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Abstract: Subarachnoid hemorrhage (SAH) represents a severe acute event with high morbidity
and mortality due to the development of early brain injury (EBI), secondary delayed cerebral
ischemia (DCI), and shunt-related hydrocephalus. Secondary events (SSE) such as neuroin-
flammation, vasospasm, excitotoxicity, blood-brain barrier disruption, oxidative cascade, and
neuronal apoptosis are related to DCI. Despite improvement in management strategies and
therapeutic protocols, surviving patients frequently present neurological deficits with neurocog-
nitive impairment. The aim of this paper is to offer to clinicians a practical review of the actually
documented pathophysiological events following subarachnoid hemorrhage. To reach our goal
we performed a literature review analyzing reported studies regarding the mediators involved
in the pathophysiological events following SAH occurring in the cerebrospinal fluid (CSF)
(hemoglobin degradation products, platelets, complement, cytokines, chemokines, leucocytes,
endothelin-1, NO-synthase, osteopontin, matricellular proteins, blood-brain barrier disruption,
microglia polarization). The cascade of pathophysiological events secondary to SAH is very
complex and involves several interconnected, but also distinct pathways. The identification of
single therapeutical targets or specific pharmacological agents may be a limited strategy able
to block only selective pathophysiological paths, but not the global evolution of SAH-related
events. We report furthermore on the role of heparin in SAH management and discuss the
rationale for use of intrathecal heparin as a pleiotropic therapeutical agent. The combination of
the anticoagulant effect and the ability to interfere with SSE theoretically make heparin a very
interesting molecule for SAH management.

Keywords: subarachnoid hemorrhage; heparin; neuroinflammation; cytokines; delayed cerebral
ischemia; vasospasm; blood brain barrier

1. Introduction

Subarachnoid hemorrhage (SAH) is a severe acute event consisting of massive
blood extravasation in arachnoidal spaces and basal cisterns from an aneurysm or
arterial branch rupture. SAH accounts for 5 to 10% of strokes with an incidence of 7
to 9 cases per 100.000/year [1]. SAH is more frequent in women and in the age range
between 40 and 65 [2] representing 27% of strokes occurring before age 65. Clinical
presentation range widely from sudden headaches to drowsiness and neurological
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impairment until coma. SAH is still burdened by high mortality, ranging from 35 to
50%, and disability rates [1,2]. Poor patient outcome is related to early brain injury
(EBI) and subsequent secondary delayed cerebral ischemia (DCI) [3]. Moreover, the
development of shunt-related hydrocephalus is an additional cause of damage. EBI
occurs in the first period after SAH and is related to increased intracranial pressure and
subsequent reduced cerebral blood flow leading to potential global ischemia [4]. DCI is
mainly driven by the following secondary events (SSE) triggered by extravasated blood
and EBI-induced biochemical changes: neuroinflammation, excitotoxicity, vasospasm,
blood-brain barrier (BBB) disruption, oxidative stress, and neuronal apoptosis [5].
In particular, vasospasm, defined as the delayed narrowing of intracranial arteries
leading to further ischemic damage, has been extensively studied over the years and
different therapies have been addressed to its management [6]. The occurrence of SSE
might ultimately lead to irreversible brain damage and poor outcome. Indeed, despite
improvement in management strategies and therapeutic protocols, surviving patients
frequently present neurological deficits with neurocognitive impairment observed in
up to 56% of survivors [2].

A better understanding of the pathogenetic mechanisms mediating SAH at a molecu-
lar level is needed to prevent complications such as DCI. Many molecules and mediators
that were biologically active within the cerebrospinal fluid (CSF) have been studied in re-
lationship with the occurrence of SSE [7]. Furthermore, several preclinical experimental
studies have focused on molecular and cellular mechanisms associated with SAH patho-
physiological cascade leading to DCI [8]. The increasing knowledge on this topic has
led to the development of natural and synthetic molecules as potential therapeutic treat-
ments [9,10]. However, related to the complexity of SAH-induced events, it remains very
difficult to find drugs able to improve patients’ outcomes, and to date only nimodipine
has been proven to be effective [11]. Further treatments are needed to effectively prevent
neuroinflammation, vasospasm, and events occurring in the subarachnoid spaces. Some
studies have reported a positive effect of intravenous unfractionated heparin on the
outcome of patients with SAH [12–15]. Heparin has strong anti-inflammatory effects
with many possible mechanisms and various neuroprotective interactions [16]. The
aim of this paper is to offer a practical overview of the documented pathophysiological
events following SAH occurring in the CSF in humans and related to the development of
DCI. The current review highlights the compartmental nature of these events, suggesting
the opportunity to test the feasibility of intrathecal compartmental therapy. However,
the subarachnoid space is easily accessible via ventricular or lumbar subarachnoid
catheters which are commonly used in SAH patients. No information about heparin ac-
tivity in cisternal compartments is available to our knowledge. We discuss the rationale
for the possible use of intrathecal heparin therapy for SAH and hypothesize a way to
clinical experimentation.

2. Materials and Methods

The Materials and Methods should be described with sufficient details to allow
others to replicate and build on the published results. Please note that the publica-
tion of your manuscript We performed a review of the literature by analyzing all
reported studies regarding the mediators involved in the pathophysiological events
following subarachnoid hemorrhage occurring in the CSF with the aim of highlight-
ing the compartmental nature of these events to suggest the opportunity of intrathecal
compartmental therapy.

Eligibility criteria: An extensive systematic search has been conducted on Pubmed
according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis
(PRISMA) guidelines. Our target was to define the mediators and pathophysiological
events following subarachnoid hemorrhage occurring in the CSF in humans and related
to the development of DCI by analyzing all studies reported in the relevant literature.
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Searching for relevant studies, the reference section of included articles was analyzed.
Therefore, while screening the literature, we adopted the following inclusion and

exclusion criteria:

- Meta-analysis, Case series, or Clinical study reporting cases of subarachnoid hemor-
rhage with measurement of CSF inflammation mediators involved in the pathogenesis
of DCI.

Conversely, we excluded studies with the measurement of inflammation mediators
only in the serum and papers written in languages other than English.

The English literature was systematically investigated using MEDLINE, the NIH
Library, Pubmed, and Google Scholar. The last search date was February 2023.

The search was performed by typing the following items:

• (Subarachnoid hemorrhage, CSF) AND (hemoglobin degradation products), 106 articles;
• (Subarachnoid hemorrhage, CSF) AND (platelets), 43 articles;
• (Subarachnoid hemorrhage, CSF) AND (complement), 18 articles;
• (Subarachnoid hemorrhage, CSF) AND (cytokines), 117 articles;
• (Subarachnoid hemorrhage, CSF) AND (chemokines), 15 articles;
• (Subarachnoid hemorrhage, CSF) AND (monocytes), 16 articles;
• (Subarachnoid hemorrhage, CSF) AND (leucocytes), 55 articles;
• (Subarachnoid hemorrhage, CSF) AND (endothelin-1), 39 articles;
• (Subarachnoid hemorrhage, CSF) AND (NO-synthase), 27 articles;
• (Subarachnoid hemorrhage, CSF) AND (ostepontin), 28 articles;
• (Subarachnoid hemorrhage) AND (excitotoxicity), 55 articles
• (Subarachnoid hemorrhage, CSF) AND (matricellular proteins), 36 articles;
• (Subarachnoid hemorrhage, CSF) AND (blood-brain barrier disruption), 61 articles;
• (Subarachnoid hemorrhage, CSF) AND (microglia polarization), 17 articles;
• (Subarachnoid hemorrhage, CSF) AND (heparin), 73 articles.

The first step of selection was focusing on the mediators and pathophysiological events
following subarachnoid hemorrhage occurring in the CSF in humans. As a further criterion
of inclusion, we chose to consider.

Given these premises, we selected papers according to the following inclusion criteria:

- Availability of full-text articles
- English text only
- Clinical studies with patients older than 18-year-old with a history of SAH

Conversely, the exclusion criteria were:

- Full-text articles in languages other than English
- Studies not referred to pathophysiological events
- Patients younger than 18-year-old

The search returned a total of 703 papers, including molecular and clinical studies. To
this initial cohort, the aforementioned exclusion criteria were applied, accordingly eliminat-
ing a total of 465 papers that were excluded because they non refer to pathophysiological
events occurring after subarachnoid hemorrhage.

The resulting 238 papers are included in our analysis. 55 articles are subsequently
excluded after the complete revision of the paper (Figure 1).
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Figure 1. The PRISMA 2020 flow diagram for systematic reviews of “Compartmental cerebrospinal
fluid events occurring after subarachnoid hemorrhage” [17].

3. Results

We list the role of several mediators and biologically active molecules that have
been studied in relation to pathophysiological events secondary to SAH (SSE) in the CSF
compartment. Events occurring after SAH are summarized in Figure 2. The increased
pathophysiological understanding of brain damage secondary to SAH opens up new
therapeutic potentials. Furthermore, we analyze the role of unfractionated heparin in
SAH management.

3.1. Hemoglobin Degradation Product and Platelet

Hemoglobin (Hb) and its degradation products have traditionally been considered
to be toxins involved in the generation of vasospasm and DCI [18,19]. However, the
related physiopathological mechanisms have only recently been clarified [20–22]. Cell-
free Hb tetramers are released within the CSF from lysed red blood cells (RBC). Dimers
deriving from the dissociation of Hb tetramers can then migrate in the CSF, targeting
specific brain regions and cerebral arteries. Hb may induce vasoconstriction through
scavenging of nitric oxide (NO), generates high lipid oxidant activity, and participates in
non-ischemic neuronal damage. Hb toxicity in CSF is related to the downstream heme-Hb
metabolite as experimentally demonstrated by malondialdehyde production, the final step
of lipid peroxidation, after incubation with reconstituted lipoprotein [23]. Hb might also
be involved in the occurrence of microthrombi in distal vessels. Scavenging of endothelial
NO induces microvasospasm and disinhibits platelet adhesion and aggregation resulting
in mechanical endothelial damage [24–26]. A recent study investigated oxyhemoglobin
(oxyHb) release from RBC lysis in CSF after SAH. Cumulative oxyHb exposure reaches a
peak between day 3 and day 14 and results significantly higher in patients showing DCI [27].
Akeret et al. reported a very strong association between high Hb levels in the CSF and the
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occurrence of DCI in SAH patients [23]. Furthermore, several authors demonstrated that
Hb levels in CSF are related to a poor functional outcome at 3 months. CSF Hb levels were
reported to be very low for the first 3 days after SAH, subsequently increasing to finally
reach a plateau on days 9–12. Levels of Hb metabolites have also been studied: bilirubin
levels increase on day 1 and reach peak levels between day 3 to 5. Biliverdin levels in CSF
also increase from day 4 reaching the peak on day 12. Finally, methemoglobin presents
a more delayed increase with a peak on day 11 [23]. The increase of Hb and derived
metabolites coincides with a high-risk period for vasospasm and DCI suggesting that CSF
Hb represents an upstream mediator of SSE. The delayed increase in CSF Hb concentrations
is related to the lysis of RBC as indicated by an increase in CSF erythrocyte glycolytic and
antioxidant enzymes (e.g., CA1, CA2, CAT, ALDOA). Hemolysis induces marked and rapid
macrophage accumulation within CSF as indicated by the increase of soluble cell surface
receptors (e.g., CD163, CD14, CSF1R, and TIMP-1). Macrophages accumulate within the
damaged brain tissue aiming at erythrophagocytic and Hb-clearing activity, but the massive
release of HB might saturate macrophages, explaining the delayed elevated CSF Hb levels.
Increased CSF expression of macrophage CD163, a Hb scavenger receptor involved in blood
clearance, was positively and independently associated with better outcomes and reduced
CSF bilirubin after SAH [28]. These data confirm that the ability to scavenge Hb products
in CSF after SAH has a protective role. Hb-scavenger haptoglobin and heme-scavenger
hemopexin have been investigated as potential therapeutical strategies [20,22,23].
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Figure 2. Schematic representation of pathophysiological events occurring in the subarachnoid
compartment after SAH.

Oxyhemoglobin and its metabolites, particularly heme, represent the most relevant
source of reactive oxygen species (ROS) after SAH occurrence [27]. They react with hy-
drogen peroxide and produce hydroxyl radicals leading to the subsequent production
of lipids ROS from cellular membranes [29]. SAH-induced hypoxia and secondary cell
metabolism disruption increased oxygen radicals production and generated a condition
of oxidative stress (OS) that refers to an imbalance (disequilibrium) between antioxidant
agents and ROS production [30–32]. Despite the correlation between OS and outcome is
not definitively clarified, OS is the main pathophysiological way leading to intracranial
hypertension after SAH [33]. OS-related toxicity induces cell dysfunction through oxidation
and alteration of membrane lipids, DNA, and protein eventually leading to programmed
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cell death [34]. ROS represents a kind of final toxic agent implicated in different SSE
and in recent years the evidence that OS plays a crucial role in damage following SAH is
growing [35,36]. An intricate antioxidant system physiologically mitigates the free radicals
effect. As an example, Superoxide dismutase (SOD) could convert superoxide radicals
into hydrogen peroxide consequently reduced by catalase [37]. Despite the cellular an-
tioxidant response being increased after SAH in astrocytes, neurons, and endothelial cells
through Nrf2 (Nuclear factor erythroid-derived 2-related factor 2) upregulation, however
antioxidant enzymes such as SOD, Glutathione peroxidase (GPX) and catalase are rapidly
and heavily consumed reducing significantly antioxidant capacity of brain tissue. This
aspect, in addition to the observed depletion of antioxidant molecules such as tocopherols,
ascorbic acid, and glutathione, contributes to OS [34]. Decreased SOD concentration in CSF
has been correlated with poor long-term outcomes [38].

Recent studies have indicated that microthrombi formation in the distal vessel af-
ter aneurysmal SAH (aSAH) is involved in the development of DCI [39]. Such as Hb,
platelets extravasated after SAH may play a role in vessel constriction and thrombosis
occurrence [40]. Platelets interact with endothelial cells and participate in the inflammation
cascade through the release of extracellular vesicles containing chemokines/cytokines [41].
Platelets/microthrombi are found near arteries experiencing vasospasm [42,43]. The mech-
anism by which platelets induce large artery vasospasm is related to the release of elevated
levels of vasoactive thromboxane A2 (TXA2) and Platelet-Derived Growth Factor-b (PDGF)
as highlighted by a number of clinical studies [40,44–46]. Cisternal level of PDGF-b after
SAH has also been reported to positively correlate with the incidence and severity of
vasospasm [45]. Platelets have also been considered a therapeutic target for DCI preven-
tion including classical anti-platelet therapies, dual anti-platelet therapies, and platelet
activation receptors. Despite promising results, no conclusive evidence is available [40].

3.2. Complement in CSF

The complement system represents a major component of induced neuroinflammation
after aneurysmal SAH and is composed of membrane-bound regulators and receptors,
as well as several plasma proteins. Complement pathways end with the activation of C5
convertase and C5 cleavage, resulting in C5a and the lytic C5b-9 membrane attack complex.
C3a and C5a are important proinflammatory mediators implicated in vasoconstriction,
activation of coagulation, platelets aggregation, and regulation of tissue factor activity [47].
Van Dick et al. observed that C5a levels in CSF were markedly increased on day 1 after
SAH with a gradual decrease within 2 weeks. Furthermore, mice lacking C5a receptors had
reduced brain injury, as well as those treated with C5-neutralizing antibodies [48]. These
data suggest that C5a is involved in the pathogenesis of brain injury after SAH, despite the
lack of association between CSF C5 levels and patients’ functional outcomes. Further and
larger studies are needed to elucidate this aspect. However, the involvement of C5 in SSE
and its biological role in mediating neuroinflammation after SAH lead to identifying C5 as
a potential therapeutical target. Koopman et al. showed with their study on the pharmaco-
dynamic efficacy and safety of Eculizumab in patients with SAH that C5 antibodies may be
a promising new treatment option to decrease brain injury occurrence [49]. Moreover, the
membrane attack complex formed by C5b-C9 complexes is thought to stimulate hemolysis
in the CSF [50]. It also binds cells, such as endothelial cells, ependymal cells, and other
brain cells, thereby inducing brain injury. The complement system has been linked to the
regulation of synapse numbers [51] and in particular complement components C1q and C3
have been implicated to facilitate the removal of synapses by microglia [52]. Similarly, the
initiators of lectin complement pathway (LCP), including ficolin-1, ficolin-2, ficolin-3, and
mannose-binding lectin (MBL), have previously been investigated in SAH patients with
inconclusive results that overall seem to suggest an association between plasma levels and
severity of brain injury [53–56]. Matzen et al. analysed the time-course of LCP initiator
levels in CSF [57]. They found that LCP initiators increased during the first week after
SAH and gradually declined over time. Increased CFS levels of all investigated LCP initia-
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tors, especially ficolin-1 and mannose-binding lectin (MBL), were associated with a poor
functional outcome despite no association being found between delayed cerebral ischemia
and overall LCP initiator levels in CSF. Globally, these data suggest that CSF complement
activation contributes to brain injury after SAH.

3.3. Cytokines in CSF

Cytokines are the most studied inflammatory mediators in CSF after SAH. Many
studies have clearly highlighted the role of cytokines in the physiopathology of SAH and
DCI. Evidence can be summarized as follows:

- An early significant increase of IL-6 might be predictive for the development of
symptomatic vasospasm [58] with a strong correlation between elevated CSF IL-6
levels and secondary vasospastic infarcts [59]. Early dynamics of IL-6 in CSF are
associated with the outcome of SAH patients [60].

- CSF IL-6 seems to be a reliable early marker of vasospasm after SAH on day 3 after
treatment before vasospasm clinical onset [61].

- CSF IL-6 levels above a cut-off value of 3100 pg/mL are associated with an increased
likelihood of ventriculitis; patients with CSF IL-6 levels between 530 and 3100pg/mL
are at higher risk for cerebral vasospasm [62].

- An increase of intrathecal IL-6 to values ≥ 10,000 pg/mL in the early post-SAH period
may be a useful diagnostic tool to predict shunt dependency after SAH [63].

- IL-6 receptor antagonist Tocilizumab may be evaluated as a therapeutical agent able
to significantly reduce microclot formation, neuronal cell death, and delayed cerebral
vasospasm [64].

- CSF levels of IL-6 increase over time and are associated with hemorrhage grade.
Elevated IL-6 CSF levels may influence SAH progression and may predict poor clinical
outcomes in SAH patients. Tumor necrosis factor-α (TNF-α) levels in CSF of SAH
patients were higher than those of healthy controls and TNF-α CSF levels increased
with disease severity, suggesting that elevated TNF-α levels in CSF may be associated
with SAH progression. TNF-α level also correlates with delayed complications of
SAH such as DCI [65,66].

- Upregulation of H2S-producing enzymes and IL-6 is associated with the inflammatory
response and neurological deficits after SAH [67].

- TGFβ1 and total TGFβ2 increased significantly in adults following SAH, and there
was a significant association between higher CSF total TGFβ1/β2 levels in the acute
post-hemorrhagic phase and the subsequent development of chronic communicating
hydrocephalus [68].

- CSF concentration of Histidine-rich Glycoprotein (HRG) has the possibility to become
an early predictor of cerebral vasospasm [69].

- Endothelin-1, IL-6, TNF-α, TNFR-I, and IL-1 receptor antagonist (IL-1ra) is elevated in
patients with vasospasm [70].

- CSF levels of IL-6, TNF-α, IL-17A, IL-10, IL-2, and IFN-γ in the early and delayed
phase of aSAH patients were increased as compared to controls. IFN-γ and IL-4
were also increased but did not reach statistical significance. IL-17 is one of the
main triggers of the proinflammatory response that could potentially be associated
with early brain injury (global ischemia), vasospasm, delayed cerebral ischemia, and
increased mortality. IL-17 quantification could be an early prognostic biomarker
with clinical value [71]. IL-17 is more closely associated with neutrophil recruitment
and activation among the various cytokines. The inhibition of RAR-related orphan
receptor gamma T (RoRγt), the master transcription factor of IL-17, decreases the CSF
recruitment of neutrophils and could be a therapeutic target to ameliorate DCI [72].

- The levels of IL-1β, IL-18, and TNF-α in the CSF were elevated in aSAH patients
and were positively associated with cerebral edema and acute hydrocephalus. CSF
inflammatory cytokines might be useful biomarkers to assess the severity and predict
outcomes [73].
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3.4. Chemokines in CSF

Chemokines are a family of small cytokines or signaling proteins secreted by cells that
induce directional movement of monocytes/macrophages and lymphocytes, as well as
other cell types, to sites of inflammation [74]. In their study, Niwa et al. showed an early
increase of monocyte chemoattractant protein-1 (MCP-1), a chemokine that stimulates the
migration of monocytes, in CSF after SAH [75]. MCP-1 reaches its peak on day 3 after
SAH. A high level of MCP-1 has also been found during vasospasm in the major cerebral
artery of rats [76] and previous studies have demonstrated the presence of mononuclear
leukocytes surrounding the major cerebral arteries in the subarachnoid space after SAH [77].
Interferon-γ-inducible protein-10 (IP-10) and monokine induced by interferon-γ (MIG)
were analyzed in the abovementioned study as well. The first one stimulates the migration
of monocytes and T cells to inflammatory tissues but does not induce a chemotactic activity
in neutrophils. MIG plays its role in activating lymphocytes. Both of them reach their peak
on day 5 suggesting a relationship with the inflammatory peak after SAH. Chaudhry et al.
focused their study on the chemokine C-C motif ligand 5 (CCL5) showing increased levels
on days 1 and 7 [78]. This chemokine is secreted by multiple cells including epithelial cells,
endothelial cells, smooth muscle cells, endometrial cells, fibroblasts, platelets, eosinophils,
T lymphocytes, glial cells, and neurons [79]. CCL5 is a strong chemoattractant for a large
number of inflammatory cells such as basophils, eosinophils, natural killer cells, CD4+ T
cells, and CD8+ T cells [80]. Higher CSF CCL5 levels on post-aSAH day 1 are significantly
related to chronic hydrocephalus development and DCI. Mohme et al. analyzed 13 pro-
inflammatory chemokines in the CSF after SAH, comparing the early (day 1–4) and late (day
6–12) time points. They found significantly increased concentrations of CXCL10, CXCL9,
CXCL11, and CXCL1 [81]. This intrathecal chemokine pattern supports the IFNγ-induced
immune activation with subsequent chemotaxis of monocytes (CXCL10), T cells (CXCL9,
CXCL11), dendritic cells (DCs) (CXCL10), and neutrophils (CXCL1) [81,82]. Increased
concentrations of CCL11, CCL2, CCL20, and CXCL1 were associated with the occurrence
of delayed cerebral ischemia (DCI). These findings support the role of intrathecal early
chemoattractant activation in the pathophysiology of DCI.

3.5. Leucocytes and Monocytes in CSF

Translocation of inflammatory leukocytes into an injured area through vascular leakage
is a hallmark of the early phase of the inflammatory response. The presence of leukocytes
in the subarachnoid space is a specific marker of inflammation [83]. Cells of the innate
immune system such as neutrophils, monocytes, and macrophages, have been found in
high numbers and in highly activated states in CSF after SAH [84]. Increased CSF concen-
trations of neutrophils, myeloperoxidase, and NADPH oxidase have been documented in
patients with cerebral vasospasm [85]. Myeloxidase (MPO), a heme-containing peroxidase,
is released from granules of neutrophils and lysosomes of monocytes recruited in the
subarachnoid space and contributes to OS with DNA, protein, and lipids damage related
to large production of hypochlorous acid. In SAH patients a correlation between serum
levels of MPO and DCI occurrence has been described [86].

On the other hand, little is known about the role of adaptive immunity in aSAH. Roa
et al. tried to identify specific immune mediators of cerebral vasospasm after aSAH [87].
They demonstrated that both innate and adaptive immune responses play an important
role after aSAH. Innate immune cells enter the subarachnoid space after aSAH. This process
occurs via increased expression of cellular adhesion molecules (E-selectin, VCAM-1, ICAM-
1, and HMGB-1) and has been correlated with the occurrence of cerebral vasospasm [88,89].
P- and L-selectin start and mediate the leukocyte rolling, the initial event governing
leukocyte transmigration from vessel walls into areas of inflammation [90]. Cells of the
adaptive immune response have also increased. In particular, CD8+ and CD161+ cells
increased significantly in the CSF of patients who developed clinical cerebral vasospasm
compared to those who did not. Moraes et al. showed similar results with increased
recruitment in CSF and activation of monocytes and neutrophils (innate immune response
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effectors), but also activation of CD4+ and CD8+ T cells (adaptive immune response
effectors) [91]. Coulibaly et al. focused their attention on neutrophil infiltration of the CNS
after SAH. Previous data from their laboratory showed that neutrophils in the CSF peak
three days after SAH and this peak is predictive of the development of DCI [82]. Mohme
et al. analyzed immune cell dynamics in the CSF of 25 patients after SAH. In the CSF, T
cells (35–45% of CD45+ cells), granulocytes (35–45%), and monocytes (18%) represented the
most prevalent immune cells. Among them, the net cellular influx during the usual onset
time of DCI was predominantly accounted for by monocytes and was more pronounced in
the DCI group. Leukocyte migration is strongly related to post-SAH inflammatory response
and the occurrence of DCI [81].

3.6. Endothelin-1 e NO Synthase

Endothelins (ET) are potent vasoconstrictors involved in fluid-electrolyte homeostasis
as well as neuronal function [92]. In the central nervous system, ET plays an important
role in the regulation of constriction/dilatation of pericytes [93]. There are three isoforms
of ET: ET-1 is the strongest endogenous vasoconstrictor across multiple organ systems.
Astrocytes are thought to be one of the major sources of ET-1 production within the
CNS [94,95]. Several studies have already demonstrated that ET-1 levels are increased
in the CSF of patients with SAH [96–98]: the study by Cheng et al. showed that ET-1 in
the CSF increased in the initial 5 days following SAH, reaching a peak within 3 to 5 days,
and then gradually subsided [99]. ET-1-induced vasoconstriction is mediated by two
G-protein-coupled receptors: endothelin receptor type A (ETA) and endothelin receptor
type B (ETB) [100]. The expression levels of ETA and ETB mRNA are upregulated in CSF
following SAH probably leading to hypercontractility of cerebral arteries [98]. Suzuki et al.
revealed that ET-1 expression levels in both plasma and CSF of patients with SAH classified
as Fisher grade III to IV were significantly higher, compared with those in patients with
SAH classified as Fisher grade I or II [99]. The study by Cheng et al. only included patients
with SAH Fisher grade III or IV, who were more prone to develop cerebral vasospasm [99].
The peak expression of ET-1 in CSF appeared within 3–5 days and remained at a high level
until 10 days after SAH onset. Related to the high risk of cerebral vasospasm development
within 4 to 10 days following SAH, it was speculated that ET-1 expression in the CSF
may be a potential biomarker to predict cerebral vasospasm following SAH. Wanebo et al.
demonstrated that systemic administration of the ETA receptor antagonist significantly
attenuates cerebral vasospasm after SAH, thus providing additional support for the role of
ET-1 in vasospasm [101].

Nitric oxide (NO) is frequently termed a “double-edged sword” in cerebral ischemia.
It is a powerful dilator of cerebral vessels and it has been reported to have both neuroprotec-
tive and cytotoxic effects [102]. NO is produced by endothelial nitric oxide synthase (eNOS)
in the intima and by neuronal nitric oxide synthase (nNOS) in the adventitia of cerebral
vessels [99]. Perivascular OxyHb induces the inactivation of Ca2+ channels, and the conse-
quent drop in intracellular Ca2+ in endothelial cells leads to reduced eNOS expression [103].
Dysfunction of eNOS could also be due to increased activity of phosphodiesterase (PDE)
and endogenous inhibition by asymmetric dimethylarginine (ADMA) [104]. Ng et al.
showed high CSF NO levels in 16 patients with spontaneous SAH; the degree of elevation
was higher in patients with poor-grade SAH [103]. Woszczyk et al. investigated 21 patients
after aSAH and 5 of them developed clinically symptomatic vasospasm. There was a
significant difference in NO levels between the groups. Patients with cerebral vasospasm
showed between days 2 and 8 significantly higher levels of NO metabolites (nitrate and
nitrite) in CSF than patients with an uncomplicated clinical course. Within OS induced by
SAH, the reaction of superoxide radicals with NO leads to the production of producing
neurons [31]. Consequently, overproduction of NO may cause free radical injury of cells of
the vascular wall and induce vasoconstriction [105]. In their recent study, Kho et al. also
revealed an association between elevated NO levels in CSF and the severity and occurrence
of vasospasm other than clinical outcomes in aneurysmal SAH patients. They suggest
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that increased levels of NO metabolites detected in vasospasm patients are the result of
inducible NO increase secondary to immunological response following SAH. Subsequent
overproduction of NO may be the cause of free radical injury of cells of the vascular wall
leading to vasoconstriction [106].

Pluta et al. on the other hand described a close relationship between the decrease of
CSF nitrite levels and the development other than the severity of vasospasm. Moreover,
nitrite infusion prevents vasospasm in the experimental SAH monkey model [107]. They
suggested the hypothesis that decreased NO availability is responsible for the development
of cerebral vasospasm [108].

3.7. Excitotoxicity

The recent literature suggests excitotoxicity, a type of neurotoxicity mediated by
glutamate, plays an important role in EBI. Glutamate is the principal neurotransmitter
in the adult brain and its role is critical for neuron-to-neuron communication, neuronal
growth, and synaptic plasticity in health conditions and diseases [109]. Excitotoxicity
consists of two components: the first one is an acute, intracellular influx of Na+ and
Cl-, and subsequently water, causing cell swelling and tissue edema that compress the
microvasculature in the surrounding regions resulting in microcirculatory disturbances,
and the second one is excess in Ca2+ cellular influx Ca2+-dependent activation of death
signaling cascades leading to cell degeneration that occurs somewhat late [110,111]. The
onset of SAH and post-SAH global cerebral ischemia induces metabolic failure with the
disturbance of ionic hemostasis, causing excessive and uncontrolled releases of glutamates
and glutamate receptors overstimulation [112]. Increased CSF levels of excitatory amino
acids (EAAs) such as glutamate and aspartate have been reported in SAH such as in
hemorrhagic traumatic brain injury. [113,114]. Higher levels of EAAs is related to poor
outcome contributing to vasospasm and neuroelectric disturbances defined as cortical
spreading depolarization (CSD). CSD is a massive focal neuronal depolarization leading
to further cerebral ischemia, decrease in NO and K+ increase in subarachnoid space with
consequent worsening of brain edema as well as predisposition to seizure activity [115].

Further, post-SAH hemolysis increases basal perivascular K+ concentrations and
arginase-1 release that decreases NO availability through depletion of the eNOS substrate
L-arginine. NO dysregulation directly led to parenchymal arteriolar constriction rather
than arteriolar dilatation irrespective of increased metabolism [116]. Therefore, a correlation
between excitotoxicity and the prognosis of the patient with SAH has been suggested. Cere-
bral glutamate and EAA levels in an acute phase of SAH are already high in patients with
neurologically poor status and cerebral edema; elevated glutamate levels with depletion
of the eNOS substrates were reported to be an independent predictor of poor outcomes
in a clinical setting [112,116]. NMDAR (N-Methyl-D-Aspartate Receptors) present a high
affinity for glutamates and are involved in receptor-mediated Ca2+ influx. Inhibitors of
NMDAR, such as Ketamine, have been considered neuroprotective agents preventing CSD
but conclusive evidence is not still available [117].

3.8. Ostopontin and Matricellular Protein

Osteopontin (OPN) is a pleiotropic acidic matricellular glycoprotein involved in the
pathogenesis of acute and chronic inflammation [118]. It undergoes upregulation under
pathological conditions and can be secreted by microglia under stress [119]. OPN may
induce cell motility and modulate the function of bioactive substances through interaction
with a variety of mediators such as growth factors, chemokines, and proteases. Produc-
tion of OPN is stimulated by transforming growth factor-β, PDGF, cytokines such as
interleukin-1α or tumor necrosis factor-α and endothelin [120]. OPN has been indicated
to be neuroprotective in aSAH [121,122] preventing EBI and vasospasm. Elevated plasma
OPN levels have been reported as an independent predictor of poor prognosis at 90 days
in patients with SAH. However, to date, only one study reports osteopontin CSF values,
confirming that high values with an increase between day 4 and day 8 are associated with
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a poor prognosis. CSF levels of OPN are higher than plasma levels at any time suggesting
a primary production and release in the CSF compartment. Moreover, persistent elevated
plasma OPN levels on days 11–12 are associated with chronic shunt-dependent hydro-
cephalus. Osteopontin has been proposed as a potential therapeutic agent but there are no
clinical trials demonstrating its efficacy. The presence of high CSF levels of osteopontin,
however, did not show protective effects but was associated with poor prognosis and
chronic hydrocephalus. High OPN CSF level probably represents the response to greater
damage more than being a molecule able to prevent neurological damage.

3.9. Blood-Brain Barrier Disruption

The blood-brain barrier (BBB) is a highly selective semipermeable membrane com-
posed of various interacting cells such as endothelial cells, astrocytes, microglia, and
pericytes. Endothelial cells, with their tight junction (TJ) and membrane protein acting as
regulating transporter systems, are responsible for the correct barrier functioning [123].
SAH induces alterations in every single component of the BBB cells leading to brain home-
ostasis disruption. The main pathophysiological event occurring after SAH and related to
progressive BBB dysfunction is the development of a neuroinflammatory response. BBB
damage can be already observed after 24 h from SAH due to the degradation products
of erythrocytes such as oxyhemoglobin (OxyHb) enhancing OS that start the endothelial
cell apoptosis [124,125]. Apoptosis in endothelial cells is orchestrated by endoplasmic
reticulum (ER) stress-induced activation of C/EBP homologous protein (CHOP). SAH
induces increased CHOP levels, which leads to the downregulation of the anti-apoptotic
Bcl-2 protein and induction of the Bcl-2 interacting mediator of cell death (Bim) [126]. More-
over, increased levels of key pro-apoptotic proteins such as p53 upregulated modulator of
apoptosis (PUMA) and Bcl-2-associated X protein (Bax) were found in endothelial cells 24 h
after SAH. Therefore, p53 seems to be one of the key factors in the control of endothelial
cell apoptosis following SAH. TNF-α also plays an important role in the apoptosis of
endothelial cells after SAH through the action of the TNF-α-receptor that activates caspase-
2, -3, -8, and -9. Caspase-8 in turn activates caspase-3, which subsequently cleaves poly
(ADP)-ribose polymerase (PARP), resulting in DNA fragmentation and cell death [127].

OS-related production of free radicals can negatively affect several cellular structures,
such as membranes, lipids, tight-junction proteins, lipoproteins, and deoxyribonucleic
acid (DNA) [128,129]. Lipid membrane peroxidation spread very quickly affecting a large
number of cells [125]. Proteins may as well be damaged by oxidative stress, undergoing
conformational modifications that could determine a loss, or impairment, of their enzymatic
activity [129,130]. DNA modification can induce endothelial cell apoptosis and altogether,
these mechanisms increase BBB permeability [131]. Reactive oxygen species are also
released by infiltrating neutrophils along with the release of proteases such as elastases,
collagenase, and matrix metalloproteinase (MMP) [132].

Another important mechanism that increases BBB permeability is the disruption
of the microvascular basal lamina mediated by loss of collagen IV after SAH, due to
increased enzymes such as collagenase and MMP-9 [133]. Damages to endothelial cells
and the basal lamina are responsible for the development of cerebral vasospasm. These
morphological changes have been reported to reach a peak on days 5 and 7 after bleeding
which corresponds to the most dangerous period for vasospasm development [134].

Inflammation is an important factor in the progression of BBB disruption. Activation
of the NF-κB inflammatory pathway, as well as the increased expression of Toll-like receptor
(TLR)-4 and p53, induce the up-regulation of MMP-9 via NF-κB and was recorded in brain
endothelial cells only 24 h after SAH. This again leads to the degradation of occludin and
disruption of basal lamina through the degradation of collagen IV and laminin [135]. The
disruption of tight junctions between endothelial cells is considered to be the main cause of
post-hemorrhagic vasogenic edema [136].
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3.10. Microglia M1 and M2 Polarization

Microglia, the residential immune cells of the central nervous system (CNS), have
several functions: antigen presentation, phagocytosis, and expression of cytokines and
chemokines [137]. Microglial cells are sensitive to numerous inflammatory mediators,
transcription factors, or growth factors and activate promptly by altering the morphol-
ogy and polarization in response to various brain insults. Conventionally, microglia gain
morphology changes from ramified to an amoeboid shape when activated. Activated
microglial cells polarize to M1 and M2 phenotypes, which are distinct activation states
with different expression profiles [138]. Classically, lipopolysaccharide (LPS) and pro-
inflammatory cytokine interferon-γ (IFN-γ) prime microglia to M1 phenotype with the
release of pro-inflammatory cytokines, such as TNF-α and interleukin-6 (IL-6); when
exposed to IL-4 or IL-13, microglia polarizes to alternative M2 phenotype with the expres-
sion of anti-inflammatory factors, such as transforming growth factor beta (TGF-β) and
IL-10 [139,140]. Zheng et al. demonstrated that microglia were activated 24 h and 72 h
after SAH [141]. Microglia activated dynamically after SAH, starting with an early M1
phenotype and transitioning to M2 phenotype. M1 polarized microglia drives the pro-
inflammatory responses against microorganisms and tissue injuries, producing a high level
of reactive oxygen species, NOs, and pro-inflammatory cytokines [142]. M2 phenotype is a
beneficial activation state characterized by scavenging debris, promoting angiogenesis, and
expressing anti-inflammatory factors [143]. A better understanding of these mechanisms
would provide a key foundation for further investigations to develop target treatment.

Tian et al. revealed that activation of retinoic acid receptors (RARα) receptor improved
neurological outcomes and attenuated neuroinflammation of EBI after SAH by promoting
M1-to-M2 phenotypic polarization of microglia (Mafb/Msr1/PI3K-Akt/NF-kB pathway
regulation) [144]. The signal transducer and activator of transcription 3 (STAT3) are closely
related to the microglial polarization transition and modulation of microglia-dependent
neuroinflammation. Microglial STAT3 deletion improved neurological function and neuronal
survival probably by promoting M2 polarization and anti-inflammatory responses after SAH.
STAT3 might be a promising therapeutic target to reduce EBI after SAH [145]. Recombinant
human erythropoietin (rhEPO) acts on EPOR/JAK2/STAT3 signaling pathway and also
showed anti-inflammatory effects on microglia polarization reducing brain cell apoptosis,
neuronal necrosis, albumin exudation, and brain edema acting on [146]. Gao et al. focused on
milk fat globule-epidermal growth factor-8 (MFG-E8), a secreted multifunctional glycoprotein
composed of epidermal growth factor (EGF)-like sequences [147]. Given its role as a bridging
molecule between apoptotic cells and macrophages, MFG-E8 facilitates the clearance of
pro-inflammatory mediators. Recombinant human MFG-E8 treatment mediates the M2
microglial shift and reduces microglial inflammatory response producing direct protective
effects on neurons (integrin β3/SOCS3/STAT3 signaling pathway). Therefore, also MFG-E8
is a promising candidate to suppress microglia-mediated neuroinflammation and improve
SAH patients’ outcomes [148]. It is very likely that microglial activation plays an important
role in brain damage after SAH. Limiting microglial activation with an early reduction of the
inflammatory response may be a key therapeutic target.

3.11. Neuronal Apoptosis

Biological responses to SAH can lead to the apoptotic death of neurons, glial and
endothelial cells. Apoptosis refers to the death of cells under the autonomous control
of multiple genes and can occur through three different pathways, namely, the extrinsic
pathway, intrinsic (mitochondrial) pathway, and endoplasmic reticulum (ER) stress-induced
pathway, depending on the site of apoptosis [149]. In addition, other molecular mechanisms
such as oxidative stress pathways can play a main role in apoptosis occurrence. OS induced
during the ischemic post-SAH phase contributes to enhancing excess mitochondrial ROS
production and mitochondrial dysfunction [37]. It has been suggested that neuronal
apoptosis is the major contributor to morbidity and mortality after SAH. Neuronal cell loss
probably continues into the later phase and the larger part of cells dying after SAH are
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neurons [149]. The persistence of blood in the subarachnoid space perpetrates damage to
brain cells. Apoptosis can therefore be considered a final effect when irreversible triggered
and all the mechanisms previously described may lead to an inflammatory state and
microglial activation thereby increasing neuronal apoptosis. Reduction and modulation of
SSE represent the main therapeutical target in order to minimize apoptosis.

3.12. Heparin and SAH

Unfractionated heparin (UHF) was proposed as multitargeted therapy for the preven-
tion of delayed damage in SAH patients. [150] Only a few studies investigated the use of
heparin in SAH management. A retrospective cohort study on 87 consecutive patients with
Fisher grade 3 aSAH documented the potential benefit and safety of low-dose intravenous
heparin (LDIVH). Patients treated with heparin had a statistically significant reduction in
symptomatic vasospasm (9% vs 47%) and CT-documented brain infarction (0% vs 21%) as
compared to the control group. [12] Furthermore, the retrospective study by James et al.
focused on the cognitive outcome of SAH patients based on the Montreal Cognitive Assess-
ment [151]. Patients treated with LDIVH showed better cognitive outcomes as compared
with the control group treated with standard therapy. No severe cognitive impairment
occurred in LDIVH patients and the Authors underlined the positive influence of heparin
through linear regression analysis. In order to evaluate the neuroprotective effect of UFH,
Burder et al. conducted a retrospective study on 718 patients treated for aSAH [13]. The
rate of cerebral vasospasm was significantly reduced in patients treated with a continuous
infusion of UFH following aneurysm endovascular coiling compared with a control group
(14.2% vs. 25.4%; p = 0.05). Despite no statistical significance, the heparin effect enhanced
when the treatment was continued for 7 days. In a more recent retrospective study on
556 patients, LDIVH resulted beneficial as compared with prophylactic subcutaneous hep-
arin. The Heparin cohort was 1.9 times less likely to develop delayed neurological damage
and 2.5 times less likely to develop cerebral infarction as demonstrated by multivariate
analysis. Finally, the meta-analysis of Lukito et al. confirmed that heparin treatment for at
least 48 h is associated with reduced occurrence of brain infarction showing at the same
time adequate treatment safety [152]. Wurm et al. analyzed 120 consecutive patients with
aSAH (Hunt-Hess I–III), after aneurysm repair, randomly allocated to either one subcu-
taneous injection of 20 mg enoxaparin or placebo for 21 days following SAH. The study
revealed a marked reduction in vasospasm-related infarction (3.5% vs. 28.3%; p < 0.001),
shunt-dependent hydrocephalus (1.8% vs. 16.7% placebo; p = 0.019), and delayed ischemic
deficits (DID) (8.8% vs. 66.7% placebo; p < 0.001). At 1-year follow-up, patients in the
enoxaparin group had significantly better outcomes than the placebo group, supporting
the neuroprotective properties also of low-molecular-weight heparin [153].

UFH is a mixture of endogenous glycosaminoglycans with molecular weights ranging
from 3 to 30 KD consisting of variable-length linear polymeric chains of heavily sulfated
polysaccharides. The high degree of sulfation results in high negative charge density
making UFH the highest negatively charged biological molecule existing [154,155]. Within
common understanding, the primary effect of heparin is to bind antithrombin III inducing
an allosteric activation that allows antithrombin III to inhibit the clotting Factor Xa. The
heparin-antithrombin III complex may also bind and inactivate thrombin [156]. Heparin
could interfere with the evolution of extravasated clots in the subarachnoid space as well
as with platelet aggregation and the release of mediators. Despite the prominence of anti-
coagulation in heparin clinical applications, much evidence suggests that anti-coagulation
is not the primary physiologic role of heparin. Related to high negative charges, UFH has a
strong ability to interact and bind with positively charged proteins and surfaces. UHF has
been documented to interact with over 100 proteins [157]. UHF can directly bind and inacti-
vate cytokines, chemokines, and growth factors, and release proteins such as elastase, colla-
genase, matrix metalloproteinase, and cell-surface glycosaminoglycans. Therefore, heparin
has direct anti-inflammatory properties [158,159] linked to the binding of proinflammatory
factors [160,161]. Heparin has been shown to specifically decrease the number of leukocytes
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participating in the inflammatory response to any insult occurring within the CNS [162,163].
In fact, UFH is a potent inhibitor of the adhesion molecules such as both leukocytes and
endothelial cell selectins [164]. Consequently, heparin reduces leukocyte adhesion, rolling,
and extravasation in CSF in different neuroinflammatory conditions [165–167]. Prevention
of leukocyte migration is part of the strong anti-inflammatory effect of Heparin. Given the
uniform distribution of the negative charges and large size, UFH is able to stoichiometri-
cally bind four oxyhemoglobin molecules neutralizing the toxic effects of free hemoglobin
and related free radicals production in the CSF [168]. Furthermore, UFH has a number of
anti-oxidant effects demonstrating a strong direct scavenging antioxidant effect neutralizing
reactive oxygen species as occurred in several in vitro studies [56,57,169–171]. In addition,
UHF is able to increase the synthesis and release of extracellular SOD into circulating
fluids [172,173]. Heparin administration in rabbit CSF results in a 27-fold increase in SOD
activity within the CSF [174]. Heparin is also able to modulate endothelin-1 (ET-1) activity
decreasing the transcription of endothelin-1 and ET-1 promoter [41,175] modulated by
heparin-binding epidermal growth factor [176,177]. Significant vasoconstriction in vascular
smooth muscle cells due to ET-1 is mediated through the epidermal growth factor recep-
tor (EGFR). Heparin-binding epidermal growth factor, a ligand of EGFR, modulates its
transactivation [178]. These effects can play a positive role in the prevention of vasospasm.

Heparin may lead to the inhibition of intracellular nuclear factor-kappa B (NF-kB). NF-
κB is a transcriptional factor required for the gene expression of many inflammatory media-
tors, such as IL-1β, TNF-α, IL-6, intercellular adhesion molecule-1 (ICAM-1), and monocyte
chemoattractant protein-1 (MCP-1) [179]. Hochart et al. showed that treatment with phar-
macological doses of LMWH and UFH significantly attenuated lipopolysaccharide-induced
production of TNF-α, IL-8, IL-6, and IL-1b as well as NF-kB translocation. The inhibition of
NF-kB activation certainly represents one of the mechanisms by which heparin exerts its
anti-inflammatory effect [180].

Finally, studies have also found that heparin can reduce BBB dysfunction and the re-
sulting cerebral edema in traumatic brain injury, ischemic stroke, intracerebral hemorrhage,
and meningitis. However, its effect on cerebral edema in patients with aSAH has not been
studied [181]. As a negatively charged glycosaminoglycan, Heparin has also been shown
to be involved in myelin preservation and inhibition of apoptosis [157,166]. Demonstrated
effects of UFH are summarized in Figure 3.
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In conclusion, UFH can potentially antagonize most of the pathophysiological path-
ways occurring after aSAH and thereby could act as a multi-targeted therapy to reduce SSE
and DCI [16]. However, the available studies on the use of heparin in ESA are few, and
many aspects such as the optimal timing of administration and the real risk of bleeding
need to be clarified.

4. Discussion

A greater improvement in the functional outcome for SAH patients will probably stem
from therapies targeting some of the molecules described so far, in particular, related to
a reduction of DCI. To date, however, the trials completed on new drugs in SAH did not
show promising results and the only significant evidence concerns nimodipine.

The cascade of pathophysiological events secondary to SAH is very complex and
involves several interconnected, but also distinct pathways. The identification of single
therapeutic targets or specific pharmacological agents, such as, for example, ET-1 receptor
antagonist Clazosentan [9], may be a limited strategy able to block only selective patho-
physiological pathways but not the global evolution of SAH-related events, explaining
the unsatisfactory results of previous clinical trials. On the other hand, the simultaneous
use of several drugs acting on different targets can be difficult due to the accumulation
of secondary and side effects. Therefore, the possibility to address research focused on
molecules with different mechanisms of action and with the ability to block various patho-
physiological pathways may result very interesting [149]. The pleiotropic effect of UFH was
highlighted in this review in relation to the described compartmental pathophysiological
events. The combination of the anticoagulant effect and the ability to interfere with SSE
potentially make heparin a very interesting molecule for SAH management. Some studies
report a reduction of DCI in patients treated with intravenous unfractionated heparin
for over 48 h. However, it is not clear whether the clinical benefits derive from systemic
effects with reduced occurrence of intracranial vessel microthrombosis or from decreased
SSE. With respect to the latter hypothesis, it is likely that the effect of heparin is related
to the amount of systemic drug delivered in the CSF through the disrupted BBB. To our
knowledge, it is not known what concentrations heparin can reach in CSF by intravenous
administration in the context of SAH and if the effect of heparin can be dose-dependent. If a
relationship between heparin levels in the CSF and improvement of SSE markers or clinical
outcomes were confirmed in further clinical studies, new perspectives could open up.

This review aims to underline that SSE is primarily compartmental CSF events as
demonstrated by the production and release in the CSF itself of many mediators and
biologically active molecules. Definitely, SAH consists of large or massive blood extrava-
sation in the subarachnoid space. At the time of aneurysm rupture the basal cisterns and
subarachnoid spaces are normally clean, free from inflammatory events and BBB is intact.
It is convincing, as already claimed by other authors, that subsequent events are primarily
compartmentalized and pathophysiological pathways occur mainly in the subarachnoid
space. It would be legitimate, at this point, to discuss the direct administration of heparin
in the CSF: a compartmental therapy for compartmental events.

The CSF compartment is easily accessible as demonstrated by the routine use of ven-
tricular and lumbar subarachnoid catheters. The early intrathecal administration of heparin,
after the aneurysm has been closed and secured, could theoretically bring two benefits. The
first is associated with e blood clots formation and evolution so that heparin would promote
and facilitate the cleaning of cisterns and subarachnoid spaces. The second positive effect
might be related to the pleiotropic effects of heparin with the reduction of SSE through the
mechanisms listed above. There is no data regarding the administration of heparin in CSF
and consequently on its safety. However, clarifying whether the administered systemic
heparin is present, and at what concentration, in the CSF of patients with SAH, could allow
us to hypothesize a dose to be administered and an adequate dilution. Kole et al. speculate
that the route of heparin administration is closely related to the bioavailability of different
MW fractions [15]. Subcutaneous absorption decreases with increasing MW [182], whereas
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greater biological activity is shown by high MW fractions [183]. The direct administration
of heparin in the CSF can obviously improve the bioavailability of the drug and allow a
greater modulation of the dosage.

The occurrence of bleeding complications, including intracerebral hemorrhage, epidu-
ral or subdural hematoma, and external ventricular drain track hemorrhage, was not
statistically different in patients with therapeutic and prophylactic heparin doses [15,184].
If the presence of heparin is not associated with a greater risk of bleeding, then the route
used to administer should be irrelevant. Furthermore, the intrathecal administration of hep-
arin could avoid the systemic effects and toxicity of the drug itself preserving the patient’s
coagulation status. It is more likely that bleeding events, particularly intracranial ones, are
linked to alterations in coagulation rather than to events related to the CSF compartment.
However, the risks associated with the potential intrathecal administration of heparin
remain entirely to be evaluated.

Although the potential role of heparin as an effective treatment for SAH has not
been investigated in the context of clinical trials yet, the available literature data and the
increasing knowledge on the pathophysiological events related to SAH make the hypothesis
intriguing at the least. A research protocol is being designed for the quantification of CSF
levels of heparin during systemic administration and for the evaluation of the effect on
the occurrence of SSE through the evaluation of markers and mediators compared to a
control population. In any case, the evaluation of the role that systemic heparin may have
in the patient with SAH can improve the knowledge and scientific background of the
pathophysiology of SAH itself. Finally, heparin, as defined by Khattar and James, could
really be the Silver Bullet of aneurysmal SAH [181].

5. Conclusions

Future improvement in the functional outcome for SAH patients will probably derive
from pathophysiological therapy. The cascade of events secondary to SAH is very complex
and involves several interconnected and distinct pathways occurring primarily in the CSF
compartment and suggesting the need for multiple target therapy both using different
drugs combination or multifunctional agents. Heparin may represent a multitarget therapy
with an interesting perspective to be investigated in clinical and experimental settings.
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