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Abstract
Let 𝑋 be a quotient of a bounded domain in ℂ𝑛. Under
suitable assumptions, we prove that every subvariety of
𝑋 not included in the branch locus of the quotient map
is of log-general type in some orbifold sense. This gen-
eralizes a recent result by Boucksom and Diverio, which
treated the case of compact, étale quotients. Finally, in
the case where 𝑋 is compact, we give a sufficient con-
dition under which there exists a proper analytic subset
of 𝑋 containing all entire curves and all subvarieties not
of general type (meant this time in in the usual sense as
opposed to the orbifold sense).
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1 INTRODUCTION

Let 𝑋 be a quotient of a bounded domain Ω ⊂ ℂ𝑛 by some discrete automorphism group Γ ⊂

Aut(Ω). A lot of recent work has been devoted to the research of complex hyperbolicity properties
of these quotients 𝑋, that is, of restrictions on the geometry of entire curves in 𝑋, or on the type
of its subvarieties. These quotients provide indeed basic examples to test the general conjectures
in complex hyperbolicity, in particular the Green–Griffiths–Lang conjecture:

Conjecture 1.1 Green, Griffiths [20], Lang [27]. Let 𝑀 be a complex projective manifold of
general type. Then there exists a proper algebraic subset Exc(𝑀) ⊊ 𝑀 containing all the images
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of non-constant holomorphic maps ℂ ⟶𝑀, and all the subvarieties of 𝑀 which are not of
general type.

Notably, in the case where𝑋 = Γ
\
Ω is a quotient by a cocompact group acting freely and prop-

erly discontinuously on Ω, 𝑋 will be a complex projective manifold; it is an easy application of
Liouville theorem that 𝑋 cannot contain any entire curve. The first statement of Conjecture 1.1 is
trivial in this case while the second statement was recently obtained by Boucksom and the second
author [3] where they show that all subvarieties of 𝑋 are of general type.
When the action of Γ is no more free or cocompact, 𝑋 itself may already be not of general type

(cf., for example, Section 3.3) and it may not enjoy such nice hyperbolicity properties. However,
there is a general philosophy that statements true in the smooth compact case should continue
to hold when dealing with the correct orbifold or logarithmic structures in the singular or non-
compact case. For a precise statement of what it is expected in the general framework of (directed)
orbifolds, we refer the reader for instance to [10, Conjecture 0.5].
Our methods yield the following archetypical result.

Model Theorem. Assume that 𝑋 is a smooth projective manifold, and that 𝐷 ⊂ 𝑋 is a reduced
divisor such that 𝑋 = 𝑋 ⧵ 𝐷 admits an étale cover biholomorphic to a bounded domain Ω ⊂ ℂ𝑛.
Then the pair (𝑋, 𝐷) is of log-general type, that is, 𝐾

𝑋
+ 𝐷 is big.

This theorem will appear as a particular case of several results (for instance, Theorem A or
Theorem B) whose main point of focus will be the analysis of the defect of hyperbolicity of such
quotients in the spirit of the philosophy above.
Before continuing, let us point out two remarkable enough instanceswhere ourModel Theorem

applies.

Example 1.2. By a classical result of Griffiths [21], in any projective 𝑛-dimensional manifold
𝑋, there exist nonempty Zariski open subsets 𝑋 = 𝑋 ⧵ 𝐷 which are uniformized by a bounded
domain (moreover, of holomorphy) inℂ𝑛. Evenmore, any point of any smooth, irreducible, quasi-
projective variety over the complex numbers has a Zariski open neighborhood with this property.
Thus, in principle, every smooth projective manifold falls in the scope of the theorem above. Of
course, the main interest of our result resides in situations where we have a precise description of
the boundary divisor 𝐷 ⊂ 𝑋.

Let us now give a perhaps more concrete example.

Example 1.3. Fix integers g ⩾ 2, and 𝑛 ⩾ 0, and consider the Teichmüller space g ,𝑛 of compact
Riemann surfaces of genus g with 𝑛marked points. It is well known that the Bers embedding real-
izes g ,𝑛 as a (contractible) bounded domaing ,𝑛 ⊂ ℂ3g−3+𝑛, which we call the Bers domain, and
actually provides an isometry between the Kobayashi distance ofg ,𝑛 and the Teichmüller metric
on g ,𝑛. This domain is very far from being symmetric since is indeed even not homogeneous:
its isometry group is the Mapping Class Group MCGg ,𝑛, whose action is properly discontin-
uously and whose orbits are precisely the equivalent complex structures, so that the quotient
g ,𝑛∕MCGg ,𝑛 is exactly the moduli spaceg ,𝑛.
Now, the action of MCGg ,𝑛 is not free in general (still, with finite stabilizers), but it is easy

to see that it is if 𝑛 > 2g + 2, so that in this case g ,𝑛 is the universal cover of the smooth
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quasi-projective manifoldg ,𝑛. So therefore, in this situation our Model Theorem applies to the
Deligne–Mumford compactificationg ,𝑛 and gives a relatively elementary and direct proof that
it is of log-general type with respect to the boundary divisor.
This (andmore indeed: the canonical bundle plus the boundary divisor is not only big but even

ample)was of course previously known, but to the best of our knowledge the proof relies at least on
a precise description of the Picard group ofg ,𝑛, together with the Cornalba–Harris ampleness
criterion, which in turn employs hard GIT. Unfortunately, for the time being, we do not know if it
is actually possible with our method to prove the ampleness of the logarithmic canonical bundle.
All this can be obtained with ourModel Theorem, which is actually some sort of oversimplified

statement with respect to our Theorems A, B, and C. See Examples 1.5, 1.7, and Remark 1.6 for
further comments on this.

Remark 1.4. We would like to further observe that the Weil–Petersson metric is mapping class
group invariant and thus descends tog ,𝑛. It has indeed negative sectional curvature. It is known
that its behavior near the boundary gives that its Riemannian sectional curvature has as infimum
negative infinity and as supremum zero. But, on the other hand, its holomorphic sectional, Ricci
and scalar curvatures are all bounded above by genus-dependent negative constants. Therefore,
we can also obtain the log-general type property of g ,𝑛 by a nice application of Guenancia’s
theorem [22, Theorem B].

1.1 Main results

The general setup in which our results are stated involves a variety 𝑋 containing a Zariski open
subset 𝑋 admitting an étale coverΩ on which the curvature of the Bergman metric on the canon-
ical bundle 𝐾Ω is positive definite at a generic point. We will call such manifolds Ω weakly
Bergman manifolds: this class of manifolds contain bounded domains, and more generally com-
plex manifolds of bounded type in the sense of [3], that is, manifolds admitting a bounded, strictly
psh function.
∙ A criterion for pairs to be of log-general type: Consider a compact Kähler manifold𝑋, and let𝐷

be a reduced divisor on 𝑋 such that 𝑋 = 𝑋 ⧵ 𝐷 is uniformized by a weakly Bergmanmanifold via
a covering map 𝑝 ∶ Ω⟶ 𝑋. In this situation, we can then endow each component 𝐷𝑖 of 𝐷 with
a multiplicity𝑚𝑖 ∈ ℕ∗ ∪ {∞}, representing in some sense the order of ramification of 𝑝 around a
general point of 𝐷𝑖 . We will call Δ𝑋 =

∑
𝑖(1 −

1

𝑚𝑖
)𝐷𝑖 the covering divisor associated with our data:

the pair (𝑋, Δ
𝑋
) is then an orbifold pair in the sense of Campana [9].

Then, our first main result can be stated as follows, cf. Theorem 2.12.

Theorem A. Let 𝑋 be a compact Kähler manifold endowed with a reduced divisor 𝐷 such that
𝑋 ⧵ 𝐷 admits an étale cover biholomorphic to a weakly Bergman manifold. Let Δ

𝑋
be the associated

covering divisor on 𝑋. Then, the ℚ-line bundle 𝐾
𝑋
+ Δ

𝑋
is big.

Example 1.5. If we wanted to try to refine the situation of Example 1.3 using the more precise
Theorem A, we would obtain in this particular setting the same result, since the monodromy
around the boundary divisor is infinite cyclic, with generator a Dehn twist, so that all the𝑚𝑖 ’s are
infinite here.
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∙ Quotients of manifolds of bounded type: Let Ω be a manifold of bounded type in the sense of
[3]. We want to study the situation where 𝑋 is a quotient ofΩ by a discrete subgroup Γ ⊂ Aut(Ω)

acting properly discontinuously.
In general, 𝑋 is neither smooth nor compact. Given 𝑉 ⊂ 𝑋 a subvariety, we explained above

that one cannot expect 𝑉 to be of (log) general type in full generality. However, since immersed
subvarieties of Ω are still weakly Bergman by [3], it is then possible to apply Theorem A to the
situation where 𝑋 is replaced by a compactification 𝑉 of 𝑉, and Ω by the fiber product 𝑉 ×𝑋 Ω,
which is still a manifold of bounded type.
The theorem below is an application of the idea above: it provides a particular setting where

we can obtain that the orbifold pair naturally associated to a modification of 𝑉 is of general type,
cf. Theorem 3.2.

TheoremB. Let𝑋 be a normal, compact complex space admitting a Kähler resolution. Assume that
it admits a Zariski open subset 𝑋 = 𝑋 ⧵ 𝐷 which is a quotient of a manifoldΩ of bounded type and
let 𝑝 ∶ Ω⟶ 𝑋 be the quotient map.
Let𝑉 ⊂ 𝑋 be a closed subvariety such that𝑉 ⊄ 𝐷 ∪ Sing(𝑝), where Sing(𝑝) is the locus of singular

values of 𝑝. Let 𝜋 ∶ 𝑉 → 𝑉 be any resolution of singularities of 𝑉.
Then 𝑉 supports a natural covering divisor Δ𝑉 =

∑
𝑖(1 −

1

𝑛𝑖
)𝐹𝑖 such that 𝐾𝑉 + Δ𝑉 is big.

Moreover, Δ𝑉 is supported over 𝐷 ∪ Sing(𝑝) via 𝜋.

We will actually prove a more general variant of this result, where we do not need 𝑉 to be
smooth, but merely ℚ-factorial (see Theorem 3.2). This variant will be applicable to several dif-
ferent contexts: for example, if 𝑋 = Γ

\
Ω is a compact quotient and Γ has no fixed points in

codimension one, it will imply that 𝐾𝑋 is big (which is not equivalent to 𝑋 being of general type,
see Sections 3.2 (4) and 3.3 (1)).

Remark 1.6. Let us revisit again the situation of Example 1.3 in light of TheoremB: in principle this
theorem should allow to treat the more general case with no conditions on 𝑛, since here nothing
is required about the freeness of the action.
Given a resolution ̂g ,𝑛 ofg ,𝑛, this theorem yields the existence of a natural orbifold struc-

ture (̂g ,𝑛, Δ̂g ,𝑛
), which is of log-general type. Moreover, observe that the ℚ-divisor Δ̂g ,𝑛

is
intrinsically completely described by the action ofMCGg ,𝑛 on g ,𝑛.

∙ The singular, compact case: In the case whereΩ is a bounded domain admitting a cocompact
lattice (possibly distinct from Γ), it is possible to give a refinement of Theorem B, in the setting
where 𝑉 is not necessarily compact, but weakly pseudoconvex. The next theorem formulates a
positivity result for 𝐾𝑉 + Δ𝑉 in terms of the existence of a singular metric with positive curvature
on this line bundle. Applying this result to 𝑉 = ℂ will later on allow us to obtain a hyperbolicity
criterion for the manifold 𝑋, cf. Theorem 5.11.

Theorem C. Assume thatΩ is a bounded domain admitting a cocompact lattice. Let 𝑞 ∶ 𝑉 ⟶ 𝑋

be a generically immersive holomorphicmap fromaweakly pseudoconvex Kählermanifold𝑉, such
that 𝑞(𝑉) ⊄ 𝐷 ∪ Sing(𝑝).
Then, there exists a modification 𝜎 ∶ 𝑉 ⟶ 𝑉 such that theℚ-divisor𝐾𝑉 + Δ𝑉 admits a singular

metric g𝑉 with non-negative curvature, positive definite at a general point of 𝑉, and with an explicit
lower bound on this curvature in terms of the Bergman metric ofΩ.
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Example 1.7. Getting back to the case of Example 1.3, but still in the general situation of arbitrary
𝑛, we see that Theorem C yields the following.
Let 𝑉 be a weakly pseudoconvex Kähler manifold supporting a family of curves of genus g

with 𝑛marked points, with no non-trivial automorphisms. Assume that this family has maximal
variation. Then, we have a canonical generically immersive holomorphic map 𝑓∶ 𝑉 ⟶ reg

g ,𝑛,
and this ensures, by Theorem C, that 𝑉 is of log-general type. This can be seen as a very special
case of Viehweg’s hyperbolicity conjecture.

Applied to𝑉 = ℂ, this refinement can be used to provide a hyperbolicity result in the casewhere
𝑋 = 𝑋 is compact. We obtain the following partial generalization to the non-symmetric case of a
previous work of the first author with Rousseau and Taji [8], cf. Theorem 5.15.

Theorem D. Assume thatΩ is a bounded domain admitting a cocompact lattice. Then there exists
a constant 𝛼0, depending only onΩ, such that the following holds.
Let𝑋 = Γ

\
Ω be a compact quotient and let𝑋

𝜋
⟶ 𝑋 be a projective resolution of singularities. If

for some 𝛼 > 𝛼0, the ℚ-divisor

𝐿𝛼 ∶= 𝜋∗(𝐾𝑋 + Δ𝑋) − 𝛼Δ𝑋

is effective, where Δ𝑋 is the covering divisor associated to 𝑝 ∶ Ω → 𝑋, then

(1) any subvariety𝑊 ⊆ 𝑋 such that𝑊 ⊄ 𝜋(𝔹(𝐿𝛼)) ∪ Sing(𝑝) is of general type;
(2) any entire curve 𝑓 ∶ ℂ ⟶ 𝑋 has its image included in 𝜋(𝔹(𝐿𝛼)) ∪ Sing(𝑝).

Here,𝔹(𝐿𝛼) =
⋂

𝑝 Bs(𝐿
⊗𝑝
𝛼 ) denotes the stable base locus of 𝐿𝛼 and the intersection is taken over

all positive integers 𝑝 divisible enough so that 𝐿⊗𝑝 is a genuine line bundle. Note that Lemma 2.10
guarantees the existence of projective resolutions for𝑋 provided that it fulfills the assumptions of
Theorem D.

1.2 Further comparison to previous results

∙ As already explained, the techniques of the papers are inspired by [3] where it is proved that
any subvariety𝑉 ⊂ 𝑋 of a compact étale quotient𝑋 = Γ

\
Ω of a manifold of bounded type is of

general type. One of their key observations is that if 𝑉 → 𝑉 is a resolution of singularities, then
one can construct a natural étale, Galois cover 𝑍 → 𝑉 where 𝑍 is a Bergman manifold, that is,
the Bergman kernel on 𝐾𝑍 is well defined and has strictly positive curvature on a non-empty
open set of 𝑍; this kernel descends to define a metric with the same properties on 𝐾𝑉 , from
which the bigness of 𝐾𝑉 follows.
When the action of Γ is not assumed to be free anymore, one can still get a Galois cover 𝑍 → 𝑉

where the Bergman metric on 𝐾𝑍 has similar positivity properties as before, but that metric
will not descend to a metric on 𝐾𝑉 anymore but rather on an adjoint bundle 𝐾𝑉 + Δ𝑉 for some
suitable boundary divisor Δ𝑉 .

∙ In the case where Ω is a bounded symmetric domain, a great variety of viewpoints have been
recently used to investigate the hyperbolicity properties of these quotients𝑋 = Γ

\
Ω . They can

be studied by means of Hodge theory [4, 5], Monge–Ampère equations and negative holomor-
phic sectional curvature [19, 22, 31], or other metric methods [6–8, 28]. Unfortunately, all these
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techniques rely to some extent on the precise curvature properties of the Bergman metric on a
bounded symmetric domain, which totally break down if the domain is not symmetric. To our
knowledge, the best thing that can be said for a general boundeddomain is that the holomorphic
sectional curvature of its Bergman metric is bounded above by 2 [24] (but is has no sign in gen-
eral). It would be anyway interesting to understand if the greater symmetry of bounded domains
admitting a cocompact lattice might allow one to infer something more precise about the holo-
morphic sectional curvature of the Bergman metric (see Section 5 where such a symmetry is
exploited to obtain information on its Ricci curvature).

1.3 Outline of the proof

Let us briefly describe the idea of the proof of Theorem A. Suppose that 𝑋 is a compact Kähler
manifold, and that 𝑋 = 𝑋 ⧵ 𝐷 is a Zariski open subset admitting an étale cover biholomorphic
to a manifold Ω which is weakly Bergman, that is, on which the Bergman metric is defined at
a generic point. We wish to find a ℚ-divisor Δ

𝑋
supported on 𝐷, such that 𝐾

𝑋
+ Δ

𝑋
is big. The

main idea is similar to the metric techniques employed in [8]: we first construct a smooth metric
g on 𝐾𝑋 with positive definite curvature. Then, we control the divergence of the metric g on the
boundary𝐷, to show it extends as a singular metric with positive curvature on𝐾

𝑋
+ Δ

𝑋
, for some

suitableℚ-divisor Δ
𝑋
supported on𝐷. The conclusion then comes from a criterion of bigness due

to Boucksom [2].
In this situation, themetric g will come directly from the Bergman kernel onΩ, which descends

to 𝑋 to define a positively curved, singular metric g on 𝐾𝑋 , with positive definite curvature at a
generic point.
Finally, we have to control the divergence of g near the boundary 𝐷. To understand this diver-

gence, we will use a geometric construction which is very convenient to determine the adequate
orbifold multiplicities to put on the components of 𝐷, and which was applied by several authors
to extend algebraic orbifold objects on resolutions of quotient singularities (see Tai [29] and
Weissauer [30]).
In the case where 𝑉 ⊂ 𝑋 is a subvariety of a compactification 𝑋 = 𝑋 ∪ 𝐷 of a quotient of a

bounded domain 𝑋 = Γ
\
Ω , we proceed with the same arguments, essentially replacing 𝑋 by

a resolution of singularities 𝑉 ⟶ 𝑉 of 𝑉, and Ω by 𝑉 ×𝑋 Ω. One technical part of the proof
of Theorem C is to bound from below the curvature of the Bergman metric on the open part
𝑉 ⧵ Supp(Δ𝑉): if we assume that Ω is a bounded domain acted upon by a cocompact lattice, it is
possible to use general comparison results between the Carathéodory and Bergman metrics, due
to Hahn [23]. Our general methodwill follow closely the 𝐿2 technique employed in [3], which was
in turn inspired by [12]; however, it will be slightly more elaborated since we want to be able to
deal with the case where 𝑉 is no more compact, and thus non-necessarily complete Kähler (see
Theorem 5.11).
In this situation, the orbifold multiplicities to put on Δ𝑉 give a slightly refined version of what

was done in [8], where this technique of construction of an orbifold pair (𝑉, Δ𝑉) was also used
to extend singular metrics as well as orbifold symmetric differentials. Our explicit description
will allow us to compare the divisors Δ𝑉 and Δ𝑋 appearing in this setting, cf. Proposition 4.9.
These comparison result will be of particular importance to prove the hyperbolicity criterion of
Theorem D.
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1.4 Organization of the paper

∙ Section 2. We give a definition of the covering divisors which will be used throughout the text.
After recalling some useful information concerning the Bergman metric, and the existence of
projective resolutions, we prove Theorem A.

∙ Section 3. We apply Theorem A to the case of subvarieties of quotients of bounded domains.
Theorem B appears as a particular case of Theorem 3.2, which is the main result of this section.

∙ Section 4. Let 𝑉 ⊂ 𝑋 = Γ
\
Ω , and let 𝑋 ⟶ 𝑋 and 𝑉 ⟶ 𝑉 be adequate log resolutions. The

main result of this section is the comparison result betweenΔ𝑉 andΔ𝑋 given by Proposition 4.9.
∙ Section 5. In the casewhereΩ is a bounded domain,we give a uniformbound frombelow for the
curvature of the Bergmanmetric of subvarieties ofΩ, cf. Proposition 5.6. We apply this estimate
to derive a lower bound of a natural singular metric with positive curvature on 𝐾𝑉 + Δ𝑉 in a
very general setting, cf. Theorem 5.11. Finally, we go back to the compact case and spell out a
criterion for 𝑋 to satisfy the Green–Griffiths–Lang conjecture, cf. Theorem D.

2 A CRITERION FOR A PAIR TO BE OF LOG-GENERAL TYPE

2.1 Covering multiplicities

Let us begin the present section with a definition which, although perhaps not completely
standard, is well adapted to our purposes.

Definition 2.1 (Covers). Let 𝑋,𝑌 be two irreducible and reduced complex spaces of the same
dimension and let 𝑝 ∶ 𝑋 → 𝑌 be a surjective holomorphic map.

∙ One says that 𝑝 is a cover if there exists a discrete subgroup Γ ⊂ Aut(𝑋) acting properly and
discontinuously on 𝑋 such that 𝑝 is isomorphic to the quotient map 𝑋 → Γ

\
𝑋.

∙ The singular locus of 𝑝, Sing(𝑝), is defined to be the locus of singular values of 𝑝, that is, the
locus of points 𝑦 ∈ 𝑌 such that there exists𝑥 ∈ 𝑝−1(𝑦) such that𝑝 is not a local biholomorphism
around 𝑥.

∙ If 𝑝 is étale, or equivalently if Sing(𝑝) = ∅, one says that 𝑌 is uniformized1 by 𝑋.

Let 𝑋 be a 𝑛-dimensional connected normal complex space and let 𝑋 ⊆ 𝑋 be some non-empty
analytic Zariski open subset of 𝑋 endowed with an étale cover 𝑝 ∶ 𝑋 → 𝑋. We denote by 𝐷 =∑

𝑖∈𝐼 𝐷𝑖 the union of the codimension one irreducible components of 𝑋 ⧵ 𝑋.
Given a general point 𝑥𝑖 ∈ 𝐷𝑖 , one can choose an Euclidean neighborhood 𝑈𝑖 of 𝑥𝑖 in 𝑋 such

that 𝑈𝑖 ∶= 𝑈𝑖 ⧵ 𝐷𝑖 ≃ 𝔻∗ × 𝔻𝑛−1. One denotes by 𝑈𝑖 a connected component of 𝑝−1(𝑈𝑖).

Definition 2.2 (Covering divisor). Let (𝑋, 𝑋, 𝑝) as above. The covering multiplicity𝑚𝑖 = 𝑚𝑖(𝑝) ∈

ℕ∗ ∪ {∞} of the divisor𝐷𝑖 is defined to be the degree of the cover 𝑝|𝑈𝑖
∶ 𝑈𝑖 → 𝑈𝑖 above. One then

defines the covering divisor Δ
𝑋
= Δ

𝑋
(𝑝) ∶=

∑
𝑖∈𝐼(1 −

1

𝑚𝑖(𝑝)
)𝐷𝑖 .

If no ambiguity is possible, we will just write𝑚𝑖 and Δ𝑋 .

1 Note that 𝑋 is not supposed to be simply connected here: we use the word ‘uniformized’ merely to stress the fact that the
cover is étale.
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Remark 2.3. The number 𝑚𝑖 above is independent of the choice of the general point 𝑥𝑖 ∈ 𝐷𝑖

and the neighborhood 𝑈𝑖 . Moreover, it is also clearly independent of the choice of the connected
component of 𝑝−1(𝑈𝑖), since the deck transformation group acts transitively on the various com-
ponents (this is because by our Definition 2.1, we always assume a cover to be Galois unless
otherwise specified).

2.2 The Bergmanmetric

Let 𝑋 be a 𝑛-dimensional connected complex manifold and let 𝑋 be the Hilbert space of
holomorphic sections 𝜎 ∈ 𝐻0(𝑋, 𝐾𝑋) with finite 𝐿2 norm

‖𝜎‖2 ∶= ∫𝑋 𝑖
𝑛2𝜎 ∧ 𝜎.

Assuming that𝑋 ≠ {0}, one can define a singularmetricℎ𝑋 on𝐾𝑋 as follows. Choose aHilber-
tian basis (𝑒𝑖)𝑖 for𝑋 and let 𝑒 be a local holomorphic frame for 𝐾𝑋 . For each 𝑖, we have 𝑒𝑖 = 𝑠𝑖𝑒,
for some local holomorphic function 𝑠𝑖 . Then, we can define

‖𝑒‖2
ℎ𝑋

=
1∑
𝑖
||𝑠𝑖||2 .

It is easy to check that the Chern curvature current 𝑖Θ(ℎ𝑋) is a closed, positive (1,1)-current.
Moreover, the metric ℎ𝑋 is clearly invariant under the action of Aut(𝑋) on 𝐾𝑋 .

Definition 2.4 (Bergman metric). Let 𝑋 be a complex manifold such that𝑋 ≠ {0}.
The singular hermitian metric ℎ𝑋 on 𝐾𝑋 defined above is called the Bergman metric on 𝑋. Its

Chern curvature form 𝑖Θ(ℎ𝑋) is a positive current.

Remark 2.5. Note that the terminology introduced above is not completely standard: usually the
term Bergman metric is used for the Chern curvature form 𝑖Θ(ℎ𝑋) (whenever defined), and what
we call here Bergman metric is instead (a manifestation of, using the correspondence between
volume forms and metrics on the canonical bundle) the Bergman kernel.
Nevertheless, in the highly non-smooth situations we consider here, what is usually referred

to as Bergman metric will be in general merely a current. Such current is very far from being a
genuine smooth metric on the tangent bundle, so that we prefer to reserve the termmetric for its
incarnation as a singular metric on the canonical bundle.

The Bergman metric ℎ𝑋 , as well as its curvature current 𝑖Θ(ℎ𝑋), are smooth on the analytic
Zariski open subset of 𝑋 corresponding to the complement of the base locus of the linear system
of 𝐿2 integrable sections of 𝐾𝑋 .

Definition 2.6 ((Weakly) Bergman manifolds). We introduce the following notions.

(1) A complex manifold 𝑋 is called weakly Bergman if its Bergman metric ℎ𝑋 is well defined and
if the curvature current 𝑖Θ(ℎ𝑋) is smooth and positive definite on someEuclidean open subset
∅ ≠ 𝑈 ⊂ 𝑋.
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(2) A Bergman manifold is a weakly Bergman manifold 𝑋 where the open set 𝑈 above can be
taken to be the whole 𝑋.

(3) A reduced, irreducible complex space is called weakly Bergman if 𝑋reg is a weakly Bergman
manifold. Equivalently, one (or any) resolution of 𝑋 is weakly Bergman.

Example 2.7. The following examples are Bergmanmanifolds: bounded domains inℂ𝑛 and their
submanifolds, bounded domains in Stein manifolds and their submanifolds (or, more generally,
manifolds of bounded type, cf. [3]), projective manifolds with very ample canonical bundle.

Remark 2.8. Let 𝑋,𝑌 be two irreducible complex spaces and let 𝑓 ∶ 𝑋 → 𝑌 be a bimeromorphic
map. Then 𝑋 is a weakly Bergman space if and only if 𝑌 is a weakly Bergman space. Indeed,
𝑓 induces an isometry 𝑓∗ ∶ 𝑌reg

→ 𝑋reg
because any 𝐿2 holomorphic 𝑛-form defined on an

analytic Zariski open subset of a complex manifold extends automatically to the whole manifold.

Remark 2.9. One can show easily that the condition ‘𝑖Θ(ℎ𝑋) is smooth and positive definite on
some open set’ is equivalent to the fact that𝑋 generates 1-jets at a generic point of𝑋. This implies
that any finite (possibly ramified) cover of a Bergman manifold is again a Bergman manifold.

2.3 Existence of projective resolutions

The aim of this section is to prove the following technical yet useful result.

Lemma 2.10. Let 𝑀 be a Bergman manifold. Assume that there exists a discrete subgroup Γ ⊂
Aut(𝑀), acting properly discontinuously and let 𝑋 ∶= Γ

\
𝑀.

If𝑋 is compact, then it admits a projective resolution. More generally, any compact complex space
𝑉 admitting a generically immersive map to𝑋, whose image is not entirely contained in the singular
locus of 𝑋, admits a projective resolution.

Proof. We proceed in two steps.
Step 1. Case of 𝑋.
We denote by 𝑝 ∶ 𝑀 → 𝑋 the quotient map. The complex space 𝑋 is normal with quotient sin-

gularities; in particular, it is ℚ-factorial. Moreover, there exists an effective ℚ-divisor Δ supported
on the branch locus of 𝑝 such that𝐾𝑀 = 𝑝∗(𝐾𝑋 + Δ). The Bergmanmetric ℎ𝑀 descends to𝑋 and
induces a (singular) hermitian metric g𝑋 on 𝐾𝑋 + Δ with positive curvature current.
Let 𝜃𝑀 (respectively, 𝜃𝑋) be the curvature form 𝑖Θ(ℎ𝑀) (respectively 𝑖Θ(g𝑋)) of (𝐾𝑀, ℎ𝑀)

(respectively (𝐾𝑋 + Δ, g𝑋)). The form 𝜃𝑀 is a smooth Kähler form on𝑀 and one has 𝜃𝑀 = 𝑝∗𝜃𝑋 .
Let 𝜔𝑋 be a hermitian metric on 𝑋 and let 𝑈 ⋐ 𝑀 be a relatively compact open subset of 𝑀

containing a fundamental domain for the action of Γ. Up to rescaling the metric 𝜔𝑋 , one can
assume that

𝜃𝑀 ⩾ 𝑝∗𝜔𝑋

holds on𝑈. As both quantities are Γ-invariant, the inequality above is actually valid on the whole
𝑀. This implies that 𝜃𝑋 = 𝑝∗𝜃𝑀 is a Kähler current; more precisely, one has

𝜃𝑋 ⩾ 𝜔𝑋.
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Next, we claim that the positive (1,1)-current 𝜃𝑋 has bounded local potentials. Indeed, let𝑉 ⊂ 𝑋

a small open set where 𝜃𝑋 = 𝑑𝑑𝑐𝜙. On 𝑈 ∩ 𝑝−1(𝑉), the Kähler form 𝜃𝑀 can be written 𝜃𝑀 =

𝑑𝑑𝑐(𝑝∗𝜙), hence 𝑝∗𝜙 is smooth and thus locally bounded on 𝑈 ∩ 𝑝−1(𝑉). As 𝑝 maps that open
set surjectively onto 𝑉, our claim is proved.
Now, let 𝜋 ∶ 𝑋 → 𝑋 be a log resolution obtained by blowing up only smooth centers. It is well

known (cf., for example, [18, Lemma 3.5]) that there exists a smooth (1,1)-form 𝛽 ∈ 𝑐1(𝐸) where
𝐸 is a (positive) rational combination of exceptional divisors of 𝜋 such that

𝜋∗𝜃𝑋 − 𝛽

is a Kähler current on 𝑋. By the observation above, this Kähler current has vanishing Lelong
numbers, hence Demailly’s regularization theorem [14] enables us to find a Kähler form in the
same cohomology class of𝜋∗𝜃𝑋 − 𝛽. In particular,𝑋 is Kähler. Moreover, as the cohomology class
of 𝜋∗𝜃𝑋 − 𝛽 is rational, 𝑋 is projective thanks to Kodaira’s embedding theorem.
Step 2. Case of 𝑉.
Let us call 𝑗 ∶ 𝑉 → 𝑋 the generically immersive map from the assumptions and let us denote

by 𝜋 ∶ 𝑋 → 𝑋 the projective resolution obtained in Step 1. The strict transform of 𝑉 ⊂ 𝑋 of 𝑉 by
𝜋 is a projective variety that maps bimeromorphically to 𝑗(𝑉) by 𝜋. As a result, 𝑗(𝑉) admits a
projective resolution 𝑉 → 𝑗(𝑉). Now, the bimeromorphic map

𝑉 ⇢ 𝑉

can be resolved by a finite sequence of blow-ups along smooth centers; in particular, there exists
a projective manifold endowed with a surjective, proper bimeromorphic map to 𝑉. □

Remark 2.11. When the group Γ is linear, one can say more. Indeed, Γ is finitely generated being
a quotient of the fundamental group of the Zariski open set 𝑋◦ ⊂ 𝑋 of regular values of 𝑝. By
Selberg’s lemma, there exists a finite index subgroup Γ′ ⊂ Γ with no torsion element. As Γ′ acts
properly discontinuously on𝑀, the action must be free. In particular, 𝑋′ ∶= Γ′

\
𝑀 is smooth and

𝐾𝑋′ is positive by the argument above, hence 𝑋′ is projective. As a result, 𝑋 admits a finite cover
by a smooth projective manifold; in particular, it is projective too.

2.4 The criterion

Theorem 2.12. Let 𝑋 be a compact Kähler manifold endowed with a reduced divisor 𝐷 such that
𝑋 ⧵ 𝐷 is uniformized by a weakly Bergmanmanifold. LetΔ

𝑋
be the associated covering divisor on𝑋.

Then, the ℚ-line bundle 𝐾
𝑋
+ Δ

𝑋
is big.

Remark 2.13. An immediate corollary of the theorem is that under those assumptions, the loga-
rithmic canonical bundle𝐾

𝑋
+ 𝐷 is big. In particular,𝑋 is of log-general type provided that𝐷 has

simple normal crossings.

Proof. We proceed in two steps.
Step 1. Finding a metric on 𝐾𝑋

Let 𝑋 ∶= 𝑋 ⧵ 𝐷 and let 𝑝 ∶ 𝑋 → 𝑋 the (Galois) cover from the assumptions. The Bergman
metric ℎ𝑋 is invariant under Aut(𝑝) ⊂ Aut(𝑋) and 𝐾𝑋 = 𝑝∗𝐾𝑋 , hence it descends to a singular
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metric g𝑋 on 𝐾𝑋 whose curvature 𝑖Θ(g𝑋) is a Kähler form on some Euclidean open set of 𝑋. If
one can show that g𝑋 extends across 𝐷 as a positively curved, singular metric on 𝐾

𝑋
+ Δ

𝑋
, then

Boucksom’s theorem [2, Theorem 1.2] will show that 𝐾
𝑋
+ Δ

𝑋
is indeed big, as expected.

Step 2. Extending the metric to 𝐾
𝑋
+ Δ

𝑋
Next, we want to analyze the behavior of g𝑋 near a general point of each irreducible component

of 𝐷. Let 𝑥 ∈ 𝐷 be a such a point; we denote by𝑚 the covering multiplicity attached to that point
(or equivalently the chosen component). There exist a small neighborhood 𝑥 ∈ 𝑈 ≃ 𝔻𝑛 in 𝑋 and
a system of coordinates (𝑧1, … , 𝑧𝑛) on 𝑈 centered at 𝑥 such that 𝑈 ∩ 𝐷 = (𝑧1 = 0). In particular,
𝑈 ∶= 𝑈 ⧵ 𝐷 ≃ 𝔻∗ × 𝔻𝑛−1. Let 𝑈 a connected component of 𝑝−1(𝑈).

By the very definition of Bergman metrics (see [25, (4.10.4) Corollary]), it is easy to see that one
has

ℎ𝑈 ⩽ ℎ𝑋,

where ℎ𝑈 is the Bergman metric on (the canonical bundle of) 𝑈. Moreover, that same metric is
invariant under Aut(𝑈) and it descends to a metric g𝑈 on 𝑈 ≃ Δ∗ × Δ𝑛−1. One has

g𝑈 ⩽ g𝑋 on 𝑈. (2.1)

If𝑚 = deg(𝑝|𝑈) is finite, then 𝑝|𝑈 is isomorphic to

Δ∗ × Δ𝑛−1 → Δ∗ × Δ𝑛−1

(𝑤1, … ,𝑤𝑛) ↦ (𝑤𝑚
1 , 𝑤2, … ,𝑤𝑛)

and otherwise it is isomorphic to the universal cover

Δ𝑛 → Δ∗ × Δ𝑛−1

(𝑤1, … ,𝑤𝑛) ↦ (𝑒
𝑤1+1

𝑤1−1 , 𝑤2, … ,𝑤𝑛)

Accordingly, one finds

|𝑑𝑧1 ∧ … ∧ 𝑑𝑧𝑛|2g𝑈 =

{
𝑚2 ⋅ |𝑧1|2(1− 1

𝑚
)(1 − |𝑧1|2∕𝑚)2 ⋅∏𝑛

𝑘=2 (1 − |𝑧𝑘|2)2|𝑧1|2 log2 |𝑧1|2 ⋅∏𝑛
𝑘=2 (1 − |𝑧𝑘|2)2. (2.2)

By the formula above, the quantity

− log |𝑑𝑧1 ∧ … ∧ 𝑑𝑧𝑛|2g𝑈 +
(
1 −

1

𝑚

)
⋅ log |𝑧1|2

is locally bounded above near {0} × 𝔻𝑛−1 in both cases.
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Now, let us view 𝜎 ∶= 𝑑𝑧1 ∧ … ∧ 𝑑𝑧𝑛 as an element in 𝐻0(𝑈,𝐾
𝑋
). By what was just said, the

psh weight

− log |𝜎|2g𝑈 + (1 −
1

𝑚
) log |𝑧1|2 on (𝐾

𝑋
+ Δ

𝑋
)|𝑈

is bounded above locally near 𝑈 ⧵ 𝑈, hence extends across that hypersurface to a psh weight
on (𝐾

𝑋
+ Δ

𝑋
)|
𝑈
. Letting ℎΔ

𝑋
be a singular metric on 

𝑋
(Δ

𝑋
) with curvature current [Δ

𝑋
], the

process above shows that g𝑋 ⊗ ℎΔ
𝑋
extends in codimension one with positive curvature, hence

everywhere. This ends the proof. □

Corollary 2.14. Let 𝑋 be a normal, compact complex space and let 𝑋◦ be some non-empty analytic
Zariski open subset. Assume that one of the following conditions holds.

(i) 𝑋 is a quotient of a Bergman manifold, étale over 𝑋◦.
(ii) 𝑋 isℚ-factorial, admits aKähler resolution and𝑋◦ is uniformized by aweakly Bergman complex

space.

Let Δ𝑋 ⊂ 𝑋 ⧵ 𝑋◦ be the covering divisor associated to the above étale cover of 𝑋◦. Then, the ℚ-line
bundle 𝐾𝑋 + Δ𝑋 is big.

Proof. In both cases, 𝑋 admits a Kähler resolution 𝜋 ∶ 𝑋 → 𝑋. This is a consequence of
Lemma 2.10 in case (i) and it is an assumption in case (ii).
By Theorem 2.12, the covering divisor Δ𝑋 ⊂ 𝑋 associated to the étale cover of 𝑋◦ ∩ 𝑋reg ↪ 𝑋

by a weakly Bergman manifold satisfies that 𝐾𝑋 + Δ𝑋 is big. As 𝜋 is an isomorphism over the
generic point of each components of Δ𝑋 , there is a 𝜋-exceptional effective ℚ-divisor 𝐸 such that
Δ𝑋 = 𝜋∗Δ𝑋 + 𝐸. In particular, one has a ℚ-linear equivalence 𝐾𝑋 + Δ𝑋 ∼ℚ 𝜋∗(𝐾𝑋 + Δ𝑋) valid
over𝑋 ⧵ Exc(𝜋). Now, the following restrictionmap induces an injection for any divisible enough
integer𝑚:

𝐻0(𝑋,𝑚(𝐾𝑋 + Δ𝑋))⟶ 𝐻0(𝑋 ⧵ Exc(𝜋),𝑚(𝐾𝑋 + Δ𝑋))

≃ 𝐻0(𝜋(𝑋 ⧵ Exc(𝜋)),𝑚(𝐾𝑋 + Δ𝑋))

≃ 𝐻0(𝑋,𝑚(𝐾𝑋 + Δ𝑋)),

and it follows that 𝐾𝑋 + Δ𝑋 is big. □

3 APPLICATIONS TO QUOTIENTS OFMANIFOLDS OF BOUNDED
TYPE

3.1 Main result

Let Ω be a complex manifold of bounded type, that is, a complex manifold admitting a bounded
strictly psh function, as defined in [3]. This category includes bounded domains, and is sta-
ble by taking étale covers or open/closed subvarieties; the reader may wish to think of Ω as a
bounded domain.
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Our main object of study will be a suitable compactification of a quotient ofΩ. Throughout the
text, we will make various assumptions on this compactification; our general hypotheses will be
as follows.

Assumption 3.1. We fix a reduced, irreducible, compact complex space 𝑋, and an open (dense)
Zariski subset 𝑋 = 𝑋 ⧵ 𝐷. We assume that 𝑋 is a quotient of Ω, that is, there exists a discrete
subgroup Γ ⊂ Aut(Ω), acting properly discontinuously, and a fixed identification of complex
spaces

𝑋 = Γ
\
Ω .

We denote by 𝑝 ∶ Ω⟶ 𝑋 the projection map.

We let 𝑋◦ ∶= 𝑋 ⧵ Sing(𝑝) ⊂ 𝑋 be the locus of regular values of 𝑝 and we set Ω◦ ∶= 𝑝−1(𝑋◦).
The set 𝑋◦ is a Zariski-analytic open subset of 𝑋reg. Note that the inclusion 𝑋◦ ⊂ 𝑋reg is strict if,
for example, 𝑝 ramifies in codimension one.

Theorem3.2. With the notation above, let𝑉 be anormal,ℚ-factorial compact complex space admit-
ting a Kähler resolution and let 𝑗 ∶ 𝑉 → 𝑋 be a generically immersivemap such that 𝑗(𝑉) ⊄ 𝑋 ⧵ 𝑋◦.
Set 𝑉◦ ∶= 𝑗−1(𝑋◦).
Then, 𝑉 admits a natural covering divisor Δ𝑉 supported on 𝑉 ⧵ 𝑉◦ and 𝐾𝑉 + Δ𝑉 is big.

Proof. Let 𝜋 ∶ 𝑉 → 𝑉 be a Kähler resolution, and let𝑉◦ ∶= 𝜋−1(𝑉◦). Let 𝑍◦ be a connected com-
ponent of 𝑝−1(𝑗(𝑉◦)), let 𝑊◦ ∶= 𝑉◦ ×𝑗(𝑉◦) 𝑍

◦ and let 𝑊◦ ∶= 𝑉◦ ×𝑉◦ 𝑊◦. In the following, we
replace𝑊◦ and𝑊◦ with their irreducible component dominating 𝑉◦ so that the map 𝑓 ∶ 𝑊◦ →

𝑍◦ below is a bimeromorphic map of irreducible complex spaces:

As an analytic Zariski open subset of a compact Kähler manifold, 𝑉◦ can be endowed with a
complete Kähler metric, cf. Lemma 3.3. As 𝑞 is étale, the same property holds for the smooth
manifold𝑊◦. The pull-back by the bimeromorphic map 𝑓 of the globally bounded, strictly psh
function on 𝑍◦ induced by the restriction of the one living onΩ is still globally bounded, psh and
strictly psh on a non-empty Zariski open subset of𝑊◦. By [3, Lemma 1.2],𝑊◦ is a weak Bergman
manifold, hence𝑊◦ is aweakly Bergman complex space, cf. Remark 2.8. The theoremnow follows
from Corollary 2.14 (𝑖𝑖). □
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We used the following standard result, which we recall for the reader’s convenience.

Lemma 3.3. Let 𝑌 be a compact Kähler manifold and let 𝑌◦ ⊂ 𝑌 be a Zariski open subset. There
exists a complete Kähler metric 𝜔 on 𝑌◦.

Proof. Up to taking a log resolution of (𝑌, 𝑌 ⧵ 𝑌◦) leaving 𝑌◦ untouched, one can assume that
the complement of 𝑌◦ in 𝑌 is a simple normal crossings divisor. Then, it is standard to construct
Poincaré type metrics on 𝑌◦, cf., for example, [11; 13, Theorem 1.5]. □

Remark 3.4. As already observed in the introduction, by the main theorem of [21], any projective
manifold is covered by Zariski open subsets which are uniformized by pseudoconvex bounded
domains. Thus, all projective varieties fall in the scope of Assumption 3.1. Theorem 3.2 implies in
particular that for any projective manifold 𝑋, there exists a Zariski open subset 𝑋 ⊂ 𝑋 such that
for any subvariety 𝑉 ⊂ 𝑋, the quasi-projective variety 𝑉 ∩ 𝑋 is of log-general type.
Of course, the most interesting results will be obtained in settings where we are able to obtain

a good description of this open subset 𝑋.

3.2 Examples of applications of Theorem 3.2

The following are the main examples of applications.

(1) Compact étale
In the setting of Assumption 3.1, assume furthermore that 𝑋 = 𝑋 is a smooth manifold and
that 𝑝 is étale. Let𝑊 ⊂ 𝑋 be an irreducible variety of 𝑋 and let 𝑗 ∶ 𝑉 → 𝑊 be a resolution
of singularities. Then 𝐾𝑉 is big; that is,𝑊 is of general type. This is the content of the main
result of [3].

(2) Non-compact étale
More generally, assume only that 𝑋 is a smooth compact Kähler manifold and that 𝑝 is étale.
Let𝑊 ⊂ 𝑋 be a compact subvariety not included in 𝑋 ⧵ 𝑋 and let 𝑗 ∶ 𝑉 → 𝑊 be a log reso-
lution of (𝑊,𝑊 ∩ (𝑋 ⧵ 𝑋)). Then there exists a divisor Δ𝑉 on 𝑉, supported over 𝑋 ⧵ 𝑋 via 𝑗
such that 𝐾𝑉 + Δ𝑉 is big. In particular,𝑊 ∩𝑋 is of log-general type.

(3) Compact non-étale
Assume that 𝑋 = 𝑋, let𝑊 ⊂ 𝑋 be an irreducible subvariety not included in the branch locus
of 𝑝 and let 𝑗 ∶ 𝑉 → 𝑊 be a resolution of𝑊. Then, there exists a natural divisorΔ𝑉 on𝑉 with
coefficients in (0,1), supported over the branch locus of 𝑝 via 𝑗 such that 𝐾𝑉 + Δ𝑉 is big.

(4) ℚ-factorial subvarieties
In the setting 3.1, assume that𝑋 admits aKähler resolution. Let𝑉 ⊂ 𝑋 be a normal,ℚ-factorial
subvariety not included in the branch locus of 𝑝 or𝑋 ⧵ 𝑋. Then, there exists a reduced divisor
Δ𝑉 on 𝑉, supported on 𝑋 ⧵ 𝑋◦, such that 𝐾𝑉 + Δ𝑉 is big.

(5) ℚ-factorialization of subvarieties
Assume that𝑋 = 𝑋, let𝑊 ⊂ 𝑋 be an irreducible closed subvariety not included in the branch
locus of 𝑝, let𝑊 be a connected component of 𝑝−1(𝑊) and let Γ𝑊 ⊂ Γ be the subgroup of Γ
preserving𝑊. Let 𝑉 → 𝑊 be a Γ𝑊-equivariant resolution of singularities of𝑊 and let 𝑉 ∶=

Γ𝑊

\
𝑉. This normal variety has quotient singularities, in particular it is ℚ-factorial, and it
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comes equipped with a birational map 𝑗 ∶ 𝑉 → 𝑊.

Moreover, there is a natural branching divisor Δ𝑉 on 𝑉 attached to the cover 𝑉 → 𝑉,
supported over Sing(𝑝) via 𝑗 and satisfying that 𝐾𝑉 + Δ𝑉 is big.

3.3 Two remarks about the singular versus smooth case

The following two examples show that the situation in the singular case is rather subtle.

(1) 𝐾𝑋 big versus 𝑋 of general type
Assume for simplicity that 𝑋 is compact and 𝑝 is quasi-étale, that is, codim𝑋(𝑋 ⧵ 𝑋◦) ⩾ 2.
Then, Example (4) in Section 3.2 shows that 𝐾𝑋 is big. Unless 𝑋 has only canonical singulari-
ties, this property is weaker than saying that𝑋 is of general type, that is, the canonical bundle
𝐾𝑋 of a (or any) resolution 𝑋 → 𝑋 is big.
For instance, there exist surfaces 𝑆 which are a quotient of the bi-disk Δ2 ⊂ ℂ2 such that 𝐾𝑆

is ample and yet 𝑆 is not of general type. One can realize such surfaces as 𝑆 = (𝐶1 × 𝐶2)∕𝐺

where 𝐶1, 𝐶2 are curves of genus at least two and 𝐺 is a finite group acting diagonally,
cf. [1, Table 1].

(2) 𝑋 of general type but not all its subvarieties
Assume again that 𝑋 is compact and 𝑝 is quasi-étale. The example above shows that 𝑋 needs
not be of general type. Even if we assume that 𝑋 is of general type, it may still happen that 𝑋
contains subvarieties 𝑉 ⊄ 𝑋sing such that 𝑉 is not of general type.
Indeed, let 𝐶 be a hyperelliptic curve and let 𝑓 ∶ 𝐶 → ℙ1 be the double cover; it induces an
involution 𝜄 ∈ Aut(𝐶). The transformation 𝐶 × 𝐶 ∋ (𝑧, 𝑤) ↦ (𝜄(𝑤), 𝜄(𝑧)) induces an action of
ℤ
/
4ℤ on 𝐶 × 𝐶. Let 𝑋 ∶= ℤ

/
4ℤ

\
𝐶 × 𝐶; it is a projective variety with canonical singularities

and ample canonical bundle admitting a cover by the bi-disk in ℂ2. Yet, the diagonal map
𝐶 → 𝑋 factors through ℙ1 as shown below.

4 COMPARISON OF COVERING DIVISORS

In this section, we work under the general Assumption 3.1. Given any generically immersive map
𝑉 ⟶ 𝑋, Definition 2.2 allows us to attach a natural covering divisor Δ𝑉 to any resolution of
singularities of 𝑉 ⟶ 𝑉. In this section, we will gather a few facts allowing us to compare the
natural orbifold structures on adequate resolution of singularities of 𝑉 and 𝑋.
Let us recall how Definition 2.2 permits to construct the orbifold structures in this context.
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4.1 Natural orbifold structure on a resolution of singularities of a
singular quotient

Let us fix a log-resolution 𝑋
𝜋
⟶ 𝑋, such that the preimage of the union of 𝐷 and the closure

of Sing(𝑝) is a divisor 𝐸 with simple normal crossings. Let 𝐸 =
∑

𝑖 𝐸𝑖 be the decomposition of 𝐸
into its irreducible components. Also, let g𝑋 be the natural smooth metric induced on 𝐾𝑋 by the
Bergman kernel on 𝐾Ω.
Let𝑌 be the normalization of the component 𝑇𝑋 of the fiber product𝑋 ×

𝑋
Ω dominating𝑋 (or,

equivalently, 𝑋). It sits in a commutative diagram as shown in Figure 1.
Remark that Γ acts naturally on the product Ω×𝑋 𝑋, by having its natural action on the first

factor, and leaving the second one invariant. Hence it also acts on 𝑌.
Let 𝑈 ⊂ 𝑋 be a sufficiently small neighborhood of the generic point of 𝐸𝑖 . The map 𝑓𝑋 ∶

𝑓−1
𝑋
(𝑈 ⧵ 𝐸𝑖)⟶ 𝑈 ⧵ 𝐸𝑖 is an étale cover. This map induces a cyclic cover when restricted to any

of the connected components of its source: the Galois group of this cover is isomorphic to ℤ
/
𝑚𝑖ℤ

for some𝑚𝑖 ∈ ℕ∗ ∪ {∞} (with∞ ⋅ ℤ = 0).
Then, Definition 2.2 gives us the following natural orbifold structure on 𝑋.

Definition 4.1. We let Δ𝑋 be the covering divisor associated to the data (𝑋, 𝑋 ⧵ 𝐸, 𝑓𝑋|𝑋⧵𝐸) by
means of Definition 2.2. By the previous discussion, it is equal to theℚ-divisor with simple normal
crossing support

∑
𝑖(1 −

1

𝑚𝑖
)𝐸𝑖 , where the𝑚𝑖 are defined as above.

One way to think about this orbifold structure is provided by the following formula which is
direct consequence of the definition above.

Lemma 4.2. With the notation above, one has

𝐾𝑌 = 𝑓∗
𝑋
(𝐾𝑋 + Δ𝑋).

Remark 4.3. A similar, but coarser way of forming an orbifold pair (𝑋, Δ) is used in [8]. In that
article, each component𝐸𝑖 is endowedwith themultiplicity∞ if𝜋(𝐸𝑖) ⊂ 𝑋 ⧵ 𝑋, andwith themul-
tiplicity 𝜇𝑖 = |𝑆𝜋(𝐸𝑖)| otherwise (where 𝑆𝜋(𝐸𝑖) is the isotropy group of the generic point of 𝜋(𝐸𝑖)).
With our convention, if 𝜋(𝐸𝑖) ∩ 𝑋 ≠ ∅, the Galois group ℤ

/
𝑚𝑖ℤ identifies with a subgroup of the

stabilizer of any inverse image of 𝜋(𝐸𝑖) in Ω, that is, it is a subgroup of the isotropy group 𝑆𝜋(𝐸𝑖).
Consequently, we have𝑚𝑖 ⩽ 𝜇𝑖 .

Clearly, a component 𝐸𝑖 such that 𝜋(𝐸𝑖) ∩ 𝑋 ≠ ∅ satisfies 𝑚𝑖 < ∞. Conversely, one can prove
the following:
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Lemma 4.4. Assume thatΩ is a bounded domain satisfying the following property: for all 𝑧 ∈ 𝜕Ω,
there exist a neighborhood 𝑈𝑧 ⊂ ℂ𝑛 of 𝑧 and a psh function 𝜑𝑧 on 𝑈𝑧 such that 𝜑−1𝑧 ((−∞, 0)) =

Ω ∩ 𝑈𝑧.
Then, any component 𝐸𝑖 such that 𝜋(𝐸𝑖) ∩ 𝑋 = ∅ will satisfy𝑚𝑖 = ∞.

Proof. Note that by upper semicontinuity of 𝜑𝑧, one has 𝜑𝑧|𝜕Ω∩𝑈 ≡ 0. Let 𝐸𝑖 ⊂ 𝑋 be a divisor with
finite multiplicity and let us consider the étale cover 𝑞 ∶ 𝑞−1(𝑈 ⧵ 𝐸𝑖)⟶ 𝑈 ⧵ 𝐸𝑖 ≃ Δ∗ × Δ𝑛−1 as
above. Let 𝑉◦ ⊂ 𝑌 be a connected component of 𝑞−1(𝑈 ⧵ 𝐸𝑖), so that 𝑞|𝑉◦ can be compactified as
a (surjective) ramified finite cover 𝑞 ∶ 𝑉 → 𝑈 ≃ Δ𝑛 of order𝑚𝑖 where𝑉 is some smoothmanifold
containing 𝑉◦ as a Zariski open subset. In particular, one has

(𝑞◦𝜋)(𝑉 ⧵ 𝑉◦) = 𝜋(𝐸𝑖 ∩ 𝑈). (4.1)

AsΩ ⊂ ℂ𝑛 is bounded, themap 𝑓◦ ∶= 𝜎|𝑉◦ ∶ 𝑉◦ → Ω extends to a holomorphicmap 𝑓 ∶ 𝑉 → Ω.
We claim that

Im(𝑓) ⊂ Ω (4.2)

from which the lemma follows. Indeed one would then have 𝑞◦𝜋 = 𝑝◦𝑓 on 𝑉 by density of 𝑉◦ in
𝑉 and therefore one would get 𝜋(𝐸𝑖 ∩ 𝑈) ⊂ Im(𝑝) ⊂ 𝑋 given (4.1).
We now prove (4.2) arguing by contradiction. Suppose that there exists 𝑣 ∈ 𝑉 such that 𝑓(𝑣) ∈

𝜕Ω. Let 𝑧 ∶= 𝑓(𝑣) and let (𝑈𝑧, 𝜑𝑧) be provided by our assumption on Ω. There exists a small
neighborhood𝑊 of 𝑣 ∈ 𝑉 such that 𝑓(𝑊) ⊂ 𝑈𝑧. Then, the psh function 𝜑𝑧◦𝑓|𝑊 is non-negative
and attains its maximum 0 at the interior point 𝑣 ∈ 𝑊. By the maximum principle, 𝜑𝑧◦𝑓|𝑊 is
constant, identically equal to 0. This is in contradiction with the fact that (𝜑𝑧◦𝑓|𝑊)(𝑊 ∩ 𝑉◦) ⊂

𝜑𝑧(Ω ∩ 𝑈𝑧) ⊂ (−∞, 0).

Remark 4.5. Lemma 4.4 fails for a general bounded domain. Indeed, let 𝜋 ∶ 𝑋 → 𝑋′ ≃ Ω′∕Γ be
a resolution of a singular compact quotient 𝑋′ of some bounded domain Ω′ and let 𝐸 ⊂ 𝑋 be
an irreducible, 𝜋-exceptional divisor. Then, define Ω ∶= Ω′ ⧵ 𝑝−1(𝜋(𝐸)), 𝑋 ∶= 𝑋′ ⧵ 𝜋(𝐸) so that
𝑋 ≃ Ω∕Γ is naturally compactified by 𝑋′. Then, the multiplicity of 𝐸 associated to 𝜋 ∶ 𝑋 → 𝑋′ is
finite and yet 𝜋(𝐸) ∩ 𝑋 = ∅.

4.2 Relative orbifold construction

The previous construction has a relative variant, which uses Definition 2.2 to construct a particu-
lar model (𝑉, Δ𝑉), once we are given a generically immersive map 𝑞 ∶ 𝑉 ⟶ 𝑋 and a resolution
𝑋 ⟶ 𝑋.
Suppose here that𝑉 is an𝑚-dimensional complexmanifold, and that the generically immersive

map 𝑞 is such that 𝑞(𝑉) ⊄ 𝐷 ∪ Sing(𝑝). Then, we will construct 𝑉 as follows.

Let𝑉′
𝑗

⟶ 𝑋 be the component of the fiber product𝑉 ×𝑋 𝑋 that dominates𝑉. Let𝑉 ⟶ 𝑉′ be
a resolution of singularities; it induces a birational map 𝜎 ∶ 𝑉 → 𝑉. Let us denote by 𝐹 ⊂ 𝑉 the
non-étale locus of 𝜎, and define 𝐹(1) ⊂ 𝐹 to be the union of all irreducible components of 𝐹 with
codimension one. We also introduce the fiber product 𝑉 = 𝑉 ×𝑋 Ω. Note that this complex space
may have infinitely many connected components, all isomorphic under the action of Γ.
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Finally, we let 𝑇𝑉 be the union of all irreducible components of the product𝑉 ×𝑉 𝑉 dominating
𝑉, andwe denote by𝑍 be the normalization of𝑇𝑉 . All these operations lead to the diagram showed
in Figure 2.
Let Γ𝑉 ⊂ Γ be the stabilizer of 𝜄(𝑉) ⊂ Ω. Then Γ𝑉 acts on 𝑉 ×𝑋 Ω, by its natural action on the

second factor, and by the trivial action on the first. Thus, it induces a natural action on 𝑉,making
𝜄 a Γ𝑉-equivariant map.
Under these conditions, the group Γ𝑉 has a natural action on the fiber product 𝑉 ×𝑉 𝑉, by

operating on the first factor, and leaving the second one invariant. This action leaves 𝑇𝑉 invariant
and, therefore, it induces a natural action on 𝑍. Again, 𝑍 may have more than one connected
component in general, all equivalent under the action of Γ.
By construction, themap 𝑓𝑉 is étale over𝑉 ⧵ 𝐹. By purity of the branch locus, it is actually étale

over𝑉 ⧵ 𝐹(1). Therefore, one can apply Definition 2.2, and endow each component 𝐹𝑖 ⊂ 𝐹(1) with
a natural multiplicity 𝑛𝑖 ∈ ℕ∗ ∪ {∞}.

Definition 4.6. We letΔ𝑉 be the covering divisor thatDefinition 2.2 associates to the data (𝑉, 𝑉 ⧵

𝐹, 𝑓𝑉|𝑉⧵𝐹). We have Δ𝑉 =
∑

𝑖(1 −
1

𝑛𝑖
)𝐹𝑖 , for some 𝑛𝑖 ∈ ℕ∗ ∪ {∞}.

Similar to Lemma 4.2, one has

Lemma 4.7. With the notation above, one has

𝐾𝑍 = 𝑓∗
𝑉
(𝐾𝑉 + Δ𝑉).

4.3 The comparison result

Our next goal is to relate the orbifoldmultiplicities given by the divisorΔ𝑉 with the ones inherited
from the pair (𝑋, Δ𝑋): this will be the content of Proposition 4.9. Before this, we need a lemma.

Lemma 4.8. The variety 𝑍 is naturally isomorphic to the normalization of the union of the
components of 𝑉 ×𝑋 𝑌 dominating 𝑉.

Proof. Note that the associativity of fiber products yields

𝑉 ×𝑉 𝑉 = 𝑉 ×𝑉 (𝑉 ×
𝑋
Ω) ≃ 𝑉 ×

𝑋
Ω ≃ 𝑉 ×𝑋 (𝑋 ×

𝑋
Ω).
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From this,we get that𝑇𝑉 , the disjoint union of the components of𝑉 ×𝑉 𝑉 dominating𝑉, identifies
with the disjoint union of the components of𝑉 ×𝑋 𝑇𝑋 dominating𝑉. Now, the universal property
of the normalization functor ∙𝜈 allows us to complete the square as follows

Now, the dotted arrow represents a finite bimeromorphic map between two normal reduced com-
plex analytic spaces hence it is an isomorphism. As 𝑌 = 𝑇𝜈

𝑋
, the normalization of the disjoint

union of components of 𝑉 ×𝑋 𝑌 dominating 𝑉 is the same thing as the disjoint union of compo-
nents of (𝑉 ×𝑋 𝑇𝑋)

𝜈 dominating 𝑉. By what was said previously, this is nothing but saying that
𝑇𝜈
𝑉
= 𝑍. □

The natural orbifold structures on 𝑉 and 𝑋 are now comparable in the following manner.

Proposition 4.9. With the notation above, one has

Δ𝑉 ⩽ 𝑟∗Δ𝑋,

that is, the difference 𝑟∗Δ𝑋 − Δ𝑉 between these two ℚ-divisors is effective.

Proof. We have the following commutative diagram:

We claim that over 𝑉 ⧵ 𝐹, we have 𝑍 ≃ 𝑉 ×𝑋 𝑌. Given Lemma 4.8, it is sufficient to prove that
𝑍|𝑓−1

𝑉
(𝑉⧵𝐹) is smooth and that each of its connected components dominates 𝑉. As 𝜎 is an isomor-

phism over 𝑉 ⧵ 𝐹, it suffices to check those properties for 𝑉 → 𝑉 over that same set but this is
then straightforward.
Let 𝜂 be a general point of a component𝐹𝑖 of𝐹 such that 2 ⩽ 𝑛𝑖 ⩽ +∞ and let𝑈𝑉 ⊂ 𝑉 be a small

neighborhood of 𝜂 on which 𝐹𝑖 admits the equation 𝑣𝑖 = 0. Let𝑊𝑉 be a connected component

of 𝑓−1
𝑉
(𝑈𝑉 ⧵ 𝐹𝑖). By Definition 2.2, the map𝑊𝑉

𝑓𝑉
⟶ 𝑈𝑉 ⧵ 𝐹𝑖 is an étale cover, with Galois group

𝐺𝑖 = ℤ
/
𝑛𝑖ℤ. As 𝑛𝑖 ⩾ 2, 𝐹𝑖 sits above Branch(𝑝) as otherwise, 𝑓𝑉 ∶ 𝑓𝑉 → 𝑈𝑉 ≃ Δ𝑚 is étale hence

an isomorphism.
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Set 𝜁 = 𝑟(𝜂), and let𝑈𝑋 be a small neighborhood of 𝜁 containing 𝑟(𝑈𝑉). Denote also by𝑊𝑋 the
connected component of 𝑓−1

𝑋
(𝑈𝑋 ⧵ 𝐸) containing 𝑠(𝑊𝑉). We get a map of étale covers

(4.3)

and we know from our observation at the beginning of the proof that the diagram

(4.4)

is a fiber product. Therefore, we have

𝑛𝑖 = deg

(
𝑊𝑉

𝑓𝑉
⟶ 𝑈𝑉 ⧵ 𝐹𝑖

)

⩽ #(fiber of 𝑠−1(𝑊𝑋)
𝑓𝑉
⟶ 𝑈𝑉 ⧵ 𝐹𝑖)

= deg

(
𝑊𝑋

𝑓𝑋
⟶ 𝑈𝑉 ⧵ 𝐹𝑖

)
If𝐻 is the Galois group of 𝑓𝑋 ∶ 𝑊𝑋 ⟶𝑈𝑋 ⧵ 𝐸, we have 𝑛𝑖 ⩽ |𝐻|. Let (𝐸𝑗)𝑗∈𝐽 be the components
of 𝐸 passing through 𝜁. Since𝑚𝑗 is the order of the element of 𝐻 associated to the meridian loop
around 𝐸𝑗 , the proof of [26, Theorem 2.23] shows that𝐻 is an abelian group satisfying

|𝐻| ⩽ ∏
𝑗∈𝐽

𝑚𝑗.

Given 𝑗 ∈ 𝐽, let us introduce 𝑧𝑗 a local equation for𝐸𝑗 . Since 𝑣𝑖 divides each 𝑟∗𝑧𝑗 in𝜂, to finish
the proof, it suffices to show that 1 − 1

𝑛𝑖
⩽
∑

𝑗∈𝐽(1 −
1

𝑚𝑗
). But this is now an easy consequence of

the inequality 𝑛𝑖 ⩽
∏

𝑗∈𝐽 𝑚𝑗 obtained previously. □

5 A CRITERION FOR HYPERBOLICITY

Themain goal of this section is to present a hyperbolicity result for the complex space𝑋, provided
that the manifold Ω in the general Assumption 3.1 is actually a bounded domain. The section is
organized as follows:

∙ In Section 5.1, we give some complements on the Bergman metric and how to compute its
curvature, cf. (5.1).
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∙ In Section 5.2, we gather a few results allowing us to estimate the curvature of the Bergman
kernel on Ω, close to the classical comparison theorems between the Bergman, Carathéodory
and Kobayashi metrics (see [23, 25]). The main result of that section is Proposition 5.6.

∙ In Section 5.3, we build on the previous section to construct a singular hermitian metric on a
modification of a weakly pseudoconvex Kähler manifold𝑉 admitting a generic immersive map
to 𝑋. The main result of the section is a curvature inequality for that metric, cf. Theorem 5.9.

∙ In Section 5.4, we exploit the previous results to state and prove a hyperbolicity criterion for 𝑋,
cf. Theorem 5.15.

Throughout the rest of this section, we assume thatΩ ⊂ ℂ𝑛 is a bounded domain.

5.1 Computation of the curvature of the Bergmanmetric

Let 𝑌 be a complex manifold of dimension 𝑛. Let us give some complements on the discussion of
Section 2.2, and briefly recall how to compute the curvature 𝑖Θ(ℎ𝑌) of the Bergman metric ℎ𝑌 on
𝐾𝑌 (when it is defined).
Let 𝑌 = {𝜎 ∈ 𝐻0(𝑌, 𝐾𝑌) | ∫𝑌 𝑖𝑛2𝜎 ∧ 𝜎 < +∞} be the Hilbert space of holomorphic square

integrable 𝑛-forms on 𝑌. If 𝑒 is some local trivialization of 𝐾𝑌 , the norm of 𝑒 for the metric ℎ𝑌
has the following value at a point 𝑥 ∈ 𝑌:

‖𝑒‖ℎ𝑌,𝑥 = 1‖evx‖∗
𝑌

,

where evx ∶ 𝑌 ⟶ ℂ is the evaluation form which to 𝜎 ∈ 𝑌 associates 𝜆 such that 𝜎𝑥 = 𝜆𝑒𝑥,
and ‖ ⋅ ‖∗

𝑌
is the natural dual normon∗

𝑌
. Thus, theBergmanmetric at𝑥 iswell defined provided

there exists 𝜎 ∈ 𝑌 such that 𝜎𝑥 ≠ 0.
Consider now a point 𝑥 ∈ 𝑌 such that ‖ ⋅ ‖ℎ𝑌,𝑥 is defined. By definition of ℎ𝑌 , there exists a

section 𝑒 ∈ 𝑌 such that ‖𝑒‖𝑌
= 1 and ‖𝑒𝑥‖ℎ𝑌,𝑥 = 1. Now, if 𝑣 ∈ 𝑇𝑌,𝑥, the curvature of ℎ𝑌 in

the direction 𝑣 can be computed by the following formula (see [25, Proposition 4.10.10]).

𝑖Θ(ℎ𝑌)(𝑣, 𝑣) = max
𝜎

||𝑑𝑓(𝑣)||2, (5.1)

where 𝜎 ∈ 𝑌 , with ‖𝜎‖𝑌
= 1 and 𝜎(𝑥) = 0, and 𝑓 ∈ 𝔪𝑌,𝑥 ⊂ 𝑌,𝑥 is such that locally around 𝑥

one has 𝜎 = 𝑓𝑒 (recall that 𝑒𝑥 ≠ 0, so that 𝑒 gives a local holomorphic frame around 𝑥).

5.2 Curvature inequalities on subvarieties

We will now use the previous description of the curvature of ℎ𝑌 to state a comparison result
between the curvature of the Bergman metric of a bounded domain and that of a bounded sym-
metric domain included in it. We will then use this result to obtain a curvature estimate for the
subvarieties of Ω.
Let  be a bounded symmetric domain of dimension 𝑛, centered at 0 ∈ ℂ𝑛, with coordinates

(𝑡1, … , 𝑡𝑛). Since  is 𝑆1-invariant, we see immediately that two polynomials 𝑡𝛼 = 𝑡
𝛼1
1
… 𝑡

𝛼𝑛
𝑛 (𝛼 =

(𝛼1, … , 𝛼𝑛)) and 𝑡𝛽 = 𝑡
𝛽1
1

⋯ 𝑡
𝛽𝑛
𝑛 (𝛽 = (𝛽1, … , 𝛽𝑛)) are orthogonal for the standard scalar product,

whenever 𝛼 ≠ 𝛽. After renormalizing the family (𝑡𝛼 𝑑𝑡1 ∧⋯ ∧ 𝑑𝑡𝑛)𝛼∈ℕ𝑛 , we get a unitary basis
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(𝑒𝑖)𝑖∈ℕ of, of the form 𝑒𝑖 = 𝑓𝑖𝑑𝑡1 ∧⋯ ∧ 𝑑𝑡𝑛, with

𝑓0 =
1

Vol() 12
, 𝑓1 =

1

𝑎1
𝑡1, … , 𝑓𝑛 =

1

𝑎𝑛
𝑡𝑛,

where 𝑎2
𝑖
= ∫ |𝑡𝑖|2dVol, all other 𝑓𝑖 being polynomials in 𝑡 with vanishing 1-jet at 0.

This implies that

‖𝑑𝑡1 ∧⋯ ∧ 𝑑𝑡𝑛‖2ℎ,0 = 1∑
𝑖∈ℕ |𝑓𝑖(0)|2 = Vol(),

Let 𝑣 ∈ 𝑇,0. Taking 𝑒 = 𝑒0, the equality case in Cauchy–Schwarz inequality shows that the
maximum in (5.1) is attained for 𝜎 = 𝑓𝑒 with

𝑓 =

∑
𝑖 𝑣𝑖𝑡𝑖∕𝑎

2
𝑖

(
∑

𝑖 |𝑣𝑖|2∕𝑎2𝑖 )1∕2 ⋅ Vol()1∕2. (5.2)

This yields, by (5.1):

𝑖Θ(ℎ)(𝑣, 𝑣) =
(∑

𝑖

|𝑣𝑖|2
𝑎2
𝑖

)
⋅ Vol(). (5.3)

We are now ready to state our first comparison result.

Lemma 5.1. Let 𝑥 ∈ Ω. Let 𝑗 ∶  ↪ Ω be an open embedding, such that 𝑗(0) = 𝑥. Then, we have

𝑗∗(𝑖Θ(ℎΩ)𝑥) ⩽
Vol(Ω)

Vol()
1|Jac(𝑗)(0)|2 𝑖Θ(ℎ)0.

Proof. Let 𝑤 ∈ 𝑇,0, and let 𝑣 = 𝑗∗(𝑤). We are going to show that the inequality holds when
applied to 𝑤.
We first gather a few objects allowing us to compute the left-hand side. According to (5.1), we let

𝑒, 𝜎 ∈ Ω be such that ‖𝑒‖Ω
= ‖𝜎‖Ω

= 1 and ‖𝑒𝑥‖ℎΩ,𝑥 = 1,𝜎(𝑥) = 0, andwe finally require that

𝑖Θ(ℎΩ)(𝑣, 𝑣) = |𝑑𝑓(𝑣)|2, where𝜎 𝑙𝑜𝑐
= 𝑓𝑒 near𝑥.Writing𝜎 = g 𝑑𝑧1 ∧ … ∧ 𝑑𝑧𝑛, and 𝑒 = g0 𝑑𝑧1 ∧ … ∧

𝑑𝑧𝑛, we get the alternate expression

𝑖Θ(ℎΩ)𝑥(𝑣, 𝑣) =
|𝑑g(𝑣)|2|g0(𝑥)|2 . (5.4)

Remark that since ∫Ω 𝑑volℂ𝑛

Vol(Ω)
= 1, we must have

|g0(𝑥)|2 ⩾ 1

Vol(Ω)
(5.5)

since g0 realizes the supremum of the evaluation function at 𝑥 on 𝐵(0, 1) ⊂ 𝑌 .
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To compute the right-hand side, remark first that

𝑗∗𝜎 = Vol()1∕2 (g◦𝑗) Jac(𝑗)
[
𝑑𝑡1 ∧⋯ ∧ 𝑑𝑡𝑛

Vol()1∕2
]
.

Denote by 𝑒 the term between brackets. We have seen previously that ‖𝑒‖ = ‖𝑒,0‖ℎ = 1.
Moreover, since 𝑗 is an open immersion, we have ‖𝑗∗𝜎‖ ⩽ 1.
These two facts allow us to use (5.1) to bound the curvature of ℎ from below, writing 𝑗∗𝜎 =

𝑓𝑒, with 𝑓 = Vol()1∕2 (g◦𝑗) Jac(𝑗). We get
𝑖Θ(ℎ)(𝑤,𝑤) ⩾ |𝑑𝑓(𝑤)|2

⩾ |𝑑(Vol()1∕2 (g◦𝑗) Jac(𝑗)) ⋅ 𝑤|2
= Vol() |Jac(𝑗)(0)| |𝑑(g◦𝑗)(𝑤))|2
⩾
Vol()
Vol(Ω)

|Jac(𝑗)(0)|2 |𝑑g(𝑣)|2|g0(𝑥)|2 ,
where at the second line, we used the fact that g(𝑥) = 0, and at the last line, we used (5.5). The
last equation, combined with (5.4), allows us to end the proof. □

Remark 5.2. In particular, if 𝑟 = 𝑑(𝑥, 𝜕Ω), we can apply the previous lemma to the open
embedding of the ball 𝐵(𝑥, 𝑟) ↪ Ω, with 𝑗 = Id. This gives, for any 𝑣 ∈ 𝑇Ω,𝑥:

𝑖Θ(ℎΩ)𝑥(𝑣, 𝑣) ⩽
Vol(Ω)

Vol(𝐵(𝑥, 𝑟))
𝑖Θ(ℎ𝐵(𝑥,𝑟))(𝑣, 𝑣)

=
Vol(Ω)

Vol(𝐵(𝑥, 𝑟))2
⋅
𝑛 + 1

𝑟2
‖𝑣‖2

ℂ𝑛

using (5.3) and the fact that for = 𝐵(𝑥, 𝑟), we have 𝑎2
𝑖
= Vol(𝐵(𝑥, 𝑟)) ⋅ 𝑟2

𝑛+1
for any 𝑖.

The next lemma will be used later on to estimate the curvature of the Bergman metric on
subvarieties of Ω.

Lemma 5.3. Assume that 0 ∈  ⊂ Ω, and that  is centered at 0. Let 𝑌 be a complex manifold,
and let𝑌

𝑞
⟶ Ω be a generically immersive holomorphicmap passing through 0. Choose 𝑦 ∈ 𝑞−1(0),

and let 𝑑Ω,0 = max𝑧∈𝜕Ω 𝑑(0, 𝑧).
Suppose that ℎ𝑌 is defined at 𝑦. Then, we have

𝑖Θ(ℎ𝑌)𝑦 ⩾
min𝑖 𝑎

2
𝑖

Vol(Ω) 𝑑2
Ω,0

𝑞∗(𝑖Θ(ℎΩ)0).

Proof. Fix a vector 𝑣 ∈ 𝑇𝑌,𝑦 , and let 𝑤 = 𝑞∗(𝑣). We want to show that the inequality holds when
applied to 𝑣. We may suppose that 𝑤 ≠ 0, the inequality being trivial otherwise.
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Since ℎ𝑌 is defined at 𝑦, there exists 𝜂 ∈ 𝑌 such that ‖𝜂‖𝑌
= 1, and ‖𝜂𝑦‖ℎ𝑌,𝑦 = 1. Besides,

by (5.2) and (5.3), we have

𝑖Θ(ℎ)(𝑤,𝑤) = |𝑑𝑓(𝑤)|2,
with 𝑓(𝑧) =

∑
𝑖 𝑤𝑖𝑧𝑖∕𝑎

2
𝑖

(
∑
𝑖 |𝑤𝑖|2∕𝑎2𝑖 )1∕2 ⋅ Vol()1∕2. Note that by Cauchy–Schwarz inequality, we get the

following upper bound:

|𝑓(𝑧)|2 ⩽ (∑
𝑖

|𝑧𝑖|2
𝑎2
𝑖

)
Vol() ⩽ 𝑑2

Ω,0

min𝑖 𝑎
2
𝑖

Vol().

Define

g ∶ ℂ𝑛 ⟶ ℂ

𝑧 ⟼
min𝑖 𝑎𝑖

Vol()1∕2𝑑Ω,0 𝑓(𝑧).

Then, we have sup𝑌 |g◦𝑞| ⩽ 1, so 𝜎 = (g◦𝑞)𝜂 ∈ 𝑌 , and by (5.1), we get

𝑖Θ(ℎ𝑌)(𝑣, 𝑣) ⩾ |𝑑(g◦𝑞)(𝑣)|2
⩾

min𝑖 𝑎
2
𝑖

Vol()𝑑2
Ω,0

|𝑑𝑓(𝑤)|2.
This shows that 𝑖Θ(ℎ𝑌)𝑦 ⩾

min𝑖 𝑎
2
𝑖

Vol()𝑑2
Ω,0

𝑖𝑞∗Θ(ℎ)0. Using Lemma 5.1 with 𝑗 = Idℂ𝑛 , we see that

𝑖Θ(ℎ)0 ⩾ Vol()
Vol(Ω)

𝑖Θ(ℎΩ)0. This ends the proof. □

We now make the following regularity assumption on the bounded domain Ω.

Assumption 5.4. ThemanifoldΩ is a bounded domain admitting a cocompact discrete subgroup
Γ0 ⊂ Aut(Ω). Let𝔘0 ⊂ Ω be a compact fundamental domain for Γ0, and let 𝑟0 = 𝑑(𝔘0, 𝜕Ω), 𝑑0 =
max𝑥∈𝔘0,𝑧∈𝜕Ω

𝑑(𝑥, 𝑧).

Under this assumption, we can obtain a uniform bound in Lemma 5.3, in terms of some
constant depending on Γ0.

Definition 5.5. Under the hypothesis of Assumption 5.4, we introduce the following constant

𝐶0 =
1

𝑑2
0
Vol(Ω)

sup
𝑥∈⊂Ω

(
min𝑖 𝑎

2
𝑖

)
,

where 𝑥 runs among the points of 𝔘0,  runs among the bounded symmetric domains centered
at 𝑥 and included in Ω, and the 𝑎𝑖 are the constants associated to.
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F IGURE 3

Remark that since 𝑑(𝔘0, 𝜕Ω) = 𝑟0 > 0, we can always take  = 𝐵(𝑥, 𝑟0) in the previous
definition. Then, an easy computation shows that

𝐶0 ⩾
1

𝑛 + 1

Vol(𝐵(0, 𝑟0))

Vol(Ω)

𝑟2
0

𝑑2
0

.

Note that we also have the trivial upper bound 𝑑0 ⩽ diam(Ω).

Proposition 5.6. Let 𝑌 be a complex manifold, and let 𝑌
𝑞

⟶ Ω be a generically immersive
holomorphic map. Suppose that ℎ𝑌 is well defined at a generic point of 𝑌. Then, we have

𝑖Θ(ℎ𝑌) ⩾ 𝐶0 𝑞
∗(𝑖Θ(ℎΩ))

in the sense of currents.

Proof. Since the right-hand side is continuous on𝑌, it suffices to prove the inequality at any point 𝑦
where ℎ𝑌 is non-degenerate. The right-hand side being invariant under the action of Γ0 ⊂ Aut(Ω),
we can let this lattice act onΩ and assume that 𝑥 = 𝑞(𝑦) ∈ 𝔘⦑. One can now apply Lemma 5.3 to
any bounded symmetric domain included in Ω and centered at 𝑥; this concludes the proof of the
proposition. □

5.3 A uniform curvature inequality

We keep working under the Assumption 5.4 onΩ, and we keep using the symbols Γ𝑉 ,𝔘0 and 𝐶0,
with the samemeaning as before, cf. Section 4 and Figure 2 that we reproduce here as Figure 3 for
the reader’s convenience. In particular, the map 𝑞 ∶ 𝑉 → 𝑋 is a generically immersive map and
𝜎 ∶ 𝑉 → 𝑉 is a suitable modification making the diagram commutative. In the following, we will
assume that 𝑉 is a weakly pseudoconvex𝑚-dimensional Kähler manifold. This means that there
exists a smooth plurisubharmonic exhaustion function 𝜓 ∶ 𝑉 ⟶ ℝ. We want to show that the
ℚ-line bundle 𝐾𝑉 + Δ𝑉 admits a natural singular metric with positive curvature. We first make
the following remark, which follows directly from Proposition 5.6.
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Lemma 5.7. Suppose that the Bergman metric ℎ𝑍reg is well defined at a generic point of 𝑍reg. Then
the Γ𝑉-invariant metric ℎ𝑍reg on 𝐾𝑍reg

has positive curvature, satisfying

𝑖Θ(ℎ𝑍reg ) ⩾ 𝐶0 𝑗
∗(𝑖Θ(ℎΩ)),

where 𝑗 ∶= (𝑖◦𝜌)|𝑍reg ∶ 𝑍reg ⟶ Ω is the natural map.

The next lemma relies on an adaptation to the non-compact case of some classical arguments
in Kähler geometry (see, for example, [18]). Let 𝑍

𝜎𝑍
⟶ 𝑍 be some resolution of singularities to be

fixed later and let 𝑓𝑉 ∶ 𝑍 → 𝑉 be defined as the composition 𝑓𝑉 ∶= 𝜎◦𝑓𝑉◦𝜎𝑍 .

Lemma 5.8. Assume that 𝑉 admits a Kähler metric 𝜔, let (𝑉𝑖)𝑖∈ℕ be an exhaustive sequence
of relatively compact open subsets of 𝑉 and set 𝑍𝑖 ∶= 𝑓−1

𝑉
(𝑉𝑖). Then, for an adequate choice of

desingularizations 𝑉 and 𝑍, each manifold 𝑍𝑖 admits a Kähler metric 𝜔𝑖 .
Moreover, we can choose the metrics 𝜔𝑖 so that

𝜔𝑖 ⟶
𝑖⟶+∞

𝑓∗𝑉 𝜔 (5.6)

where the convergence holds uniformly on compact subsets of 𝑍.

Proof. Wemay replace𝑉 by a resolution of indeterminacies of the bimeromorphicmap𝑉 ⤏ 𝑉, to
suppose that 𝜎 ∶ 𝑉 ⟶ 𝑉 is obtained by a sequence of blow-ups along smooth centers. Remark
that this sequence may be infinite; however, the centers project onto a locally finite family of
subsets of 𝑉.
Let 𝐸 be the exceptional divisor of 𝜎, with irreducible components 𝐸 =

∑
𝑘∈ℕ 𝐸𝑘. A classical

argument allows one to find smooth (1,1)-forms 𝜃𝐸𝑘 ∈ 𝑐1(𝐸𝑘) with support in an arbitrarily small
neighborhood of 𝐸𝑘 and a sequence of positive numbers (𝑎𝑘) such that the (locally finite) sum
𝜃𝐸 =

∑
𝑘 𝑎𝑘𝜃𝑘 defines a (1, 1)-form on 𝑉 which is negative definite along the fibers of 𝜎. Fix now

some 𝑖 ∈ ℕ. Since 𝑉𝑖 is relatively compact in 𝑉, for 𝜖𝑖 > 0 small enough, the closed (1, 1)-form

𝜔𝑉𝑖
= 𝜎∗𝜔 − 𝜖𝑖 𝜃𝐸

defines a Kähler metric on 𝜎−1(𝑉𝑖).
Now, let𝑍

𝜎𝑍
⟶ 𝑍 be a resolution of singularities obtained by blowing up smooth centers, and let

𝑝 ∶ 𝑍 ⟶ 𝑉 be the inducedmap.We ask that the strict transform𝐹 = 𝑝∗
−1(Δ𝑉) is adisjointunion

of smooth hypersurfaces, and that 𝐹 has simple normal crossings with the exceptional divisor 𝐸′
of the map 𝜎𝑍 . Using partitions of unity, we can easily construct a smooth function 𝜙 on 𝑍 so that
𝑖𝜕𝜕𝜙 is positive in the directions transverse to the ramification divisor 𝐹. As before, we also let
𝜃𝐸′ ∈ 𝑐1(𝐸

′) be negative definite along the fibers of 𝜎𝑍 .
With these definitions, for 𝜖′

𝑖
> 0 small enough, the closed (1, 1)-form

𝜔𝑖 = 𝑝 ∗𝜔𝑉𝑖
+ 𝜖′𝑖

(
𝑖𝜕𝜕𝜙 − 𝜃𝐸′

)
,

defines a Kähler metric on 𝑍𝑖 .
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For the second requirement to be satisfied, we just need to take 𝜖𝑖 and 𝜖′𝑖 decreasing to 0 as
𝑖 ⟶ +∞. □

The next proposition is an adaptation to the non-compact case of the main argument of [3]. It
is the last step toward Theorem 5.11, which is the main result of this section.

Proposition 5.9. Assume that 𝑉 is a weakly pseudoconvex Kähler manifold. Then, we can choose
𝑉 and 𝑍 so that 𝑍 is a weakly Bergman manifold.

Remark 5.10. If 𝑉 is compact Kähler, then 𝑉 is complete Kähler and admits a generically
immersive map toward the bounded domain Ω, and hence the conclusion follows directly
from [3].

Proof. Let𝜓 ∶ 𝑉 ⟶ ℝ be a smooth exhaustive plurisubharmonic function. For each 𝑖 ∈ ℕ, we let
𝑉𝑖 = 𝜓−1([0, 𝑖[), and we fix 𝑍, 𝑉 and (𝜔𝑖)𝑖∈ℕ as provided by Lemma 5.8. We will show that 𝑖Θ(ℎ𝑍)
is positive definite at a generic point of 𝑍reg. By definition of the Bergman metric, it suffices to
show that the 𝐿2 holomorphic𝑚-forms on 𝑍 generate the 1-jets at any generic point of 𝑍reg.
Let 𝑧 ∈ 𝑍reg be a point belonging to the regular loci of themaps 𝑗 = 𝜄◦𝜌 and 𝜎◦𝑓𝑉 (cf. Figure 3).

One picks a germ 𝜏 of holomorphic 𝑚-form at 𝑧 (recall that 𝑚 = dim𝑍). Remark now that each
𝑍𝑖 is weakly pseudoconvex because 𝑉𝑖 is weakly pseudoconvex and the natural maps 𝑍𝑖 ⟶ 𝑉𝑖

are proper. Since each 𝑍𝑖 admits the Kähler metric 𝜔𝑖 , this allows us to use the 𝐿2-method on 𝑍𝑖
with 𝜔𝑖 (see [16, Theorem 6.1]).
To do this, we choose a cutoff function 𝜒 on 𝑍, equal to 1 in a neighborhood of 𝑧, and with

compact support 𝐿 ⊂ 𝑍𝑖0 ∩ 𝜎
−1
𝑍
(𝑍reg) for some 𝑖0 ⩾ 0. Without loss of generality, one can assume

that 𝐿 is contained in the regular locus of 𝑓𝑉 ∶ 𝑍 → 𝑉. Let us define

𝜑 ∶ Ω⟶ ℝ

𝑥 ⟼ 2(𝑛 + 1) log |𝑥 − 𝑗(𝑧)| + |𝑥|2.
The function 𝜑 is psh on Ω, and 𝜑 ∶= 𝜑◦𝜄◦𝜌◦𝜎𝑍 is strictly psh at 𝜎−1𝑍 (𝑧). Note that both 𝜒 and 𝜑
are independent of 𝑖.
As explained above, we can apply the 𝐿2 method on 𝑍𝑖 to deduce that there exists a smooth

(𝑚, 0)-form 𝑓𝑖 on each 𝑍𝑖 , satisfying

𝑖𝑚
2

∫𝑍𝑖 𝑓𝑖 ∧ 𝑓𝑖 𝑒
−𝜑 ⩽ ∫𝐿 |𝜕(𝜒𝜏)|2𝜔𝑖 𝑒−𝜑𝑑𝑉𝜔𝑖

. (5.7)

Thanks to (5.6), and since the metric 𝑓∗
𝑉
𝜔 is non-degenerate on the compact set 𝐿 ⊂ 𝑍reg, the

right-hand side of the above equation is uniformly bounded by some constant 𝐶 for any 𝑖 ⩾ 𝑖0.
Since 𝜑 is bounded from above, this implies a uniform bound

‖𝑓𝑖‖2𝐿2(𝑍𝑖) = ∫𝑍𝑖 𝑖
𝑚2
𝑓𝑖 ∧ 𝑓𝑖 ⩽ 𝐶 𝑒supΩ 𝜑. (5.8)

The expression of 𝜑 is chosen so that the bound (5.7) implies that 𝑓𝑖 has a vanishing 1-jet at 𝑧.
Thus, for any 𝑖, 𝜂𝑖 = 𝜒𝜏 − 𝑓𝑖 is a holomorphic𝑚-form on 𝑍𝑖 with jet (𝑑𝜂𝑖)𝑧 = 𝑑𝜏𝑧 at 𝑧. Also, (5.8)
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provides a uniform bound

sup
𝑖

‖𝜂𝑖‖2𝐿2(𝑍𝑖) ⩽ 𝐶′.

Thus, we can extract a sequence converging uniformly on compact subsets toward a holomorphic
form 𝜂. This form 𝜂 satisfies 𝑑𝜂𝑧 = 𝑑𝜏𝑧. Also, by Fatou lemma, we have ‖𝜂‖2𝐿2(𝑍) ⩽ 𝐶′. Thus, 𝜂
satisfies our requirements. □

We are now ready to prove the main result of this section.

Theorem 5.11. Let 𝑞 ∶ 𝑉 → 𝑋 be a generically immersive map from a weakly pseudoconvex
Kähler manifold 𝑉 such that 𝑞(𝑉) ⊄ 𝐷 ∪ Sing(𝑝).
Provided that Assumption 5.4 is satisfied, we can choose𝑉 so that theℚ-line bundle𝑉(𝐾𝑉 + Δ𝑉)

admits a natural singular metric g𝑉 with positive curvature, satisfying

𝑖Θ(g𝑉) ⩾ 𝐶0 (𝑞◦𝜎)
∗𝑖Θ(g𝑋) (5.9)

over 𝑉 ⧵ (𝑞−1(𝐷 ∪ Sing(𝑝))).

Remark 5.12. In the particular case where 𝑉 is a compact Kähler manifold, we recover the case
obtained in Theorem 3.2 : 𝐾𝑉 + Δ𝑉 is big by [2].

Proof. Let 𝑉◦ ⊂ 𝑉 be the étale locus of the cover 𝑓𝑉 and let 𝐹 ∶= 𝑉 ⧵ 𝑉◦. By purity of the branch
locus, 𝐹 has pure codimension one. Let 𝑛𝑖 ∈ ℕ∗ ∪ {∞} be the covering multiplicity attached to an
irreducible component 𝐹𝑖 of 𝐹 and let Δ𝑉 ∶=

∑
𝑖(1 −

1

𝑛𝑖
)𝐹𝑖 .

Since the Bergmanmetric ℎ𝑍reg is invariant under the group Γ𝑉 , it descends to define a singular
metric g𝑉 on the ℚ-line bundle 𝐾𝑉 + Δ𝑉 with positive curvature by the same arguments as those
provided in the proof of Theorem2.12where compactness plays no role. A priori, g𝑉 is only defined
on 𝑓𝑉(𝑍reg) but since that open set has complement whose codimension is at least two in 𝑉, the
metric extends canonically across 𝑓𝑉(𝑍sing).
It remains to see that the curvature of g𝑉 satisfies the required lower bound (5.9). Outside

Sing(𝑝) ∪ 𝐷, the maps 𝑝∶ Ω → 𝑋 and 𝑓𝑉 ∶ 𝑍 → 𝑉 are étale covers. In particular, one has on that
locus an equality of smooth forms

Θ(ℎΩ) = 𝑝∗Θ(g𝑋) and Θ(ℎ𝑍reg ) = 𝑓∗
𝑉
Θ(g𝑉)

and the differential of 𝑓𝑉 induces an isomorphism 𝑓∗
𝑉
∶ Ω1,1

𝑉,𝑦

∼
⟶ Ω1,1

𝑍,𝑥
whenever 𝑓𝑉(𝑥) = 𝑦. By

commutativity of the diagram in Figure 3, one has that 𝑗∗Θ(ℎΩ) = 𝑓∗
𝑉
(𝑞◦𝜎)∗Θ(ℎ𝑋) and therefore,

(5.9) follows from Lemma 5.7. □

Remark 5.13. As the reader will easily see, if we drop Assumption 5.4 (in particular if we only
assume that Ω is a manifold of bounded type), the same proof shows that 𝐾𝑉 + Δ𝑉 admits a
singular metric with positive curvature, but we cannot obtain the bound (5.9) anymore.
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5.4 Statement of the criterion

In this section, we will state a hyperbolicity criterion for 𝑋, assuming it is now a compact, non-
necessarily smooth quotient. The precise assumption is as follows.

Assumption 5.14. Under the hypotheses of Assumption 3.1, we assume moreover that 𝑋 itself
is a compact complex space, that is, 𝑋 = 𝑋.

We resume the notations of the previous section.

Theorem 5.15. Assume that 𝑋 = 𝑋 is as in Assumption 5.14, and let 𝜋 ∶ 𝑋 ⟶ 𝑋 be a projective
resolution of singularities of 𝑋, which exists according to Lemma 2.10. Let 𝛼 > 1

𝐶0
, and assume that

the ℚ-divisor

𝐿𝛼 = 𝜋∗(𝐾𝑋 + Δ𝑋) − 𝛼Δ𝑋

is effective, where Δ𝑋 is the covering divisor associated to 𝑝 ∶ Ω → 𝑋. Then

(1) any subvariety𝑊 ⊆ 𝑋 such that𝑊 ⊄ 𝜋(𝔹(𝐿𝛼)) ∪ Sing(𝑝) is of general type;
(2) any entire curve 𝑓 ∶ ℂ ⟶ 𝑋 has its image included in 𝜋(𝔹(𝐿𝛼)) ∪ Sing(𝑝).

Proof. Let us prove first the statement concerning subvarieties. Suppose that𝑊 ⊂ 𝑋 is a subvariety
as in the theorem, and let 𝑉 be a resolution of singularities of𝑊. Since the natural map 𝑉

𝑞
⟶ 𝑋

is generically immersive, the relative construction of Section 4.2 can be applied, which yields a
smooth bimeromorphic model 𝑉 of 𝑉 (which we can assume to be projective since 𝑋 is) and a
map 𝑟 ∶ 𝑉 → 𝑋 as in Figure 2.
By Theorem 5.11, the ℚ-divisor (𝐾𝑉 + Δ𝑉) admits a metric with positive curvature, and it is

controlled as in (5.9) on (𝜋◦𝑟)−1(𝑋 ⧵ Sing(𝑝)). By assumption,𝑊 ⊄ 𝔹(𝐿𝛼), so for𝑚 large enough,
there exists a section

𝜎 ∈ 𝐻0
(
𝑋,𝑚(𝜋∗(𝐾𝑋 + Δ𝑋) − 𝛼Δ𝑋)

)
such that 𝜎|𝑊 ≠ 0.
We denote by 𝜙𝑋 (respectively, 𝜙𝑉) the psh weight on 𝐾𝑋 + Δ𝑋 (respectively, 𝐾𝑉 + Δ𝑉) asso-

ciated to the metric g𝑋 (respectively, g𝑉). Next, we introduce the canonical singular weights
𝜙Δ𝑋

(respectively, 𝜙Δ𝑉 ) on 𝑋(Δ𝑋) (respectively, 𝑉(Δ𝑉)) whose curvature current is [Δ𝑋]

(respectively, [Δ𝑉]).
Because 𝑝∗𝜙𝑋 is the weight associated to the Bergman metric on Ω, the weight 𝜙𝑋 is locally

bounded. One introduces the quantity

𝐹 ∶= |𝜎|2𝑒−𝑚𝜋∗𝜙𝑋 𝑒𝑚𝛼𝜙Δ𝑋 ,
it is a function on 𝑋. Therefore, for any positive number 𝛽 > 0, the quantity

𝑒−𝜙 ∶= (𝑟∗𝐹)−𝛽∕𝑚𝑒
−𝜙𝑉+𝜙Δ𝑉 (5.10)

defines a singular hermitian metric on 𝐾𝑉 . The first item in the theorem is a consequence of the
following claim thanks to standard results in pluripotential theory together with [2].
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Claim 5.16. For 𝛽 ∈ ( 1
𝛼
, 𝐶0), the following two properties hold:

(i) the weight 𝜙 is locally bounded above;
(ii) the weight 𝜙 is smooth and strictly psh on (𝜋◦𝑟)−1(𝑋 ⧵ Sing(𝑝)).

Proof of Claim 5.16. To prove (𝑖), one observes that

𝜙 =

(
𝜙𝑉 +

𝛽

𝑚
log |𝑟∗𝜎|2) − 𝛽 ⋅ (𝜋◦𝑟)∗𝜙𝑋 + (𝛼𝛽 ⋅ 𝜙𝑟∗Δ𝑋 − 𝜙Δ𝑉

)

can be decomposed as the sumof two pshweights, one locally boundedweight and anotherweight
which is psh thanks to Proposition 4.9 together with the fact that 𝛼𝛽 > 1. In order to prove (ii),
one computes the curvature of the weight 𝜙 on (𝜋◦𝑟)−1(𝑋 ⧵ Sing(𝑝)) as follows:

𝑑𝑑𝑐𝜙 = 𝑖Θ(g𝑉) − 𝛽 ⋅ (𝜋◦𝑟)∗𝑖Θ(g𝑋) +
𝛽

𝑚
𝑑𝑑𝑐 log |𝑟∗𝜎|2

⩾ 𝑖Θ(g𝑉) − 𝛽 ⋅ (𝜋◦𝑟)∗𝑖Θ(g𝑋)

⩾ (𝐶0 − 𝛽) ⋅ (𝜋◦𝑟)∗𝑖Θ(g𝑋),

where the last inequality follows from the inequality (5.9) in Theorem 5.11. □

The proof of the second point is very similar: we just have to perform the previous steps with
𝑉 = ℂ in a slightly more explicit manner, and then use the Ahlfors–Schwarz lemma (see, for
example, [17]).
Suppose then that there exists a non-constant holomorphic map 𝑓 ∶ ℂ ⟶ 𝑋 such that 𝑓(ℂ) ⊄

𝜋(𝔹(𝐿𝛼)) ∪ Sing(𝑝). Now, if we perform the relative orbifold construction with𝑉 = ℂ, we see that
𝑉 ≅ ℂ, since this manifold admits a bimeromorphic map onto ℂ.
Moreover, since 𝜄 ∶ 𝑉 ⟶Ω is non-constant, we see that the universal cover of 𝑉 must be

isomorphic to the disk, and thus 𝑖Θ(ℎ𝑉) = ℎ−1
𝑉
. Pushing forward to 𝑉, we get that

𝑖Θ(g𝑉) = g−1
𝑉

in restriction to the regular locus 𝑉◦ = 𝑉 ⧵ (𝑓◦𝜎)−1(Sing(𝑝)).
Construct now the metric ℎ = 𝑒−𝜙 on ℂ = 𝑉 using (5.10). By Claim 5.16(ii), valid for 𝑉 pseudo-

convex Kähler, we see that there exists a constant 𝛿 > 0 such that 𝑖Θ(ℎ) ⩾ 𝛿𝑖Θ(g𝑉) in restriction
to 𝑉◦. Now, we have, again in restriction to 𝑉◦:

Θ(g𝑉) = g−1
𝑉

⩾
1

sup𝑋(𝑟
∗𝐹)

𝛽

𝑚

ℎ−1.

Thus, in restriction to 𝑉◦, one gets

𝑖Θ(ℎ) ⩾ 𝐶ℎ−1, (5.11)

where 𝐶 = 𝛿

sup𝑋(𝑟
∗𝐹)

𝛽
𝑚

.
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Finally, we see as in Claim 5.16(i) that 𝜙 is locally bounded above near 𝑉 ⧵ 𝑉◦ and therefore
ℎ = 𝑒−𝜙 induces a positively curved metric on 𝐾𝑉 ≃ ℂ. This implies that (5.11) holds everywhere
on 𝑉 = ℂ in the sense of currents. This is however absurd because of the Ahlfors–Schwarz lemma,
cf. [15, Lemma 3.2]. □
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