

# Book of the Short Papers

Editors: Francesco Maria Chelli, Mariateresa Ciommi, Salvatore Ingrassia, Francesca Mariani, Maria Cristina Recchioni







UNIVERSITÀ Politecnica Delle Marche

BUSINESS ANALYTICS AND

Università Cattaneo DATA SCIENCE HUB





#### CHAIRS

Salvatore Ingrassia (Chair of the Program Committee) - *Università degli Studi di Catania* Maria Cristina Recchioni (Chair of the Local Organizing Committee) - *Università Politecnica delle Marche* 

#### PROGRAM COMMITTEE

Salvatore Ingrassia (Chair), Elena Ambrosetti, Antonio Balzanella, Matilde Bini, Annalisa Busetta, Fabio Centofanti, Francesco M. Chelli, Simone Di Zio, Sabrina Giordano, Rosaria Ignaccolo, Filomena Maggino, Stefania Mignani, Lucia Paci, Monica Palma, Emilia Rocco.

### LOCAL ORGANIZING COMMITTEE

Maria Cristina Recchioni (Chair), Chiara Capogrossi, Mariateresa Ciommi, Barbara Ermini, Chiara Gigliarano, Riccardo Lucchetti, Francesca Mariani, Gloria Polinesi, Giuseppe Ricciardo Lamonica, Barbara Zagaglia.

### ORGANIZERS OF INVITED SESSIONS

Pierfrancesco Alaimo Di Loro, Laura Anderlucci, Luigi Augugliaro, Ilaria Benedetti, Rossella Berni, Mario Bolzan, Silvia Cagnone, Michela Cameletti, Federico Camerlenghi, Gabriella Campolo, Christian Capezza, Carlo Cavicchia, Mariateresa Ciommi, Guido Consonni, Giuseppe Ricciardo Lamonica, Regina Liu, Daniela Marella, Francesca Mariani, Matteo Mazziotta, Stefano Mazzuco, Raya Muttarak, Livia Elisa Ortensi, Edoardo Otranto, Ilaria Prosdocimi, Pasquale Sarnacchiaro, Manuela Stranges, Claudia Tarantola, Isabella Sulis, Roberta Varriale, Rosanna Verde.

#### FURTHER PEPOPLE OF LOCAL ORGANIZING COMMITTEE

Elisa D'Adamo, Christian Ferretti, Giada Gabbianelli, Elvina Merkaj, Luca Pedini, Alessandro Pionati, Marco Tedeschi, Francesco Valentini, Rostand Arland Yebetchou Tchounkeu

Technical support: Matteo Mercuri, Maila Ragni, Daniele Ripanti

Copyright © 2023 PUBLISHED BY PEARSON WWW.PEARSON.COM ISBN 9788891935618AAVV

# Contents

| Preface X                                                                                                                                                                    | XII         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1 Plenary Sessions                                                                                                                                                           | 1           |
| Inequality indices: accurate simulation-based inference<br>Maria-Pia Victoria-Feser                                                                                          | 2           |
| Examples from the Interface of Neural Models and Spatio-Temporal Statistics i<br>Environmental Applications<br>Christopher K. Wikle, Likun Zhang, Myungsoo Yoo and Xiaoyu Ma | n<br>7      |
| Demographic change and sustainability: novel approaches from digit<br>and computational demography<br>Emilio Zagheni                                                         | tal<br>n.a. |
| 2 Invited Sessions                                                                                                                                                           | 14          |
| Machine learning in the design, analysis and integration of sample surveys                                                                                                   |             |
| Causal Discovery for complex survey data<br>Paola Vicard                                                                                                                     | 15          |
| Data Integration without conditional independence: a Bayesian Networks appro                                                                                                 | bach<br>21  |
| Pier Luigi Conti, Paola Vicard and Vincenzina Vitale                                                                                                                         |             |
| Mass imputation through Machine Learning techniques in presence of multi-so data                                                                                             | urce<br>27  |
| Fabrizio De Fausti, Marco Di Zio, Romina Filippini and Simona Toti                                                                                                           |             |
| Machine learning: different uses and perspectives                                                                                                                            |             |
| Evaluation of pollution containment policies in the US and the role of machine learning algorithms                                                                           | 32          |

Marco Di Cataldo, Margherita Gerolimetto, Stefano Magrini and Alessandro Spiganti

| Machine Learning for Official Statistics: An Application on External Trade<br>Mauro Bruno, Maria Serena Causo, Alessio Guandalini, Francesco Ortame and Silvia Rus | n.a.<br><sup>so</sup> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Machine learning, data quality and official statistics: challenges and opportunitie                                                                                | es<br>n.a.            |
| Stefano Menghinello                                                                                                                                                | ind.                  |
| Statistical Machine Learning for environmental applications                                                                                                        |                       |
| Gaussian Processes and Deep Neural Networks for Spatial Prediction<br>Alex Cucco, Luigi Ippoliti, Nicola Pronello, Pasquale Valentini and Carlo Zaccardi           | 38                    |
| How can we explain Random Forests in a spatial framework?<br>Natalia Golini, Luca Patelli and Xavier Barber                                                        | 42                    |
| Recent approaches in coupling deep learning methods with the statistical analy<br>of spatial point patterns<br>Jorge Mateu and Abdollah Jalilian                   | sis<br>48             |
| Statistical Process Monitoring for Complex Data in Industry 4.0                                                                                                    |                       |
| A Kernel-based Nonparametric Multivariate CUSUM for Location Shifts<br>Konstantinos Bourazas, Konstantinos Fokianos, Christos Panayiotou and Marios Polycarp       | 53<br>ou              |
| An Approach for Profile Monitoring via Mixture Regression Models<br>Davide Forcina, Antonio Lepore and Biagio Palumbo                                              | 58                    |
| Anomaly Detection in Circular Data<br>Houyem Demni and Giovanni C. Porzio                                                                                          | 63                    |
| Advances in Data Science and Statistical Learning [IMS Invited Sess                                                                                                | ion]                  |
| Empirical Bayes approximation of Bayesian learning: understanding a common practice Sonia Petrone                                                                  | n.a.                  |
| Generalized Fiducial Inference on Differentiable Manifolds - a geometric<br>perspective<br>Jan Hannig                                                              | n.a.                  |
| Model-free bootstrap and conformal prediction in regression<br>Dimitris Politis                                                                                    | n.a.                  |
| ENBIS Session: System Maintenance, Boosting algorithms for regres<br>and Research Excellence                                                                       | sion,                 |
| Boosting Diversity in Regression Ensembles<br>Mathias Bourel, Jairo Cugliari, Yannig Goude and Jean-Michel Poggi                                                   | 69                    |
| How ENBIS has contributed to the UK Universities Research Excellence Frame                                                                                         | work<br>71            |
| Shirley Coleman<br>Maintenance of degrading systems by dynamic programming or reinforcement<br>learning<br>Antonio Pievatolo                                       | 75                    |

,

# Population Dynamics, Climate Change and Sustainability

| Climate change impacts on fertility in low- and middle-income countries: An<br>analysis based on global sub-national data<br>Côme Cheritel, Roman Hoffmann and Raya Muttarak | n.a.         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Environmental Exposures and Under-5 Mortality in India: A Survival Analysis of data<br>Vinod Joseph Kannankeril Joseph                                                       | of DHS<br>79 |
| The impact of temperature on expressed sentiment by migration status: Evide from geo-located Twitter data<br>Risto Conte Keivabu and Jisu Kim                                | nce<br>84    |
| Statistical Learning for health research and omics data                                                                                                                      |              |
| An alternative to the Dirichlet-multinomial regression model for microbiome da<br>analysis<br>Roberto Ascari, Sonia Migliorati and Andrea Ongaro                             | ta<br>95     |
| Modelling ordinal response to treatment in a real-world cohort study<br>Marco Alfò, Maria Francesca Marino and Silvia D'Elia                                                 | 101          |
| On the application of the symmetric graphical lasso for paired data<br>Saverio Ranciati and Alberto Roverato                                                                 | 105          |
| The Economic behaviour of Sustainability                                                                                                                                     |              |
| Airports performances and sustainable practices. An empirical study on Italian                                                                                               | data<br>110  |
| Riccardo Gianluigi Serio, Maria Michela Dickson, Diego Giuliani and Giuseppe Espa                                                                                            |              |
| Sustainability: still an undefined concept for Italians<br>Raffaele Angelone and Andrea Marletta                                                                             | 116          |
| Quasi-experimental evidence on COVID-19 lockdown effects on Italian housel<br>food shopping basket composition and its sustainability<br>Beatrice Biondi and Mario Mazzocchi | nold<br>122  |
| Advances in statistical methods for complex problems                                                                                                                         |              |
| Inferring multiple treatment effects from observational studies using confounde<br>importance learning<br>Omiros Papaspiliopoulos                                            | er<br>n.a.   |
| Path analysis in Ising models: an application to cyber-security risk assessmen<br>Monia Lupparelli and Giovanni M. Marchetti                                                 | t 127        |
| Causal Regularization<br>Lucas Kania and Ernst Wit                                                                                                                           | n.a.         |
| Explainable machine learning models                                                                                                                                          |              |
| Enhancing Markowitz model: inspection of correlations and tail covariances<br>Gloria Polinesi                                                                                | 133          |

| Objective and subjective dimension of economic well-being: an approach base<br>statistical matching<br>Daniela Marella, Vincenzina Vitale and Pierpaolo D'Urso                                                            | ed on<br>139 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Sustainable, Accurate, Fair and Explainable Machine Learning Models<br>Paolo Giudici and Emanuela Raffinetti                                                                                                              | n.a.         |
| Flexible Learning for Environmental Sustainability                                                                                                                                                                        |              |
| Comparison of traffic flow data sources for air pollution modelling<br>Theresa Smith and Nick McCullen                                                                                                                    | 145          |
| Data analysis of photogrammetry-based mapping: the sea cucumbers in the G<br>Island as a case-study<br>Gianluca Mastrantonio, Daniele Ventura, Edoardo Casoli, Arnold Rakaj,<br>Giovanna Jona Lasinio and Alessio Pollice | iglio<br>150 |
| Understanding forest damage in Germany: Finding key drivers to help with future forest conversion of climate sensitive Nicole Augustin, Heike Puhlmann and Simon Trust                                                    | ure<br>156   |
| Inequalities in higher education outcomes: learning from data                                                                                                                                                             |              |
| Inequalities in international students mobility<br>Kristijan Breznik, Giancarlo Ragozini and Marialuisa Restaino                                                                                                          | 163          |
| Uncovering the interplay of territorial, socioeconomic, and demographic factors<br>high school to university transition<br>Vincenzo Giuseppe Genova, Andrea Priulla and Martina Vittorietti                               | s in<br>169  |
| Statistical Learning of demographic and health dynamics                                                                                                                                                                   |              |
| Estimating the impact of a vaccine mandate: the case of measles in Italy<br>Chiara Chiavenna                                                                                                                              | n.a.         |
| Leveraging deep neural networks to estimate age-specific mortality from life expectancy at birth<br>Andrea Nigri                                                                                                          | n.a.         |
| Nowcasting Daily Population Displacement in Ukraine through Social Media<br>Advertising Data<br>Claire Dooley, Ridhi Kashyap, Douglas Leasure and Francesco Rampazzo                                                      | n.a.         |
| Challenges towards Fairness and Transparency for Data Proce<br>Algorithms and Decision-Support Models                                                                                                                     | esses,       |
| Challenges on Ethics, and Privacy in Al Applications to Fintech<br>Catarina Silva, Joana Matos Dias and Bernardete Ribeiro                                                                                                | 175          |
| Uncertainty and fairness metrics<br>Anna Gottard                                                                                                                                                                          | 180          |

# Educational Data mining: methods for complex data in students' assessment

| Analysis of University Grades: An IRT Model for Responses and Response Tin<br>with Censoring<br>Michela Battauz                                                                                           | nes<br>186    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Predicting high schools' students performances with registry's data: a machine learning approach<br>Lidia Rossi, Marta Cannistrà and Tommaso Agasisti                                                     | 191           |
| Using response times to identify cheaters in CAT: A simulation study<br>Luca Bungaro, Bernard P. Veldkamp and Mariagiulia Matteucci                                                                       | 195           |
| Spatial and Spatio-Temporal Modeling: Theory and Applications                                                                                                                                             |               |
| A geostatistical investigation of the ammonia-livestock relationship in the Po Va<br>Italy                                                                                                                | alley,<br>200 |
| Paolo Maranzano, Kelly McConville, Philipp Otto and Felicetta Carillo                                                                                                                                     |               |
| Bayesian multi-species N-mixture models for large scale spatial data in commu<br>ecology<br>Michele Peruzzi                                                                                               | unity<br>206  |
| Minimum contrast for point processes' first-order intensity estimation<br>Nicoletta D'Angelo and Giada Adelfio                                                                                            | 212           |
| Statistical Framework for Measuring the Sustainability of Tourism                                                                                                                                         |               |
| Data validity and statistical conformity with Benford's Law: the case of tourism i Sicily                                                                                                                 | in<br>217     |
| Roy Cerqueti and Davide Provenzano                                                                                                                                                                        |               |
| Exploring the level of digitalization of the Italian museums through a multilevel<br>ordered logit model<br>Claudia Cappello, Sabrina Maggio and Sandra De Iaco                                           | 228           |
| Functional Partial Least-Squares via Regression Splines. An application on Ital<br>Sustainable Development Goals data<br>Ida Camminatiello, Rosaria Lombardo, Jean-Francois Durand and Leonardo S. Alaimo | lian<br>232   |
| Statistical learning for well-being analysis                                                                                                                                                              |               |
| Assessing multidimensional poverty of the Italian provinces during Covid-19: a<br>small area estimation approach<br>Mariateresa Ciommi, Chiara Gigliarano, Francesca Mariani and Gloria Polinesi          | 238           |
| The fuzzy set approach as statistical learning for the analysis of multidimension<br>well-being<br>Gianni Betti, Federico Crescenzi, Antonella D'Agostino and Laura Neri                                  | nal<br>244    |
| What Makes a Satisfying Life? Prediction and Interpretation with Machine-Lear<br>Algorithms<br>Conchita D'Ambrosio                                                                                        | ning<br>n.a.  |

# Bayesian contributions to Statistical Learning

| A Bayesian framework for early cancer screening<br>Sally Paganin and Jeff Miller                                                                                                                                   | 249    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Imputing Synthetic Pseudo Data from Aggregate Data: Development and Validation for Precision Medicine<br>Cecilia Balocchi                                                                                          | n.a.   |
| Linear models with assumptions-free residuals: a Bayesian Nonparametric<br>approach<br>Filippo Ascolani and Valentina Ghidini                                                                                      | 254    |
| Data Visualization for Smart Insights and Advanced Predictive Analy                                                                                                                                                | /tics  |
| Applications of data visualization for industry<br>Martina Dossi, Stefano Sangaletti, Marilena Di Bari and Federica Bruschini                                                                                      | 259    |
| Some Notes on the Use of the Circular Boxplot<br>Giovanni Camillo Porzio and Davide Buttarazzi                                                                                                                     | n.a.   |
| TERRA: a smart visualization tool for international trade in goods statistics                                                                                                                                      | 265    |
| Francesco Amato, Mauro Bruno and Maria Serena Causo                                                                                                                                                                |        |
| Methods for the analysis of distributional data                                                                                                                                                                    |        |
| Clustering of Distributional Data based on LDQ transformation<br>Gianmarco Borrata and Rosanna Verde                                                                                                               | 271    |
| Dynamic learning from data streams through the combined use of probability<br>density functions and simplicial functional principal component analysis<br>Francesca Fortuna, Fabrizio Maturo and Tonio Di Battista | 276    |
| Multivariate Parametric Analysis of Distributional Data<br>Paula Brito                                                                                                                                             | n.a.   |
| Migrants and Refugees in Europe: social, economic and health-reissues                                                                                                                                              | elated |
| Labor Market Return to Refugees' Human Capital Investment: A Natural<br>Experiment in Sweden<br>Eleonora Mussino                                                                                                   | n.a.   |
| Social networks and loneliness among older migrants in Italy<br>Viviana Amati, Eralba Cela and Elisa Barbiano di Belgiojoso                                                                                        | 282    |
| The Italian Decree on Security: An Analysis of the Impact on Asylum Application                                                                                                                                    | ons    |
| Giorgio Piccitto                                                                                                                                                                                                   | 287    |
| Modelling and Forecasting High-dimensional time series                                                                                                                                                             |        |
| Adaptive combinations of tail-risk forecasts<br>Alessandra Amendola, Vincenzo Candila, Antonio Naimoli and Giuseppe Storti                                                                                         | 293    |
| Are Monetary Policy Announcements related to Volatility Jumps?<br>Giampiero Gallo, Demetrio Lacava and Edoardo Otranto<br>VIII                                                                                     | 299    |

n.a. Alessandro Giovannelli and Tommaso Proietti **Contributed Sessions** 305 3 Bayesian nonparametric methods Bayesian density estimation for modeling age-at-death distribution 306 Davide Agnoletto, Tommaso Rigon and Bruno Scarpa Bayesian mixing distribution estimation in the Gaussian-smoothed 1-Wasserstein distance 311 Catia Scricciolo Bayesian nonparametric estimation of heterogeneous intrinsic dimension via product partition models 316 Francesco Denti, Antonio Di Noia and Antonietta Mira Bayesian nonparametric multiple change point detection for time series of compositional data 322 Edoardo Marchionni and Riccardo Corradin Galton-Watson process: a non parametric prior for the offspring distribution 328 Massimo Cannas, Michele Guindani and Nicola Piras Hierarchical processes in survival analysis 333 Riccardo Cogo, Federico Camerlenghi and Tommaso Rigon **Economics and Statistics** A regression analysis for count data to investigate the effectiveness of incentives on the adoption of 4.0 technologies 339 Stefano Bonnini and Michela Borghesi Statistical analysis on SDGs indicators related to environmental sustainability 344 Najada Firza, Anisa Bakiu and Dante Mazzitelli Empowering futures adopting a spatial convergence of opinions: a Real-Time Spatial Delphi approach 349 Yuri Calleo, Simone Di Zio and Francesco Pilla Stocks price forecasts using Stochastic Differential Equations: an empirical 355 assessment Dario Frisardi and Matteo Spuri The Added-Worker Effect within Italian Households 361 Donata Favaro and Anna Giraldo Health statistics 1 A model for the natural history of breast cancer: application to a Norwegian screening dataset 365 Laura Bondi, Marco Bonetti and Solveig Hofvind

Regularized Estimation and Prediction of the El Nino/Southern Oscillation Cycle

| Generalized Bayesian Ensemble Survival Trees: an extension to categorical variables to apply it to real data<br>Elena Ballante                                                                                                        | 370         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Joint modelling of hospitalizations and survival in Heart Failure patients: a disc<br>non parametric frailty approach<br>Chiara Masci, Marta Spreafico and Francesca Ieva                                                             | rete<br>375 |
| Mobility trends in Italy during the first wave of Covid-19 pandemic: analysis on<br>Google data<br>Ilaria Bombelli and Daniele De Rocchi                                                                                              | 381         |
| Tracking attitudes towards COVID vaccines: A text mining analysis<br>Leonardo Scarso, Marco Novelli and Francesco Saverio Violante                                                                                                    | 387         |
| Treatment effect assessment in observational studies with multi-level treatment<br>and outcome<br>Federica Cugnata, Paola Vicard, Paola M.V. Rancoita, Fulvia Mecatti, Clelia Di Serio<br>and Pier Luigi Conti                        | nt<br>393   |
| Indicators: composition, uses and limitations                                                                                                                                                                                         |             |
| Are European consumers willing to pay the true price for sustainable food?<br>Luca Secondi and Mengting Yu                                                                                                                            | ,<br>399    |
| Can the reliability of composite indexes be impacted by uncertainty of individual indicators?<br>Caterina Giusti, Stefano Marchetti and Vincenzo Mauro                                                                                | 406         |
| Initial Coin Offerings and ESG: allies or enemies?<br>Alessandro Bitetto and Paola Cerchiello                                                                                                                                         | 411         |
| On the impact of intraclass correlation in the ANVUR evaluation of<br>academic departments<br>Giorgio Edoardo Montanari and Marco Doretti                                                                                             | 417         |
| Small area estimation of monetary poverty indicators with poverty lin<br>adjusted using local price indexes<br>Luigi Biggeri, Stefano Marchetti, Caterina Giusti, Monica Pratesi,<br>Francesco Schirripa Spagnolo and Gaia Bertarelli | ies<br>422  |
| Smart Composite Indicators Measuring Corporate Sustainability: A<br>Sensitivity Analysis<br>Camilla Salvatore, Annamaria Bianchi and Silvia Biffignandi                                                                               | 428         |
| Multivariate data analysis 1                                                                                                                                                                                                          |             |
| A note on most powerful tests for right censored survival data<br>Maria Veronica Vinattieri and Marco Bonetti                                                                                                                         | 434         |
| Enhancing Principal Components by a Linear Predictor: an Application<br>Well-Being Italian Data<br>Laura Marcis, Maria Chiara Pagliarella and Renato Salvatore                                                                        | to<br>439   |

| Proper Bayesian Bootstrap for Bagging tree model in survival analysis w<br>correlated data<br>Farah Naz and Elena Ballante                                                                          | ith<br>145       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| ROBOUT: a multi-step methodology for conditional outlier detection<br>Matteo Farnè and Angelos Vouldis                                                                                              | 450              |
| Robustness of the Efficient Covariate-Adaptive Design for balancing<br>covariates in comparative experiments<br>Rosamarie Frieri, Alessandro Baldi Antognini, Maroussa Zagoraiou, and Marco Novelli | 456              |
| Separation scores: a new statistical tool for scoring and ranking partially<br>ordered data<br>Marco Fattore                                                                                        | 462              |
| Statistics in Society 1                                                                                                                                                                             |                  |
| Community detection analysis with robin on hashtag network Valeria Policastro, Francesco Santelli and Giancarlo Ragozini                                                                            | 468              |
| Film Tourism Motivation through the lens of Trip Advisor data4Nicolò Biasetton, Marta Disegna, Girish Prayag and Elena Barzizza4                                                                    | 474              |
| Life satisfaction and social activities in later life in Italy: a focus on the<br>Internet use<br>Claudia Furlan and Silvia Meggiolaro                                                              | 480              |
| Social capital endowment's role in the intergenerational transmission<br>education<br>Alessandra Trimarchi, Maria Gabriella Campolo and Antonino Di Pino Incognito                                  | of<br>485        |
| Streaming Data from Social Networks to Track Political Trends Emiliano del Gobbo and Barbara Cafarelli                                                                                              | 490              |
| The scientific production on gender dysphoria: a bibliometric analysis                                                                                                                              | 405              |
| Z<br>Maria Gabriella Grassia, Marina Marino, Massimo Aria, Rocco Mazza,<br>Luca D'Aniello and Agostino Stavolo                                                                                      | 495              |
| Assessment and Education                                                                                                                                                                            |                  |
| A hierarchical modelling approach to explain differential functioning of mathematics items by student's gender Clelia Cascella                                                                      | 500              |
| A latent variable approach to Millennials' knowledge of green finance 5<br>Maria Iannario, Alessandra Tanda and Claudia Tarantola                                                                   | 506              |
| Archetypal analysis and latent Markov models: A step-wise approach<br>Lucio Palazzo, Rosa Fabbricatore and Francesco Palumbo                                                                        | 512              |
| From high school to university: academic intentions and enrolment of foreign<br>students in Italy<br>Francesca Di Patrizio, Eleonora Trappolini and Cristina Giudici                                | 518              |
| Growth models for the progress test in Italian dentistry degree program<br>Giulio Biscardi, Leonardo Grilli, Carla Rampichini, Laura Antonucci and Corrado Crocetta                                 | 5 <b>23</b><br>a |

| The COVID-19 pandemic and academic E-learning: Italian students and<br>instructors' perceptions<br>Francesco Santelli, Teresa Gentile, Davide Bizjak and Lorenzo Fattori                              | 527         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Working Students and job market outcomes: Insights from the University of<br>Florence<br>Gabriele Lombardi, Valentina Tocchioni and Alessandra Petrucci                                               | 532         |
| Bayesian methods and applications 1                                                                                                                                                                   |             |
| Analyzing RNA data with scVelo: identifiability issues and a Bayesian<br>implementation<br>Elena Sabbioni, Enrico Bibbona, Gianluca Mastrantonio and Guido Sanguinetti                                | n<br>538    |
| Approximate Bayesian Computation for Probabilistic Damage<br>Identification<br>Cecilia Viscardi, Silvia Monchetti, Luisa Collodi, Gianni Bartoli, Michele Betti,<br>Michele Boreale and Fabio Corradi | 544         |
| Estimation of scientific productivity with a hierarchical Bayesian mode                                                                                                                               | el<br>550   |
| Heat waves and free-knots splines<br>Gioia Di Credico and Francesco Pauli                                                                                                                             | 555         |
| The Hierarchical Beta-Bernoulli Process as Out-of-Scope Query<br>Detector<br>Marco Dalla Pria and Silvia Montagna                                                                                     | 560         |
| Health and mortality                                                                                                                                                                                  |             |
| A novel definition of comorbidity based on the Global Burden of Disease<br>project weights<br>Angela Andreella, Lorenzo Monasta and Stefano Campostrini                                               | es<br>566   |
| An Age-Period-Cohort model of gender gap in youth mortality<br>Giacomo Lanfiuti Baldi and Andrea Nigri                                                                                                | 572         |
| Kinlessness in adult and old age across Europe<br>Marta Pittavino, Bruno Arpino and Elena Pirani                                                                                                      | 578         |
| Parameter orthogonalization for Siler mortality model<br>Claudia Di Caterina and Lucia Zanotto                                                                                                        | 584         |
| Pseudo-observations in survival analysis<br>Marta Cipriani, Alfonso Piciocchi, Valentina Arena and Marco Alfò                                                                                         | 590         |
| Sex Gap in Cancer-Free Life Expectancy: The Association with Smoking, Obes<br>and Physical Inactivity<br>Alessandro Feraldi, Cristina Giudici and Nicolas Brouard                                     | sity<br>595 |
| Women's Exposure to HIV in Africa: the Role of Intimate Partner Violence<br>Micaela Arcaio and Anna Maria Parroco                                                                                     | 599         |

# **Mixture Models**

| An extension of finite mixtures of latent trait analyzers for biclustering bipartite networks                                                                                               | 605                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Dalila Failli, Maria Francesca Marino and Francesca Martella                                                                                                                                |                     |
| Constrained Mixtures of Generalized Normal Distributions<br>Pierdomenico Duttilo, Alfred Kume and Stefano Antonio Gattone                                                                   | 611                 |
| Mixture-based clustering with covariates for ordinal responses<br>Kemmawadee Preedalikit, Daniel Fernàndez, Ivy Liuc, Louise McMillan,<br>Marta Nai Ruscone and Roy Costilla                | 617                 |
| Partial membership models for soft clustering of multivariate count data<br>Emiliano Seri, Thomas Brendan Murphy and Roberto Rocci                                                          | 623                 |
| Regression for mixture models for extremes<br>Viviana Carcaiso, Ilaria Prosdocimi and Isadora Antoniano-Villalobos                                                                          | 629                 |
| Robust matrix-variate mixtures of regressions<br>Salvatore Daniele Tomarchio and Michael P. B. Gallaugher                                                                                   | 635                 |
| Sampling methods and analysis of survey data                                                                                                                                                |                     |
| On the use of auxiliary information to define the sampling design for large-scale geospatial data<br>Chiara Bocci and Emilia Rocco                                                          | <sup>э</sup><br>641 |
| Optimal joint inclusion probabilities for spatial sampling<br>Giuseppe Arbia, Piero Demetrio Falorsi and Vincenzo Nardelli                                                                  | n.a.                |
| Robustness and Balance of Sampling or Experimental Designs and Mixture of Designs<br>Yves Tillé and Ejub Talovic                                                                            | 647                 |
| Robustness Bounds for Sampling and Experimental Designs<br>Ejub Talovic and Yves Tillé                                                                                                      | 654                 |
| Statistical Matching: Hotdeck or Propensity Score?<br>Elena Dalla Chiara, Marcello D'Orazio and Federico Perali                                                                             | 661                 |
| The Italian experience on register-based statistics considering measurement,<br>coverage and sampling errors<br>Marco Di Zio, Romina Filippini and Simona Toti                              | 667                 |
| Space-time statistics                                                                                                                                                                       |                     |
| A Hierarchical Spatio-Temporal Model for Time-Frequency Data: An application<br>bioacoustic analysis<br>Hiu Ching Yip, Gianluca Mastrantonio, Enrico Bibbona, Daria Valente and Marco Gamba | n in<br>673<br>a    |
| An approach to cluster time series extremes with spatial constraints<br>Alessia Benevento, Fabrizio Durante and Roberta Pappadà                                                             | 679                 |
| An integrated space-time model to evaluate the innovation drivers in Italy<br>Emma Bruno, Rosalia Castellano and Gennaro Punzo                                                              | 685                 |

| Revealing the dynamic relations between traffic and crowding using big data from mobile phone network                                                                       | om<br>691   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Selene Perazzini, Rodolfo Metulini and Maurizio Carpita                                                                                                                     |             |
| SMaC: Spatial Matrix Completion method<br>Giulio Grossi, Alessandra Mattei and Georgia Papadogeorgou                                                                        | 697         |
| The impact of traffic flow and road signs on road accidents: an approach based spatiotemporal point pattern analysis on linear networks Andrea Gilardi and Riccardo Borgoni | l on<br>702 |
| Clustering and classification 1                                                                                                                                             |             |
| A clustering model for flow data: an application to international student mobility                                                                                          |             |
| Cinzia Di Nuzzo and Donatella Vicari                                                                                                                                        | 708         |
| Contingency tables with structural zeros and discrete copulas<br>Roberto Fontana, Elisa Perrone and Fabio Rapallo                                                           | 713         |
| Levels Merging in the Latent Class Model<br>Christophe Biernacki                                                                                                            | 719         |
| Model-based clustering of count processes with multiple change<br>Shuchismita Sarkar and Xuwen Zhu                                                                          | 725         |
| Similarity Measures and Internal Evaluation Criteria in Hierarchical Clustering of Categorical Data<br>Jana Cibulková, Zdeněk Šulc, Hana Řezanková and Jaroslav Horníček    | of<br>729   |
| Spectral clustering of mixed data via association-based distance<br>Alfonso Iodice D'Enza, Francesco Palumbo and Cristina Tortora                                           | 735         |
| Dynamic models and time series                                                                                                                                              |             |
| A graph based convolution Neural Network approach for forecast reconciliation                                                                                               | 741         |
| Andrea Marcocchia and Pierpaolo Brutti                                                                                                                                      |             |
| A multivariate hidden semi-Markov model for the analysis of multiple air polluta                                                                                            | nts<br>747  |
| Marco Mingione, Pierfrancesco Alaimo Di Loro, Francesco Lagona and Antonello Maruo                                                                                          | otti        |
| A smooth transition autoregressive model for matrix-variate time series<br>Andrea Bucci                                                                                     | 753         |
| Dynamic network models with time-varying nodes<br>Luca Gherardini, Mauro Bernardi and Monia Lupparelli                                                                      | 759         |
| Time lapse analysis of nuclear calcium spiking in plant cells during symbiotic signaling<br>Ivan Sciascia, Andrea Crosino and Andrea Genre                                  | 765         |
| Two-stage weighted least squares estimator of multivariate conditional mean observation-driven time series models<br>Mirko Armillotta                                       | 770         |

# Environmental learning and indicators

| Assessing the performance of nuclear norm-based matrix completion methods<br>CO <sub>2</sub> emissions data<br>Rodolfo Metulini, Francesco Biancalani, Giorgio Gnecco and Massimo Riccaboni                      | on<br>776   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Deep Learning for smart and sustainable agriculture<br>Amalia Vanacore, Armando Ciardiello, Annalisa Izzo, Pierdomenico Zaffino,<br>Carolina Vecchio, Gennaro Pio Auricchio and Luigi Uccelli                    | 782         |
| Do green transition, environmental taxes and renew-able energy promote<br>ecological sustainability in G7 countries? Evidence from panel quantile<br>regression<br>Aamir Javed, Agnese Rapposelli and Asif Javed | 788         |
| Doubly Robust DID for National Parks evaluation: "just" environmental<br>benefits, or socioeconomics impacts as well?<br>Riccardo D'Alberto, Francesco Pagliacci and Matteo Zavalloni                            | 795         |
| On the gap between emitted and absorbed carbon dioxide. Are trees enough to save us?<br>Lorenzo Mori and Maria Rosaria Ferrante                                                                                  | o<br>801    |
| Small scale analysis of energy vulnerability in the municipality of Palermo<br>Giuliana La Mantia                                                                                                                | 806         |
| Health statistics 2                                                                                                                                                                                              |             |
| A test for non-differential misclassification error in database epidemiological stu                                                                                                                              | udies       |
| Giorgio Limoncella, Leonardo Grilli, Emanuela Dreassi, Carla Rampichini,<br>Robert Platt and Rosa Gini                                                                                                           | 812         |
| Is the COVID-19 'color code' of Italian regions subjected to political manipulation                                                                                                                              | on?<br>816  |
| Giovanni Busetta and Fabio Fiorillo                                                                                                                                                                              |             |
| Modelling multilevel ordinal response under endogeneity: application to DTC patients' outcome<br>Silvia D'Elia                                                                                                   | 822         |
| Monitoring drugs-based diagnostic therapeutic paths in heart failure patients us<br>state-sequence analysis techniques<br>Nicole Fontana, Laura Savaré and Francesca Ieva                                        | sing<br>827 |
| Optimal two-stage design based on error rates under a Bayesian perspective<br>Susanna Gentile and Valeria Sambucini                                                                                              | 833         |
| Migrants in Italy and return migration                                                                                                                                                                           |             |
| Comparing migrant and "native" Italian adolescents in risky behaviours<br>from FSS and SHARE Corona surveys<br>Daniela Foresta                                                                                   | n.a.        |
| EU-Border crisis on Twitter: sentiments and misinformation analysis<br>Elena Ambrosetti, Cecilia Fortunato and Sara Miccoli                                                                                      | 839         |

| Graduates' interregional migration in times of crisis: the Italian case<br>Thaís García-Pereiro, Ivano Dileo and Anna Paterno                                                                                                                | 843         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Intentions to stay: The experience of return migrants in Albania<br>Maria Carella, Thaís García-Pereiro, Roberta Pace and Anna Paterno                                                                                                       | 848         |
| Return migration to home country: a systematic literature review with text minin<br>and topic modelling<br>Cecilia Fortunato, Andrea Iacobucci and Elena Ambrosetti                                                                          | ng<br>853   |
| The allocation of time within native and foreign couples living in Italy<br>Giovanni Busetta, Maria Gabriella Campolo and Antonino Di Pino Incognito                                                                                         | 860         |
| Eiλείθυια comes from afar: The foreigners' contribution to fertility by Italian<br>provinces<br>Eleonora Miaci, Cristina Giudici, Eleonora Trappolini, Marina Attili, Cinzia Castagnaro a<br>Antonella Guarneri                              | 866<br>and  |
| Sustainability assessment                                                                                                                                                                                                                    |             |
| ESG, sustainability and stock market risk<br>Michele Costa                                                                                                                                                                                   | 871         |
| Exploring the effect of consumer motivation and perception of sustainability on choices with a Discrete Choice Experiment Gloria Solano-Hermosilla, Jesus Barreiro-Hurle and Ilaria Amerise                                                  | food<br>875 |
| Sustainability explained by ChatGPT artificial intelligence in a HITL perspective<br>innovative approaches<br>Vito Santarcangelo, Angelo Lamacchia, Emilio Massa, Saverio Gianluca Crisafulli,<br>Massimiliano Giacalone and Vincenzo Basile | e:<br>881   |
| Measuring economic and ecological efficiency of urban waste systems in Italy:<br>comparison of SFA and DEA techniques<br>Massimo Gastaldi, Ginevra Virginia Lombardi, Agnese Rapposelli and Giulia Romano                                    | a<br>887    |
| Profile based latent distance association analysis for sparse tables. Application<br>the attitude of EU citizens towards sustainable tourism<br>Francesca Bassi, Josè Fernando Vera and Juan Antonio Marmolejo Martin                        | n to<br>893 |
| Sustainable tourism: a survey on the propensity towards eco-friendly<br>accommodations<br>Claudia Furlan and Giovanni Finocchiaro                                                                                                            | 899         |
| Bayesian methods and applications 2                                                                                                                                                                                                          |             |
| A comparison of computational approaches for posterior inference in Bayesian<br>Poisson regression<br>Laura D'Angelo                                                                                                                         | 903         |
| Bias-reduction methods for Poisson regression models<br>Luca Presicce, Tommaso Rigon and Emanuele Aliverti                                                                                                                                   | 908         |
| Finite Mixture Model for Multiple Sample Data<br>Alessandro Colombi, Raffaele Argiento, Federico Camerlenghi and Lucia Paci                                                                                                                  | 913         |
|                                                                                                                                                                                                                                              |             |

| On Bayesian power analysis in reliability<br>Fulvio De Santis, Stefania Gubbiotti and Francesco Mariani                                                                                               | 918         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Power priors elicitation through Bayes factors<br>Roberto Macri Demartino, Leonardo Egidi and Nicola Torelli                                                                                          | 923         |
| Predictive Bayes factors<br>Leonardo Egidi and Ioannis Ntzoufras                                                                                                                                      | 929         |
| Clustering and classification 2                                                                                                                                                                       |             |
| A Clusterwise Regression Method for Distributional-Valued Data<br>Antonio Balzanella, Rosanna Verde and Francisco de A.T. de Carvalho                                                                 | 935         |
| A novel statistical-significance based semi-parametric GLMM for clustering<br>countries standing on their innumeracy levels<br>Alessandra Ragni, Chiara Masci, Francesca Ieva and Anna Maria Paganoni | 939         |
| Introducing a novel directional distribution depth function for supervised<br>classification<br>Edoardo Redivo and Cinzia Viroli                                                                      | 945         |
| Clustering alternatives in the preference-approval context<br>Alessandro Albano, José Luis Garcia-Lapresta, Mariangela Sciandra and Antonella Plaia                                                   | 950<br>a    |
| Computational assessment of k-means clustering on a Structural Equation Moe<br>based index<br>Mariaelena Bottazzi Schenone, Elena Grimaccia and Maurizio Vichi                                        | del<br>955  |
| Handling missing data in complex phenomena: an ultrametric model-based<br>approach for clustering<br>Francesca Greselin and Giorgia Zaccaria                                                          | 961         |
| Economics and labour markets                                                                                                                                                                          |             |
| A multivariate ranking analysis on the employability of young adults<br>Rosa Arboretti, Elena Barzizza, Nicolo Biasetton, Riccardo Ceccato, Monica Fedeli<br>and Concetta Tino                        | 967         |
| Analysis of the Gender Pay Gap in the Italian Labour Market<br>Giulia Cappelletti and Daniele Toninelli                                                                                               | 973         |
| Evaluating the effect of home-based working employing causal Bayesian networking potential outcomes<br>Lorenzo Giammei                                                                                | orks<br>979 |
| Patterns of flexible employment careers. Does measurement error matter?<br>Mauricio Garnier-Villarreal, Dimitris Pavlopoulos and Roberta Varriale                                                     | 985         |
| Staying or leaving? A nonlinear framework to explore the role of employee well being on retention Ulpiani Kocollari, Fabio Demaria and Maddalena Cavicchioli                                          | -<br>991    |
| The CAP instruments impact on GVA and employment: a multivalued treatment approach Montezuma Dumangane and Marzia Freo                                                                                | nt<br>997   |

| The determinants of leaving the parental home in Italy: 2012-18<br>Ilaria Rocco and Gianpiero Dalla Zuanna                                                                     | 1003          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Environmental modeling                                                                                                                                                         |               |
| A Bayesian weather-driven spatio-temporal model for PM10 in Lombardy<br>Michela Frigeri, Alessandra Guglielmi and Giovanni Lonati                                              | 1109          |
| A preliminary study on shape descriptors for the characterization of microplast<br>ingested by fish<br>Greta Panunzi, Tommaso Valente, Marco Matiddi and Giovanna Jona Lasinio | ics<br>1015   |
| Artificial neural network in predicting odour concentrations: a case study<br>Veronica Distefano and Gideon Mazuruse                                                           | 1021          |
| Bayesian analysis of PM10 concentration by spatio-temporal ARIMA and STS models<br>Michela Frigeri and Ilenia Epifani                                                          | 1026          |
| Functional ANOVA to monitor yearly Adriatic sea temperature variations<br>Annalina Sarra, Adelia Evangelista, Tonio Di Battista and Nicola Di Deo                              | 1032          |
| New perspectives in the measurement of biodiversity<br>Linda Altieri, Daniela Cocchi and Massimo Ventrucci                                                                     | 1038          |
| Multivariate data analysis 2                                                                                                                                                   |               |
| Feature Selection via anomaly detection autoencoders in radiogenomics studie                                                                                                   | es            |
| Alessia Mapelli, Michela Carlotta Massi, Nicola Rares Franco, Francesca Ieva,<br>Catharine West, Petra Seibold, Jenny Chang-Claude and the REQUITE and RADprecise<br>Consortia | 1044          |
| Further considerations on the Spectral Information Criterion<br>Luca Martino                                                                                                   | 1050          |
| How to increase the power of the test in sparse contingency tables: a simulation study                                                                                         | on<br>1057    |
| Federica Nicolussi and Manuela Cazzaro                                                                                                                                         |               |
| Latent event history models for quasi-reaction systems<br>Matteo Framba, VeronicaVinciotti and Ernst Wit                                                                       | 1063          |
| Quantile-based graphical models for continuous and discrete variables<br>Luca Merlo, Marco Geraci and Lea Petrella                                                             | 1069          |
| The logratio Student t distribution<br>Gianna Monti and Gloria Mateu-Figueras                                                                                                  | 1075          |
| Statistics in Society 2                                                                                                                                                        |               |
| A decomposition of the changes in tourism demand in Tuscany over the 2019-<br>period                                                                                           | -2021<br>1079 |
| Mauro Mussini                                                                                                                                                                  |               |
| Bayesian networks as a territorial gender impact assessment tool<br>Flaminia Musella, Lorenzo Giammei, Fulvia Mecatti and Paola Vicar                                          | 1084          |

| 088          |
|--------------|
| 093          |
|              |
| 099          |
| 105          |
|              |
| 111          |
| lel<br>117   |
|              |
| 121          |
| 127<br>andi, |
| 133          |
| 139          |
|              |
| 145<br>glio  |
| 149          |
| 155          |
| 160          |
|              |

| Measuring Dependence in Multivariate Functional Datasets<br>Francesca Ieva, Michael Ronzulli and Anna Maria Paganoni                                                                                                                                                                              | 1166            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Robust Statistical Process Monitoring of Multivariate Functional Data<br>Christian Capezza, Fabio Centofanti, Antonio Lepore and Biagio Palumbo                                                                                                                                                   | 1173            |
| The effects of mobility restrictions on public health: a functional data analysis<br>Italy over the years 2020 and 2021<br>Veronica Mazzola, Giovanni Bonaccorsi, Piercesare Secchi and Francesca Ieva                                                                                            | for<br>1179     |
| Machine Learning and text mining                                                                                                                                                                                                                                                                  |                 |
| A vocabulary-based approach for risk detection in textual annotations of contr<br>of public procurement<br>Giulio Giacomo Cantone, Simone Del Sarto and Michela Gnaldi                                                                                                                            | acts<br>1185    |
| Explainable Machine Learning based on Group Equivariant Non-Expansive<br>Operators (GENEOs). Protein pocket detection: a case study<br>Giovanni Bocchi, Alessandra Micheletti, Patrizio Frosini, Alessandro Pedretti, Andrea F<br>Beccari, Filippo Lunghini, Carmine Talarico and Carmen Gratteri | 1191<br>a.      |
| Hedging global currency risk with factorial machine learning models<br>Paolo Pagnottoni and Alessandro Spelta                                                                                                                                                                                     | 1197            |
| InstanceSHAP: An instance-based estimation approach for Shapley values<br>Golnoosh Babaei and Paolo Giudici                                                                                                                                                                                       | 1203            |
| Networks & Nature Based Solutions: an application for Milan hydric resources<br>Alessia Forciniti and Emma Zavarrone                                                                                                                                                                              | 1209            |
| The Roe v. Wade sentence: an analysis of tweets trough Symmetric Non-Neg<br>Matrix Factorization<br>Maria Gabriella Grassia, Marina Marino, Rocco Mazza and Agostino Stavolo                                                                                                                      | jative<br>1215  |
| Multivariate data analysis 3                                                                                                                                                                                                                                                                      |                 |
| A comparison of different techniques for handling missing covariate values in propensity score methods<br>Anna Zanovello, Alessandra R. Brazzale and Omar Paccagnella                                                                                                                             | 1219            |
| A New Penalized Estimator for Sparse Inference in Gaussian Graphical Mode<br>Adaptive Non-Convex Approach<br>Daniele Cuntrera, Vito M.R. Muggeo and Luigi Augugliaro                                                                                                                              | els: An<br>1224 |
| A tool for assessing weak identifiability of statistical models<br>Antonio Di Noia, Francesco Denti and Antonietta Mira                                                                                                                                                                           | 1230            |
| Computing Highest Density Regions with Copulae<br>Nina Deliu and Brunero Liseo                                                                                                                                                                                                                    | 1235            |
| Parameter estimation via Indirect Inference for multivariate Wrapped Normal distributions<br>Francesca Labanca and Anna Gottard                                                                                                                                                                   | 1241            |

| Sequential marginal likelihood selection for the estimation of sparse correlation<br>matrices<br>Claudia Di Caterina and Davide Ferrari           | on<br>1246    |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Nonparametric statistical methods                                                                                                                 |               |
| A Comparison of Distribution-Free Control Charts<br>Michele Scagliarini                                                                           | 1252          |
| Characterizing Heterogeneity of Causal Effects in Air Pollution in Florida<br>Dafne Zorzetto                                                      | 1257          |
| Comparing three robust procedures for CANDECOMP/PARAFAC estimation<br>Valentin Todorov, Violetta Simonacci, Michele Gallo and Nikolay Trendafilov | 1262          |
| How active is a genetic pathway? Comparative analysis of post-hoc permutat<br>based methods<br>Anna Vesely and Angela Andreella                   | ion-<br>1268  |
| Non Parametric Combination methodology: a literature review on recent<br>developments<br>Elena Barzizza, Nicolò Biasetton and Riccardo Ceccato    | 1274          |
| Regression modeling                                                                                                                               |               |
| A Quantile Regression Model to Evaluate the Performance of the Italian Cour<br>Law                                                                | ts of<br>1280 |
| Carlo Cusatelli, Massimiliano Giacalone and Eugenia Nissi                                                                                         |               |
| A variable selection procedure based on predictive ability: a preliminary study<br>logistic regression<br>Rosaria Simone and Mariarosaria Coppola | ' on<br>1285  |
| Comparison of binary regressions with asymmetric link function for imbalance data                                                                 | ed<br>1291    |
| Michele La Rocca, Marcella Niglio and Marialuisa Restaino                                                                                         |               |
| New advances in Regression Forests<br>Mila Andreani, Lea Petrella and Nicola Salvati                                                              | 1297          |
| On the Optimal Non-Convexity of Penalty in Sparse Regression Models<br>Daniele Cuntrera, Vito M.R. Muggeo and Luigi Augugliaro                    | 1303          |
| Using expectile regression with latent variables for digital assets<br>Beatrice Foroni, Luca Merlo and Lea Petrella                               | 1309          |
| 4 Program                                                                                                                                         | 1315          |

# Quantile-based graphical models for continuous and discrete variables

Luca Merlo<sup>a</sup>, Marco Geraci<sup>b</sup>, and Lea Petrella<sup>b</sup>

<sup>a</sup>Department of Human Sciences, European University of Rome, Italy; luca.merlo@unier.it <sup>b</sup>MEMOTEF Department, Sapienza University of Rome, Italy; marco.geraci@uniroma1.it, lea.petrella@uniroma1.it

#### Abstract

In this paper we develop a mixed graphical model for identifying conditional independence relations between continuous and discrete variables in a quantile framework using Parzen's definition of mid-quantile. To recover the graph structure and induce sparsity, we consider the neighborhood selection approach in which conditional mid-quantiles of each variable in the network are modeled as a sparse function of all others. Building on previous work, we propose a two-step estimation procedure where, in the first step, conditional midprobabilities are obtained and, in the second step, the model parameters are estimated by solving an implicit equation with a LASSO penalty. The empirical application investigates the relationship between depression and inflammation on a sample of individuals from the National Health and Nutrition Examination Survey 2017-2020.

Keywords: LASSO, mixed random variables, mid-CDF, neighborhood selection, NHANES

# 1. Introduction

Graphical models have become a popular and effective framework for the statistical analysis of complex dependence relations among variables. Within this literature, Gaussian Graphical Models (GGMs, 11) have received considerable attention as they provide a model for the pair-wise conditional correlation structure of the variables of interest. Under the assumption of normality, the underlying conditional dependence structure is completely characterized by the inverse of the covariance matrix of the corresponding GGM. However, GGMs suffer from two limitations. First, they rely on the assumption of normally distributed data. Despite its simplicity and mathematical tractability, this assumption is hardly met in actual applications, and deviation from normality makes it harder to characterize conditional dependence structures. To overcome this issue, semi-parametric Gaussian copula models (15; 22) or power transformations of the data may be considered. Alternatively, one may forgo the normal distribution and consider more robust alternatives such as the multivariate t-distribution (7). Such proposals, however, have mainly relied on the use of symmetric distributions or on, more in general, location-shift models. In contrast, a quantile-based approach (1; 5) allows one to infer the conditional dependence structure without having to introduce assumptions on the form of the distributions.

Another, drawback of the GGMs is that they are confined to the modeling of continuous variables only. In many applications of practical relevance, however, the dataset of interest consists of mixed variables (categorical, counts, and continuous). Unfortunately, the literature regarding graphical models in which the variables are of different types is fairly limited. In parallel efforts, (23) and (3) introduced the class of Mixed Graphical Models (MGMs), which specify the conditional distribution of each variable

(continuous and discrete) given the rest as a member of the exponential family of distributions. Subsequently, in a related line of research, (14) and (4) proposed a generalization of the conditional Gaussian model of (12) for mixed data.

The aim of this paper is to introduce a quantile-based graphical model for mixed variables that tackles conditional dependency structures, without making assumptions on the functional form of the distributions. We start from the work of (8) who developed a quantile regression method for discrete responses by extending Parzen's definition of marginal mid-quantiles (19). Intuitively, mid-quantiles can be viewed as fractional order statistics and have been extensively studied by (16). In this context, using mid-quantiles comes with desirable advantages as opposed to existing approaches, based on either jittering or latent constructs. Most importantly, they offer a unifying theory for quantile estimation with discrete or continuous variables, and are well-behaved asymptotically.

In our approach, to identify conditional independence relations and induce sparsity in the network, we model the conditional mid-quantiles of each variable as a sparse function of all others and fit separate regularized regressions using the neighborhood selection method of (17). For each variable, the parameters are estimated via a two-step procedure where conditional mid-probabilities are first obtained semi-parametrically and then regression coefficients are estimated by solving a LASSO-penalized implicit equation. The proposed method allows us to embed in a common graphical framework both continuous (possibly, e.g., heavy-tailed, skewed, multimodals) and discrete (e.g., binary, ordinal, count) variables, thus offering a much richer class of conditional distribution estimates than the conditional mean.

The relevance of this methodology is shown using observations from adult participants of the National Health and Nutrition Examination Survey (NHANES) 2017-2020 to investigate the association between C-Reactive Protein (CRP) and depression symptoms.

The rest of this paper is organized as follows. Sect. 2. formally describes the proposed model while the estimation procedure is discussed in Sect. 3. Finally, the empirical application is presented in Sect. 4.

#### 2. Methods

In this section we illustrate the proposed mid-quantile mixed graphical model. In order to introduce our methods, we extend the mid-quantile regression of (8) to the graphical modeling framework with both continuous and discrete variables. Subsequently, using the neighborhood selection approach of (17), we show how to estimate a sparse mixed graphical model characterizing conditional independence relations among variables via node-wise penalized mid-quantile regressions.

Let  $\mathbf{Y} = (X_1, \ldots, X_{p_1}, Z_1, \ldots, Z_{p_2})'$  denote a *p*-dimensional random vector, where  $X_1, \ldots, X_{p_1}$  are  $p_1$  continuous variables and  $Z_1, \ldots, Z_{p_2}$  are  $p_2$  discrete variables. Also, let  $\mathcal{G} = (V, E)$  denote an undirected graph where  $V = \{1, \ldots, p\}$  is the set of nodes such that each component of the random variable  $\mathbf{Y}$  corresponds to a node in V, and  $E \subseteq V \times V$  represents the set of undirected edges.

Following (8), we first introduce the conditional mid-cumulative distribution function (mid-CDF, 19; 20) of  $Y_i$  given all other variables as

$$G_{Y_j|\mathbf{Y}_{\neg j}}(y_j \mid \mathbf{y}_{\neg j}) = F_{Y_j|\mathbf{Y}_{\neg j}}(y_j \mid \mathbf{y}_{\neg j}) - 0.5m_{Y_j|\mathbf{Y}_{\neg j}}(y_j \mid \mathbf{y}_{\neg j}),$$
(1)

where  $\mathbf{Y}_{\neg j}$  denotes all variables except  $Y_j$ ,  $F_{Y_j|\mathbf{Y}_{\neg j}}(\cdot | \cdot)$  is the conditional CDF of  $Y_j$  and  $m_{Y_j|\mathbf{Y}_{\neg j}}(y_j | \mathbf{y}_{\neg j}) = \Pr(Y_j = y_j | \mathbf{Y}_{\neg j} = \mathbf{y}_{\neg j})$ . The definition of conditional mid-CDF in eq. (1) applies to both continuous and discrete variables. Indeed, if  $Y_j$  is discrete,  $G_{Y_j|\mathbf{Y}_{\neg j}}(y_j | \mathbf{y}_{\neg j})$  is a step function while it reduces to  $F_{Y_j|\mathbf{Y}_{\neg j}}(y_j | \mathbf{y}_{\neg j})$  if  $Y_j$  is continuous since  $\Pr(Y_j = y_j | \mathbf{Y}_{\neg j} = \mathbf{y}_{\neg j}) = 0$ . Let  $S_{Y_j}$  be the set of s distinct values in the population that the random variable  $Y_j$  can take on. Then,

Let  $S_{Y_j}$  be the set of *s* distinct values in the population that the random variable  $Y_j$  can take on. Then, the conditional mid-quantile function (mid-QF) of  $Y_j$ ,  $H_{Y_j|\mathbf{Y}_{\neg j}}(\tau)$ , is defined as the piecewise linear function connecting the values  $G_{Y_j|\mathbf{Y}_{\neg j}}^{-1}(\pi_{jh} | \mathbf{y}_{\neg j})$ , where  $\pi_{jh} = G_{Y_j|\mathbf{Y}_{\neg j}}(y_j | \mathbf{y}_{\neg j})$ ,  $h = 1, \ldots, s$ , for a given quantile level  $\tau \in (0, 1)$ . We model the  $\tau$ -th conditional mid-quantile of  $Y_j$  given all the other variables using the following mid-quantile regression model:

$$H_{g_j(Y_j)|\mathbf{Y}_{\neg j}}(\tau) = \beta_j^0(\tau) + \mathbf{y}_{\neg j}'\boldsymbol{\beta}_j(\tau), \quad j = 1, \dots, p,$$
(2)

where  $g_j(\cdot)$  is a known monotone and differentiable "link" function, and  $\beta_j(\tau) = (\beta_j^1(\tau), \dots, \beta_j^{p-1}(\tau))'$ is a vector of p-1 unknown regression coefficients, with  $\beta_j^0(\tau)$  being an intercept term, for a given  $\tau$ .

To study conditional independence relations between the components of  $\mathbf{Y}$  through the graph  $\mathcal{G}$ , we establish a result that allows us to make inference on the edge structure E using mid-quantile regressions. Following (1) and (5), the next proposition characterizes the relationship between the conditional mid-quantile function in eq. (2) and the conditional independence between any pair of variables in  $\mathbf{Y}$  given the rest.

**Proposition 1.** Suppose that the conditional mid-QF of a random variable  $Y_j$ , for some j = 1, ..., p, is defined by the mid-quantile regression model in eq. (2). Then,  $Y_j$  is conditionally independent from  $Y_k$ , with k = 1, ..., p and  $k \neq j$ , given all of the other variables if and only if  $\beta_j^k(\tau) = 0$  for all  $\tau \in (0, 1)$ .

The proof of Proposition 1 follows from the relationship between the conditional mid-quantile and CDF of each node given the others. Most importantly, from Proposition 1 follows that the zero elements of the vector  $\beta_j^k(\tau)$  for all  $\tau \in (0, 1)$  identify conditional independence relations between the components of **Y**. Hence, the edge set *E* of the graph  $\mathcal{G}$  is completely determined by the non-zero components in the regression vector  $\beta_j(\tau)$ , that is,  $(j, k) \in E$  if and only if  $\beta_j^k(\tau) \neq 0$ . Based on this result, we can build a mixed quantile graphical model to characterize conditional independence relationships between the elements of **Y** by inferring the sparsity pattern of  $\beta_j(\tau)$ .

We exploit the neighborhood selection approach of (17) by running separate mid-quantile regressions of each component in **Y** on all the others. Specifically, let  $\boldsymbol{\tau} = (\tau_1, \ldots, \tau_L)$  be a grid of L ordered quantile levels with  $\tau_l \in (0, 1), l = 1, \ldots, L$ . Large values of L allow us to investigate conditional independence more accurately, but they also increase the computational cost of estimating the model. To infer the graph structure, we consider the linear model in eq. (2) for the conditional mid-QF,  $H_{g_j(Y_j)|\mathbf{Y}_{\neg j}}(\tau_l)$ , over all variables  $j = 1, \ldots, p$  and levels  $l = 1, \ldots, L$ . Consequently, the corresponding edge set E of conditional dependencies is defined as

$$E = \left\{ (j,k) : \max_{l=1,\dots,L} \{ \max\{ \mid \beta_j^k(\tau_l) \mid, \mid \beta_k^j(\tau_l) \mid \} \} > 0, \quad \text{for} \quad 1 \le j \ne k \le p \right\}.$$
(3)

In the next section, we describe a procedure to estimate the proposed graphical model G and induce sparsity in the regression coefficients.

## 3. Estimation

Consider a sample  $\mathbf{Y}_i$ , i = 1, ..., n, with corresponding observations  $\mathbf{y}_i$ . For each variable  $Y_j$ , j = 1, ..., p and level  $\tau_l$ , l = 1, ..., L, estimation of the model in eq. (2), and in turn, of the set E in eq. (3), proceeds in two steps.

Let  $z_{jh}$ , h = 1, ..., k, be the *h*-th distinct observation of  $Y_j$  that occurs in the sample, with  $z_{jh} < z_{jh+1}$  for all h = 1, ..., k - 1. In the first step we estimate the mid-CDF in eq. (1),  $\hat{G}_{Y_j|\mathbf{Y}_{\neg j}}(y_j | \mathbf{y}_{\neg j})$ , where  $\hat{F}_{Y_j|\mathbf{Y}_{\neg j}}$  is obtained by fitting *h* separate logistic regressions, one for each value of  $z_{jh}$ , h = 1, ..., k. In the second step, we define  $\hat{G}_{Y_j|\mathbf{Y}_{\neg j}}^c(y_j | \mathbf{y}_{\neg j})$  as the function interpolating the points  $(z_{jh}, \hat{G}_{Y_j|\mathbf{Y}_{\neg j}}(z_{jh} | \mathbf{y}_{\neg j}))$ , where the ordinates have been obtained in the first step. The goal now is to estimate  $(\beta^0(\tau_l), \beta_j(\tau_l))$  in eq. (2) by solving the implicit equation  $\tau_l = \hat{G}_{Y_j|\mathbf{Y}_{\neg j}}^c(\eta(\tau_l) | \mathbf{y}_{\neg j})$ , where  $\eta(\tau_l) = g_j^{-1} \{\beta^0(\tau_l) + \mathbf{y}_{\neg j}'\beta_j(\tau_l)\}$ , and, at the same time, capture the most relevant interconnections between the variables, which motivates us to use a sparse estimator that automatically shrink the elements of  $\beta_j(\tau_l)$ . Following (8), we thus obtain an estimate of  $\beta_j(\tau_l)$ , denoted  $\hat{\beta}_j(\tau_l)$ , by minimizing the following objective function

$$\underset{\boldsymbol{\beta}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} \left( \tau_{l} - \widehat{G}_{Y_{j} \mid \mathbf{Y}_{\neg j}}^{c}(\eta_{i} \mid \mathbf{y}_{\neg j}) \right)^{2} + \lambda \mid \mid \operatorname{diag}(\mathbf{w}) \boldsymbol{\beta}_{j}(\tau_{l}) \mid \mid_{1}, \tag{4}$$

where we consider the linear interpolation function

$$\widehat{G}_{Y_j|\mathbf{Y}_{\neg j}}^c(\eta_i \mid \mathbf{y}_{\neg j}) = b_{h_i}(\eta_i - z_{jh_i}) + \widehat{\pi}_{jh_i}, \quad z_{jh_i} \le \eta_i \le z_{jh_i+1},$$
(5)

with  $b_{h_i} = \frac{\hat{\pi}_{jh_i+1} - \hat{\pi}_{jh_i}}{z_{jh_i+1} - z_{jh_i}}$  and  $\hat{\pi}_{jh_i} = \hat{G}_{Y_j | \mathbf{Y}_{\neg j}}(z_{jh_i} | \mathbf{y}_{\neg j})$ . The penalization in eq. (4) is given by a Lasso-type penalty on  $\beta_j(\tau_l)$  where we allow a different weight for each coefficient by using the vector w to avoid that variables of different types are on different scales, and where  $\lambda \ge 0$  is the overall tuning parameter of the model. The parameter  $\lambda$  controls the strength of the penalization and determines the sparsity of the graph: a higher (lower) value is responsible for a lower (higher) number of edges; when  $\lambda = 0$ ,  $\hat{\beta}_j(\tau_l)$  reduces to the closed-form estimator in (8, see eq. 2.9). Finally, to infer the graph structure we solve the minimization problem in eq. (4) for all  $Y_j$ ,  $j = 1, \ldots, p$  and  $\tau_l$ ,  $l = 1, \ldots, L$ , and estimate the edge set E as follows:

$$\widehat{E} = \left\{ (j,k) : \max_{l=1,\dots,L} \{ \max\{ | \widehat{\beta_j^k}(\tau_l) |, | \widehat{\beta_k^j}(\tau_l) | \} \} > 0, \quad \text{for} \quad 1 \le j \ne k \le p \right\}.$$
(6)

To select the optimal value of the penalty parameter  $\lambda$ , we adopt the following BIC-type criteria (5):

$$BIC(\lambda) = \sum_{l=1}^{L} \sum_{j=1}^{p} \left[ \ln\left(\sum_{i=1}^{n} \rho_{\tau}(y_{ij} - \beta_{j}^{0}(\tau_{l}) - \mathbf{y}_{i\neg j}' \boldsymbol{\beta}_{j}(\tau_{l}))\right) + \frac{\ln n \ln(p-1)}{2n} \nu_{jl} \right],$$
(7)

where  $\rho_{\tau}(u) = u(\tau - I(u < 0))$  is the quantile loss function (9), with  $I(\cdot)$  being the indicator function, and  $\nu_{jl}$  is the number of estimated non-zero components in  $\hat{\beta}_j(\tau_l)$  for node *j* at quantile level  $\tau_l$ . Specifically, we fit the model for a grid of candidate values of  $\lambda$  and then select the optimal tuning parameter as that corresponding to the lowest BIC value in eq. (7).

# 4. Application

To evaluate the performance of the proposed methods, we illustrate an application to depression symptoms and inflammatory proteins from the NHANES 2017-2020. There is mounting evidence that inflammatory proteins adversely affect functional ability, quality of life, and well-being of individuals (18; 13). Among these proteins, C-Reactive Protein (CRP) is arguably the most extensively studied inflammatory index in depression research. CRP is a protein synthesized by the liver during the acute phase of an inflammatory/infectious process in response to stimulation from other pro-inflammatory proteins (e.g., elevated cytokine levels (6)). Research suggests that the presence, size, and direction of the association between CRP level and depression vary. One possible explanation for this might be the heterogeneity in the population due to, e.g., age and race/ethnicity. Another explanation may be that CRP is also associated with numerous factors (confounders), such as socio-demographic variables and the overall health status of the individual. As potential reasons for these inconsistencies, (21) also pointed out differences in population settings (e.g., inpatient, outpatient, or community), depression assessment (e.g., sum-scores or diagnoses), or adjustment for important chronic conditions.

Graphical models represent the ideal tool to help disentangling the intricate dependencies between CRP, depression symptoms and individual characteristics. Following (8), before carrying out the analysis we remove the effect of NHANES oversampling and then restrict the dataset to individuals aged 20-70 years. The final sample size for analysis is n = 3690, composed of about 59.4% of white persons and 50.1% females. In this network, we include the concentration of CRP (mg/L), nine depression symptoms measured via the Patient Health Questionnaire-9 (PHQ-9, 10) scored on a 4-point Likert scale and 17 socio-demographic, clinical, and lifestyle variables collected among the survey participants, resulting in a total of p = 17 nodes. Specifically, the PHQ-9 is a nine-item self-report questionnaire that was administered to assess the frequency of nine major depression criteria listed in the Diagnostic and Statistical Manual of Mental Disorders (2). The questionnaire is a well-established, validated tool that evaluates how often individuals had been bothered by any of the nine items in the previous 2 weeks, on a scale ranging from 0 ("not at all") to 3 ("nearly every day").

We fit the proposed model using a grid of L = 7 quantile levels,  $\tau = (1/8, ..., 7/8)$ , across an equispaced sequence of 100 values of the tuning parameter  $\lambda$  on the log scale from 0.001 to 5. Prior to fitting, continuous variables have been centered around zero and divided by their standard deviation. For continuous and count variables, we take  $g(\cdot)$  to be, respectively, the identity and the logarithmic function, while we use the logistic mid-quantile model for binary nodes. Finally, the edge set  $\hat{E}$  is estimated as described in eq. (6). To reduce model uncertainty and improve reliability of the inferred interactions, we adopt a model averaging approach. Specifically, 500 bootstrap datasets are created by resampling from the original one. Then, we fit the proposed model on the 500 bootstrap re-samples and estimate the edge structure for each bootstrap dataset. Eventually, in the final network we retain only those edges that are present in at least 85% (18) of the learned graphs.

Fig. 1 provides a graphical representation of the estimated network, where the width of the edges is proportional to the absolute value of the strength of the interaction and the edge colors specify the sign of the corresponding interaction (green = positive, red = negative, grey = undefined). The colors of the nodes map to the three different domains, Inflammation Marker, Depression Criteria, and Covariates.

Results indicate that CRP is associated with greater changes in appetite, presenting a non-zero edge in 90% of bootstrap re-samples. CRP also shows noteworthy connections with other variables: it is positively associated with BMI and gender but negatively with recent smoking and alcohol consumption. Finally, smoking and gender are proximal to several symptom criteria including fatigue, appetite problems, psychomotor changes and thoughts of death, suggesting that there may be gender differences underlying these relationships.



Figure 1: Estimated graph structure. Edges represent interactions that was found to be non-zero in at least 85% of the 500 bootstrap re-samples. Green edges in the networks depict positive associations, red edges represent negative associations, and grey ones signify interactions wherein no sign is defined. Thicker edges depict stronger associations.

# References

- Ali, A., Kolter, J.Z., Tibshirani, R.J.: The multiple quantile graphical model. Adv. Neural. Inf. Process. Syst. 29 (2016)
- [2] American Psychiatric Association, D., Association, A.P., et al.: Diagnostic and statistical manual of mental disorders: DSM-5, vol. 5. American Psychiatric Association Washington, DC (2013)
- [3] Chen, S., Witten, D.M., Shojaie, A.: Selection and estimation for mixed graphical models. Biometrika **102**(1), 47–64 (2015)
- [4] Cheng, J., Li, T., Levina, E., Zhu, J.: High-dimensional mixed graphical models. J. Comput. Graph. Stat. 26(2), 367–378 (2017)
- [5] Chun, H., Lee, M.H., Fleet, J.C., Oh, J.H.: Graphical models via joint quantile regression with component selection. J. Multivar. Anal. **152**, 162–171 (2016)
- [6] Du Clos, T.W.: Function of C-reactive protein. Ann. Med. 32(4), 274–278 (2000)
- [7] Finegold, M., Drton, M.: Robust graphical modeling of gene networks using classical and alternative t-distributions. Ann. Appl. Stat. pp. 1057–1080 (2011)
- [8] Geraci, M., Farcomeni, A.: Mid-quantile regression for discrete responses. Stat. Methods Med. Res. 31(5), 821–838 (2022)
- [9] Koenker, R., Bassett, G.: Regression Quantiles. Econometrica 46(1), 33–50 (1978)
- [10] Kroenke, K., Spitzer, R.L., Williams, J.B.: The PHQ-9: validity of a brief depression severity measure. J. Gen. Intern. Med. 16(9), 606–613 (2001)
- [11] Lauritzen, S.L.: Graphical models, vol. 17. Clarendon Press (1996)
- [12] Lauritzen, S.L., Andersen, A.H., Edwards, D., Jöreskog, K.G., Johansen, S.: Mixed graphical association models. Scand. J. Stat. pp. 273–306 (1989)
- [13] Lee, C., Min, S.H., Niitsu, K.: C-reactive protein and specific depression symptoms among older adults: An exploratory investigation of multi-plane networks using cross-sectional data from NHANES (2017–2020). Biol. Res. Nurs. 25(1), 14–23 (2023)
- [14] Lee, J.D., Hastie, T.J.: Learning the structure of mixed graphical models. J. Comput. Graph. Stat. 24(1), 230–253 (2015)
- [15] Liu, H., Han, F., Yuan, M., Lafferty, J., Wasserman, L.: High-dimensional semiparametric Gaussian copula graphical models. Ann. Stat. 40(4), 2293–2326 (2012)
- [16] Ma, Y., Genton, M.G., Parzen, E.: Asymptotic properties of sample quantiles of discrete distributions. Ann. Inst. Stat. Math. 63(2), 227–243 (2011)
- [17] Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the lasso. Ann. Stat. 34(3), 1436–1462 (2006)
- [18] Moriarity, D.P., Horn, S.R., Kautz, M.M., Haslbeck, J.M., Alloy, L.B.: How handling extreme C-reactive protein (CRP) values and regularization influences CRP and depression criteria associations in network analyses. Brain Behav. Immun. 91, 393–403 (2021)
- [19] Parzen, E.: Change PP plot and continous sample quantile function. Optim. 22(12), 3287–3304 (1993)
- [20] Parzen, E.: Quantile probability and statistical data modeling. Stat. Sci. pp. 652–662 (2004)
- [21] Smith, K.J., Au, B., Ollis, L., Schmitz, N.: The association between C-reactive protein, Interleukin-6 and depression among older adults in the community: a systematic review and meta-analysis. Exp. Gerontol. **102**, 109–132 (2018)
- [22] Xue, L., Zou, H.: Regularized rank-based estimation of high-dimensional nonparanormal graphical models. Ann. Stat. 40(5), 2541–2571 (2012)
- [23] Yang, E., Baker, Y., Ravikumar, P., Allen, G., Liu, Z.: Mixed graphical models via exponential families. In: Artif. Intell. and Stat., pp. 1042–1050. PMLR (2014)