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Abstract
We propose a new paradigm for designing efficient p-adaptive arbitrary high-order meth-
ods. We consider arbitrary high-order iterative schemes that gain one order of accuracy at 
each iteration and we modify them to match the accuracy achieved in a specific iteration 
with the discretization accuracy of the same iteration. Apart from the computational advan-
tage, the newly modified methods allow to naturally perform the p-adaptivity, stopping the 
iterations when appropriate conditions are met. Moreover, the modification is very easy 
to be included in an existing implementation of an arbitrary high-order iterative scheme 
and it does not ruin the possibility of parallelization, if this was achievable by the original 
method. An application to the Arbitrary DERivative (ADER) method for hyperbolic Par-
tial Differential Equations (PDEs) is presented here. We explain how such a framework 
can be interpreted as an arbitrary high-order iterative scheme, by recasting it as a Deferred 
Correction (DeC) method, and how to easily modify it to obtain a more efficient formula-
tion, in which a local a posteriori limiter can be naturally integrated leading to the p-adap-
tivity and structure-preserving properties. Finally, the novel approach is extensively tested 
against classical benchmarks for compressible gas dynamics to show the robustness and 
the computational efficiency.
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1  Introduction

In recent years, the need for a very accurate description of physical phenomena in the con-
text of advanced technological applications has determined an increasing interest toward 
large-scale simulations. To reduce their enormous computational cost and to make them 
more accessible, several strategies have been proposed, among which:

•	 parallelization, leading to a reduction of the computational time proportional to the 
number of employed processors with excellent scaling properties [39, 52, 55, 68, 73, 
81, 82];

•	 structure-preserving schemes, to preserve physical properties at the discrete level with-
out excessive mesh refinements, e.g., positivity preserving schemes [27, 53, 60, 66, 67], 
well-balanced schemes [12, 22, 25–28, 47, 59, 64, 85], TVD or maximum principle 
preserving schemes [10, 48, 49, 86], and entropy conservative/dissipating schemes [4–
7, 23, 24, 40, 44, 45, 56–58, 65, 69, 83, 84];

•	 high-order methods, which guarantee higher accuracy for coarser meshes and shorter 
computational times, on smooth problems, as they are able to catch complicated physi-
cal structures that low-order methods struggle to obtain, e.g., finite-element-based 
methods [1, 3, 8, 54, 57, 70, 71], finite volume methods [10, 12, 22, 64, 75, 85], and 
discontinuous Galerkin (DG) methods [17, 19, 23, 35, 44–46, 51].

However, high-order methods are, for the moment, mostly relegated to academic contexts. 
The main reason is given by the fact that concrete applications are characterized by shocks, 
which are well known to reduce the accuracy to first order, disregarding for the formal 
order of accuracy. Further, in the presence of shocks, high-order schemes are more sub-
jected to instabilities. Users are, therefore, comprehensibly unwilling to pay extra costs in 
terms of the complexity of the numerical method and its implementation, if the effort is not 
rewarded with the initially expected advantages. Indeed, one can observe that in the case 
of non-regular solutions; usually, the shocks do not cover the whole computational domain 
but rather some lower dimensional manifolds. Therefore, a possibility to use high-order 
methods at their best is the adoption of extra procedures to be implemented, e.g., limiters, 
a posteriori correction techniques, blenders with low-order schemes, or adaptive strategies 
relying on shock detectors. However, such procedures require a relevant interference with 
the basic implementation as they are not naturally embedded in the original method at the 
theoretical level and, if their introduction is not performed in a careful way, the additional 
cost associated with them may be comparable to the computational gain given by the high-
order feature.

Here, generalizing the idea introduced in [61], we propose a new arbitrary high-order 
formulation naturally allowing for order adaptivity, namely the so-called p-adaptivity. The 
formulation relies on an underlying arbitrary high-order iterative scheme, which is easily 
modified in a suitable efficient way. Arbitrary high-order iterative methods are charac-
terized by iterative procedures involving an approximated solution to a certain problem, 
whose order of accuracy increases by one at each iteration, converging toward the solution 
of a background high-order scheme. The idea is to modify the generic iteration in such a 
way that the order of accuracy of the discretization proper to the iteration itself matches 
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the order of accuracy achieved in that specific iteration, hence reducing the computational 
cost. The number of iterations is chosen equal to the aimed order of accuracy, as already 
done in [8, 38, 50, 61, 63]. On the contrary, in other works, the iterations are stopped when 
a prescribed tolerance is reached [14, 21, 34, 42, 79]. This is most of the times unnecessary 
for explicit methods, as the accuracy of the underlying discretization is not as accurate as 
that tolerance.

The modification we propose in this work results in several advantages: for a fixed final 
order, we get a substantial drop in the computational cost with respect to the traditional 
approach as the low-order iterations are performed with low-order structures which are 
computationally cheaper. Moreover, in this framework, it is straightforward to limit the 
achieved order on the fly, stopping the computation at a certain iteration if specified cri-
teria are not met. This last aspect allows to overcome the typical drawback of a posteriori 
Multi-dimensional Optimal Order Detection (MOOD) techniques [9, 17, 18, 29, 31, 32], in 
which, if the high-order scheme produces a solution which is not valid according to some 
physical or numerical criteria, low-order solutions must be recomputed with their associ-
ated computational cost after the high-order solution has been already computed.

Apart from the advantages and the many possible applications, a remarkable aspect 
which is worth underlying is given by the fact that, if one already has an implementation of 
an arbitrary high-order iterative scheme, then the introduction of the proposed modification 
is straightforward. Furthermore, the modification does not prevent the possible paralleliza-
tion of the original code.

In this paper, we discuss the application to an Arbitrary DERivative (ADER) framework 
for hyperbolic Partial Differential Equations (PDEs), proposed originally by Millington 
et  al. [62, 78]. The approach is validated on challenging benchmarks, showing the arbi-
trary high-order character and the optimal performance in the context of the adaptivity. 
Furthermore, the efficiently designed a posteriori limiter, which drives the p-adaptivity, 
allows to provably preserve physical properties. In this work, we will use it to preserve the 
positivity of some quantities associated with the numerical solution. The resulting numeri-
cal schemes are of high order of accuracy with one-step time discretization and making use 
of general polygonal cells in space.

Summarizing, the main contributions of this work are the following: the generalization 
of the idea introduced in [61] into an abstract and rigorous framework, its application to the 
ADER context for hyperbolic PDEs with increasing reconstruction degree along the itera-
tions of the space-time predictor solution, and the design of an efficient structure-preserv-
ing a posteriori limiter.

The work is organized as follows. In Sect. 2, we describe the general idea in the spe-
cific framework of Deferred Correction (DeC) methods. In Sect. 3, we present the ADER 
method for hyperbolic PDEs with the DG spatial discretization and we explain how it 
can be interpreted as an iterative arbitrary high-order method. Section 4 is devoted to the 
description of the proposed modifications for the ADER framework to obtain new efficient 
p-adaptive schemes. The new methods are validated against several challenging bench-
marks in Sect.  5, demonstrating the accuracy and the robustness of the novel approach. 
Moreover, the computational advantages with respect to the original formulation are exper-
imentally shown. Finally, conclusions and future perspectives are reported in Sect. 6.
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2 � New Efficient Iterative Arbitrary High‑Order Methods

Iterative arbitrary high-order methods are numerical methods characterized by an iteration 
process converging to the solution of an underlying arbitrary high-order scheme. Here, we 
focus on particular iterative arbitrary high-order methods, for which the order of accuracy 
with respect to the limit solution increases by one at each iteration. Examples of such meth-
ods are the DeC [2, 8, 38, 50, 63] and the ADER schemes [16, 34, 35, 51], which have been 
broadly used in the context of the numerical solution of hyperbolic systems of PDEs. The 
current use of such methods consists in fixing an underlying high-order scheme and per-
forming the iteration process until convergence or, more efficiently, until the desired accu-
racy is reached, i.e., with a number of iterations exactly equal to the order of the method.

We propose here a new simple modification of the aforementioned framework which 
allows the computational cost of the original methods to be reduced, designing novel 
schemes with a natural adaptive character. In particular, let us consider a general iterative 
arbitrary high-order method of order P, whose generic iteration is denoted by MP . Then, a 
simple sketch of the method is given by

where u(p) is the result of the pth iteration and P iterations have been considered to achieve 
the optimal accuracy with the minimal number of iterations. The proposed modification 
consists in replacing the generic pth iteration of the method of order P with the iteration 
Mp , that is the iteration associated to the same method but with order p which is in gen-
eral cheaper but, nevertheless, accurate enough to get order p. The sketch of the modified 
method reads

The formal order of accuracy is not spoiled as Mp , the new pth iteration, is still sufficiently 
accurate to provide u(p) of order p starting by u(p−1) of order p − 1 . The technical details of 
changing the iteration structures at each iteration depend on the underlying iterative arbi-
trary high-order method under consideration. For example, an intermediate embedding 
process like an interpolation may be needed to project u(p−1) onto the same space of u(p) in 
order to perform the pth iteration. The modification to pass from the original formulation 
(1) to the new one (2) is minimal, and its inclusion in an existing implementation of an iter-
ative arbitrary high-order method is straightforward. The modified methods are in general 
cheaper than the original ones, as the computational cost related to Mp for p < P is smaller 
than the one related to MP . Moreover, differently from what happens in the original frame-
work, increasing the number of iterations always determines an increase in the order of 
accuracy without any saturation. Therefore, in principle, it is possible not to fix a priori the 
final order, but instead to continue the iterations until a certain tolerance is matched. This 
may provide a valid strategy for engineering applications.

We focus now on a particular family of iterative arbitrary high-order methods, and we 
discuss their modification to comply with the p-adaptivity setting proposed in this work.

(1)u(0)
MP

��������������→ u(1)
MP

��������������→ u(2)
MP

��������������→ ⋯
MP

��������������→ u(P−1)
MP

��������������→ u(P),

(2)u(0)
M1

��������������→ u(1)
M2

��������������→ u(2)
M3

��������������→ ⋯
MP−1

���������������������→ u(P−1)
MP

��������������→ u(P).
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2.1 � DeC Methods

The DeC is an abstract procedure that can be exploited to design arbitrary high-order 
iterative methods for differential problems. In particular, the formulation presented in 
[2] relies on the definition of two operators L1

Δ
,L

2

Δ
∶ X → Y  associated with a given 

problem, dependent on a parameter Δ , acting between two normed vector spaces 
(X, ‖⋅‖X) and (Y , ‖⋅‖Y ) . The operator L2

Δ
 is a high-order nonlinear implicit operator that 

we would like to solve, i.e., to find u
Δ
∈ X , such that L2

Δ
(u

Δ
) = 0Y , to get a high-order 

approximation of the solution to the original problem. Nevertheless, due to its implicit 
nature, the operator L2

Δ
 is difficult to be solved. On the other hand, the operator L1

Δ
 is a 

low-order explicit operator, for which it is easy to find ũ ∈ X , such that L1
Δ
(ũ) = z for 

z ∈ Y . Due to its simplicity, it would be desirable to solve L1
Δ
 , rather than L2

Δ
 . However, 

the resulting solution would not be accurate enough for our purposes.
The following theorem allows to approximate u

Δ
 arbitrarily well by a simple explicit 

iterative procedure, which is much cheaper than the direct solution of the operator L2
Δ
.

Theorem 1  (DeC) Let the operators L1
Δ
 and L2

Δ
 fulfill the following properties. 

	 (i)	 Existence of a unique solution to L2
Δ

		    ∃! u
Δ
∈ X solution of L2

Δ
 , such that L2

Δ
(u

Δ
) = 0Y.

	 (ii)	 Coercivity-like property of L1
Δ

		    ∃ �1 ⩾ 0 independent of Δ s.t. 

	 (iii)	 Lipschitz-continuity-like property of L1
Δ
− L

2
Δ

		    ∃ �2 ⩾ 0 independent of Δ s.t. 

Given a u(0) ∈ X , define recursively the sequence of vectors u(p) as the solution of

Then, the following error estimate holds:

Proof  Using the coercivity-like property of L1
Δ
 (3), the definition of the DeC iteration (5), 

the fact that L2
Δ
(u

Δ
) = 0Y , and the Lipschitz-continuity-like property of L1

Δ
− L

2
Δ
 (4), we 

get

(3)
‖‖‖L

1
Δ
(v) − L

1
Δ
(w)

‖‖‖Y ⩾ �1
‖‖v − w‖‖X , ∀v,w ∈ X.

(4)
‖‖‖
[
L
1
Δ
(v)−L2

Δ
(v)

]
−
[
L
1
Δ
(w)−L2

Δ
(w)

]‖‖‖Y ⩽�2Δ
‖‖v − w‖‖X , ∀v,w ∈ X.

(5)L
1
Δ
(u(p)) ∶= L

1
Δ
(u(p−1)) − L

2
Δ
(u(p−1)), p ⩾ 1.

(6)‖‖‖u
(p) − u

Δ

‖‖‖X ⩽

(
Δ
�2
�1

)p‖‖‖u
(0) − u

Δ

‖‖‖X , ∀p ∈ ℕ.
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Applying recursively the previous inequality, we obtain the desired result.

For Δ small enough, the sequence of vectors u(p) converges to u
Δ
 independently of the 

initial vector u(0). At each iteration of the DeC procedure (5), the computation of u(p) is 
straightforward by our assumptions on the operator L1

Δ
 , since u(p−1) is known and it is 

possible to explicitly compute the right-hand side. Furthermore, thanks to the accuracy 
estimate (6), at each iteration, one order of accuracy is gained with respect to u

Δ
.

Remark 1  (On “over-resolving” the operator L2
Δ
 and on the number of iterations P) Usu-

ally, we are not strictly interested in the solution u
Δ
 of the operator L2

Δ
 , but rather on the 

analytical solution u
ex

 of the underlying problem. If S is the order of accuracy of u
Δ
 , in 

general, it suffices to approximate u
Δ
 with the Sth-order accuracy. This consideration 

allows to bound the number of iterations, saving computational time, without necessarily 
getting the convergence toward the solution to the operator L2

Δ
 . In particular, thanks to 

Theorem 1, if u(0) is an O(Δ)-approximation of u
ex

 , then ‖‖‖u(P) − u
ex

‖‖‖ = O(Δ1+min (P,S)) lead-
ing to an order of accuracy equal to min (P, S) . Hence, the optimal choice is P = S . Any 
further iteration will not increase the order of accuracy of the method with respect to u

ex
 

but only with respect to u
Δ
.

Remark 2  (On explicit and implicit DeC methods) The DeC philosophy is based on having 
a simple iterative procedure allowing to obtain a high-order approximation of the solu-
tion of a given problem, which would have been difficult to compute directly. In the appli-
cations, we will focus on an explicit setting by considering explicit operators L1

Δ
 , lead-

ing to an updated formula (5) with an explicit character. However, within the described 
framework, one could easily switch to an implicit setting by selecting an implicit low-order 
operator L1

Δ
 . In that case, one obtains an iterative procedure that is not explicit, yet, much 

simpler than the direct solution of L2
Δ
 . In applications to ordinary differential equations 

(ODEs) and PDEs, implicit formulations [8, 17, 20] allow to achieve better stability prop-
erties and less time step restrictions. The theoretical framework presented in this work 
applies both to explicit and implicit settings.

2.2 � New Efficient DeC Methods

Here, we will discuss, at the theoretical level, an efficient modification for DeC methods. 
It is based on the replacement of the operators L1

Δ
 and L2

Δ
 by iteration-specific operators 

(7)

‖‖‖u
(p) − u

Δ

‖‖‖X ⩽
1

�1

‖‖‖L
1
Δ
(u(p)) − L

1
Δ
(u

Δ
)
‖‖‖Y

=
1

�1

‖‖‖L
1
Δ
(u(p−1)) − L

2
Δ
(u(p−1)) − L

1
Δ
(u

Δ
)
‖‖‖Y

=
1

�1

‖‖‖
[
L
1
Δ
(u(p−1)) − L

2
Δ
(u(p−1))

]
−
[
L
1
Δ
(u

Δ
) − L

2
Δ
(u

Δ
)
]‖‖‖Y

⩽ Δ
�2
�1

‖‖‖u
(p−1) − u

Δ

‖‖‖X .
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L
1,(p)

Δ
 and L2,(p)

Δ
 to strictly obtain the order p at the pth iteration. In particular, we prove the 

following result.

Theorem 2  Consider a problem with an exact solution u
ex
∈ Z . Then, take some normed 

spaces (X(p), ‖⋅‖X(p) ) for p ∈ ℕ and (Y (p), ‖⋅‖Y (p) ) for p ⩾ 1 . For every p ⩾ 1 , consider also 
two operators L1,(p)

Δ
,L

2,(p)

Δ
∶ X(p)

→ Y (p) dependent on the same parameter Δ and fulfill-
ing the properties of Theorem 1 for some 𝛼(p)

1
, 𝛼

(p)

2
> 0 and u(p)

Δ
∈ X(p) . Furthermore, let us 

assume that for any p ∈ ℕ , there exists an embedding operator E(p) ∶ X(p)
→ X(p+1) , associ-

ating with each u(p) ∈ X(p) an approximation u∗(p) ∶= E
(p)(u(p)) ∈ X(p+1) , and some projec-

tion Π(p) ∶ Z → X(p) , associating with u
ex

 an approximation u(p)ex ∶ = Π(p)(u
ex
) ∈ X(p).

Given u(0) ∈ X(0) , we consider the new DeC method whose general pth iteration is given 
by

Suppose that the following properties hold: 

	 (i)	 the accuracy of u(p)
Δ

 with respect to u(p)ex

	 (ii)	 the accuracy of the embedding E(p)

		  
 for some constant C independent on Δ;

	 (iii)	 the accuracy of u(0)

Then, it follows that

Proof  The proof is based on the induction. The base case for p = 0 is trivially given by 
assumption (11). Let us now focus on the induction step. We assume that (12) holds for a 
specific p and we will prove it for p + 1 . By the triangular inequality, we have

The second term at the right-hand side is O(Δp+2) for (9), and hence, let us focus on the 
first term. By the proof of Theorem 1 concerning the original methods, we have that

(8)
{

u∗(p−1) ∶= E
(p−1)(u(p−1)),

L
1,(p)

Δ
(u(p)) ∶= L

1,(p)

Δ
(u∗(p−1)) − L

2,(p)

Δ
(u∗(p−1)).

(9)
‖‖‖u

(p)

Δ
− u(p)

ex

‖‖‖X(p)
= O(Δp+1), p ⩾ 1;

(10)
‖‖‖u

∗(p) − u(p+1)
ex

‖‖‖X(p+1)
⩽ C

‖‖‖u
(p) − u(p)

ex

‖‖‖X(p)
, ∀p ∈ ℕ

(11)
‖‖‖u

(0) − u(0)
ex

‖‖‖X(0)
= O(Δ).

(12)
‖‖‖u

(p) − u(p)
ex

‖‖‖X(p)
= O(Δp+1), ∀p ∈ ℕ.

(13)
‖‖‖u

(p+1) − u(p+1)
ex

‖‖‖X(p+1)
⩽
‖‖‖u

(p+1) − u
(p+1)

Δ

‖‖‖X(p+1)
+
‖‖‖u

(p+1)

Δ
− u(p+1)

ex

‖‖‖X(p+1)
.
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which, applying the triangular inequality, gives

Again, due to (9), the second term in parenthesis at the right-hand side is O(Δp+2) ; there-
fore, we focus on the first term. Due to the assumption on the accuracy of the embedding 
(10) and to the induction hypothesis, we have

Hence

which completes the proof.

Let us notice that, in the previous theorem, the accuracy estimate is always referred 
to a projection of the exact solution and not to a fixed high-order approximation. Hence, 
the order of accuracy is formally not bounded and we can approximate u

ex
 arbitrarily 

well. In particular, if u(p)ex  yields an approximation of u
ex

 which is O(Δp+1) accurate, 
thanks to Theorem  2, also the approximation associated with u(p) will have the same 
accuracy with respect to u

ex
.

3 � ADER‑Discontinuous Galerkin (DG) Scheme

The ADER methods are various techniques to obtain arbitrary high-order methods for 
differential problems. Even though the first ADER [82] was based on the Cauchy-Kova-
levskaya theorem; nowadays, it is mainly known as a technique that exploits the weak 
formulation of the original problem to obtain high-order discretization forms that are 
solved iteratively [16, 34, 50]. In this section, we will present a formulation for hyper-
bolic PDEs in combination with a DG space discretization, and we will show how it can 
be interpreted as an arbitrary high-order iterative method in the previously presented 
DeC framework. We will also describe in a final subsection the ADER-ℙNℙM variant of 
the method, still recastable as the DeC scheme, which allows for applications to finite 
volume (FV) formulations, as well.

(14)‖‖‖u
(p+1) − u

(p+1)

Δ

‖‖‖X(p+1)
⩽ Δ

�
(p+1)

2

�
(p+1)

1

‖‖‖u
∗(p) − u

(p+1)

Δ

‖‖‖X(p+1)
,

(15)

‖‖‖u
(p+1) − u

(p+1)

Δ

‖‖‖X(p+1)

⩽Δ
�
(p+1)

2

�
(p+1)

1

(‖‖‖u
∗(p) − u(p+1)

ex

‖‖‖X(p+1)
+
‖‖‖u

(p+1)
ex

− u
(p+1)

Δ

‖‖‖X(p+1)

)
.

(16)
‖‖‖u

∗(p) − u(p+1)
ex

‖‖‖X(p+1)
⩽ C

‖‖‖u
(p) − u(p)

ex

‖‖‖X(p)
= O(Δp+1).

(17)Δ
�
(p+1)

2

�
(p+1)

1

‖‖‖u
∗(p) − u(p+1)

ex

‖‖‖X(p+1)
= O(Δp+2),
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3.1 � Numerical Method

We want to approximate the analytical solution u ∶ � ×ℝ+
0
→ ℝQ of the following 

Q-dimensional hyperbolic PDE:

supplemented with suitable initial and boundary conditions, where 𝛺 ⊆ ℝD is a bounded 
D-dimensional space domain, F ∶ ℝQ

→ ℝQ×D is the flux tensor, and S ∶ � ×ℝQ
→ ℝQ 

is the source function. To shorten the notation, let us define E(u, x) ∶= divxF(u) − S(x, u) , 
the time evolution operator of the PDE up to the minus sign, so that (18) becomes

Let us focus on a generic time step [tn, tn+1] with Δt ∶= tn+1 − tn . The goal is to find an 
approximation un+1(x) ≈ u(x, tn+1) of the analytical solution in � at time tn+1 by knowing 
an approximation un(x) ≈ u(x, tn) at time tn.

In particular, for any n, we adopt a classical DG space discretization for un(x) ≈ u(x, tn) : 
we consider a tessellation Th of � made of non-overlapping convex polytopals K with a 
mesh parameter h, and we consider un(x) in a space of discontinuous piecewise polynomial 
functions of degree M, i.e., (VM)

Q with VM ∶=
{
g ∈ L2(�) s.t. g|K ∈ ℙM(K)

}
 , yielding an 

(M + 1) th order of accuracy approximation space. Therefore, locally in each element K, we 
can consider the following representation of the approximated solution with a local basis {
�i(x)

}
i=1,⋯,I

 of ℙM(K):

where I is the number of local basis functions and the label K on the coefficients cn
i
 , and on 

the basis functions, �i is omitted to lighten the notation as we will consider computations 
in a single generic element, in the sequel.

The ADER method, applied to this context, is based on the weak formulation of the gov-
erning equations (19) in space-time and it is characterized by two steps: an iterative local 
space-time predictor and a final corrector step, described hereafter. Before entering the details, 
it is useful to briefly describe the role of such steps for ADER methods. The predictor, based 
on a local explicit iterative procedure, is used to compute local high-order polynomial approxi-
mations of the solution in space-time control volumes without considering any communica-
tion between different cells. The solution obtained in this step is high-order accurate but not 
stable, as no upwinding has been taken into account in its computation. This prediction is later 
used in the corrector step to provide a global explicit update of the numerical solution, allow-
ing communication between neighboring cells through numerical fluxes, which introduce the 
necessary upwinding and numerical dissipation to achieve the stability. A stability study of the 
method can be found in [34].

3.1.1 � Local Space‑Time Predictor

The purpose of this step is to find a high-order approximation of the solution in each space-
time control volume CK = K × [tn, tn+1] . In this step, no communication between the cells 

(18)
�

�t
u(x, t) + divxF(u(x, t)) = S(x, u(x, t)), (x, t) ∈ � ×ℝ

+
0
,

(19)
�

�t
u(x, t) + E(u(x, t), x) = 0, (x, t) ∈ � ×ℝ

+
0
.

(20)un(x) ∶=

I∑
i=1

cn
i
�i(x), ∀x ∈ K,
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happens. We consider the weak formulation of (18) over CK , obtained through the multiplica-
tion by a smooth test function �∶CK → ℝ , the integration over CK and subsequent integration 
by parts in time:

Next, we project it onto a finite-dimensional space spanned by the tensor product of the 
previously introduced local spatial basis 

{
�i(x)

}
i=1,⋯,I

 and a temporal basis {�m(t)}m=0,⋯,M 
over [tn, tn+1] guaranteeing (M + 1) th order of accuracy. As an example for the latter, one 
can think to a Lagrangian basis of degree M or a truncated Taylor series up to the Mth-
degree term to obtain an approximation of order M + 1 . Here, we will use modal basis 
functions both for space and time, although such choice is not mandatory. The basis func-
tions are explicitly described in Appendix A. As usual in the literature, we assume the 
basis functions to be normalized in such a way that their maximum absolute value over CK 
is an O(1).

In particular, we consider the local discretization of uh in CK

in which, to shorten the notation, we have denoted by {�𝓁(x, t)}𝓁=1,⋯,L a permutation of the 
basis functions {�i(x)�

m(t)} i = 1,… , I

m = 0,… ,M

 and by u� the corresponding coefficients um
i
 , where 

implicitly we defined a bijection that gives � = �(i,m) . Finally, we consider the projection 
of (21) on the space-time DG functional space generated by {�𝓁(x, t)}𝓁=1,⋯,L , that is

for any j = 1,⋯ , L . This is a nonlinear system in the unknowns u� , whose solution yields 
the (M + 1)th-order accurate approximation (22) of the analytical solution. Let us notice 
that un(x) in (23) is known by assumption and the related integral involving such function 
can thus be computed. Notice that, to obtain a fully local formulation, the divergence theo-
rem in space has not been applied. On the other hand, the integration by parts in time has 
been performed to introduce a causality effect and a dependency on the initial information 
at time tn.

Now, it is possible to recast each local system (23) in a matrix-vector formulation 
writing

where the matrix B and the vectors u , r , and �̃ are given by

(21)
∫K

[
u(x, tn+1)�(x, tn+1)−u(x, tn)�(x, tn)

]
dx −∫CK

u(x, t)
�

�t
�(x, t)dxdt

+ ∫CK

E(u(x, t), x)�(x, t) dxdt = 0.

(22)uh(x, t) ∶=

I∑
i=1

M∑
m=0

um
i
�i(x)�

m(t) =

L∑
�=1

u���(x, t), ∀(x, t) ∈ CK ,

(23)

L∑
�=1

[
∫K

��(x, tn+1)�
j(x, tn+1)dx − ∫CK

��(x, t)
�

�t
�j(x, t)dxdt

]
u�

− ∫K

un(x)�
j(x, tn)dx + ∫CK

E(uh(x, t), x)�
j(x, t)dxdt = 0

(24)Bu − r + �̃(u) = 0,
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with �j(u, t) ∶= ∫
K
E(uh(x, t), x)�

j(x, t)dx . Let us observe that r is constant and explicitly 
computable as un(x) is known.

Remark 3  (On the matrix B) The definition of the matrix B is referred to a scalar PDE; it must 
be block-expanded for a vectorial problem. Let us notice that the elements of the matrix B are 
O(hD) due to the integral over K and to the normalization assumed on the basis functions. The 
integral in time on the second term of Bj,� is balanced by the derivative in time on �j.

Concerning the well-posedness and the solution of the nonlinear system (24), we 
can prove that for Δt small enough, it admits a unique solution which can be obtained 
through the iterative procedure

which converges unconditionally to the solution of the system, for any initial vector u(0) . To 
do that, let us first prove the following useful lemma.

Lemma 1  (Lipschitz-continuity-like property of �̃ ) Under smoothness assumptions, the 
function �̃(⋅) is such that

where ‖⋅‖∞ is the infinity norm over ℝL×Q and CLip is a constant independent of Δt and of 
the element K.

Proof  By a direct computation of the generic jth component of the left-hand side of (27), 
recalling the definition of the functions �j , through basic analysis, we get

where ‖⋅‖∞,Q is the infinity norm over ℝQ , vh(x, t) ∶=
L∑

�=1

v���(x, t), and wh(x, t) ∶=

∑L

�=1
w���(x, t) for any (x, t) ∈ CK . For regular data, we can assume that the following Lip-

schitz-continuity property holds:

(25)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Bj,𝓁 ∶= �K

�𝓁(x, tn+1)�
j(x, tn+1)dx − �CK

�𝓁(x, t)
�

�t
�j(x, t)dxdt,

u ∶=

⎛
⎜⎜⎝

u1

⋮

uL

⎞
⎟⎟⎠
, r ∶=

⎛
⎜⎜⎝

∫
K
un(x)�

1(x, tn)dx

⋮

∫
K
un(x)�

L(x, tn)dx

⎞
⎟⎟⎠
, �̃(u) ∶=

⎛⎜⎜⎜⎝

∫ tn+1
tn

�1(u, t)dt

⋮

∫ tn+1
tn

�L(u, t)dt

⎞⎟⎟⎟⎠

(26)u(p) = B−1
[
r − �̃

(
u(p−1)

)]
,

(27)
‖‖‖�̃(v) − �̃(w)

‖‖‖∞ ⩽ Δt|K|CLip
‖‖v − w‖‖∞,

(28)

‖‖‖‖‖∫
tn+1

tn

�j(v, t)dt −∫
tn+1

tn

�j(w, t)dt
‖‖‖‖‖∞,Q

⩽ ∫
tn+1

tn

‖‖‖�j(v, t) − �j(w, t)
‖‖‖∞,Q

dt

⩽∫CK

‖‖‖E(vh(x, t), x) − E(wh(x, t), x)
‖‖‖∞,Q

|||�
j(x, t)

|||dxdt,
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where C0 is a constant independent of Δt and of the element K, leading to

The space-time basis functions �j are bounded in absolute value by a constant C� independ-
ent of Δt and K, yielding

which, setting CLip ∶= C0C� and taking the maximum over j = 1,⋯ , L at the left-hand 
side, is the thesis.

A straightforward consequence of the previous result is the following corollary.

Corollary 1  (Lipschitz-continuity-like property of B−1�̃ ) Under the assumptions of the pre-
vious lemma, it holds

where C̃Lip is a constant independent of Δt and of the element K.

Proof  By basic linear algebra, we have

where the infinity norm applied to B−1 is the matrix norm induced by the related vector 
norm. As observed in Remark 3, B is an O(hD) and, hence, its inverse is an O(h−D) , leading 
to ‖‖B−1‖‖∞ ⩽ CBh

−D for some constant CB independent of the specific element K and of Δt . 
Using this fact, in combination with the result of Lemma 1, we obtain

By observing that for a regular mesh |K| ⩽ C�h
D for some constant C� independent of K, 

we get the thesis

for C̃Lip ∶= CBC�CLip. 

This allows us to prove the existence and uniqueness of the solution of (24).

(29)
‖‖‖E(vh(x, t), x) − E(wh(x, t), x)

‖‖‖∞,Q
⩽ C0

‖‖v − w‖‖∞,

(30)
‖‖‖‖‖∫

tn+1

tn

�j(v, t)dt −∫
tn+1

tn

�j(w, t)dt
‖‖‖‖‖∞,Q

⩽ C0
‖‖v − w‖‖∞ ∫CK

|||�
j(x, t)

|||dxdt.

(31)
‖‖‖‖‖∫

tn+1

tn

�j(v, t)dt − ∫
tn+1

tn

�j(w, t)dt
‖‖‖‖‖∞,Q

⩽ C0C�
‖‖v − w‖‖∞Δt|K|,

(32)
‖‖‖‖B

−1
[
�̃(v) − �̃(w)

]‖‖‖‖∞ ⩽ ΔtC̃Lip
‖‖v − w‖‖∞,

(33)
‖‖‖‖B

−1
[
�̃(v) − �̃(w)

]‖‖‖‖∞ ⩽
‖‖‖B

−1‖‖‖∞
‖‖‖�̃(v) − �̃(w)

‖‖‖∞,

(34)
‖‖‖‖B

−1
[
�̃(v) − �̃(w)

]‖‖‖‖∞ ⩽ CBh
−DΔt|K|CLip

‖‖v − w‖‖∞.

(35)
‖‖‖‖B

−1
[
�̃(v) − �̃(w)

]‖‖‖‖∞ ⩽ ΔtCBC�CLip
‖‖v − w‖‖∞
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Proposition 1  (Well-posedness and solution of the nonlinear system) Because Δt is small 
enough, the nonlinear system (24) has a unique solution, which is the limit of (26) Because 
p → +∞.

Proof  We define the map J ∶ ℝL×Q
→ ℝL×Q as J(u) ∶= B−1

[
r − �̃(u)

]
. It is immediate to 

verify that a fixed point of J  (if any) is also a solution of (24) and viceversa. Due to the 
fact that ℝL×Q is finite dimensional, if we are able to prove that J  is a contraction, by the 
Banach fixed-point theorem, we know that there exists a unique fixed point and that this 
can be obtained as the limit of the iterative procedure u(p) ∶= J(u(p−1)) , which is equivalent 
to (26). We will now show that, for Δt small enough, J  is indeed a contraction. In fact, by a 
direct computation, it holds

and, applying Corollary 1 on the Lipschitz-continuity-like property of B−1�̃ , we retrieve 
the thesis

for Δt < 1

�CLip

.

All the local approximations, obtained by solving the nonlinear system in each control 
volume CK , constitute a global (M + 1)th-order accurate approximation of the analytical 
solution. It is piecewise polynomial in each CK and discontinuous across the faces of CK 
shared with other control volumes and we denote it, by an abuse of notation, as uh.

Remark 4  (On the computational efficiency) In several works, the nonlinear system (24) 
is solved by carrying the iterative process (26) until a convergence criterion is met up to a 
certain tolerance [16, 34]. This leads to a waste of resources as the underlying discretiza-
tion error of the system (24) with respect to the analytical solution of the PDE is of order 
M + 1 , and hence, smaller tolerances are in general unnecessary. In this context, it is possi-
ble to obtain an (M + 1)th-order accurate approximation of the solution of (24) by perform-
ing exactly M + 1 iterations. More details on this will be explained in Sect. 3.2.

3.1.2 � Final Corrector Step

From the predictor step, we have in each control volume CK a local (M + 1)th-order 
accurate approximation uh of the analytical solution in the form (22), which has been 
computed without considering any sort of communication between the neighbor-
ing elements. In the final corrector step, we exploit such approximation to finally get 
un+1(x), taking into account the coupling between the elements. In particular, we con-
sider again a weak formulation of (18) in CK , but this time, we use a spatial-only test 
function �(x) and we apply the divergence theorem in space thus getting

(36)‖‖J(v) − J(w)‖‖∞ =
‖‖‖‖B

−1
[
�̃
(
v
)
− �̃

(
w
)]‖‖‖‖∞

(37)‖‖J(v) − J(w)‖‖∞ =
‖‖‖‖B

−1
[
�̃
(
v
)
− �̃

(
w
)]‖‖‖‖∞ ⩽ ΔtC̃Lip

‖‖v − w‖‖∞
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where �(x) is the outward pointing normal to �K . The divergence theorem in space pro-
vides the desired coupling between the neighboring cells, because the solution uh , com-
puted locally in each control volume CK through the predictor, is discontinuous across the 
boundaries �K and, thus, a numerical flux F̂ is needed to compute the flux at the cell inter-
faces �K . We can use either a simple and robust local Lax-Friedrichs scheme [74], or a less 
dissipative Osher numerical flux function [36]. At the discrete level, recalling the adopted 
discretization (20) for un(x) for any n , we get for each control volume CK

for every j = 1,⋯ , I , with K+ being the neighboring cell of K sharing �K at a certain point 
x . Again, we remark that this step has a global character due to the computation of the 
numerical fluxes, but it is explicit as uh has been obtained in the predictor step. Let us 
notice that the linear systems involved in the corrector are local and even smaller than the 
predictor ones, thus readily invertible.

By solving the linear system (39) with respect to the coefficients cn+1
i

 in each ele-

ment K, we get the final solution un+1(x) =
I∑

i=1

cn+1
i

�i(x) for any x ∈ K  which is an 

(M + 1)-th-order accurate approximation of u(x, tn+1).

3.2 � ADER‑DG as DeC

It is possible to interpret the ADER-DG predictor step as a DeC procedure. We set Δ ∶= Δt 
and, from the local space-time nonlinear system (24), we define the high-order nonlinear oper-
ator L2

Δ
∶ ℝL×Q

→ ℝL×Q as

Since solving the operator L2
Δ
 is equivalent to solve the system (24), we have already dis-

cussed the (M + 1) th order of accuracy of its solution.
The low-order operator L1

Δ
∶ ℝL×Q

→ ℝL×Q is, instead, defined as

(38)

∫K

u(x, tn+1)�(x)dx − ∫K

u(x, tn)�(x)dx

+ ∫
tn+1

tn
∫�K

�(x)F(u(x, t)) ⋅ �(x)d�dt

− ∫CK

F(u(x, t)) ⋅ ∇x�(x)dxdt − ∫CK

S(x, u(x, t))�(x)dxdt = 0,

(39)

I∑
i=1

∫K

�i(x)�j(x)dx(c
n+1
i

− cn
i
)

+ ∫
tn+1

tn
∫�K

�j(x)F̂(uh|K(x, t),uh|K+ (x, t)) ⋅ �(x)d�dt

− ∫CK

F(uh(x, t)) ⋅ ∇x�j(x)dxdt − ∫CK

S(x, uh(x, t))�j(x)dxdt = 0

(40)L
2
Δ
(u) ∶= u − B−1

[
r − �̃(u)

]
.
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with u
0
 being a vector of local space-time representation coefficients with respect to the 

basis {�𝓁(x, t)}𝓁=1,⋯,L , yielding an O(Δt)-approximation of the analytical solution in 

CK . As an example, the vector u
0
 can be chosen, such that 

L∑
�=1

u�
0
��(x, t) = un(x) for all 

t ∈ [tn, tn+1] . In practice, this definition is merely formal as the related terms will cancel out 
in the iteration and in all the needed proofs. It can be shown that the local reconstruction 
of the PDE solution induced by the coefficients obtained by solving L1

Δ
 is first order accu-

rate with respect to the analytical solution. Furthermore, let us observe how the problem 
L
1
Δ
(ũ) = z for some given z ∈ ℝL×Q can be easily solved by explicitly isolating ũ.
In the following, we will prove that the operators that we have defined respect the three prop-

erties needed to apply Theorem 1, but first let us characterize the related DeC iterative procedure.

3.2.1 � Iterative ADER‑DG‑DeC Procedure

If we characterize the iterative procedure (5) in the ADER context with the operators (41) and 
(40), by a direct computation, we get

which reduces to

This is nothing but the fixed-point iteration (26). The advantage of having put it into a DeC 
formulation is that, in this context, we have at our disposal an estimate for the accuracy 
of u(p) obtained at the generic iteration p given by (6). In particular, according to Remark 
1, if u(0) yields an O(Δt)-approximation of the analytical solution, we have that the opti-
mal number of iterations to achieve the formal accuracy is given by P = M + 1. A natural 
choice of the initial vector is thus u(0) ∶= u

0
.

3.2.2 � Proof of the Properties of the Operators L1

1
,L

2

1

We have that the operators L1
Δ
,L2

Δ
 fulfill the hypotheses of Theorem 1 as stated in the next 

theorem.

Theorem 3  (ADER-DG is DeC) The operators L1

Δ
,L

2

Δ
∶ ℝL×Q

→ ℝL×Q , defined, respec-
tively, in (41) and (40), fulfill the three hypotheses of Theorem 1.

(41)L
1
Δ
(u) ∶= u − B−1

[
r − �̃(u

0
)
]
,

(42)
u(p) − B−1

[
r − �̃(u

0
)
]
=u(p−1) − B−1

[
r − �̃(u

0
)
]

− u(p−1) + B−1
[
r − �̃(u(p−1))

]
,

(43)u(p) = B−1
[
r − �̃(u(p−1))

]
.
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Proof 

	 (i)	 Existence of a unique solution to L2
Δ

		    This property has been already proved in Proposition 1, since solving the operator 
L
2
Δ
 is equivalent to solve the nonlinear system (24).

	 (ii)	 Coercivity-like property of L1
Δ

		    We consider the infinity norm over ℝL×Q and two general vectors v,w ∈ ℝL×Q . 
The proof of this property is immediate, because, by a direct computation, we have 

 and, thus, (3) holds with �1 = 1.

	 (iii)	 Lipschitz-continuity-like property of L1
Δ
− L

2
Δ

		    The proof of this property is based on Corollary 1. A direct computation leads to 
the thesis 

 where in (46), we applied Corollary 1.

3.3 � ADER‑ℙ
N
ℙ
M

 and ADER‑FV

Other formulations of ADER are available in the literature, in particular ADER-ℙNℙM [13, 33, 
37, 43] is a generalization of the ADER-DG formulation. The ADER-ℙNℙM method is based 
on adopting, for the discretization un(x) of the solution at the time tn , different local basis func-
tions 

{
�r
}
r=1,⋯,R

 spanning a space of discontinuous piecewise polynomial functions of degree 
N ⩽ M , i.e., VN with VN ∶=

{
g ∈ L2(�) s.t. g|K ∈ ℙN(K)

}
 , yielding the reconstruction

Then, the scheme is formally identical to the one described before. In the predictor (23), 
the same Mth degree local spatial bases 

{
�i(x)

}
i=1,⋯,I

 and temporal bases {�m(t)}m=0,⋯,M 
are considered, yielding a local reconstruction uh(x, t) in each CK guaranteeing (M + 1) th 
order of accuracy. The corrector is also identical to the one previously described (39), up to 
the replacement of the basis functions �i with the basis functions �r.

The only difference with respect to the original formulation is given by the fact that, 
if N < M , a suitable Mth-degree polynomial reconstruction ũn(x) has to be considered in 
place of un(x) for the computation of the related integral over K in the predictor (23) to 
guarantee (M + 1) th order of accuracy. Usually, ũn(x) is retrieved via a WENO or CWENO 
reconstruction [13, 37, 43].

Let us observe that if N = M and the basis 
{
�r(x)

}
r=1,⋯,R

 coincides with 
{
�i(x)

}
i=1,⋯,I

 , 
then the ADER-ℙNℙM scheme reduces exactly to the ADER-DG previously introduced. 

(44)
‖‖‖L

1
Δ
(v) − L

1
Δ
(w)

‖‖‖∞ = ‖‖v − w‖‖∞,

(45)
‖‖‖
[
L
1
Δ
(v)−L2

Δ
(v)

]
−
[
L
1
Δ
(w)−L2

Δ
(w)

]‖‖‖∞

(46)=
‖‖‖‖B

−1
[
�̃
(
v
)
− �̃

(
w
)]‖‖‖‖∞ ⩽ ΔtC̃Lip

‖‖v − w‖‖∞,

(47)un(x) ∶=

R∑
r=1

cn
r
�r(x), ∀x ∈ K.
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On the other hand, the scheme obtained for N = 0 , i.e., with a piecewise constant approxi-
mation of un(x) over � , is the ADER-FV scheme. One can observe that the corrector, in 
such a case, corresponds to an explicit (M + 1)th-order accurate FV step. All the schemes 
obtained for 0 < N < M are alternatives which vary between these two schemes.

Finally, let us notice that the predictor of such methods, being formally unchanged with 
respect to the original formulation, can also be seen as a DeC method in which one order is 
achieved at each iteration until M + 1.

4 � New Efficient ADER Schemes

In this section, we will explain how to apply the novel modification to the described ADER 
framework. We will first introduce the efficient ADER-DG-u, obtained by simply match-
ing the order of the space-time reconstruction in each predictor iteration with the order of 
accuracy achieved in the same iteration, without spoiling the original order of accuracy. 
Afterward, we will explain how such p-adaptivity strategy can be exploited to prescribe 
structure preservation by introducing the DOOM approach. We will focus on the ADER-
DG scheme, bearing in mind that the same modifications hold true for ADER-FV and 
ADER-ℙNℙM schemes as well.

4.1 � Modification of ADER‑DG (ADER‑DG‑u)

We propose to change the predictor of ADER-DG by increasing the polynomial degree of 
the reconstruction of the numerical solution at each iteration p according to the order of 
accuracy achieved in that specific iteration. In particular, we define for any p the general 
local basis {�𝓁,(p)(x, t)}𝓁=1,⋯,L(p) given by the tensor product of space basis functions �(p)

i
(x) 

and time basis functions �m,(p)(t) of degree p. We also define the functional spaces gener-
ated by these bases as X(p) ∶=

(
span{�𝓁,(p)(x, t)}𝓁=1,⋯,L(p)

)Q.

Remark 5  (On the spaces X(p) ) According to our definitions of the operators (41) and 
(40), formally, the spaces X(p) in the ADER context should be spaces of coefficients of 
the discrete solution. However, by definition, such spaces are in bijection with the func-
tional spaces of Q-dimensional polynomials whose scalar components are spanned by the 
bases {�𝓁,(p)(x, t)}𝓁=1,⋯,L(p) . Since, in this context, referring to the polynomial degree of the 
numerical solution in each step of the process provides a clearer overview of the method, 
as an abuse of notation, we denote directly X(p) as the functional space associated to the 
corresponding coefficients, bearing in mind the aforementioned bijection.

Then, the main procedure at the iteration p passes from the space-time representation 
coefficients u(p−1) with respect to the basis of X(p−1) , (p − 1)th-order accurate with respect 
to the analytical solution, to u(p) in X(p) with accuracy p. To perform this step, we first use 
an embedding E(p−1) ∶ X(p−1)

→ X(p) , for example, an interpolation or an L2-projection, to 
pass to u∗(p−1) = E

(p−1)(u(p−1)) ∈ X(p) . This embedding should not spoil the accuracy of the 
reconstructed solution.

At this point, a simple iteration of the standard method (43), with structures (25) associ-
ated with the basis {�𝓁,(p)(x, t)}𝓁=1,⋯,L(p) , results in u(p) and the related pth-order accurate 
reconstruction in CK . These structures read as
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with

where �(p)

j
(u, t) ∶= ∫

K
E(uh(x, t), x)�

j,(p)(x, t)dx , with uh(x, t) =
L(p)∑
�=1

u���,(p)(x, t) for any

(x, t) ∈ CK and u(p)
0

 some local coefficients extrapolated from the initial datum un(x) in K, 
yielding an O(Δt)-approximation of the analytical solution to our PDE in CK . Again, the 
definition of u(p)

0
 is merely formal as it cancels in the iterations.

The resulting modified ADER-DG-u iterative procedure reads

We remark that the superscript (p) in the definition of the structures in (48) and (49) is sim-
ply referred to the iteration, the modified method is still fully explicit, and all the terms at 
the right-hand side of the iteration formula (50) can be explicitly computed.

The accuracy evolves as follows throughout the procedure. We start with u(0) associated 
with a piecewise constant O(Δt)-approximation of the solution to the PDE in CK and we 
perform the embedding in X(1) to get u∗(0) , still O(Δt)-accurate. Performing the first itera-
tion via L1,(1)

Δ
,L

2,(1)

Δ
 , we get u(1) yielding an O(Δt2)-approximation of the solution in CK . We 

continue iteratively with u(p−1) associated with a (p − 1)th-order accurate approximation 
of the solution in X(p−1) spanned by polynomial bases of degree p − 1 , that is embedded in 
X(p) obtaining u∗(p−1) with the same accuracy p − 1 . This allows to compute u(p) via a DeC 
iteration with L1,(p)

Δ
,L

2,(p)

Δ
 achieving pth order of accuracy.

(48)

⎧
⎪⎨⎪⎩

L
2,(p)

Δ
(u) ∶= u −

�
B(p)

�−1�
r(p) − �̃

(p)
(u)

�
,

L
1,(p)

Δ
(u) ∶= u −

�
B(p)

�−1�
r(p) − �̃

(p)
(u

(p)

0
)
�

(49)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

B
(p)

j,𝓁
∶= �K

�𝓁,(p)(x, tn+1)�
j,(p)(x, tn+1)dx − �CK

�𝓁,(p)(x, t)
�

�t
�j,(p)(x, t)dxdt,

u ∶=

⎛⎜⎜⎝

u1

⋮

uL
(p)

⎞⎟⎟⎠
, r(p) ∶=

⎛⎜⎜⎝

∫
K
un(x)�

1,(p)(x, tn)dx

⋮

∫
K
un(x)�

L(p),(p)(x, tn)dx

⎞⎟⎟⎠
,

�̃
(p)
(u) ∶=

⎛
⎜⎜⎜⎝

∫ tn+1
tn

�
(p)

1
(u, t)dt

⋮

∫ tn+1
tn

�
(p)

L(p)
(u, t)dt

⎞
⎟⎟⎟⎠
,

(50)

⎧⎪⎨⎪⎩

u(0) = u
(0)

0
,�

u∗(p−1) = E
(p−1)

�
u(p−1)

�
,

u(p) =
�
B(p)

�−1�
r(p) − �̃

(p)
(u∗(p−1))

�
,
p ⩾ 1.

Table 1   Increasing degrees of 
polynomial spaces X(p) varying 
the iteration

Space X(0) X(1) X(2) X(3) ⋯ X(M−1) X(M) X(M+1)

Polynomial degree 0 1 2 3 ⋯ M − 1 M M



Communications on Applied Mathematics and Computation	

1 3

Remark 6  (On the accuracy of the interpolation) One must notice that the discretization in 
the space X(p) , corresponding to the tensor product of polynomials of degree p in space and 
in time, allows in general a maximal order of accuracy p + 1 with respect to the analytical 
solution of the PDE, corresponding to an error O(Δtp+2) . On the other hand, the embedding 
E
(p) ∶ X(p)

→ X(p+1) can be simply realized by interpolation, i.e., by evaluating the recon-
struction associated with u(p) ∈ X(p) in the nodal values defining the X(p+1) basis functions, 
when nodal bases are employed, or by an L2-projection, when more general bases are con-
sidered. In both cases, this operation can preserve at most the accuracy of order p, hence 
introducing an error of O(Δtp+1) . Therefore, the embedding must be performed before satu-
rating the accuracy associated with the current polynomial basis to avoid the consequent 
degradation of the order.

Due to the previous remark, if the final polynomial degree of the bases in space and in time 
is fixed to M, it is convenient to perform M iterations in the form (50) to get u(M) , associated 
with the desired final discretization, plus a final iteration in the same space X(M+1) = X(M) with 
the same structures as the ones used in the Mth iteration to saturate the accuracy related to 
such discretization getting thus u(M+1) yielding (M + 1) th order of accuracy.

The degrees of the bases of the spaces X(p) , assuming a fixed final polynomial degree equal 
to M, are summarized in Table 1 and the procedure is displayed in the following sketch:

Finally, always assuming a final polynomial degree equal to M in the predictor, the correc-
tor step (39) is normally performed with the (M + 1)th-order accurate discretization given by 
the Mth-degree local polynomial basis functions �(M)

i
 used in the two last predictor iterations. 

This leads, in each element K, to the local approximation un+1(x) =
I∑

i=1

cn+1
i

�
(M)

i
(x) which is 

(M + 1)th-order accurate. The computational advantage of the modified method with respect 
to the original formulation is clear: all the iterations but the last two are performed with matrix 
and vector structures which are smaller, implying the solution of smaller systems. Also, the 
space-time discretization of E(uh, x) = divxF(uh(x, t)) − S(x, uh(x, t)) and the orders of the 
quadrature formulas used in the low-order iterations can be suitably chosen to decrease the 
related computational cost. The only extra cost can come from the embedding between the 
spaces, which, for interpolations, can be easily recast as products by precomputable interpola-
tion matrices, which can, therefore, be efficiently performed.

In this work, we assume modal bases in space and time. This further increases the compu-
tational advantage as, in such context, the higher order mode is easily introduced by adding 
zero components to u(p) , thus getting u∗(p) = (u(p), 0)T without any other effort.

We denote this scheme by ADER-DG-u, referring to the �DeCu schemes introduced in 
[61] with a similar technique, where u denotes the quantity that has been embedded.

Remark 7  (Galerkin projection) In the specific context of these new modified ADER-DG 
methods, the embedding procedure between the spaces X(p−1) and X(p) could be replaced by 
a Galerkin projection onto X(p) . Namely, in (50), one could skip the interpolation procedure 

u(0)
 (0)

←←←←←←←←←←←←←→ u∗(0)
2,(1)
Δ

←←←←←←←←←←←←←←←←←→
1,(1)
Δ

u(1)
 (1)

←←←←←←←←←←←←←→ u∗(1)
2,(2)
Δ

←←←←←←←←←←←←←←←←←→
1,(2)
Δ

u(2)
 (2)

←←←←←←←←←←←←←→ ⋯
2,(M)
Δ

←←←←←←←←←←←←←←←←←←←→
1,(M)
Δ

u(M)
2,(M)
Δ

←←←←←←←←←←←←←←←←←←←→
1,(M)
Δ

u(M+1).

O(Δt) O(Δt)O(Δt2) O(Δt2)O(Δt3) O(ΔtM+1)O(ΔtM+2)
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and directly consider �̃
(p)
(u(p−1)) which is defined in each jth component by the integral 

over [tn, tn+1] of

with u(p−1)
h

(x, t) =

L(p−1)∑
�=1

u�,(p−1)��,(p−1)(x, t) . This mismatch between the spaces of the 

explicit term and of the test functions permits the evolution to the next space X(p) . This is 
particularly convenient as there would be no interpolation, whose cost is, however, neg-
ligible with respect to the rest of the scheme. For modal bases, the two approaches are 
equivalent.

Remark 8  (Space-time accuracy) Since the ADER schemes are one-step fully discrete pre-
dictor-corrector methods on space-time control volumes CK , the order of accuracy in space 
and time is simultaneously evolved; thus, if the iterative solution u(p) is of order O(Δtp+1) in 
time, it is also accurate O(hp+1) in space, assuming a suitable CFL condition linking Δt and 
h. This is omitted to lighten the notation.

As already remarked, since the predictor of the ADER-ℙNℙM is identical to the one of 
the standard ADER-DG, we can analogously introduce the ADER-ℙNℙM -u and, as a par-
ticular case, the ADER-FV-u methods in a straightforward way.

Remark 9  (On the memory and computational differences of ADER-DG-u) The imple-
mentation of ADER-DG and ADER-DG-u can be performed in various ways. The evolu-
tion structures of the predictor might be either pre-computed at the beginning of the simu-
lation or on-the-fly at each time iteration (this is necessary for Lagrangian codes on moving 
meshes). We make use of polygonal meshes, but on triangular meshes, all operators can be 
pre-computed with minimal storage on a reference element.

For ADER-DG-u with respect to ADER-DG, there might be an increase in cost and stor-
age for the different iterative structures, e.g., B(p) , only if nodal basis functions are used. In 
the considered case, where modal polynomial basis functions are adopted, the iterative struc-
tures are simply constituted of slices of the highest order structures, that would be anyway 
computed for ADER-DG. Hence, there is no extra computation nor memory storage to be 
considered. In the modal case, these costs can be reduced by a pre-computation of all the 
operators and, in case of triangular meshes, with computations only on a reference element.

4.2 � DOOM Limiter Based on Adaptivity

In the context of the novel schemes, it is very natural to introduce a limiter that guarantees 
some structural properties of the solution. The limiter will be denoted by Discrete Opti-
mally increasing Order Method (DOOM), as it will stop the iteration process in the predic-
tor at an optimal value.

We consider the ADER-FV-u scheme, to inherit the robustness of FV formula-
tions and the far less-restrictive CFL constraints which are suitable for large-scale 

(51)�
(p)

j
(u(p−1), t) ∶= ∫K

E(u
(p−1)

h
(x, t), x)�j,(p)(x, t)dx
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simulations, and we introduce an adaptive criterion. We fix a final number of iterations 
P = M + 1 , corresponding to (M + 1) th order of accuracy, and we perform the local pre-
dictor iterations as prescribed in the context of the ADER-FV-u scheme, but, in contrast 
with the standard method, we check for the non-violation of some physical constraints 
(for example the positivity of density and pressure in hydrodynamics) of the computed 
solution. If at iteration p, with 1 ⩽ p ⩽ M + 1 , the computed u(p) does not fulfill some of 
the mentioned constraints, the solution is rejected and u(p−1) is assumed to be the output 
of the iterative procedure for the correction step. Let us notice that, in the worst case, 
considering u(0) in the correction step in a given region of � leads to a standard first-
order Godunov scheme which is, indeed, reliable. A sketch of the limiter is displayed in 
Algorithm 1, in which un represents the local constant value of un(x) in a cell K in the 
ADER-FV-u (and ADER-FV) context.

The strategy may remind the a posteriori MOOD technique [9, 18, 29, 31] with some 
fundamental differences. The low-order acceptable solution u(p−1) has been computed 
before u(p) , as it was a necessary step toward the increase of an order of accuracy. More-
over, the order of accuracy is automatically pushed as much as possible without violat-
ing the physical constraints: in fact, u(p) , possibly rejected, is computed if and only if 
u(p−1) was reliable. This avoids the risk of an over-diffusion in having the safe low-order 
scheme guaranteeing an accuracy lower than the one actually achievable. Therefore, it is 
then possible to preserve some physical properties through this procedure as explained 
in the following proposition.

Proposition 2  (ADER-FV-u with DOOM property) Suppose that the FV scheme preserves 
a property P . Suppose that the property P is checked in the DOOM admissibility criteria. 
Then, the ADER-FV-u with the DOOM limiter preserves the property P.

Proof  In the ADER-FV-u case, un is locally represented through a single constant basis 
function �1 ≡ 1 . By induction on the time step n, suppose that the value of un in each cell 
K, i.e., cn

1
∶= un of (47), verifies the property P . Then, independently of the WENO recon-

struction of un used to obtain the polynomial ũn(x) for computing the related integrals in 
(49) with the desired accuracy, u(0) = cn

1
 still is the local value of the original un and ful-

fills the property P . Then, during the ADER-FV-u DOOM procedure, u(p) are kept in the 
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iterations only if property P is fulfilled. Hence, property P holds for the final predictor uh 
and, in the corrector step (39), we perform the FV method using uh . Therefore, un+1 still 
fulfills property P.

At the moment, this procedure does not guarantee to preserve the property for ADER-
ℙNℙM with N > 0 , due to the fact that the corrector in such a case is not an explicit FV step. 
However, the authors are working on new structure-preserving strategies for such schemes. 
Moreover, in the simulations of this work, only positivity of density and pressure is checked 
with the DOOM limiter, but other properties like discrete local maximum principle or entropy 
inequalities [4, 49, 56, 57] can be ensured.

Remark 10  (Other applications of the p-adaptivity) The adaptive nature of the novel meth-
ods can be exploited also for other applications. In particular, the approach can approxi-
mate the exact solution with arbitrary precision as p → +∞ and it is not constrained to a 
maximum degree M and the related approximation accuracy. Within this framework, it is 
easy to design efficient arbitrary high-order adaptive schemes, as in [61] in a DeC context 
for ODEs, choosing the stopping criterion for the iterations in accordance with the iteration 
error. Also the hp-adaptivity can be introduced in this framework. As soon as the DOOM 
limiter requires low-order steps, it is possible to locally use the h-adaptivity to recover for 
the lost accuracy. These applications are already object of study of the authors, but they 
will not be treated in this work.

5 � Numerical Results

In this section, we will report the numerical results of several tests performed to validate the 
accuracy and the robustness of the novel ADER-DG-u and ADER-FV-u methods, i.e., ADER-
ℙNℙM -u, respectively, with N = M and N = 0 . To quantify the obtained speedup in terms of 
computational time, they will be compared with the state-of-the-art ADER-DG and ADER-
FV methods [16], characterized by a fixed polynomial degree along the whole iterative proce-
dure and a convergence criterion ‖‖u(p) − u(p−1)‖‖∞ < ��� to stop the predictor iterations (26), 
where here we assume ��� = 10−12.

We adopt the following notation: for each method, we explicitly specify the formal order of 
accuracy. Therefore, ADER-DG(M + 1 ) and ADER-FV(M + 1 ) represent the original meth-
ods with predictor spatial and temporal basis functions of degree M guaranteeing (M + 1) th 
order of accuracy. In the context of ADER-DG-u(M + 1 ) and ADER-FV-u(M + 1 ), instead, M 
is the final degree of the predictor spatial and temporal basis functions at the end of the itera-
tion process still leading to accuracy M + 1.

We will focus on the Euler and compressible Navier-Stokes equations. The Euler equations 
are a system of hyperbolic PDEs in the form (18) given by

where � is the density, q ∈ ℝD the momentum, E the energy, p the pressure, v = q

�
∈ ℝD 

the velocity of the flow, and 𝕀 ∈ ℝD×D is the identity matrix. The system is completed by 
specifying the closure equation of state E =

p

�−1
+ �

‖v‖2
2

2
 , where � =

cp

cv
 is the adiabatic coef-

(52)u =

⎛⎜⎜⎝

𝜌

q

E

⎞⎟⎟⎠
, F(u) =

⎛⎜⎜⎝

q

𝜌v⊗ v + p�

v(E + p)

⎞⎟⎟⎠
, S(x, u) = 0,
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ficient defined as the ratio between the specific heats at constant pressure and volume and 
is here assumed to be � = 1.4.

The more general compressible Navier-Stokes equations are obtained by keeping 
the viscosity effects into account and, for ideal gases, are defined by

where �(u,∇xu) denotes the stress tensor, � is the heat conduction coefficient, and T  rep-
resents the temperature, while the other terms have the same meaning as in the context of 
the Euler equations. In particular, the stress tensor �(u,∇xu) is given, under the Stokes 
hypothesis, by

with p being the pressure of the fluid and � the dynamic viscosity that we assume to be 
constant. The heat conduction coefficient � is linked to the viscosity coefficient through the 
Prandtl number Pr with the following law:

where again � =
cp

cv
 . A thermal and a caloric equation of state are needed for the closure of 

(53). For an ideal gas, those are

with R being the specific gas constant and e = E − �
‖v‖2

2

2
 the internal energy.

We will consider two-dimensional (2D) problems, and hence, v ∶= (u, v)T.
If not stated otherwise, the CFL number is set to CFL = 0.5 , and the time step is 

computed according to an explicit stability condition which is given by

where N represents the degree of the chosen polynomial representation, while � =
�‖v‖2−�

�
p

�
, ‖v‖2, ‖v‖2 +

�
�
p

�

�
 are the convective eigenvalues of the Euler system, and the vis-

cous eigenvalues �v are given in [35]. The characteristic mesh size of the cell hK is given by 
the square root of its surface in two dimensions. If not stated differently, the local Lax-
Friedrichs numerical flux function [74] is used in the corrector step (39).

For more challenging tests, in which the density is close to zero, we will activate the 
DOOM limiter checking for the positivity of the density and pressure in the quadrature 
points and that no NaN appears in the solution. This limiter will be used only with the 
ADER-FV-u technique, which provably guarantees the preservation of the positivity of 
these quantities.

(53)u =

⎛
⎜⎜⎝

𝜌

q

E

⎞
⎟⎟⎠
, F(u) =

⎛
⎜⎜⎝

q

𝜌v⊗ v + �(u,∇xu)

v(E� + �(u,∇xu)) − 𝜅∇xT

⎞
⎟⎟⎠
, S(x, u) = 0,

(54)�(u,∇xu) =
(
p +

2

3
� divxv

)
� − �

(
∇xv + ∇xv

T
)
,

(55)� =
��cv

Pr
,

(56)
p

�
= RT ,

e

�
= cvT

(57)Δt ⩽ CFL

min
K∈�h

hK

(2N + 1)max
K∈�h

�
max
x∈K

‖�‖∞ + 2max
x∈K
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��∞ 2N+1
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Fig. 1   Comparison between ADER-DG-u and ADER-DG schemes from second up to fifth order of accu-
racy. Left: dependency of the error norm on the mesh size. Right: dependency of the error norm on the 
CPU time

Table 2   Numerical convergence results for the compressible Euler equations using both ADER-DG-u and 
ADER-DG schemes from second up to fifth order of accuracy in space and time. The errors are measured in 
the L2 norm and refer to the variable � (density) at time tf = 1 . The absolute CPU time of each simulation is 
reported in seconds

h(�) ADER-DG-u ADER-DG

�L2 O(�L2 ) CPU time/s �L2 O(�L2 ) CPU time/s

Order of accuracy: O(2)
2.270E−01 1.781E−02 – 2.511E+02 1.775E−02 – 3.616E+02
1.773E−01 9.625E−03 2.49 4.997E+02 9.322E−03 2.61 6.472E+02
1.155E−01 4.614E−03 1.71 1.509E+03 4.055E−03 1.94 2.039E+03
8.786E−02 2.723E−03 1.93 3.387E+03 2.262E−03 2.14 3.989E+03

Order of accuracy: O(3)

2.270E−01 1.719E−03 – 2.664E+03 1.704E−03 – 5.750E+03
1.773E−01 7.301E−04 3.46 5.346E+03 7.121E−04 3.53 1.065E+04
1.155E−01 2.247E−04 2.75 1.773E+04 2.095E−04 2.85 3.133E+04
8.786E−02 9.871E−05 3.01 3.010E+04 8.542E−05 3.29 6.020E+04

Order of accuracy: O(4)

2.270E−01 2.076E−04 – 1.547E+04 1.563E−04 – 3.868E+04
1.773E−01 7.803E−05 3.96 2.975E+04 5.195E−05 4.46 7.766E+04
1.155E−01 2.013E−05 3.16 9.427E+04 1.085E−05 3.65 2.354E+05
8.786E−02 7.139E−06 3.80 2.054E+05 3.332E−06 4.32 4.270E+05

Order of accuracy: O(5)

2.270E−01 2.238E−05 – 6.993E+04 1.475E−05 – 3.171E+05
1.773E−01 5.080E−06 6.00 1.393E+05 3.002E−06 6.44 6.390E+05
1.155E−01 7.405E−07 4.49 4.261E+05 4.180E−07 4.60 2.015E+06
8.786E−02 2.154E−07 4.52 7.691E+05 1.228E−07 4.48 3.516E+06
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5.1 � Numerical Convergence Studies

To test the accuracy of the method, we perform a convergence test on a smooth isen-
tropic vortex [76] for the compressible Euler equations. The computational domain is 
� = [0, 10]2 with periodic boundary conditions, and it is tessellated by a polygonal mesh. 
The vortex is centered at the initial time in xc = (xc, yc)

T = (5, 5)T and moves with a back-
ground speed of v∞ = (u∞, v∞)

T = (1, 1)T . The initial position of the vortex, in a generic 
point x = (x, y)T , can be described using the radial coordinate r∶ = ‖‖x − xc

‖‖2 as

with T  denoting the fluid temperature. The exact solution is obtained as 
u(x, t) = u(x − v∞t, 0) . We run the simulation until the final time tf = 1 using the Osher-
type numerical flux function [36].

In Fig.  1, we can observe on the left the errors of the ADER-DG and ADER-DG-u 
methods for different mesh sizes. All the methods achieve the formal order of accuracy. As 
expected, the ADER-DG-u has slightly larger errors with respect to the original ADER-DG 
method, as the first iterations of the predictors are done with lower order accurate operators. 
Nevertheless, the final error is quite comparable with the ADER-DG one and, looking at the 
right figure, we observe that the computational time required by ADER-DG-u for such simu-
lations is much less (for high-order methods, it is around half) than the one required by the 
competitor. The slight increase in error is hugely beaten by the computational advantage of 
the new ADER-DG-u schemes. Indeed, the Pareto front on the right figure is only composed 
by ADER-DG-u points. The results are quantitatively reported in Table 2. We observe that 
the computed orders of accuracy are very close to the expected ones. Convergence analyses 

(58)

⎧⎪⎪⎨⎪⎪⎩

�(x, 0) = (1 + �T)
1

�−1 ,

v(x, 0) = v∞ +
�

2π
e

1−r2

2

�
−(y − yc)

(x − xc)

�
,

p(x, 0) = (1 + �T)
�

�−1

�T = −
(� − 1)�2

8�π
e1−r

2

Fig. 2   Speedup of the ADER-
DG-u schemes compared to the 
ADER-DG methods depending 
on the mesh size for different 
orders
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with vortex-type solutions are often subjected to some loss of order of accuracy as explained 
in [72, 77]. In our case, this may also be due to an imprecise choice of the mesh parameter 
for our polygonal meshes: we consider the maximum internal diameter of the polygons, but 
for some meshes, this choice might not well represent the characteristic size of the cells. The 
same convergence trends have been observed also in [16].

Finally, Fig. 2 depicts the speedup achieved by the novel adaptive schemes compared 
against the classical formulation of iterative methods, namely ADER-DG-u versus ADER-
DG. As the order of accuracy increases, the speedup becomes higher obtaining efficient 
schemes which are up to ≈ 4.5 times faster than the classical methods. Let us notice that 
the formal order of accuracy is still maintained, while getting a remarkable gain in the 
computational efficiency.

5.2 � Riemann Problems

In this section, we will show the results of the ADER-FV-u4 scheme, i.e., with M = 3 , for some 
Riemann problems. The computational domain is the box � = [−0.5, 0.5] × [−0.05, 0.05] with 
periodic boundary conditions in the y direction and Dirichlet boundaries imposed at x = ±0.5 . 
We use an unstructured polygonal mesh made of Nh = 2 226 control volumes of characteristic 
mesh size of h ≈

1

100
 . Despite the one-dimensional setting of the test case, we underline that the 

preservation of symmetry of the solution is not trivial on unstructured meshes, where no cell 
boundaries are in principle aligned with the main flow velocity. We solve again the Euler equa-
tions (52) with the initial conditions given, as a function of the x coordinate only, by

(59)u(x, 0) =

{
uL, if x < 0,

uR, else,

Table 3   Initial conditions for 
Riemann problems

Test �L uL pL �R uR pR tf

1 0.445 0.698 3.528 0.5 0 0.571 0.14
2 1 2 0.1 1 −2 0.1 0.8
3 1 −2 0.4 1 2 0.4 0.15
4 1 0 1 000 1 0 100 0.012

Fig. 3   Lax shock tube problem (RP1) at the final time tf = 0.14 . Comparison of density, velocity, and pres-
sure versus the reference solution for the ADER-FV-u4 scheme
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where the values of uL and uR and the final times for the different tests are taken from [80] 
and they can be found in Table 3. The velocity along the y-direction is set to be v = 0 for 
all the tests.

The DOOM limiter is here active checking for the positivity of density and pressure and 
avoiding NaN. These tests are very challenging and not all the numerical methods can sta-
bly perform on them. In particular, shocks are often not well captured or numerical oscilla-
tions appear around them and it is common that negative density or pressure values appear 
in the simulations, making the code crash.

The first test (RP1) is the classical Lax shock tube problem. The initial discontinuity 
develops into a rarefaction wave, a contact discontinuity, and a shock. In Fig. 3, we observe 
that the ADER-FV-u does not exhibit any oscillations around the shock and that exactly 
catches the speed of the discontinuities.

The second test (RP2) consists of a colliding shock test. The initial discontinuity in 
the velocity gives rise to two shocks traveling outside the domain. This test creates a very 
high density and pressure region in the middle of the domain. As it can be seen in Fig. 4, 
the new ADER-FV-u with DOOM limiter is able to perfectly capture the shock behavior 
within few cells without over/under-shootings at the sides of the shocks.

The next problem (RP3) is the one presented as Test 2 in [80, Section  4.3.3]. It is a 
double rarefaction waves which leads to very low pressure and density areas at the center 
of the domain. In Fig. 5, we can appreciate the capability of the scheme of maintaining 
positive quantities for these variables, thanks to the DOOM limiter which, at the beginning 
of the simulation, ensures positivity preservation in the predictor. The mismatching of the 

Fig. 4   Colliding shock test (RP2) at the final time tf = 0.8 . Comparison of density, velocity, and pressure 
versus the reference solution for the ADER-FV-u4 scheme

Fig. 5   Double rarefaction test (RP3) at the final time tf = 0.15 . Comparison of density, pressure, and inter-
nal energy versus the reference solution for the ADER-FV-u4 scheme
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internal energy distribution is essentially due to the excessive numerical dissipation of the 
scheme, which could be reduced by introducing entropy preserving techniques [23, 44, 57].

The last Riemann problem (RP4) is the one presented as Test 3 in [80, Section 4.3.3]. It 
is a very severe test problem, and it consists of a rarefaction, a contact discontinuity, and a 
shock. The results obtained in Fig. 6 are in agreement with the reference solution and the 
smearing around the contact discontinuity is comparable to other high-order FV schemes 
with similar resolution.

5.3 � Viscous Shock Profile

Now, we consider an isolated viscous shock that is traveling through a medium at rest 
with a shock Mach number Ms > 1 [11, 15, 16, 20, 33]; thus, we solve the compress-
ible Navier-Stokes equations (53). The analytical solution and the details to compute 
it can be found in [11], where the stationary shock wave at a Prandtl number Pr = 0.75 
is resolved with constant viscosity. The computational domain is � = [0, 1] × [0, 0.2] , 
which is discretized by Nh = 1 120 Voronoi elements. On the left side of the domain, a 
constant inflow velocity is prescribed, while outflow boundary conditions are assumed 
at the right of the domain. Periodic boundary conditions are, instead, assigned to the top/
bottom boundaries. The initial condition consists of a shock wave centered at x = 0.25 
propagating at Mach Ms = 2 from left to right with a Reynolds number Re = 100 ; thus, 
the viscosity coefficient is set to � = 2 ⋅ 10−2 . The upstream shock state is defined, such 
that the adiabatic sound speed is c0 = 1 . The final time of the simulation is tf = 0.2 with 
the shock front located at x = 0.65.

We run the simulations with ADER-DG-u(4). Since the solution is smooth, noth-
ing is checked along the DOOM procedure. Qualitatively, we see in Fig.  7 that there 
is an excellent agreement between the numerical solution and the analytical one. We 
underline that this test case allows all terms contained in the Navier-Stokes system to be 
properly checked, since advection, thermal conduction, and viscous stresses are present.

5.4 � 2D Taylor‑Green Vortex

A classical test case for the incompressible Navier-Stokes equations is the Taylor-Green 
vortex problem. In two dimensions, the exact solution is known and it is given on the 
domain � = [0, 2π]2 with periodic boundary conditions by

Fig. 6   Test RP4 at the final time tf = 0.012 . Comparison of velocity and pressure versus the reference solu-
tion for the ADER-FV-u4 scheme
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with � =
�

�
 the kinematic viscosity and � = 10−2 . In this test, we also validate the quality of 

the scheme in a low Mach regime. Hence, the additive constant for the pressure is chosen 
as C =

100

�
 and the density is set at the beginning as �(x, 0) ≡ 1 . For this test, heat conduc-

tion is neglected, i.e., � = 0 . The mesh is discretized by Nh = 2 916 cells and the final time 
is set at tf = 1 . We use the ADER-DG-u method with order 4 for this simulation without 
checks in the DOOM procedure. The results are depicted in Fig. 8, which are compared 
against the analytical solutions, obtaining an excellent matching.

We also compare the numerical results with the ADER-DG scheme, and the errors are 
reported in Table 4 as well as the computational time. We observe that the errors are almost 
the same for both methods, while the novel ADER-DG-u scheme is 2.5 times faster than the 
classical ADER-DG.

5.5 � Compressible Mixing Layer

Finally, we test the novel ADER-DG-u4 on the unsteady compressible mixing layer studied 
in [30]. The 2D computational domain is the rectangular box � = [−200, 200] × [−50, 50] , 
and a total number of Nh = 15 723 polygonal Voronoi cells compose the computational 
mesh. The initial condition of the flow is given by two fluid layers moving with different 
velocities along the x-direction, that is

The free stream velocities are imposed as boundary conditions in the y-direction, and thus, 
we set u+∞ = 0.5 and u−∞ = 0.25 for y → +∞ and y → −∞ , respectively. Along the x- 
direction, the right side is simply assigned an outflow boundary, whereas the left side is 
given a time-dependent inflow boundary condition with a perturbation �(y, t)

The function �(y, t) is given by

(60)

⎧
⎪⎪⎨⎪⎪⎩

u(x, t) = sin(x) cos(y)e−2�t,

v(x, t) = − cos(x) sin(y)e−2�t,

p(x, t) = C +
1

4
(cos(2x) cos(2y))e−4�t

(61)

⎧⎪⎪⎨⎪⎪⎩

�(x, 0) = �0 = 1,

v(x, 0) = v0 =

� 1

8
tanh(2y) +

3

8

0

�
,

p(x, 0) = p0 =
1

�
.

(62)

⎧⎪⎪⎨⎪⎪⎩

�(0, y, t) = �0 + 0.05 �(y, t),

v(0, y, t) = v0 +

�
1.0

0.6

�
�(y, t),

p(0, y, t) = p0 + 0.2 �(y, t).
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with the fundamental frequency of the mixing layer � = 0.314 787 6 . The compressible 
Navier-Stokes equations are considered with the viscosity coefficient � = 10−3 and no heat 
conduction ( � = 0 ). The final time is tf = 1 596.8 and the DG solution is depicted in Fig. 9 
at three different output times. The vorticity of the flow field is shown, demonstrating the 
capability of the novel methods to capture the complex vortical structures generated by the 
perturbation assigned at the inflow of the channel.

6 � Conclusions and Further Developments

To sum up, generalizing the idea proposed in [61], we have introduced a new framework for 
the construction of efficient p-adaptive arbitrary high-order methods, based on the modifica-
tion of underlying arbitrary high-order iterative schemes. Specifically, the accuracy of the dis-
cretization is progressively increased with the number of iterations, gaining one order of accu-
racy at each iteration. Given an implementation of an iterative arbitrary high-order method, the 
novel technique is easy to include and it gives a remarkable advantage in terms of computa-
tional costs. Moreover, in this context, the p-adaptivity can be achieved very naturally insert-
ing some criteria to stop the iterations. We showed an application to ADER-DG, designing 
the new efficient ADER-ℙNℙM -u methods. In particular, in the ADER-FV-u context ( N = 0 ), 
we have proposed DOOM, an a posteriori limiter, that is able to preserve the physical proper-
ties of the solution (i.e., positivity of density and pressure) obtaining the maximum admissible 
order of accuracy that guarantees these physical constraints to be respected. In this framework, 
there is a huge advantage with respect to similar a posteriori limiters, e.g., MOOD [29], as 
DOOM is waste-free, i.e., all the computations are useful either for increasing the order of 
accuracy or for detecting a troubled state. In the numerical tests, we have solved Euler and 
compressible Navier-Stokes equations very robustly, provably keeping the positivity of density 
and pressure, and with computational costs up to four times smaller than the original method.

We believe that the proposed framework is very versatile and can improve many 
arbitrary high-order methods on different sides: reducing the computational costs, 
easily providing the p-adaptivity in a very efficient and natural way without wasting 
computed solutions, and helping obtaining structure-preserving solutions. The authors 
are currently working on the application of the novel framework to obtain: adaptive 
methods that converge to the analytical solution up to a given tolerance and hp-adap-
tive methods introducing local mesh refinements in non-smooth regions. We also aim 
at further investigations on the implicit version of the schemes obtained by choosing 
a low order implicit operator L1

Δ
 in the DeC formulation and on structure-preserving.

Appendix A DG Modal Taylor Basis Functions

The basis functions 
{
�𝓁(x, t)

}
𝓁=1,⋯,L

 used to span the predictor polynomial spaces in this 
work are modal Taylor basis functions. As already said, they are the tensor products of 
space basis functions 

{
�i(x)

}
i=1,⋯,I

 and time basis functions {�m(t)}m=0,⋯,M .

(63)
�(y, t) = − 10−3 exp(−0.25y2) ⋅

[
cos(�t) + cos

(
1

2
�t − 0.028

)

+ cos
(
1

4
�t + 0.141

)
+ cos

(
1

8
�t + 0.391

)]
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Fig. 7   Viscous shock profile with a shock Mach number Ms = 2 and a Prandtl number Pr = 0.75 at time 
tf = 0.2 . Top panel: Voronoi tessellation and temperature distribution along the z-axis. The fourth-order 
numerical solution with the ADER-DG-u scheme compared against the reference solution for the density, 
horizontal velocity, pressure, and heat flux (from middle left to bottom right panel): in particular, we show a 
one-dimensional cut of 200 equidistant points along the x-direction at y = 0.1
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The spatial basis functions 
{
�i(x)

}
i=1,⋯,I

 of degree at most M in D dimensions are 
defined locally for each element K. Denoting by xK the barycenter of the element, they can 
be defined as

Fig. 8   2D Taylor-Green vortex at time tf = 1 with viscosity � = 10−2 . The exact solution of the Navier-
Stokes equations and the fourth-order numerical solution with the ADER-DG-u4 scheme. Top: mesh con-
figuration with pressure distribution (left) and z-vorticity with stream traces (right). Bottom: one-dimen-
sional cut of 200 equidistant points along the x-axis and the y-axis for the velocity components u and v (left) 
and for the pressure p (right)

Table 4   Error analysis for the Taylor-Green vortex using both ADER-DG-u and ADER-DG schemes with 
fourth order of accuracy in space and time. The errors are measured in L2 and L∞ norms and refer to the 
variables � (density) and horizontal velocity u at the final time tf = 1 . The computational time measured in 
seconds is also reported

Scheme Density ( �) Velocity (u) CPU time

L2 L∞ L2 L∞ /s

ADER-DG-u4 8.950E−03 3.305E−03 1.604E−03 6.112E−04 1.154E+04
ADER-DG4 8.950E−03 3.305E−03 1.604E−03 6.112E−04 2.706E+04
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where hK = D
√�K� is the characteristic mesh size of the element K, used to rescale the 

functions to agree with the Taylor expansion terms, while � is a D-dimensional multi-index 

(A1)��(x) ∶=

D∏
d=1

(xd − xK,d)
�d

�d!h
�d
K

, 0 ⩽ |�| ⩽ M,

Fig. 9   Compressible mixing layer at time t = 500 , t = 1 000 , and t = 1 596.8 (from top to bot-
tom row). Fourth-order numerical results with ADER-DG-u for z-vorticity. Fifty-one contour lev-
els in the range [−0.12, 0.12] have been used for plotting the vorticity distribution on the sub-domain 
[−200, 100] × [−20, 20]



	 Communications on Applied Mathematics and Computation

1 3

with ��� =
D∑
d=1

�d . In practice, we identify the multi-index � as a single index i = 1,⋯ , I 

with I =
(
M+D

D

)
 via a bijection giving i = i(�).

The time basis functions {�m(t)}m=0,⋯,M of degree at most M are defined in a similar 
fashion, but with respect to a scalar argument only, over [tn, tn+1]

Finally, the tensor product between the two functional spaces gives the space-time basis 
functions {�𝓁(x, t)}𝓁=1,⋯,L . For full reproducibility, we specify that accuracy M + 1 has 
been achieved selecting space-time basis functions up to degree M only. Also, for the 
spaces {�𝓁,(p)(x, t)}𝓁=1,⋯,L(p) , we have used basis functions up to degree p only.

Remark A1  (On the ordering of the space-time basis functions) The novel approach is 
based on the adoption of iteration-specific bases {�𝓁,(p)(x, t)}𝓁=1,⋯,L(p) of increasing degree. 
For modal bases, the introduction of higher order modes is simply performed by consider-
ing higher order terms in the space-time polynomial expansion. Therefore, in the context of 
an efficient implementation of the new methods, it is particularly useful to directly define 
all the basis functions {�𝓁,(M)(x, t)}𝓁=1,⋯,L(M) , up to an accuracy order M + 1 , ordering them 
in an increasing polynomial order. By doing so, it is enough to change the final index from 
L(p−1) to L(p) to pass from X(p−1) to X(p) in all the iterations but the last one, which is per-
formed without changing polynomial space to saturate the related accuracy.
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