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ABSTRACT
Recently, graph neural networks (GNNs)-based recommender sys-
tems have encountered great success in recommendation. As the
number of GNNs approaches rises, some works have started ques-
tioning the theoretical and empirical reasons behind their superior
performance. Nevertheless, this investigation still disregards that
GNNs treat the recommendation data as a topological graph struc-
ture. Building on this assumption, in this work, we provide a novel
evaluation perspective on GNNs-based recommendation, which in-
vestigates the impact of the graph topology on the recommendation
performance. To this end, we select some (topological) properties
of the recommendation data and three GNNs-based recommender
systems (i.e., LightGCN, DGCF, and SVD-GCN). Then, starting from
three popular recommendation datasets (i.e., Yelp2018, Gowalla,
and Amazon-Book) we sample them to obtain 1,800 size-reduced
datasets that still resemble the original ones but can encompass
a wider range of topological structures. We use this procedure to
build a large pool of samples for which data characteristics and
recommendation performance of the selected GNNs models are
measured. Through an explanatory framework, we find strong cor-
respondences between graph topology and GNNs performance,
offering a novel evaluation perspective on these models.

CCS CONCEPTS
• Information systems→ Personalization.

KEYWORDS
Graph Neural Networks, Topology, Recommender Systems

∗Corresponding authors.
†Work done while at Politecnico di Bari as a PhD student.

This work is licensed under a Creative Commons Attribution International
4.0 License.

RecSys ’24, October 14–18, 2024, Bari, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0505-2/24/10
https://doi.org/10.1145/3640457.3688070

ACM Reference Format:
Daniele Malitesta, Claudio Pomo, Vito Walter Anelli, Alberto Carlo Maria
Mancino, Tommaso Di Noia, and Eugenio Di Sciascio. 2024. A Novel Eval-
uation Perspective on GNNs-based Recommender Systems through the
Topology of the User-Item Graph. In 18th ACM Conference on Recommender
Systems (RecSys ’24), October 14–18, 2024, Bari, Italy. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3640457.3688070

1 INTRODUCTION AND MOTIVATIONS
Graph neural networks (GNNs)-based recommender systems [39,
66] are regarded as well-established approaches within the plethora
of existing recommendation algorithms, together with traditional
model families encompassing, among others, neighborhood-based
solutions [43, 50], latent-factor approaches [8, 19, 46, 47], as well
as more recent frameworks based, for instance, on deep neural
networks [17, 27], variational autoencoders [10, 52], and generative
models [26, 57].

In early years, GNNs-based recommender systems proposed to
design and apply GNN message-passing layers from the graph
representation learning domain (i.e., graph convolutional layers
such as GraphSAGE [23] and GCN [30]) to tailor them for the
recommendation task. In this respect, pioneer works such as [55, 58,
70] put the selected GNN layer on top of the traditional latent-factor
recommendation module; that is, users’ and items’ embeddings are
initially refined through the message-passing procedure that can
catch existing user-item relationships at multiple hops.

Over the years, other solutions tried to improve the existing
techniques in various manners, inspired by the advances in graph
representation learning. Among them, some approaches proposed
to simplify [64] themessage-passing procedure through the removal
of feature transformation and non-linearities [14, 25], while others
exploited the graph edges to weight their importance [6, 40], in
some cases through attention weights (as in the original GAT [56]
architecture) to prune noisy interactions and disentangle them at
the granularity of intents [36, 59, 60, 73].

More recently, novel trends involved semi-supervised [28] and
contrastive learning [29] to tackle the data sparsity of the user-
item graph through ad-hoc graph augmentations [11, 33, 34, 65,
71, 72]. In parallel, other techniques suggested that addressing
foundational problems in graph representation learning (such as
over-smoothing [13], over-squashing [54], or both phenomena [21])
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could also improve GNNs-based recommendation by surpassing
the traditional concept of message-passing [41, 44, 51, 67].

As new GNN solutions are continuously proposed in the liter-
ature, a fundamental question arises: “Why GNNs-based recom-
mendation works so well?”. Indeed, the dilemma is pertinent since
more andmore techniques are introduced daily, and knowing which
strategies may better suit the recommendation problem (and why)
has become imperative. In this respect, the literature recognizes
that two complementary research directions have emerged so far.

On the one side, some works investigated the theoretical rea-
sons behind the performance of GNNs-based recommender systems.
Among others, Shen et al. [51] observed that the graph convolution
operation could be behind the success of GNNs-based recommenda-
tion, working as a smoothing filter on nodes features; by leveraging
the theory of graph signal processing, the authors revisited several
latent factors and GNNs-based models under a shared framework
built upon the smoothing filtering operation, eventually proposing
a lightweight closed-form solution that can reach the performance
of other less shallow recommendation solutions. More recently, Wu
et al. [67] discussed the role of over-smoothing and over-correlation
in GNNs-based recommendation; by acknowledging that the two
phenomena are intrinsically bound, the authors proposed an adap-
tive de-correlation loss function to tackle the two issues at once.

On the other side, some works explored the experimental rea-
sons behind the performance of GNNs-based recommender systems.
For instance, the work by Wang et al. [62] tried to generalize the
GNN recommendation pipeline into separate building blocks that
can be changed and removed accordingly; by exploring the numer-
ous different architectures in the literature, the authors defined a
search space that could easily be adapted for every recommendation
scenario. Then, the works in [4, 5] provided an outlook on accu-
racy and beyond-accuracy recommendation performance of GNNs-
based recommender systems, recognizing node representation and
neighborhood exploration as the key strategy patterns to build
any recommendation model based upon message-passing. More
recently, the work by Anelli et al. [7] proposed a reproducibility
analysis on popular GNNs-based recommender systems spanning
several existing solutions; while confirming the effective repro-
ducibility of such models for the experimental settings presented
in the original papers, the authors outlined how the commonly
observed performance may drastically change on usually untested
settings (i.e, other baselines or datasets), further suggesting that
dataset intrinsic properties (such as the average node degree) may
be greatly influencing the final performance.

Nevertheless, we believe both outlined research directions still
disregard one simple (but potentially fundamental) aspect. Since
GNNs are designed to treat the recommendation data as a bipartite
and undirected graph, there is a whole set of topological struc-
tures of the user-item graph that such models should be able to
recognize and exploit to boost the recommendation performance.
Thus, answering the question: “Why GNNs-based recommen-
dation works so well?”, would eventually imply answering an-
other question: “Which topological dataset characteristics are
GNNs-based recommender systems able to capture? Are those
properties influencing the recommendation performance?”.

Noticeably, our intuition finds supporting motivations in the
recent literature. On the one hand, works in graph representation

learning have started questioning what is the role of the graph struc-
ture (both topology and node features) in the performance of GNNs
models [1, 12, 31, 31, 35, 48, 63, 64, 68, 69, 74]; for instance, it is cur-
rently acknowledged that GNNs excel in node classification tasks
when working on graphs exhibiting high levels of homophily [75];
similarly, recent work suggested that node degree can greatly in-
fluence the performance of GNNs in both node classification and
link prediction tasks [61]. On the other hand, existing studies in
recommendation outlined that dataset characteristics (such as the
dataset sparsity) may impact the final performance [2, 18, 37].

1.1 Our contributions
For all the outlined aspects, in this work, we propose a novel eval-
uation perspective on GNNs-based recommender systems, that
accounts for the topological properties of the user-item graph.
While our paper ideally settles in between the theoretical and
experimental research lines outlined above, a fundamental start-
ing basis is provided by the works in [7, 38], where the authors
eventually discuss how node degree information (propagated at
multiple hops) may affect recommendation accuracy for different
users’ groups in the system. We decide to extend their reproducibil-
ity and experimental settings by proposing a novel evaluation
pipeline for GNNs-based recommender systems, where we seek to
find statistical correspondences between the topological properties
of the user-item graph and the recommendation performance of
such models. Thus, our contributions are summarized as:

(1) We select five classical dataset characteristics (presented
in [2, 18]) and three additional topological dataset charac-
teristics [32, 42] (node degree, clustering coefficient, and
degree assortativity); for the topological ones, we provide a
re-interpretation under the lens of recommendation.

(2) We consider three popular and recent GNNs-based recom-
mendation approaches (i.e., LightGCN [25], DGCF [60], and
SVD-GCN [44]) and work on their formulations to explicitly
highlight the presence of the topological properties.

(3) We propose a novel evaluation pipeline that investigates the
influence of dataset characteristics on the recommendation
performance of GNNs-based recommender systems; this in-
volves the adoption of ad-hoc graph sampling strategies to
generate a large suite of 1,800 small datasets that resem-
ble three popular recommendation datasets (i.e., Yelp2018,
Gowalla, and Amazon-Book) but encompass a wider range
of topological structures.

(4) Through an explanatory framework, we show that strong
correspondences exist between dataset characteristics and
recommendation performance for GNNs-based models, of-
fering a novel evaluation perspective on such approaches.

(5) To assess the goodness of the evaluation pipeline, we ana-
lyze the possible impact of node- and edge-dropout on the
generated explanations, proving that their joint adoption is
beneficial to the statistical significance of the explanatory
framework.

To foster reproducibility, we release the code to replicate our
evaluation pipeline: https://github.com/sisinflab/Topology-Graph-
Collaborative-Filtering.
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2 TOPOLOGICAL DATA CHARACTERISTICS
In this section, we provide a formal description of the recommen-
dation dataset in terms of its topological characteristics [32, 42],
treating the data as a bipartite and undirected graph; noticeably, for
each topological property, we also offer a re-interpretation under
the lens of recommendation. As our analysis will eventually assess
also the influence of classical recommendation dataset character-
istics already presented in [2, 18], and for the sake of space, we
suggest the reader refer to those works for a formal presentation.

In a recommendation system, we denote with U and I the sets
of users and items, respectively, where |U| = 𝑈 and |I | = 𝐼 . Then,
we indicate with R ∈ R𝑈 ×𝐼 the interaction matrix collecting user-
item interactions in the form of implicit feedback (i.e., R𝑢,𝑖 = 1 if
user 𝑢 ∈ U interacted with item 𝑖 ∈ I, 0 otherwise).

The interaction matrix R is leveraged to define the adjacency ma-
trix A ∈ R(𝑈 +𝐼 )×(𝑈 +𝐼 ) representing the bidirectional interactions
between users and items:

A =

[
0 R
R⊤ 0

]
, (1)

leading to G = {U∪I,A} as the user-item bipartite and undirected
graph. Moreover, we connote the user- and item-projected graphs
as GU = {U,AU } and GI = {I,AI }. In this respect, let RU and
RI be the user-user and item-item interaction matrices:

RU = R · R⊤, RI = R⊤ · R, (2)

which indicate the co-occurrences among users and items, respec-
tively. Trivially, the corresponding adjacency matrices AU and AI
are obtained as:

AU = RU , AI = RI . (3)

We use the introduced concepts and notations to describe three
topological aspects of the user-item graph and re-interpret them
under the lens of recommender systems.

Node degree. Let N𝑢 = {𝑖 | R𝑢,𝑖 = 1} and N𝑖 = {𝑢 | R𝑢,𝑖 = 1}
be the neighborhood sets for 𝑢 and 𝑖 , respectively. By generalizing
this definition, letN (𝑙 )

𝑢 andN (𝑙 )
𝑖 be the sets of neighborhood nodes

for user 𝑢 and item 𝑖 at 𝑙 distance hops. Thus, the node degrees for
𝑢 and 𝑖 (i.e., 𝜎𝑢 = |N (1)

𝑢 | and 𝜎𝑖 = |N (1)
𝑖 |) represent the number of

item and user nodes directly connected with 𝑢 and 𝑖 , respectively.
The average user and item node degrees are:

𝜎U =
1
𝑈

∑︁
𝑢∈U

|N (1)
𝑢 |, 𝜎I =

1
𝐼

∑︁
𝑖∈I

|N (1)
𝑖 |. (4)

RecSys re-interpretation. The node degree in the user-item
graph stands for the number of items (users) interacted by a user
(item). This is related to the cold-start issue in recommendation, where
cold users denote low activity on the platform, while cold items are
niche products.

Node degree alone still fails to provide a deeper outlook on the
user-item graph. The following topological characteristics, derived
from node degree, expand its formulation to other viewpoints.

Clustering coefficient. For each partition in a bipartite graph,
it is interesting to recognize clusters of nodes in terms of how their
neighborhoods overlap, independently of the respective sizes. Let 𝑣

and𝑤 be two nodes from the same partition (e.g., user nodes). Their
similarity is the intersection over union of their neighborhoods [32].
By evaluating the metric node-wise, we obtain:

𝛾𝑣 =

∑
𝑤∈N (2)

𝑣
𝛾𝑣,𝑤

|N (2)
𝑣 |

, with 𝛾𝑣,𝑤 =
|N (1)

𝑣 ∩ N (1)
𝑤 |

|N (1)
𝑣 ∪ N (1)

𝑤 |
, (5)

where N (2)
𝑣 is the second-order neighborhood set of 𝑣 . In this case,

we leverage the second-order neighborhood because, in a bipartite
graph, nodes from the same partition are connected at (multiple of)
2 hops. The average clustering coefficient onU and I is:

𝛾U =
1
𝑈

∑︁
𝑢∈U

𝛾𝑢 , 𝛾I =
1
𝐼

∑︁
𝑖∈I

𝛾𝑖 . (6)

RecSys re-interpretation. High values of the clustering coeffi-
cient indicate that there exists a substantial number of co-occurrences
among nodes from the same partition. For instance, when considering
the user-side formula, the average clustering coefficient increases if
several users share most of their interacted items. The intuition aligns
with the rationale behind collaborative filtering: two users are likely
to show similar preferences when they interact with the same items.

The clustering coefficient allows the description of broader por-
tions of the user-item graph compared to the semantics conveyed
by node degree. Indeed, the measure takes nodes at 2 hops (i.e.,
user-item-user and item-user-item connections). Nevertheless, we
may want to capture properties for even more extended regions
of the graph. For this reason, we introduce one last topological
characteristic that goes beyond the 2-hop distance among nodes.

Degree assortativity. In real-world graphs, nodes tend to
gather when they share similar characteristics. Such a tendency is
measured through the assortativity coefficient. Depending on the
semantics of “node similarity”, there exist different formulations
for assortativity [42]. For the sake of this work, we consider the
assortativity coefficient based on the scalar properties of graph
nodes, for instance, their degree. Let D = {𝑑1, 𝑑2, . . . } be the set of
unique node degrees in the graph, and let 𝑒𝑑ℎ,𝑑𝑘 be the fraction of
edges connecting nodes with degrees 𝑑ℎ and 𝑑𝑘 . Then, let 𝑞𝑑ℎ be
the probability distribution to choose a node with degree 𝑑ℎ after
having selected a node with the same degree (i.e., the excess degree
distribution). The degree assortativity coefficient is calculated as:

𝜌 =

∑
𝑑ℎ,𝑑𝑘

𝑑ℎ𝑑𝑘 (𝑒𝑑ℎ,𝑑𝑘 − 𝑞𝑑ℎ𝑞𝑑𝑘 )

𝑠𝑡𝑑2𝑞
, (7)

where 𝑠𝑡𝑑𝑞 is the standard deviation of the distribution 𝑞. Note
that, for its formulation, the degree assortativity is similar to a
correlation measure (e.g., Pearson correlation). Following the same
rationale of the clustering coefficient, we are interested in finding
similarity patterns among nodes from the same partition. For this
reason, we first apply the projection of the user-item bipartite graph
for both users and items to obtain the user- (i.e., GU ) and item- (i.e.,
GI ) projected graphs. Then, we calculate the degree assortativity
coefficients for GU and GI , namely, 𝜌U and 𝜌I .
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RecSys re-interpretation. In recommendation, the degree as-
sortativity calculated user- and item-wise represents the tendency of
users with the same activity level on the platform and items with the
same popularity to gather, respectively. Since we calculate the degree
assortativity on the complete user-user and item-item co-occurrence
graphs, we deem this characteristic to provide a broader view of the
dataset than the clustering coefficient. For this reason, to give an in-
tuition of degree assortativity, we borrow the concept of search space
traversal depth in search algorithms theory. That is, we re-interpret
degree assortativity in recommendation as a topological characteristic
showing a strong look-ahead nature.

3 TOPOLOGICAL CHARACTERISTICS IN
GRAPH-BASED RECOMMENDATION

Since GNNs-based recommender systems are designed to work on
the bipartite and undirected user-item graph, we seek to under-
stand how and to what extent such models (explicitly) integrate
topological properties into their formulations. Thus, we select three
popular and recent approaches in GNNs-based recommendation
(i.e., LightGCN [25], DGCF [60], and SVD-GCN [44]). Then, we
re-formulate their techniques to make the topological data charac-
teristics explicitly emerge.

As additional backgroundwith respect to the above, we introduce
the notations e𝑢 ∈ R𝑏 and e𝑖 ∈ R𝑏 as the initial embeddings of
the nodes for user 𝑢 and item 𝑖 , respectively, where 𝑏 << 𝑈 , 𝐼 .
Then, in the case of message-propagation at different layers, we
also introduce the notations e(𝑙 )𝑢 and e(𝑙 )𝑖 to indicate the updated
node embeddings for user 𝑢 and item 𝑖 after 𝑙 propagation layers,
with 0 ≤ 𝑙 ≤ 𝐿 (note that e(0)𝑢 = e𝑢 and e(0)𝑖 = e𝑖 ).

LightGCN. He et al. [25] propose to lighten the graph convolu-
tional layer presented in Kipf and Welling [30] for the recommen-
dation task. Specifically, their layer removes feature transformation
and non-linearities:

e(𝑙 )𝑢 =
∑︁

𝑖′∈N (1)
𝑢

𝐴𝑢𝑖′e
(𝑙−1)
𝑖′√

𝜎𝑢𝜎𝑖′
, e(𝑙 )𝑖 =

∑︁
𝑢′∈N (1)

𝑖

𝐴𝑖𝑢′e(𝑙−1)𝑢′√
𝜎𝑖𝜎𝑢′

, (8)

where each neighbor contribution is weighted through the corre-
sponding entry in the normalized Laplacian adjacency matrix to
flatten the differences among nodes with high and low degrees.
Since 𝐴𝑢𝑖′ = 1, ∀𝑖′ ∈ N (1)

𝑢 (the dual holds for 𝐴𝑖𝑢′ ), the contribu-
tion weighting comes only from the denominator.

DGCF.Wang et al. [60] assume that user-item interactions are
decomposed into a set of independent intents, representing the
specific aspects users may be interested in when interacting with
items. In this respect, the authors propose to iteratively learn a set
of weighted adjacency matrices {Ã1, Ã2, . . . }, where each of them
records the user-item importance weights based on the specific
intent it represents. Then, they introduce a graph disentangling
layer for each weighted adjacency matrix:

e(𝑙 )𝑢,∗ =
∑︁

𝑖′∈N (1)
𝑢

𝐴̃𝑢𝑖′,∗e(𝑙−1)𝑖′,∗√
𝜎𝑢,∗𝜎𝑖′,∗

, e(𝑙 )𝑖,∗ =
∑︁

𝑢′∈N (1)
𝑖

𝐴̃𝑖𝑢′,∗e(𝑙−1)𝑢′,∗√
𝜎𝑖,∗𝜎𝑢′,∗

, (9)

where 𝐴̃𝑢𝑖′,∗ and e(𝑙−1)𝑖′,∗ are the learned importance weight of user
𝑢 on item 𝑖′ and the embedding of item 𝑖′ for any intent, while

𝜎𝑢,∗ is the corresponding node degree calculated on Ã∗ (the same
applies for the item side).

SVD-GCN. Peng et al. [44] propose a reformulation of the GCN-
based message-passing which leverages the similarities between
graph convolutional layers and singular value decomposition (i.e.,
SVD). Specifically, they rewrite the message-passing introduced
in LightGCN by making two aspects explicitly emerge, namely: (i)
even- and odd-connection message aggregations, and (ii) singular
values and vectors obtained by decomposing the user-item interac-
tion matrix R through SVD. On such basis, the authors’ assumption
is that the traditional graph convolutional layer intrinsically learns
a low-rank representation of the user-item interactionmatrix where
components corresponding to larger singular values tend to be en-
hanced. They reinterpret the over-smoothing effect as an increasing
gap between singular values when stacking more and more layers.
The embeddings for users and items are obtained as follows:

e𝑢 = p𝑢𝑒𝑥𝑝 (𝑎1𝝀) ·W, e𝑖 = q𝑖𝑒𝑥𝑝 (𝑎1𝝀) ·W, (10)

where: (i) p𝑢 and q𝑖 are the left and right singular vectors of the nor-
malized user-item interaction matrix for user𝑢 and item 𝑖; (ii) 𝑒𝑥𝑝 ()
is the exponential function; (iii) 𝑎1 is a tunable hyper-parameter of
the model; (iv) 𝝀 is the vector of the largest singular values of the
normalized user-item matrix; (v)W is a trainable matrix to perform
feature transformation. Note that the highest singular value 𝜆𝑚𝑎𝑥

and themaximum node degreemax(D) in the user-item interaction
matrix are associated by the following inequality:

𝜆𝑚𝑎𝑥 ≤ max(D)
max(D) + 𝑎2

, (11)

where𝑎2 is another tunable hyper-parameter of themodel to control
the gap among singular values. Moreover, the authors recognize the
importance of different types of relationships during the message-
passing (i.e., user-item, user-user, item-item). For this reason, they
decide to augment the loss function with other components ad-
dressing also the similarities among node embeddings from the
same partition:

min
e𝑣 ,e𝑤 ,e𝑗

−
∑︁

(𝑣,𝑤 ) ∈ (R∗
𝑠 )+

𝑙𝑜𝑔(𝑠𝑖𝑔(e⊤𝑣 · e𝑤)) +

−
∑︁

(𝑣,𝑗 ) ∈ (R∗
𝑠 )−

𝑙𝑜𝑔(𝑠𝑖𝑔(−e⊤𝑣 · e𝑗 )),
(12)

where 𝑣 ,𝑤 , and 𝑗 are nodes from the same partition, and R∗ is the
interaction matrix of that partition.

Observation. The analyzed GNN models explicitly utilize the node
degree information during the representation learning phase, each of
them in a different way. However, clustering coefficient and degree
assortativity, which share similarities with node degree’s semantics,
do not seem to have an evident representation within the models’
formulations. Under this perspective, our study will also serve to
test what topological aspects GNNs-based recommender systems can
(un)intentionally capture during their training.

This observation paves the way to a further question: are (topo-
logical) dataset characteristics influencing the recommenda-
tion performance of GNNs-based recommender systems?
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4 PROPOSED EVALUATION PIPELINE
To answer such a question, we present our proposed evaluation
pipeline to assess the impact of classical and topological characteris-
tics on the performance of GNNs-based recommender systems. As
already done in similar works [2, 18, 37], our goal is to design an
explanatory statistical model which finds dependencies between
dataset characteristics and recommendation performance.

To this end, the involved pipeline steps are (i) collection of a
large pool of recommendation datasets, (ii) calculation of their clas-
sical and topological data characteristics, (iii) train/evaluation of
the GNNs-based recommender systems on the recommendation
datasets to collect the performance measures (leveraging the same
experimental setting as presented in [7]), (iv) design and fit of
the explanatory framework on the so-collected data characteris-
tics/recommendation performance samples.

4.1 Step 1: Recommendation data collection
To fit our explanatory framework, it becomes imperative to collect
a set of samples (with dataset characteristics and the correspond-
ing models’ recommendation performance) that is large enough to
ensure the statistical significance of the conducted analysis under a
certain confidence threshold. While in principle this process would
imply the adoption of several recommendation datasets from the lit-
erature, this is in fact infeasible for time and computational reasons
because it would require training and evaluating the GNNs-based
models on a very high number of large datasets.

To this end, and inspired by similar works [2, 18], we propose
to select some popular recommendation datasets, and manipulate
them through dataset sampling strategies [15, 49, 65] for the genera-
tion of several small recommendation datasets to conduct our study
effectively. However, given the specific nature of the recommenda-
tion models we are dealing with (i.e., GNNs-based recommender
systems) and differently from [2, 18], we decide to use ad-hoc graph
sampling strategies such as node- and edge-dropout, which have
gained recent attention in graph learning literature [53, 65]. In-
deed, as we vary the dropout rate, we seek to collect samples that
still resemble the original recommendation datasets but can
encompass a wide set of topological graph structures.

As for the original recommendation datasets, we use specific
versions of Yelp2018 [44], Gowalla [25], and Amazon-Book [59].
The usage of such datasets is motivated by their popularity in
GNNs-based recommendation [22, 25, 33, 41]. Yelp2018 [9] collects
data about users and businesses interactions, Amazon-Book is a
sub-category of the Amazon dataset [24], and Gowalla [16] is a
social-based dataset where users share their locations.

Given the original recommendation dataset, represented as a
bipartite and undirected user-item graph, we first randomly select
a dropout rate in the range [0.7, 0.9] and a graph sampling strategy
in {node-dropout, edge-dropout}. Second, the sampled graph is
obtained by either dropping at random nodes or edges depending
on the selected dropout rate and sampling strategy. This process is
iteratively repeated for each original dataset; for the sake of this
work, and following [2, 18], we decide to collect 600 samples from
each original data, for a total of 1,800 generated samples.

4.2 Step 2: Characteristics calculation
After the recommendation data collection, the second pipeline step
involves the calculation of classical and topological characteristics
of the samples. While we have already focused on the selected
topological properties, in terms of classical characteristics, we select
space size, shape, density, and Gini coefficient calculated on the
user and item side (once again, we suggest the reader refer to [2, 18]
for a formal presentation). Then, inspired by similar works [2, 18],
we decide to apply the log10-scale to the formulation of some char-
acteristics to obtain values within comparable order of magnitude,
thus making the training of the explanatory model more stable.
In the remaining of the paper, for the sake of easy understand-
ing, we use the following notation to indicate the selected data
characteristics: 𝑆𝑝𝑎𝑐𝑒𝑆𝑖𝑧𝑒𝑙𝑜𝑔 , 𝑆ℎ𝑎𝑝𝑒𝑙𝑜𝑔 ,𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑙𝑜𝑔 ,𝐺𝑖𝑛𝑖-𝑈 , 𝐺𝑖𝑛𝑖-𝐼 ,
𝐴𝑣𝑔𝐷𝑒𝑔-𝑈𝑙𝑜𝑔 ,𝐴𝑣𝑔𝐷𝑒𝑔-𝐼𝑙𝑜𝑔 ,𝐴𝑣𝑔𝐶𝑙𝑢𝑠𝑡𝐶-𝑈𝑙𝑜𝑔 ,𝐴𝑣𝑔𝐶𝑙𝑢𝑠𝑡𝐶-𝐼𝑙𝑜𝑔 ,𝐴𝑠𝑠𝑜-
𝑟𝑡-𝑈 , 𝐴𝑠𝑠𝑜𝑟𝑡-𝐼 , where “log” refers to the log10-scale normalization.
Empirically, we note that the vast majority of calculated charac-
teristics appear loosely correlated, hence further supporting their
adoption for our analysis (Figure 1).

4.3 Step 3: Train/test GNNs-based models
As a third pipeline step, we train and evaluate the selected GNNs-
based recommender systems on the pool of generated datasets. To
this end, we follow the same experimental setting proposed in [7],
and use Elliot as the reproducibility framework to run our experi-
ments [3, 38]. Thus, we perform the random subsampling strategy
to split each dataset into train and test (80% and 20%, respectively).
Then, we retain the 10% of the train as validation for the early stop-
ping to avoid overfitting. To train LightGCN, DGCF, and SVD-GCN,
we fix their configurations (i.e., hyper-parameters and patience
for the early stopping) to the best values according to the original
papers, since our scope is not to fine-tune them. Finally, following
the literature, we use the Recall@20 calculated on the validation for
the early stopping and evaluate the models by assessing the same
metric on the test set. To foster the reproducibility of the results, we
share the GitHub repository with all codes, datasets, configuration
files, and documentation: https://github.com/sisinflab/Topology-
Graph-Collaborative-Filtering.

4.4 Step 4: Explanatory model
Finally, we aim to fit an explanatory model to the collected dataset
characteristics/recommendation performance samples. Statistical
models can be utilized to elucidate the relationship between a hy-
pothesized cause of a phenomenon (i.e., independent variables) and
its effect (measured through dependent variables). While various
potential functions can be used to fit the independent variables to
the dependent ones, we opt to utilize a linear regression model for
two reasons: (i) to adhere to the same methodology employed in
recent studies such as [2, 18], and (ii) to derive explanations on the
performance impact of data characteristics through linear depen-
dencies, which represents the most straightforward and intuitive
strategy. From this intuition, we use a regression model:

y = 𝝐 + 𝜃0 + 𝜽𝑐X𝑐 . (13)
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Figure 1: Pearson correlation of the selected characteristics.
Many values in [−0.5, 0.5] indicate loosely correlated pairs.

We recall that our goal is to test if the factors related to the data
characteristics (i.e., X𝑐 ) can explain the effect on the recommenda-
tion system’s performance (i.e., y). Therefore, in Equation 13, we
denote by 𝜽𝑐 = [𝜃1, . . . , 𝜃𝐶 ] the vector of regression coefficients
each of whom is associated with the 𝑐-th feature (data character-
istic considered here), X𝑐 ∈ R𝑀×𝐶 the matrix containing the data
characteristic values for each sample in the training set, and y the
vector containing the values of the performance measure associated
with all samples in the training set. Moreover, under the assump-
tion of mean-centered data, 𝜃0 expresses the expected value of y
(i.e., in this case, the expected recommendation performance). The
regression model is trained through Ordinary Least Squares (OLS):

(
𝜃∗0 , 𝜽

∗
𝑐
)
= min

𝜃0,𝜽𝑐

1
2 ∥y − 𝜃0 − 𝜽𝑐X𝑐 ∥22 . (14)

To show how the recommendation performance is related to
dataset characteristics, we utilize the basic regression model pre-
sented in Equation 14 to maximize the 𝑅2 coefficient. This approach
allows us to effectively motivate the impact of the 𝜽𝑐 coefficients
on the recommendation system’s effectiveness, as outlined in [20]
for any regression model.

5 RESULTS AND DISCUSSION
We aim to answer two research questions: RQ1)What is the impact
of classical and topological characteristics on the performance of
GNNs-based recommender systems?; RQ2) Is the dataset genera-
tion through node- and edge-dropout differently influencing the
explanations of our model?

5.1 Impact of characteristics (RQ1)
We assess the impact of classical and topological characteristics on
the accuracy performance (i.e., Recall@20) of GNNs-based recom-
mender systems. Figure 2 displays, for each dataset/GNNs-based

model setting, the learned regression coefficients of the explana-
tory framework. Specifically, each bar plot indicates the relative
impact of a given data characteristic on the Recall@20 performance;
moreover, bar plot length and direction represent the magnitude
of this impact and whether there exists a direct/inverse correspon-
dence between characteristic and performance. Finally, to assess
the goodness of the results, we also estimate the adj. (adjusted)
𝑅2 [2, 18] of the regression model, along with the statistical sig-
nificance of the learned coefficients (the darker the bar plots, the
higher the statistical significance). Overall, the adj. 𝑅2 is above 95%,
proving the ability of the regression model to explain the accuracy
recommendation performance through the measured characteris-
tics. Hereinafter, we further decompose the regression results by
categorizing the characteristics into classical and topological.

5.1.1 Classical characteristics. Previous works [2] have assessed
the impact of classical characteristics on neighbor- and factorization-
based models separately. However, a careful search of the relevant
literature yields that no study has investigated whether such char-
acteristics influence GNNs-based recommender systems [37]; as al-
ready discussed, GNNs-based models involve both a neighborhood-
and factorization-based module, where the former corresponds to
the message-passing, and the latter to the users’ and items’ latent
factors as in traditional latent-based recommendation [46, 47].

Interestingly, Figure 2 suggests that, in GNNs-based recom-
mender systems, the factorization component might be more in-
fluential than the neighborhood one on the recommendation per-
formance. In this respect, if we refer to the results from [2], we
observe that factorization- and GNNs-based approaches are partic-
ularly aligned, considering: (i) the inverse correspondence between
the performance metric and the 𝑆ℎ𝑎𝑝𝑒𝑙𝑜𝑔 in almost all settings,
meaning that when the number of users is higher than the number
of items in the system, performance may decrease; (ii) the direct
correspondence between the performance metric and 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑙𝑜𝑔
and𝐺𝑖𝑛𝑖-𝐼 . As for (ii), the density is historically known as one of the
core problems in recommendation (i.e., data sparsity), so it becomes
evident why also GNNs-based recommender systems’ performance
benefits from denser (i.e., less sparse) datasets. The Gini index mea-
sures the dissimilar distribution of items’ interactions in the system
and could be related to the tendency of recommender systems to
promote popular items from the catalog. That is, when there ex-
ist items that have been experienced more frequently than others,
both GNNs- and factorization-based recommender systems may be
biased towards popular items, and so their accuracy performance
increases. Noteworthy, all such observations are supported by the
statistical significance of the results.

5.1.2 Topological characteristics. GNNs-based models interpret
the user-item data as a graph. Consequently, our novel evaluation
analyzes the influence of topological characteristics of the selected
recommendation datasets on the recommendation performance.

The most evident outcome is that 𝐴𝑣𝑔𝐷𝑒𝑔𝑟𝑒𝑒-𝑈𝑙𝑜𝑔 and 𝐴𝑣𝑔𝐷𝑒-
𝑔𝑟𝑒𝑒-𝐼𝑙𝑜𝑔 show a direct correspondence with performance in almost
all settings. Indeed, this analytically confirms the intuitions pro-
vided in the literature on the recommendation scenario [7] or for
other tasks [61], as well as what we already observed in Section 3 re-
garding the explicit presence of the node degree in the formulations
of all the selected GNNs-based approaches. In practical terms, when
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Many values in [−0.5, 0.5] indicate loosely correlated pairs.

We recall that our goal is to test if the factors related to the data
characteristics (i.e., X𝑐 ) can explain the effect on the recommenda-
tion system’s performance (i.e., y). Therefore, in Equation 13, we
denote by 𝜽𝑐 = [𝜃1, . . . , 𝜃𝐶 ] the vector of regression coefficients
each of whom is associated with the 𝑐-th feature (data character-
istic considered here), X𝑐 ∈ R𝑀×𝐶 the matrix containing the data
characteristic values for each sample in the training set, and y the
vector containing the values of the performance measure associated
with all samples in the training set. Moreover, under the assump-
tion of mean-centered data, 𝜃0 expresses the expected value of y
(i.e., in this case, the expected recommendation performance). The
regression model is trained through Ordinary Least Squares (OLS):(

𝜃∗0 , 𝜽
∗
𝑐
)
= min

𝜃0,𝜽𝑐

1
2 ∥y − 𝜃0 − 𝜽𝑐X𝑐 ∥22 . (14)

To show how the recommendation performance is related to
dataset characteristics, we utilize the basic regression model pre-
sented in Equation 14 to maximize the 𝑅2 coefficient. This approach
allows us to effectively motivate the impact of the 𝜽𝑐 coefficients
on the recommendation system’s effectiveness, as outlined in [20]
for any regression model.

5 RESULTS AND DISCUSSION
We aim to answer two research questions: RQ1)What is the impact
of classical and topological characteristics on the performance of
GNNs-based recommender systems?; RQ2) Is the dataset genera-
tion through node- and edge-dropout differently influencing the
explanations of our model?

5.1 Impact of characteristics (RQ1)
We assess the impact of classical and topological characteristics on
the accuracy performance (i.e., Recall@20) of GNNs-based recom-
mender systems. Figure 2 displays, for each dataset/GNNs-based
model setting, the learned regression coefficients of the explana-
tory framework. Specifically, each bar plot indicates the relative
impact of a given data characteristic on the Recall@20 performance;

moreover, bar plot length and direction represent the magnitude
of this impact and whether there exists a direct/inverse correspon-
dence between characteristic and performance. Finally, to assess
the goodness of the results, we also estimate the adj. (adjusted)
𝑅2 [2, 18] of the regression model, along with the statistical sig-
nificance of the learned coefficients (the darker the bar plots, the
higher the statistical significance). Overall, the adj. 𝑅2 is above 95%,
proving the ability of the regression model to explain the accuracy
recommendation performance through the measured characteris-
tics. Hereinafter, we further decompose the regression results by
categorizing the characteristics into classical and topological.

5.1.1 Classical characteristics. Previous works [2] have assessed
the impact of classical characteristics on neighbor- and factorization-
based models separately. However, a careful search of the relevant
literature yields that no study has investigated whether such char-
acteristics influence GNNs-based recommender systems [37]; as al-
ready discussed, GNNs-based models involve both a neighborhood-
and factorization-based module, where the former corresponds to
the message-passing, and the latter to the users’ and items’ latent
factors as in traditional latent-based recommendation [46, 47].

Interestingly, Figure 2 suggests that, in GNNs-based recom-
mender systems, the factorization component might be more in-
fluential than the neighborhood one on the recommendation per-
formance. In this respect, if we refer to the results from [2], we
observe that factorization- and GNNs-based approaches are partic-
ularly aligned, considering: (i) the inverse correspondence between
the performance metric and the 𝑆ℎ𝑎𝑝𝑒𝑙𝑜𝑔 in almost all settings,
meaning that when the number of users is higher than the number
of items in the system, performance may decrease; (ii) the direct
correspondence between the performance metric and 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑙𝑜𝑔
and𝐺𝑖𝑛𝑖-𝐼 . As for (ii), the density is historically known as one of the
core problems in recommendation (i.e., data sparsity), so it becomes
evident why also GNNs-based recommender systems’ performance
benefits from denser (i.e., less sparse) datasets. The Gini index mea-
sures the dissimilar distribution of items’ interactions in the system
and could be related to the tendency of recommender systems to
promote popular items from the catalog. That is, when there ex-
ist items that have been experienced more frequently than others,
both GNNs- and factorization-based recommender systems may be
biased towards popular items, and so their accuracy performance
increases. Noteworthy, all such observations are supported by the
statistical significance of the results.

5.1.2 Topological characteristics. GNNs-based models interpret
the user-item data as a graph. Consequently, our novel evaluation
analyzes the influence of topological characteristics of the selected
recommendation datasets on the recommendation performance.

The most evident outcome is that 𝐴𝑣𝑔𝐷𝑒𝑔𝑟𝑒𝑒-𝑈𝑙𝑜𝑔 and 𝐴𝑣𝑔𝐷𝑒-
𝑔𝑟𝑒𝑒-𝐼𝑙𝑜𝑔 show a direct correspondence with performance in almost
all settings. Indeed, this analytically confirms the intuitions pro-
vided in the literature on the recommendation scenario [7] or for
other tasks [61], as well as what we already observed in Section 3 re-
garding the explicit presence of the node degree in the formulations
of all the selected GNNs-based approaches. In practical terms, when
GNNs-based models are trained on datasets with several interac-
tions for users and items, they learn accurate users’ preferences
since each node receives the contribution of numerous neighbor

554



A Novel Evaluation Perspective on GNNs-based Recommender Systems through the Topology of the User-Item Graph RecSys ’24, October 14–18, 2024, Bari, Italy

0.0 0.5 1.0
Impact

Assort-I
Assort-U

AvgClustC-I_log
AvgClustC-U_log

AvgDeg-I_log
AvgDeg-U_log

Gini-I
Gini-U

Density_log
Shape_log

SpaceSize_log

Yelp2018 (adj.R^2 = 0.971)

0.2 0.0 0.2 0.4 0.6
Impact

Gowalla (adj.R^2 = 0.978)

0.5 0.0 0.5 1.0 1.5
Impact

Amazon-Book (adj.R^2 = 0.952)

(a) LightGCN

0.25 0.00 0.25 0.50 0.75 1.00
Impact

Assort-I
Assort-U

AvgClustC-I_log
AvgClustC-U_log

AvgDeg-I_log
AvgDeg-U_log

Gini-I
Gini-U

Density_log
Shape_log

SpaceSize_log

Yelp2018 (adj.R^2 = 0.973)

0.2 0.0 0.2 0.4 0.6 0.8
Impact

Gowalla (adj.R^2 = 0.981)

0.5 0.0 0.5 1.0
Impact

Amazon-Book (adj.R^2 = 0.95)

(b) DGCF

0.25 0.00 0.25 0.50 0.75 1.00
Impact

Assort-I
Assort-U

AvgClustC-I_log
AvgClustC-U_log

AvgDeg-I_log
AvgDeg-U_log

Gini-I
Gini-U

Density_log
Shape_log

SpaceSize_log

Yelp2018 (adj.R^2 = 0.981)

0.2 0.0 0.2 0.4 0.6
Impact

Gowalla (adj.R^2 = 0.981)

0.5 0.0 0.5 1.0 1.5
Impact

Amazon-Book (adj.R^2 = 0.963)

p-value  0.001 p-value  0.01 p-value  0.05 non-statistically significant

(c) SVD-GCN

p-value  0.001 p-value  0.01 p-value  0.05 non-statistically significant

Figure 2: Visual representation of the impact of dataset characteristics on the recommendation performance (Recall@20)
of GNNs-based recommender systems, for each dataset/model setting. Bar plot length and direction represent the impact
magnitude and whether there is a direct/inverse correspondence between characteristic and performance. Finally, the darker
the bar plots, the higher their statistical significance.
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nodes. It is worth noticing that, in absolute values,𝐴𝑣𝑔𝐷𝑒𝑔𝑟𝑒𝑒-𝑈𝑙𝑜𝑔
is more influential than𝐴𝑣𝑔𝐷𝑒𝑔𝑟𝑒𝑒-𝐼𝑙𝑜𝑔 on the overall performance.
Hence, under the same average degree gain, a user average degree
improvement is preferable since it would lead to better performance.

As far as clustering coefficient and degree assortativity are con-
cerned, we assess how similarities among nodes from the same parti-
tion in the graph may impact the recommendation accuracy perfor-
mance of models. In terms of 𝐴𝑣𝑔𝐶𝑙𝑢𝑠𝑡𝐶-𝑈𝑙𝑜𝑔 and 𝐴𝑣𝑔𝐶𝑙𝑢𝑠𝑡𝐶-𝐼𝑙𝑜𝑔 ,
the results prove again a strong direct correspondence in almost all
settings of GNNs-based models and datasets. Differently from the
average degree scenario, the relative importance of the user-side
values is much higher than the one of the item-side for LightGCN
and DGCF, while the gap sometimes gets narrower in the case of
SVD-GCN. This may happen because while LightGCN and DGCF
only leverage user-item types of interactions, SVD-GCN also embed
the information conveyed in the user- and item-projected graphs
in its formulation, thus flattening the different influence of the
user-side characteristics over the item-side counterpart.

Interestingly, the 𝐴𝑠𝑠𝑜𝑟𝑡-𝑈 and 𝐴𝑠𝑠𝑜𝑟𝑡-𝐼 characteristics exhibit
a direct and inverse correspondence to the recommendation metric,
respectively. Furthermore, models such as LightGCN and DGCF
have slightly larger coefficients for both𝐴𝑠𝑠𝑜𝑟𝑡-𝑈 and𝐴𝑠𝑠𝑜𝑟𝑡-𝐼 than
SVD-GCN. Again, these results have a mathematical justification.
Indeed, the strong lookahead nature of the assortativity measures
(refer again to Section 2) seems to be captured by the multi-layer
message-passing performed by LightGCN andDGCF. Conversely, in
the case of SVD-GCN, they are less influential, probably because the
model acts on the singular values of the adjacency matrix with the
effect of limiting the graph convolutional layers’ depth to avoid over-
smoothing. However, the assortativity results are less significant
than the others, so we plan to further investigate this aspect.

Summary. The results show that: (i) interestingly, the factorization
component of GNNs-based recommender systems seems to be impact-
ing the recommendation performance more than the neighborhood
(message-passing) component; (ii) while confirming its influence on
the recommendation performance, node degree seems not to be a key
topological characteristic to distinguish among the different GNNs-
based models; indeed, the wider perspective provided by clustering
coefficient and (especially) degree assortativity may help to recognize
how the different models address the topological properties of the
graph, even with unexpected outcomes.

5.2 Influence of node- and edge-dropout (RQ2)
The current section investigates the influence of node- and edge-
dropout on the explanatory model. In the interest of space, we
report an extensive analysis of the largest dataset, Gowalla, by
considering the performance of SVD-GCN, the most recent GNNs-
based approach among the selected ones. To answer the RQ, we
provide both a theoretical and analytical intuition.

5.2.1 Theoretical intuition. Figure 3 displays the relation between
the probability distribution of node degrees in the original graph
and their degree values on the Gowalla dataset. As evident, high-
degree nodes are less popular than low-degree ones, and this resem-
bles the tendency of real-world networks to be scale-free [45]. To
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Figure 3: Node degree probability distribution on Gowalla.
The black points (i.e., the real data) would be approximated
by a function in-between the power-law and the exponential.

be more precise, the actual degree probability distribution approxi-
mates neither the power-law (i.e., representing scale-free networks,
in green), nor the exponential function (i.e., in red), but it would be
approximated by a function in-between. Thus, high-degree nodes
are even less frequent than they usually are in scale-free networks.

The figure helps us understand what the different impacts of
node- and edge-dropout on such a graph topology might be. By
recalling that node-dropout works by removing nodes (and all the
edges connected to them) and edge-dropout eliminates edges and
the consequently disconnected nodes, in the worst-case scenario,
node-dropout would remove many high-degree nodes from the
graph; instead, edge-dropout would eliminate all the edges con-
nected to several nodes and thus disconnect them from the graph.
Hence, on average, node-dropout would drop larger portions of
the user-item graph than edge-dropout, possibly undermining the
goodness of the explanations produced by our explanatory frame-
work. This intuition theoretically justifies the joint adoption of
node- and edge-dropout for the experiments presented in RQ1.

5.2.2 Analytical intuition. To further analytically test the previous
intuition, we build four versions of the dataset X𝑐 for the explana-
tory framework, each obtained with varying portions of node- and
edge-dropout, respectively (refer again to Equation (13)). Specifi-
cally, the number of samples in X𝑐 changes in accordance to:

|X𝑐 | = (1 − 𝛼) |X𝑛
𝑐 | + 𝛼 |X𝑒

𝑐 |, (15)
where X𝑛

𝑐 and X𝑒
𝑐 indicate the portion of X𝑐 sampled through node-

and edge-dropout, while 𝛼 is a parameter to control the number of
samples from X𝑛

𝑐 and X𝑒
𝑐 contributing to the final dataset X𝑐 . We

use | · | as a necessary notation abuse to refer to any dataset size in
a simple way. We let 𝛼 range in {0.0, 0.3, 0.7, 1.0}, where extreme
values of 𝛼 are used to build the dataset through either node- or
edge-dropout; the others combine the two sampling strategies.

Table 1 provides a visual representation of how results vary
with different 𝛼 values. Note that we only report the average sam-
pling statistics and the measures indicating the goodness of the
generated explanations (i.e., the calculated adj.𝑅2, and statistical
significance of the learned regression coefficients represented in
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Table 1: Explanatory framework results with varying values of 𝛼 on Gowalla for SVD-GCN. In the first row, we provide a visual
intuition for the 𝛼 value changes in all four settings. In the second row, we report the average sampling statistics of the datasets.
Finally, in the third row, we indicate the adj.𝑅2 regression measure, and a pie chart indicating, for each learned regression
coefficient, its statistical significance (the darker the more statistically significant).

Node Edge Node Edge Node Edge Node Edge
Avg. Stats. Avg. Stats. Avg. Stats. Avg. Stats.
Users: 5,828 Users: 12,744 Users: 21,730 Users: 28,526
Items: 7,887 Items: 17,229 Items: 29,316 Items: 38,467

Interactions: 45,620 Interactions: 97,785 Interactions: 160,919 Interactions: 209,659

adj.𝑅2 = 0.745 adj.𝑅2 = 0.969 adj.𝑅2 = 0.987 adj.𝑅2 = 0.991

p-value  0.001 p-value  0.01 p-value  0.05 non-statistically significant

shades of green once again) as this is the only information we need
to answer the RQ. In alignment with the theoretical intuition, the
average sampling statistics show that node-dropout generally re-
tains smaller portions of the graph than the edge-dropout. Then,
the regression results highlight that the optimal trade-off between
high adj. 𝑅2 and statistical significance of the learned coefficients
is reached when combining samples generated through both node-
and edge-dropout. On the contrary, the settings with either node- or
edge-dropout do not offer the conditions for the regression model
to learn meaningful dependencies. This analytically justifies the
joint adoption of node- and edge-dropout for RQ1.

Summary. The theoretical and analytical evaluation of the explana-
tory model for different settings of node- and edge-dropout indicates
that their joint combination (i.e., the strategy we followed in RQ1) is
beneficial to produce meaningful explanations.

6 CONCLUSION AND FUTUREWORK
In this work, we propose a novel evaluation perspective on graph
neural networks (GNNs)-based recommender systems, that aims
to assess the influence of the user-item graph topological proper-
ties on the recommendation performance of such models. First, we
select classical and topological properties of the recommendation
data, as well as three popular and recent GNNs-based recommender
systems. On such a basis, we design a novel evaluation pipeline,
involving: (i) the generation of a large pool of reduced-size rec-
ommendation data (sampled from the selected datasets through
node- and edge-dropout) that encompass a wide range of topolog-
ical structures; (ii) the calculation of their dataset characteristics
and (iii) evaluation of the models’ recommendation performance;
(iv) the design and fit of an explanatory model that finds linear
dependencies between dataset characteristics and performance. Re-
sults, validated by statistical tests and under different sampling

settings, largely demonstrate the presence of strong characteris-
tics/performance correspondences, offering a novel perspective on
GNNs-based recommendation. We plan to extend our investigation
to other GNNs-based recommender systems and consider addi-
tional recommendation metrics (e.g., bias and fairness dimensions).
Moreover, driven by the derived insights, we aim to propose a novel
GNNs-based approach that exploits the topological structure of the
graph to eventually boost the recommendation performance.
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