solved in several ways, depending on which ele- 

ent we are looking for to find a solution. Our idea is to choose 

ne operation at a time, deciding whenever a machine is available. 

n other words, we have a set of jobs, each one being a list of op-

rations to be addressed their specified machine, and we want to 
914
nd a, possibly good, solution in a greedy fashion. Whenever a ma- 

hine is available to accept jobs, we select one (and only one) job 

hat can proceed in the queue. In this way, the total number of 

ecisions is equal to the total number of tasks. 

It turns out this process can be formulated as a Markov Deci- 

ion process (MDP). With a notation similar to the one used to the 

escribe RL in Section 2 , we characterize a finite MDP using the 

uple (S, A , R , P ) , where S is the set of states, A the set of actions,

 : S × A → R a reward function and P : S × A → S the transition

unction. The state s t ∈ S captures all the relevant information re- 

arding the current iteration, in order to respect the Markov Prop- 

rty and to have a fully observable system state. The data struc- 

ure adopted is a list of jobs, with each job being a list of tasks

or operations) ( j, k ) , with j ∈ J being the job and k ∈ M the ma-

hine, as illustrated in Fig. 2 (a). A processing time p jk is associated 

ith each operation ( j, k ) , representing the time spent by the job 

j to complete the task on the machine k . If a task ( j, k ) is the first

vailable operation for a job, then we take into account the ear- 

iest possible starting time s jk , defined as s jk = max (C jh , C ik ) , where

j, h ) ≺ ( j, k ) , (i, k ) is the last operation scheduled using the ma-

hine k , and C jh and C ik are the corresponding completion times. At 

ach decision step t , an action a t , representing the allocation of an 

peration at a certain starting time, is taken and the correspond- 

ng task is removed from the job and put into a list of scheduled 

perations. The set A s t contains all the available actions at state s t , 

.e. the operations still to be scheduled, with no prior operations or 

hose prior operations have been already scheduled, as illustrated 

n Fig. 2 (b) and (c). The next state s t+1 is the state s t without the

peration scheduled at decision step t (see Fig. 2 (d)). Due to the 

eterministic nature of the problem, the state transition is deter- 

inistic and given a state-action pair (s t , a t ) , the next state s t+1 is

niquely determined. In order to be coherent with the RL classical 

otation, the reward r t+1 will be the negative contribution of the 

elected operation to the current makespan C max t . If ( j, k ) is the

peration scheduled at decision step t , then 

 t+1 = 

{
−(C jk − C max t ) , if C jk > C max t 

0 , otherwise 

In this way, it holds C max k 
= −∑ k 

t=1 r t , and C max = −∑ T 
t=1 r t . 

. Agents deep models 

In this section, we describe the neural network infrastructures 

ehind our algorithm. In particular, since we are adopting an actor- 

ritic method, we need to specify two networks: the first, referred 
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Fig. 3. Deep neural infrastructures used. 

Fig. 4. State-value function loss during training process. 
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o as the actor, estimates the policy πθ (·, s t ) , while the second,

he critic, provides an estimation of the state-value function V ω (s t ) . 

ur aim is to obtain a learned algorithm that is flexible concern- 

ng the size of the JSSP instance, both in the number of jobs and

achines. According to the state defined in Section 3 , the state is 

epresented by a list of tasks for each job, translatind to a data 

tructure characterized by a list, variable in size, of lists, with dif- 

erent lengths the one to the other. For these reasons, the actor 

nd the critic networks make use of long short-term memory net- 

orks (LSTMs), which are suitable for processing variable-length 

equences. LSTMs process the information in sequence-structured 

nput, by taking its elements one at a the time, eventually propa- 

ating the information using special arcs. LSTMs belong to the class 

f recurrent neural networks, and they deal with the problem of 

he vanishing gradient thanks to these special arcs called self-loops 
915
n the hidden layer, as described in Graves (2012) . The self-loops 

re controlled by the network, which is able to adjust the infor- 

ation flow. They take sequences as input, returning same-length 

equences of embeddings. 

The actor model is composed of two concatenated LSTMs. The 

rst takes as input the state, producing an embedding for each op- 

ration. We then consider only the embedding related to the last 

peration of each job, since operations in a job are chronologi- 

ally connected and the last element can be seen as a compressed 

epresentation of the whole job. After that, a list with size |J | is

btained from the embeddings and passed the second LSTM. This 

etwork combines the jobs information as a sequence of |J | em- 

eddings. Each component is collapsed to a scalar, obtaining a vec- 

or y ∈ R 

|J | . This trick allows us to compress the information and

ealwith the two levels of variability of the data structure. Finally, 
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Fig. 5. Objective value gap during the training process. 
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e use action masking and a softmax function, applying the mask 

ector M, whose components are Boolean values filtering out the 

nvalid actions at each state. The softmax is used to transform the 

mbedding y into a probability distribution through the formula 

(y, M) i = 

e y i M i ∑ |J | 
j=1 

e y j M j 

, i = 1 , . . . , |J | 

he actor network is represented in Fig. 3 (a). 

The critic model is composed of a double LSTM as in the actor, 

ollowed by a deep feed-forward neural network (FFN). After being 

ed with the output by the first LSTM, the second LSTM returns 

 sequence of embeddings with cardinality |J | . Then, the vectors 

re summed up, obtaining the vector z ∈ R 

h , where h is the hidden

ize of the second LSTM. Finally, the FFN processes z, converging 

o a scalar. The FFN has three fully connected hidden layers with a 

ecreasing number of neurons, applying the ReLU as an activation 

unction until the last layer, which is linear. The critic network is 

llustrated in Fig. 3 (b). 

Before feeding the two neural models, the input sequences 

ust be padded to level equally their lengths within a single mini- 

atch. 
916 
. Computational experience 

The computational experience exploits both the training and 

he testing phase. In the former, we give insights on the computa- 

ional burden required for training, whereas in the latter, we eval- 

ate our algorithm against: 

• a branch-and-cut algorithm implemented in the commercial 

optimization solver CPLEX v12.10, IBM (2021) , Section 5.2.1 , 
• an adaptive scheduling algorithm based on the mixed dis- 

junctive graph model, proposed in Sotskov et al. (2013) and 

Shakhlevich et al. (1996) , Section 5.2.2 , 
• 17 well-known scheduling heuristics, where at each step an 

operation is scheduled according to a priority dispatching 

rule (PDR), Panwalkar & Iskander (1977) , Section 5.2.3 , 
• the Deep Reinforcement learning approach based on 

Graph Neural Networks proposed in Zhang et al. (2020) , 

Section 5.2.4 . 

Our algorithm uses PyTorch v1.8, Pytorch (2021) , working on a 

indows server with a11th Gen Intel(R) Core(TM) i7-11800H CPU 

nd a single NVIDIA GeForce RTX 3060 GPU. In the following, we 
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Table 1 

Training set. 

Jobs × Machines 8 × 6 , 10 × 9 , 15 × 10 , 17 × 13 , 20 × 15 

# Instances 20 0 , 20 0 , 20 0 , 20 0 , 20 0 

Gaussian processing times dist. p jk ∼ N (μ = 100 , σ = 10) 

w

t

a

G

5

d

W

1

N  

e

t

e

p

w

t

a

t

t  

o

r  

t

t

d

w

t

t  

i

fi

t

w

t

1

G

5

i

i

c

o

(

p

1  

P

p

Table 2 

Test sets: Gaussian and Poisson sets. 

Jobs × Machines 30 × 25 , 35 × 30 , 40 × 35 , 45 × 40 , 50 × 45 

# Instances 100 , 100 , 100 , 100 , 100 

Gaussian processing times dist. p jk ∼ N (μ = 100 , σ = 10) 

Poisson processing times dist. p jk ∼ P(λ = 100) 

Table 3 

Taillard’s benchmark set. 

Jobs × Machines Instance IDs # instances 

15 × 15 Ta01-10 10 

20 × 15 Ta01-10 10 

20 × 20 Ta01-10 10 

30 × 15 Ta01-10 10 

30 × 20 Ta01-10 10 
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ill use the notation Jobs × Machines to specify the dimension of 

he JSSPs used. 

The source code and the data of the experiments are available 

t github.com/GiorgioGrani/JSSP _ actor-critic _ Agasucci _ Monaci _ 

rani . 

.1. Training process 

In the training process, we used a dataset composed of ran- 

omly generated JSSP instances, with various, yet small, sizes. 

e used five classes of JSSP problems, from (8 × 6) up to (20 ×
5) . The processing times are drawn from a Gaussian distribution 

 (μ = 100 , σ = 10) . There is a total of 10 0 0 instances, having 200

lements per class. Table 1 summarizes the information regarding 

he training set. 

During the learning process, the agent has to balance between 

xploration, i.e. trying new actions, and exploitation of the past ex- 

erience. To prevent the agent from getting stuck in bad regions, 

e inject the state-space exploration introducing the probability ε
o perform a random action. The value of ε is updated according to 

 step function starting from ε = 0 . 20 and gradually decreases un- 

il, at around the 70% of the total number of episodes, goes down 

o ε = 0 . We ran the training over 50 0 0 episodes, with N = 10 roll-

uts per episode. 

The actor-critic network configurations and training settings are 

eported in the Appendix ( Tables 20,21 ). The plot in Fig. 4 reports

he state-value function loss, showing both the single value and 

he moving average over 100 episodes. The image indicates a ten- 

ency in the reduction of the loss and the variability. 

Since the total reward measure varies from instance to instance, 

e define a relative objective value gap, φk , which is the ratio be- 

ween the total reward obtained in the k th learning iteration for 

he instance i (k ) , and the best solution found trough the all train-

ng for the same instance i (k ) . 

φk = 

R k 

min 

{
R h : h = 1 , . . . , 50 0 0 ∧ i (h ) = i (k ) 

}
The graphs in Fig. 5 illustrate the moving average and the con- 

dence interval for φk , divided by classes. There is a decreasing 

rend with a jump around the 70% of the iterations, in accordance 

ith the random choice probability ε. 

Regarding the computational time required to perform the 

raining, it takes around 8 hours on a Windows machine with a 

1th Gen Intel(R) Core(TM) i7-11800H CPU and a single NVIDIA 

eForce RTX 3060 GPU. 

.2. Test process 

The test phase has been conducted to demonstrate the abil- 

ty of our algorithm to generalize over larger instances, general- 

ze over different distributions, and maintain computational effi- 

iency. To this aim, we tested the performances of our approach 

n two sets with five JSSP classes each, going from (30 × 25) to 

50 × 45) , with 100 instances per class. In the first dataset, the 

rocessing times are derived from a Gaussian distribution N (μ = 

00 , σ = 10) , while in the second they are drawn from a Poisson

(λ = 100) . Table 2 summarizes the specifics of the test sets. 

In Sections 5.2.1, 5.2.3 , and 5.2.4 , we introduced some com- 

arisons on 50 Taillard’s benchmark instances taken from Taillard 
917 
1993) . The size of these instances are resumed in Table 3 , and we

ill refer to them as the Taillard’s Benchmark set. 

In Section 5.2.4 , we will introduce an additional set of gener- 

ted Taillard instances, and we redirect the description of these 

ets to the dedicated Section. 

.2.1. Comparison with the branch-and-cut algorithm implemented in 

PLEX 

We tested out our algorithm against the branch-and-cut algo- 

ithm implemented in the known commercial solver CPLEX v12.10, 

BM (2021) , conducting two types of analyses: 

• Objective value analysis , where we study the objective value, 

i.e. the makespan C max , reached by the algorithm in CPLEX 

when its time limit is locked to be no more than our timing. 
• Computational time analysis , where we compare our timing 

with the one required for the algorithm in CPLEX to reach a 

solution as good as ours in terms of objective value, i.e. the 

makespan C max . 

The results of the objective value analysis on the Gaussian and 

oisson sets are presented in Tables 4 and 5 , respectively. These 

how statistics on objective value, pruned from outliers. We use 

he statistic ρ to express the percentage of average improvement 

f our algorithm in terms of the objective value C max . Let ρi be the

mprovement on the single i th instance 

ρi = 

C max CP i 
− C max RL i 

C max CP i 

, 

here C max X denotes the makespan of the algorithm X and X can 

qual RL (the proposed RL method) or CP (short for the branch- 

nd-cut procedure implemented in BC-CPLEX). 

Our approach outperforms the branch and cut algorithm im- 

lemented in CPLEX in terms of objective value. For the (40 × 35) 

lass in the Gaussian set, our approach returns a makespan on av- 

rage 91% better than the branch-and-cut one, and 87% in the Pois- 

on set for the same class. It is worth mentioning that, for no in- 

tance, the algorithm implemented in CPLEX terminated before the 

ime limit. The values of ρ tend to improve for larger classes, since 

nstances become more and more complex for the deterministic 

olver. 

The results of the computational time analysis on the Gaussian 

nd Poisson sets are summarized in Tables 6 and 7 , respectively. 

hese tables report the statistics on computational time for both 

lgorithms. We use the statistic τ to express the percentage of av- 

rage improvement of our algorithm in terms of the computational 

ime. Let τi be the improvement on the single i th instance 

τi = 

t ime CP i − t ime RL i 

time CP 

, 

i 

https://www.github.com/GiorgioGrani/JSSP_actor-critic_Agasucci_Monaci_Grani
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Table 4 

RL vs. the branch-and-cut implemented in CPLEX (BC-CPLEX) on the Gaussian set: comparison on the makespan C max . 

J × M # instances Mean Std dev Max Min Avg ρ (%) 

RL BC-CPLEX RL BC-CPLEX RL BC-CPLEX RL BC-CPLEX 

30 × 25 100 4785.3 29505.2 111.7 15261.5 5107.3 40408.4 4579.7 4307.1 63.1 

35 × 30 100 5462.6 53883.9 115.1 11398.5 5702.0 60350.1 5180.4 5309.8 85.8 

40 × 35 100 5989.5 68449.6 134.8 4592.1 6349.8 74838.7 5715.4 62320.4 91.2 

45 × 40 100 6931.4 66026.5 130.2 38853.8 7304.9 99942.2 6599.8 6376.8 63.9 

50 × 45 100 8663.5 93547.3 147.4 44467.5 9015.6 125757.1 8198.9 7827.4 71.6 

Table 5 

RL vs. branch-and-cut implemented in CPLEX (BC-CPLEX) on the Poisson set: comparison on the makespan C max . 

J × M # instances Mean Std dev Max Min Avg ρ (%) 

RL BC-CPLEX RL BC-CPLEX RL BC-CPLEX RL BC-CPLEX 

30 × 25 100 4167.1 28079.9 93.7 12378.8 4404.0 36509.0 3939.0 4058.0 69.8 

35 × 30 100 5249.4 43213.3 136.0 20358.0 5566.0 55073.0 4963.0 4609.0 69.8 

40 × 35 100 5947.5 72325.4 111.9 16863.0 6194.0 78182.0 5735.0 5777.0 86.8 

45 × 40 100 7815.5 71007.8 182.6 34066.1 8263.0 96754.0 7453.0 6702.0 68.9 

50 × 45 100 8032.1 103049.2 181.9 40447.6 8410.0 129359.0 7697.0 7571.0 78.6 

Table 6 

RL vs. the branch-and-cut algorithm implemented in the known commercial solver CPLEX (BC-CPLEX) on the Gaussian set: comparison on the computational time (seconds). 

J × M #instances Mean Std dev Max Min Avg τ (%) 

RL BC-CPLEX RL BC-CPLEX RL BC-CPLEX RL BC-CPLEX 

30 × 25 100 2.5 4.7 0.3 2.4 3.5 14.4 1.9 1.9 35.8 

35 × 30 100 4.6 13.6 0.5 6.8 5.6 36.4 3.5 3.6 58.2 

40 × 35 99 7.0 39.3 1.0 16.3 10.3 79.6 5.8 12.8 78.3 

45 × 40 100 11.8 34.0 1.2 22.3 14.0 99.3 9.8 5.2 36.4 

50 × 45 92 18.7 51.6 1.9 34.1 24.4 117.9 15.9 9.1 37.1 

Table 7 

RL vs. the branch-and-cut algorithm implemented in the known commercial solver CPLEX on the Poisson set: comparison on the computational time (seconds). 

J × M #instances Mean Std dev Max Min Avg τ (%) 

RL BC-CPLEX RL BC-CPLEX RL BC-CPLEX RL BC-CPLEX 

30 × 25 100 2.4 5.6 0.4 2.7 4.7 13.2 1.8 1.9 48.3 

35 × 30 100 4.4 8.7 0.5 4.3 6.1 27.2 3.4 3.3 39.6 

40 × 35 100 7.2 28.4 0.9 15.1 10.7 91.8 6.0 6.9 66.9 

45 × 40 100 11.3 30.8 1.1 20.0 14.1 79.4 9.7 5.4 37.5 

50 × 45 98 17.1 57.2 1.2 34.1 20.2 106.0 15.0 11.8 54.3 
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here time X denotes the computational time of the algorithm X

nd X can equal RL (the proposed RL method) or CP (short for the 

ranch-and-cut algorithm implemented in the known commercial 

olver BC-CPLEX). 

For each class of both sets, our method is faster on average than 

he optimization solver implemented in CPLEX, up to reach a 78% 

mprovement for the (40 × 35) instances in the Gaussian set, and 

7% for the Poisson set. For some classes, the number of instances 

s less than 100 since the branch-and-cut algorithm implemented 

n the known commercial solver CPLEX exceeded the time limit of 

wo minutes. 

In Fig. 6 , we report the performance profiles for the Gaussian 

nd the Poisson set, considering the computational time analy- 

is first, and the objective value afterwords. Performance profiles 

ere initially introduced in Dolan & Moré (2002) as an additional 

ay to compare different methods. Given a set of algorithms A 

nd a set of problems P , the performance of an algorithm a ∈ A
n a problem p ∈ P is computed against the best performance ob- 

ained by any other method in A on p. We consider the ratio ηp,a =
erformance p,a / min { performance p,a ′ : a ′ ∈ A} , where performance p,a 

s the performance obtained on the pth problem by the a th al- 

orithm. In our case, the performance is the computational time 

t first, and then the objective value. We now consider a cumula- 

ive function computing the number of times algorithm a ∈ A was 
918 
uccessful against the others, specifically γa (τ ) = |{ p ∈ P : ηp,a ≤
}| / |P| . The performance profile is the plot of the function γa (τ )

or all a ∈ A , varying with τ . 

The plots in Fig. 6 are self-explanatory, since our algorithm out- 

erforms the branch-and-cut algorithm implemented in the known 

ommercial solver CPLEX in every case. In particular, Fig. 6 (a) 

nd (b) show that our approach is faster than 80% of all the 

imes produced by the algorithm implemented in CPLEX, inde- 

endently from the distribution. For Fig. 6 (c) and (d), the situa- 

ion is even more accentuated, with our approach beating all the 

nstances almost immediately, whereas the branch-and-cut proce- 

ure in CPLEX requires a relatively high value of τ before stepping 

p. 

Despite the good performances shown in the previous results, 

e should not forget that the branch-and-cut procedure imple- 

ented in CPLEX is an exact algorithm, and therefore its usage as a 

euristic is limited. To this aim, we report in Tables 8 and 9 the ob-

ective values obtained by CPLEX giving more time on the instances 

f the Gaussian and the Poissone set respectively. As the time 

imit increases the values obtained by the exact solver become in- 

reasingly lower. Of course, the larger the instance, the larger the 

ranching tree, which implies a longer time for the branch-and-cut 

rocedure. As it is clear from the table, the decay of our solution 

eneralizes better in terms of the computational time needed to 
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Fig. 6. Performance profiles. 

Table 8 

RL vs. the branch-and-cut algorithm implemented in the known commercial solver CPLEX on the Gaussian set: comparison on the objective value when the time limit is set 

to 60 seconds. 

J × M #instances Mean Std dev Max Min Avg ρ (%) 

RL BC-CPLEX RL BC-CPLEX RL BC-CPLEX RL BC-CPLEX 

30 × 25 100 4785.3 3722.3 111.7 82.3 5107.3 3915.0 4579.7 3502.5 −28.6 

35 × 30 100 5462.6 4729.0 115.1 92.7 5702.0 4906.9 5180.4 4468.4 −15.6 

40 × 35 100 5989.5 5723.9 134.8 143.0 6349.8 6367.7 5715.4 5410.8 −4.7 

45 × 40 100 6931.4 10429.2 130.2 17501.5 7304.9 89850.7 6599.8 6007.8 −3.2 

50 × 45 100 8663.5 47061.5 147.4 51146.6 9015.6 125070.6 8198.9 7286.8 28.3 

Table 9 

RL vs. the branch-and-cut algorithm implemented in the known commercial solver CPLEX on the Poisson set: comparison on the objective value when the time limit is set 

to 60 seconds. 

J × M #instances Mean Std dev Max Min Avg ρ (%) 

RL BC-CPLEX RL BC-CPLEX RL BC-CPLEX RL BC-CPLEX 

30 × 25 100 4167.1 3602.3 93.7 72.4 4404.0 3784.0 3939.0 3395.0 −15.7 

35 × 30 100 5249.4 4655.6 136.0 63.0 5566.0 4814.0 4963.0 4488.0 −12.8 

40 × 35 100 5947.5 5637.0 111.9 99.6 6194.0 5852.0 5735.0 5405.0 −5.5 

45 × 40 100 7815.5 10683.9 182.6 17056.9 8263.0 87381.0 7453.0 6283.0 −10.2 

50 × 45 100 8032.1 59159.0 181.9 54790.0 8410.0 128595.0 7697.0 7007.0 41.1 
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each that value, meaning our procedure could be implemented 

s a starting point method to enhance the performances of the 

ranch-and-cut procedure implemented in CPLEX. 

Finally, to complete the analysis we performed an analysis on 

he standard Taillard’s Benchmark instances derived from Taillard 

1993) , comparing our approach with the branch-and-cut proce- 

ure implemented in CPLEX setting the time limit to one and then 

o five minutes. We report these results in Table 10 . As expected, 

iven the small size of the instances, the values obtained by the 

S

919 
ommercial solver after one and five minutes of computation are 

ominant to our approach. For completeness, the branch-and-cut 

rocedure implemented in CPLEX terminated at the time limit for 

very instance, both when the limit was set to one and to five. 

.2.2. Comparison with the adaptive algorithm 

As anticipated in the previous sections, we conducted a fur- 

her comparison with the adaptive algorithm (ADA) described in 

hakhlevich et al. (1996) (see also Sotskov et al., 2013 ). The ap- 
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Table 10 

RL vs. BB-CPLEX on the Taillard benchmark instances: comparison on the on the makespan C max . BB-CPLEX 1 represent 

the branch-and-cut procedure implemented in CPLEX with a time limit of one minute, while BB-CPLEX 5 stops after five 

minutes. 

J × M # instances Statistics Algorithm 

BB-CPLEX 1 BB-CPLEX 5 RL 

15 × 15 10 Mean 1286.2 1253.4 1488.9 

Ta01-10 Std. Dev 41.7 33.3 49.0 

Max 1359.0 1313.0 1590.0 

Min 1190.0 1181.0 1439.0 

20 × 15 10 Mean 1553.7 1479.0 1735.5 

Ta11-20 Std. Dev 53.9 64.0 52.9 

Max 1647.0 1619.0 1822.0 

Min 1437.0 1405.0 1657.0 

20 × 20 10 Mean 1859.7 1744.7 2094.6 

Ta21-30 Std. Dev 55.1 48.8 114.4 

Max 1960.0 1851.0 2312.0 

Min 1789.0 1686.0 1968.0 

30 × 15 10 Mean 2318.5 2194.0 2370.6 

Ta31-40 Std. Dev 111.1 87.8 164.6 

Max 2524.0 2350.0 2670.0 

Min 2102.0 1985.0 2075.0 

30 × 20 10 Mean 2709.8 2496.6 2764.1 

Ta41-50 Std. Dev 114.7 91.7 147.9 

Max 2949.0 2620.0 3080.0 

Min 2526.0 2347.0 2511.0 

Table 11 

RL vs. ADA on the Gaussian set: comparison on the makespan C max . 

J × M # instances Mean Std. Dev Max Min Avg ρ (%) 

RL ADA RL ADA RL ADA RL ADA 

30 × 25 100 4785.3 4961.1 111.7 364.0 5107.3 6166.9 4579.7 4263.8 3.0 

35 × 30 100 5462.6 6273.9 115.1 500.0 5702.0 8063.0 5180.4 5127.1 12.4 

40 × 35 100 5989.5 7698.5 134.8 535.0 6349.8 9312.9 5715.4 6277.4 21.8 

45 × 40 100 6931.4 9414.1 130.2 596.2 7304.9 11075.4 6599.8 8262.2 26.1 

50 × 45 100 8663.5 12007.4 147.4 883.6 9015.6 14312.1 8198.9 10351.4 27.5 

Table 12 

RL vs. ADA on the Poisson set: comparison on the makespan C max . 

J × M # instances Mean Std. Dev Max Min Avg ρ (%) 

RL ADA RL ADA RL ADA RL ADA 

30 × 25 100 4167.1 4922.3 93.7 300.5 4404.0 5718.0 3939.0 4108.0 15.0 

35 × 30 100 5249.4 6115.7 136.0 368.3 5566.0 7098.0 4963.0 5347.0 13.8 

40 × 35 100 5947.5 7646.7 111.9 677.5 6194.0 9977.0 5735.0 6607.0 21.7 

45 × 40 100 7815.5 9653.4 182.6 745.9 8263.0 11898.0 7453.0 7809.0 18.6 

50 × 45 100 8032.1 10954.7 181.9 780.4 8410.0 13174.0 7697.0 9442.0 26.3 

Table 13 

RL vs. ADA on the Gaussian set: comparison on the computational time (seconds). 

J × M # instances Mean Std. Dev Max Min Avg τ (%) 

RL ADA RL ADA RL ADA RL ADA 

30 × 25 100 2.5 7.3 0.3 0.5 3.5 9.2 1.9 6.7 66.2 

35 × 30 100 4.6 17.1 0.5 0.5 5.6 18.7 3.5 16.5 73.2 

40 × 35 100 7.0 29.7 1.0 0.7 10.3 32.0 5.7 28.5 76.3 

45 × 40 100 11.8 72.7 1.2 4.7 14.0 100.3 9.8 67.2 83.8 

50 × 45 100 18.7 138.4 1.9 2.3 24.4 147.8 15.9 129.1 86.5 

Table 14 

RL vs. ADA on the Poisson set: comparison on the computational time (seconds). 

J × M # instances Mean Std. Dev Max Min Avg τ (%) 

RL ADA RL ADA RL ADA RL ADA 

30 × 25 100 2.4 7.5 0.4 0.4 4.7 8.7 1.8 6.5 68.4 

35 × 30 100 4.4 16.5 0.5 0.7 6.1 18.8 3.4 15.6 73.4 

40 × 35 100 7.2 31.1 0.9 0.9 10.7 33.9 6.0 29.1 76.9 

45 × 40 100 11.3 68.3 1.1 2.0 14.1 75.0 9.7 63.6 83.4 

50 × 45 100 17.1 121.9 1.2 3.0 20.2 128.3 15.0 115.4 86.0 

920 
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Fig. 7. Performance profiles. 

Table 15 

PDR-based heuristics. 

Priority rule Description 

SPT Select the job with the shortest processing time 

LPT Select the job with the longest processing time 

SSO Select the job with the shortest processing time of subsequent operation 

LSO Select the job with the longest processing time of subsequent operation 

SRM Select the job with the shortest remaining processing time not including the processing time of the current operation 

LRM Select the job with the longest remaining processing time not including the processing time of the current operation 

FOPNR Select the job with fewest remaining operations 

SPT + SSO Select the job with the minimum sum of the processing times of the current and subsequent operation 

LPT + LSO Select the job with the maximum sum of the processing times of the current and subsequent operation 

SPT ∗TWK Select the job with the minimum product of current operation processing time and total working time 

LPT ∗TWK Select the job with the maximum product of current operation processing time and total working time 

SPT/TWK Select the job with the minimum ratio of current operation processing time to total working time 

LPT/TWK Select the job with the maximum ratio of current operation processing time to total working time 

SPT ∗TWKR Select the job with the minimum product of current operation processing time to total remaining working time 

LPT ∗TWKR Select the job with the maximum product of current operation processing time and total remaining working time 

SPT/TWKR Select the job with the minimum ratio of current operation processing time to total remaining working time 

LPT/TWKR Select the job with the minimum ratio of current operation processing time to total remaining working time 
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roach uses the weighted mixed disjunctive graph model to rep- 

esent job shop scheduling problems and the conflict resolution 

trategy is applied to build a feasible schedule. Trained on a sample 

f job shop problems, the aim of the method is to produce knowl- 

dge on a benchmark of priority dispatching rules in order to solve 

imilar large-scale job-shop problems by applying, by analogy, the 

cquired knowledge. In more detail, the adaptive algorithm pro- 

osed is characterized by two phases: a learning and an examina- 

ion stage. In the former, the training instances are solved by an 

xact or approximate algorithm. Accordingly, information on suc- 

essful decisions on conflict situations, represented by disjunctive 

dges in the graph, is stored in a learning table. In particular, for 

ach resolved conflict edge, the algorithm gathers some character- 
921 
stics based on priority dispatching rules and, along with the orien- 

ation of the edge, it saves all the computed information in a row 

f the learning database. In this way, it is possible to extract from 

he table a composite decision rule to produce a comprehensive 

pecific heuristic. In the examination stage, the adaptive scheduler 

olves new unseen instances by adopting decisions based on the 

erived heuristic. 

As regard the learning stage, we trained the algorithm on the 

ame instances reported in Table 1 and we solved them using the 

ranch-and-cut algorithm implemented in CPLEX, by setting a time 

imit equal to 420 seconds per instance. The time limit is a physi- 

al requirement since the training instances were many and the to- 

al training process would have been too time-consuming. During 
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Table 16 

RL vs. HEURISTICS on the Gaussian set: results for the objective value, i.e. makespan C max . 

J × M # instances Mean makespan ˆ C max 

RL SPT LPT SSO LSO SRM LRM FOPNR SPT + SSO LPT + LSO SPT ∗TWK LPT ∗TWK SPT/TWK LPT/TWK SPT ∗TWKR LPT ∗TWKR SPT/TWKR LPT/TWKR 

30 × 25 100 4785.2 27043.3 27522.2 27239.2 27288.8 39828.6 4704.8 40818.6 27207.9 25069.4 28159.7 28261.6 28015.4 28062.6 38418.9 7051.0 6461.5 38121.0 

35 × 30 100 5462.5 38957.3 39576.3 39449.8 39629.7 58356.8 5613.1 57553.7 39286.9 36663.2 40637.9 39968.7 39989.2 40638.7 55808.8 9586.9 8581.0 55593.6 

40 × 35 100 5989.4 50882.5 51497.9 50997.7 51235.2 74920.2 6417.3 75766.9 50176.3 48228.3 51956.8 52535.2 51826.4 52398.5 72103.3 11405.3 10155.9 71926.3 

45 × 40 100 6931.4 67592.2 68130.0 67756.5 67755.1 101495.4 7181.2 97722.8 67400.7 64684.4 69874.5 69997.1 69245.4 69943.0 96495.7 14598.4 12757.1 96382.9 

50 × 45 100 8663.5 88020.5 87741.0 88539.9 87247.4 126439.2 8168.0 127350.1 87411.1 84192.0 89840.5 89369.3 89151.4 89384.8 122160.7 18433.8 15937.8 122109.3 

Table 17 

RL vs. HEURISTICS on the Poisson set: results for the objective value, i.e. makespan C max . 

J × M #instances Mean Makespan ˆ C max 

RL SPT LPT SSO LSO SRM LRM FOPNR SPT + SSO LPT + LSO SPT ∗TWK LPT ∗TWK SPT/TWK LPT/TWK SPT ∗TWKR LPT ∗TWKR SPT/TWKR LPT/TWKR 

30 × 25 100 4167.1 26094.0 27272.4 26676.2 27139.1 39473.4 4504.8 38448.4 26498.9 24493.9 27263.5 27263.5 27120.9 27445.1 37830.9 6749.6 6247.8 37762.4 

35 × 30 100 5249.3 37867.5 38509.7 38401.7 38075.3 56306.4 5379.0 56190.3 37894.1 35910.0 39368.3 39368.3 38904.1 39545.2 53946.5 9092.5 8290.9 54070.7 

40 × 35 100 5947.4 52884.2 53281.0 53186.9 53454.9 77287.6 6225.5 76786.0 52041.8 50473.1 53645.9 53645.9 53352.1 54144.3 74676.3 11563.9 10244.0 74043.8 

45 × 40 100 7815.5 67844.4 68982.8 67885.8 69024.4 99289.5 7655.5 98925.0 68173.4 65585.7 69691.3 69691.3 69601.5 70168.4 94933.3 14873.2 13379.1 94795.6 

50 × 45 100 8032.1 85492.6 87243.2 85696.6 86781.4 125574.0 8085.7 123372.0 85857.1 83168.9 87738.4 87738.4 87246.0 88250.1 120762.4 17430.5 15500.7 120368.1 
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Table 18 

RL vs. Zhang et al. (2020) on the Taillard benchmark instances: comparison on the makespan C max . 

J × M Instance IDs # instances Our RL Reported on Zhang et al. (2020) 

Mean Std. Dev Max Min Mean 

15 × 15 Ta01-10 10 1488.9 49.0 1590.0 1439.0 1547.7 

20 × 15 Ta11-20 10 1735.5 52.9 1822.0 1657.0 1774.7 

20 × 20 Ta21-30 10 2094.6 114.4 2312.0 1968.0 2128.1 

30 × 15 Ta31-40 10 2370.6 164.6 2670.0 2075.0 2378.8 

30 × 20 Ta41-50 10 2764.1 147.9 3080.0 2511.0 2603.9 

Table 19 

RL vs. Zhang et al. (2020) on the Taillard generated instances: comparison on the makespan C max . 

J × M # instances Statistics Algorithm 

Zhang et al. 

(2020) 6 × 6 

Zhang et al. 

(2020) 10 × 10 

Zhang et al. 

(2020) 15 × 15 

Zhang et al. 

(2020) 20 × 20 

Zhang et al. 

(2020) 30 × 20 

Our RL 

6 × 6 100 Mean 581.9 574.5 571.7 573.2 570.8 544.7 

Std. Dev 81.0 71.8 79.0 70.2 71.8 68.0 

Max 814.0 804.0 804.0 775.0 804.0 814.0 

Min 427.0 415.0 424.0 405.0 405.0 403.0 

10 × 10 100 Mean 1051.5 995.9 996.8 998.0 991.8 938.0 

Std. Dev 96.2 76.2 78.9 74.3 75.9 71.4 

Max 1327.0 1187.0 1218.0 1242.0 1187.0 1133.0 

Min 842.0 862.0 820.0 871.0 781.0 770.0 

15 × 10 100 Mean 1306.9 1225.2 1229.0 1222.4 1222.0 1182.9 

Std. Dev 106.9 100.8 92.6 92.1 95.2 96.4 

Max 1573.0 1460.0 1504.0 1447.0 1440.0 1412.0 

Min 1064.0 995.0 1007.0 1012.0 995.0 968.0 

15 × 15 100 Mean 1636.6 1502.9 1505.1 1503.3 1503.1 1441.8 

Std. Dev 103.8 105.1 107.1 96.3 97.6 98.9 

Max 1864.0 1841.0 1898.0 1785.0 1861.0 1752.0 

Min 1425.0 1321.0 1322.0 1311.0 1267.0 1261.0 

20 × 10 100 Mean 1567.2 1474.6 1470.4 1476.2 1478.3 1436.4 

Std. Dev 104.9 96.6 95.8 98.5 104.8 108.8 

Max 1893.0 1682.0 1680.0 1755.0 1711.0 1756.0 

Min 1367.0 1201.0 1147.0 1188.0 1178.0 1223.0 

20 × 20 100 Mean 2216.2 1997.4 1993.2 1984.3 1996.7 2012.6 

Std. Dev 127.3 106.3 95.8 98.6 114.8 93.2 

Max 2528.0 2344.0 2253.0 2204.0 2355.0 2241.0 

Min 1954.0 1778.0 1722.0 1790.0 1775.0 1746.0 
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he learning, we used as benchmark priority rules the SPT ( Short- 

st Processing Time ), LPT ( Longest Processing Time , FIFO ( First In First

ut ) and ECT ( Earliest Completion Time ) heuristics. In the examina- 

ion stage, we tested the algorithm on unseen instances, described 

n Table 2 , and, for each instance, due to the large amount of time

equired for the training, we randomly sampled 100 rows of the 

earning table. 

In Tables 11 , 12 , 13 and 14 , we compared the adaptive algo-

ithm with our approach on the Gaussian and Poisson test sets We 

rovide ρ and τ values representing the percentage of the aver- 

ge improvement in terms of makespan and computational time 

espectively, where the single improvements of RL upon ADA on 

he i th instance are computed as follows: 

• ρi = 

C max ADA i 
− C max RL i 

C max ADA i 

• τi = 

t ime ADA i 
− t ime RL i 

time ADA i 

As we can see, our approach outperforms the adaptive algo- 

ithm on the test sets and the performances are very similar be- 

ween the two set of instances. On the Gaussian set, the ρ value 

s between 3% and 27.5 % and increases as the problems become 

ore complex. Similarly, in the Poisson case, it ranges from 15 % up 

o 26.3 % . Concerning computational times, our RL approach out- 

erforms the adaptive algorithm presenting an improvement in a 

ange between 66 % and 86 % on both the test sets. 

Finally, in Fig. 7 , we report the performance profiles for the 

aussian and the Poisson set, considering the computational time 

nalysis first, and the objective value afterwords. In particular, 
923 
ig. 7 (c) and (d) show that our approach beats more than 90% of all

he makespan returned by the ADA (both for gaussian and for pois- 

on distribution). For Fig. 7 (a) and (b), the situation is even more 

mphasized, with our approach faster than almost 100% of all the 

imes produced by the ADA, independently from the distribution. 

.2.3. Comparison with scheduling heuristics based on priority rules 

We compared our algorithm with 17 well-known heuristic rules 

or the JSSP, as described in Panwalkar & Iskander (1977) . These 

euristics are based on a priority rule that selects the job to be 

rocessed. In Table 15 , we provide a list of the addressed heuristics 

ith a short description of the rule. 

We evaluated our method against the 17 PR-based heuristics on 

he Gaussian and Poisson test sets already described in the previ- 

us sections. The results are reported in Tables 16 and 17 , respec- 

ively. For each problem size, we report the average makespan C max 

ver all the 100 instances of the same size. 

The only heuristic that performs better than our RL approach 

s the LRM ( Longest Remaining Machining time ). More in detail, the 

RM heuristic defeats RL on the 30 × 25 and 50 × 45 instances of 

he Gaussian set, reaching an improvement of around 1.7% and 

.7% respectively. Concerning the Poisson set, LRM overcomes RL 

nly on the 45 × 40 instances, with an improvement of around 

%. The rules LPT ∗TWKR, SPT/TWKR and LPT/TWKR return average 

akespans around 2 times higher than our approach, while all the 

ther heuristics produces makespans 5 times or higher. Therefore 

e may say that the proposed RL method has dominant perfor- 

ances compared to the selected heuristics in almost every class 

f test instances. 
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Table 21 

Training settings. 

Parameter Setting 

Number of episodes 5000 

Roll-outs per episode 10 

Random choice prob.ty From ε = 0 . 2 down to ε = 0 

KL penalty coefficient β 15 

Target KL divergence δ 0.05 

Actor optimizer ADAM 

Actor learning rate 10 −4 

Actor optimization steps 1 

Critic optimizer ADAM 

Critic learning rate 10 −4 

Critic optimization steps 3 

Mini-batch size N · T 
.2.4. Comparison with the reinforcement learning algorithm in 

hang et al. (2020) 

Finally, we compared our approach with the one presented in 

hang et al. (2020) . In this work, the authors proposed a method 

ased on Graph Neural Networks, a special class of Deep Neural 

etwork models dealing with graph-structured data (see Wu et al., 

020; Zhou et al., 2020 for a comprehensive review). From the re- 

ult in Bła ̇zewicz et al. (20 0 0) , the JSSP can be formulated as a

isjunctive graph and fed to the network. Differently from us, they 

sed the PPO algorithm using a clipping loss to compute the pol- 

cy. 

The training and testing phases were performed by generat- 

ng instances with the Taillard method ( Taillard, 1993 ). The au- 

hors created different classes of problems: 6 × 6 , 10 × 10 , 15 × 15 ,

0 × 15 , 20 × 20 , and 30 × 20 . Each class had 100 instances. The

uthors trained a different model for each class, performing 10,0 0 0 

PO iterations using 4 trajectories each. 

To compare our approach to the one in Zhang et al. (2020) , we

e-trained our model on the same Taillard instances, excluding the 

lasses 30 × 15 and 30 × 20 for computational bounds on our re- 

ources. Since the training of our model can handle different JSSP 

nstances with heterogeneous sizes at the same time, we preferred 

o perform a one-shot training using the sets of instances ranging 

rom 6 × 6 to 20 × 20 . We performed 25,0 0 0 PPO iterations with 5

rajectories each. 

We reported our results in Tables 18 and 19 . In the first Table,

e show the value obtained in terms of objective on the Taillard’s 

enchmark set of known Taillard instances taken from Taillard 

1993) (see Table 3 ). The results show that our model is able to 

lightly beat the approach proposed in Zhang et al. (2020) . This is 

urprising since the nature of our training tends to be less special- 

zed on the single group of instances, as opposed to Zhang et al. 

2020) where the results are generated using models trained only 

n the class at hand. The classes 30 × 15 and 30 × 20 are included

o show the quality of our solution which was not trained on those 

istributions, differently from the results proposed in Zhou et al. 

2020) , which have specialized models for the 30 × 20 case. 

In the second Table 19 , we compared the two approaches 

n newly generated instances, obtained with the Taillard method 

aillard (1993) , using the generator provided in Zhang et al. (2020) . 

n the Table, we re-run the different models available from Zhang 

t al. (2020) , and we computed the objective values for every new 

lass. In particular, we created a total of 6 classes with 100 in- 

tances each having the following specifics: 6 × 6 , 10 × 10 , 15 × 10 ,

5 × 15 , 20 × 10 , and 20 × 20 . Our approach is capable of beating

ifferent variations of the algorithm presented in Zhang & Diet- 

erich (1995) up to the size of 30 × 20 , except for the instances in

he class 20 × 20 . 

We included an analysis on timing in the Appendix ( Table 22 ), 

howing the computational times are comparable, with no relevant 

ifference between the two approaches. 

. Conclusions 

In this paper, we investigated how to solve the Job Shop 

cheduling problem (JSSP) through reinforcement learning, aiming 

o make the learning agent flexible for tackling instances with a 

ariable number of jobs, tasks, and machines. 

We first formulated the JSSP as a Markov Decision Process, 

hich was fundamental to inscribe the problem in an actor-critic 

cheme. The method adopted takes inspiration from the Proximal 

olicy Optimization, Schulman et al. (2017) , using a dynamic adap- 

ation of the penalty term to facilitate exploitation over explo- 

ation, and vice-versa, depending on the situation. 

In the second phase, we studied several classes of deep mod- 

ls that could fit the JSSP, eventually landing on a double incident 
924 
STM framework, where each LSTM works as a projection into a 

xed space. The actor ends with an action masking to control fea- 

ibility, combined with a soft-max function to recreate a discrete 

robability distribution, aka the policy estimator. At its bottom, the 

ritic has an encoder network, collapsing the embeddings of the 

econd LSTM into a scalar, representing the state-value function 

stimator. 

Our algorithm can generalize to a certain extent to instances 

ith larger sizes, and with different distributions, than the one 

sed in the training phase. The approach shows a decisive im- 

rovement towards the deterministic mixed-integer branch-and- 

ut algorithm implemented in known solver CPLEX, the adaptive 

lgorithm implemented in Shakhlevich et al. (1996) , 17 priority 

ule-based heuristics, and a Deep Reinforcement learning algo- 

ithm, especially in terms of the makespan value, finally proving 

t is possible to generate new efficient greedy heuristics just from 

earning-based methodologies. 

ppendix A. Settings tables 

JSSP Mixed-integer formulation 

We used the following mixed-integer linear program for the 

SSP in the solver CPLEX. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

min t , x ,C max 
C max 

s.t. t jh −t jk ≥ p jk , ∀ ( j, k ) , ( j, h ) ∈ O, ( j, k ) ≺ ( j, h

t jk − t ik ≥ p ik − Mx jik , ∀ ( j, k ) , (i, k ) ∈ O, j < i 

t ik − t jk ≥ p jk − M(1 − x jik ) , ∀ ( j, k ) , (i, k ) ∈ O, j < i 

C max ≥ t jk + p jk , ∀ ( j, k ) ∈ O 

t jk ≥ 0 , ∀ ( j, k ) ∈ O 

x jik ∈ { 0 , 1 } , ∀ ( j, k ) , (i, k ) ∈ O, j < i 

Where: 

• p jk are the processing times. 
• M = � ∑ 

( j,k ) ∈O p jk � is a Big-M value. 
• C max is a continuous variable indicating the makespan. 
• t jk are continuous variables indicating the non-negative 

starting time of operation ( j, k ) . 

Table 20 

Actor-critic network configurations. 

Parameter Setting 

LSTM 1 hidden size 110 

LSTM 2 hidden size 110 · 2 

FFN number of hidden layers 3 

FFN input size 110 · 20 

FFN 1st hidden layer size 110 · 10 

FFN 2nd hidden layer size 110 · 5 

FFN 3rd hidden layer size 110 

FFN output layer size 1 
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Table 22 

RL vs. Zhang et al. (2020) on the Taillard generated instances: comparison on the computational time. 

J × M # instances Statistic Algorithm 

Zhang et al. 

(2020) 6 × 6 

Zhang et al. 

(2020) 10 × 10 

Zhang et al. 

(2020) 15 × 15 

Zhang et al. 

(2020) 20 × 20 

Zhang et al. 

(2020) 30 × 20 

Our RL 

6 × 6 100 Mean 0.12 0.12 0.12 0.12 0.12 0.06 

Std. Dev 0.08 0.05 0.05 0.04 0.04 0.01 

Max 0.88 0.88 0.88 0.88 0.88 0.13 

Min 0.10 0.10 0.10 0.09 0.09 0.04 

10 × 10 100 Mean 0.31 0.32 0.32 0.32 0.32 0.17 

Std. Dev 0.08 0.06 0.05 0.04 0.04 0.01 

Max 1.02 1.02 1.02 1.02 1.02 0.19 

Min 0.27 0.27 0.27 0.27 0.27 0.14 

15 × 10 100 Mean 0.45 0.49 0.48 0.49 0.49 0.31 

Std. Dev 0.07 0.08 0.07 0.07 0.07 0.01 

Max 1.01 1.01 1.01 1.01 1.01 0.35 

Min 0.37 0.37 0.37 0.37 0.37 0.30 

15 × 15 100 Mean 0.67 0.75 0.77 0.78 0.79 0.72 

Std. Dev 0.08 0.14 0.14 0.14 0.13 0.13 

Max 1.30 1.47 1.47 1.47 1.47 1.14 

Min 0.58 0.58 0.58 0.58 0.58 0.50 

20 × 10 100 Mean 0.57 0.63 0.65 0.67 0.68 0.72 

Std. Dev 0.07 0.10 0.10 0.12 0.12 0.06 

Max 1.23 1.23 1.23 1.26 1.26 0.98 

Min 0.53 0.53 0.53 0.53 0.53 0.64 

20 × 20 100 Mean 1.42 1.52 1.54 1.56 1.58 1.94 

Std. Dev 0.25 0.26 0.28 0.27 0.31 0.38 

Max 2.00 2.35 2.78 2.78 3.58 3.52 

Min 1.11 1.11 1.11 1.11 1.11 1.64 
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• x jik are binary variables defined as 

x jik = 

{
1 , if job j precedes job i on machine k 
0 , otherwise 

able of times for the comparison in Zhang et al. (2020) 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.ejor.2023.07.037 . 
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