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Abstract: Efficiently implementing remote sensing image classification with high spatial resolution
imagery can provide significant value in land use and land cover (LULC) classification. The new
advances in remote sensing and deep learning technologies have facilitated the extraction of spa-
tiotemporal information for LULC classification. Moreover, diverse disciplines of science, including
remote sensing, have utilised tremendous improvements in image classification involving convo-
lutional neural networks (CNNs) with transfer learning. In this study, instead of training CNNs
from scratch, the transfer learning was applied to fine-tune pre-trained networks Visual Geometry
Group (VGG16) and Wide Residual Networks (WRNs), by replacing the final layers with additional
layers, for LULC classification using the red–green–blue version of the EuroSAT dataset. Moreover,
the performance and computational time are compared and optimised with techniques such as
early stopping, gradient clipping, adaptive learning rates, and data augmentation. The proposed
approaches have addressed the limited-data problem, and very good accuracies were achieved. The
results show that the proposed method based on WRNs outperformed the previous best results in
terms of computational efficiency and accuracy, by achieving 99.17%.

Keywords: land use classification; land cover classification; remote sensing; satellite imagery;
EuroSAT; earth observation; deep learning; transfer learning; satellite image classification

1. Introduction

There have been rapid advancements in remote sensing technologies. Satellite image
acquisitions now take place. Unprecedented amounts of information are available, and
access to data is greater. All of this allows us to understand the features of Earth more
comprehensively, encouraging innovation and entrepreneurship. The enhanced ability
to observe the Earth from low orbit and geostationary satellites [1] and the better spatial
resolution of remote sensing data [2] have led to the development of novel approaches
for remote sensing image analysis, facilitating extensive ground surface studies. Scene
classification that is aimed at labelling an image according to a set of semantic categories [3]
is eminent in the remote sensing field due to its extensive applications, including land use
and land cover (LULC) [4,5] and land resource management [2].

Recent years have witnessed great advances in LULC classification in tasks such
as denoising, cloud shadow masking, segmentation, and classification [6–9]. Extensive
algorithms have been devised with concrete theoretical bases, exploiting the spectral and
spatial properties of pixels. However, with an increase in the level of abstraction from
pixels to objects to scenes, and the complex spatial distributions of diverse land cover
types, classification continues to be a challenging task [10]. Object or pixel-based [11–13]
approaches possessing low-level features encoding spectral, textural, and geometric proper-
ties are becoming incompetent at capturing the semantics of scenes. Hu et al. [14] deduced
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that more representative and high-level features, which are the abstractions of low-level
features, are necessary for scene classification. Currently, convolutional neural networks
(CNNs) are the dominant methods in image classification, detection, and segmentation
tasks because of their ability to extract high-level feature representations to describe scenes
in images [15].

Hu et al. [14] observed that in spite of CNNs’ fine ability to extract the high-level and
low-level features, it is tedious to train CNNs with smaller datasets. Yin et al. [16] and
Yosinski et al. [17] observed that the features learned by the layers from different datasets
show common behaviour. Convolution operators from the initial layers learn the general
characteristics, and towards the final layers, there is a transition to features more specific to
the dataset on which the model is trained. These general and specific CNN layer feature
transitions have led to the development of transfer learning [18,19]. As a result, the features
learnt by the CNN model on a primary job were employed for an unrelated secondary task
in transfer learning. The primary model acts as a starting point or as a feature extractor for
the secondary model. The contributions made in this article are listed below.

• LULC classification was performed using two transfer learning architectures, namely,
the Visual Geometry Group (VGG16) and Wide Residual Networks-50 (ResNet-50),
on the red–green–blue (RGB) version of the EuroSAT dataset.

• The performances of the methods were empirically evaluated with and without data
augmentation.

• The model performance and computational efficiency were improved with model
enhancement techniques.

• The RGB version of the EuroSAT dataset was benchmarked.

The rest of the paper is organised as follows. First, the related works are presented
in Section 2. In Section 3, the dataset used herein is described, and the methodologies
of the modified VGG16 and Wide ResNet-50 are presented. The results and analyses
are demonstrated in Section 4. A discussion is presented in relation to other studies in
Section 5, and finally, the paper is concluded in Section 6.

2. Related Works

This section mainly presents the recent studies in remote sensing scene classification
using deep learning (DL) and transfer learning (TL). Furthermore, it presents the state-of-
the-art image classification methods for LULC on the EuroSAT dataset.

Xu et al. [20] used principal component analysis (PCA) to reduce data redundancy,
and then trained a self-organising network to classify Landsat satellite images, which
outperformed the maximum likelihood method. Later, Chen et al. [21] showed the potential
of DL for hyperspectral data classification with a hybrid framework which included DL,
logistic regression, and PCA [22]. Stacked autoencoders were used in DL frameworks to
extract high-level features. Basu et al. [5] and Zou et al. [15] used deep belief networks
for remote sensing image classification and experimentally demonstrated the effectiveness
of the model. Piramanayagam et al. [22] and Liu et al. [23] demonstrated the potential of
CNNs for LULC classification. They actively selected training samples at each iteration with
DL for a better performance. The scarcity of labelled data was tackled by implementing data
augmentation techniques [24]. Furthermore, Yang et al. [25] improved the generalisation
capability and performance by combining deep CNN and multi-scale feature fusion against
the limited data. Liu et al. [26] also proposed a scene classification method based on
a deep random-scale stretched CNN. Another constraint with remote sensing images
was the presence of scenic variability, which limited the classification performance. As a
work-around, the Saliency Dual Attention Residual Network (SDAResNet) was studied
in [27] containing both spatial and channel attention, leading to a better performance. Later,
Xu et al. [28] came up with an enhanced classification method involving the Recurrent
Neural Network along with Random Forest for LULC. Another approach with an attention
mechanism was studied by Alhichri et al. [29] based on the pre-trained EfficientNet-
B3 CNN. They tested it on six popular LULC datasets and demonstrated its capability
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in remote sensing scene classification tasks. Liang et al. [30] and Pires de Lima and
Marfurt [31] proposed specific fine-tuning strategies which were better than CNN for
aerial image classification. Kwon et al. [32] proposed a robust classification score method
for detecting adversarial examples in deep neural networks that does not invoke any
additional process, such as changing the classifier or modifying input data. Bahri et al. [33]
experimented with a TL technique that outperformed all the existing baseline models by
using Neural Architecture Search Network Mobile (NASNet Mobile) as a feature descriptor,
and also introduced a loss function that contributed to the performance.

In the context of LULC classification (Table 1) on the EuroSAT dataset, Helber et al. [34],
the creators, used GoogleNet and ResNet-50 architectures with different band combinations.
They found that the ResNet-50 with the RGB bands achieved the best accuracy compared
to GoogleNet with the RGB bands and ResNet-50 with a short-wave infrared (SWIR) and
color-infrared (CI) combination. The Deep Discriminative Representation Learning with
Attention Map (DDRL-AM) method, proposed by Li et al. [35], obtained the highest
accuracy of 98.74% using the RGB bands, compared to the other results listed in Table 1.
Finally, Yassine et al. [36] tried out two approaches for improving accuracy of using the
EuroSAT dataset. In the first approach, the 13 spectral bands of Sentinel-2 were used for
feature extraction, producing 98.78% accuracy. In the second approach, 13 spectral feature
bands of Sentinel-2 along with the calculated indices, such as vegetation index based on red
edge (VIRE), normalised near-infrared (NNIR), and blue ratio (BR) were used for feature
extraction, resulting in an accuracy of 99.58%.

Table 1. Comparative analysis of studies for LULC classification with the EuroSAT dataset.

Authors Model Bands Accuracy

Helber et al. [34] GoogleNet RGB 98.18%
Helber et al. [34] ResNet-50 SWIR 97.05%
Helber et al. [34] ResNet-50 CI 98.30%
Helber et al. [34] ResNet-50 RGB 98.57%
Chen et al. [37] Knowledge distillation RGB 94.74%
Chong [38] VGG16 RGB 94.50%
Chong [38] 4-convolution max-pooling layer All 13 spectral bands 94.90%
Sonune [39] Random Forest RGB 61.46%
Sonune [39] ResNet-50 RGB 94.25%
Sonune [39] VGG19 RGB 97.66%
Li et al. [35] DDRL-AM RGB 98.74%
Yassine et al. [36] CNN All 13 spectral bands 98.78%
Yassine et al. [36] CNN All 13 spectral bands + VIRE + NNIR + BR 99.58%

3. Materials and Methods

TL was used to carry out the LULC classification. In past experiments, several architec-
tures have been proposed and tested for scene classification [22–24]. After experimenting
with and comparing different pre-trained architectures [25–28], we decided to employ
VGG16 and Wide ResNet-50 for the particular use-case. The models were fine-tuned on
the RGB version of the EuroSAT dataset and trained using the PyTorch framework, in the
Python language. NVIDIA TESLA P100 GPUs available with Kaggle were used for model
training and testing.

3.1. Dataset

The EuroSAT dataset is considered a novel dataset based on the multispectral image
data provided by the Sentinel-2 satellite. It has 13 spectral bands consisting of 27,000 la-
belled and georeferenced images (2000–3000 images per class) categorised into 10 different
scene classes. The image patches contain 64 × 64 pixels with a spatial resolution of 10 m.
Figure 1 demonstrates some sample images from the EuroSAT dataset [34].
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Figure 1. EuroSAT dataset sample images. The available classes are Forest, Annual Crop, Highway, Herbaceous Vegetation,
Pasture, Residential, River, Industrial, Permanent Crop, and Sea/Lake.

The RGB version of the EuroSAT dataset is used for training in this study. The labelled
EuroSAT dataset is made publicly available [40]. The dataset is split into 75/25 ratios
for training (20,250 images) and validation (6750 images), respectively. Mini-batches of
64 images are used for training purposes, see Data Availability Statement.

3.2. Transfer Learning Methods

VGG16, very deep convolutional networks, has shown that the representation depth
is beneficial for the classification accuracy [41]. The pre-trained VGG model was trained
on the ImageNet dataset with 1000 classes; the convolutional block possesses multiple
convolutional layers. The top layers learn low-level features and the bottom layers learn
high-level features of the images.

ResNet can be viewed as an ensemble of many smaller networks and has commend-
able performance for image recognition tasks [42–44]. The performance degradation
problem [45] caused by adding more layers to sufficiently deep networks was tackled
by ResNet via introducing an identity shortcut connection [46]. The Wide Residual Net-
works are an improvement over the Residual Networks. They possess more channels with
increased width and decreased depth when compared to the Residual Networks [47].

In this research, the pre-trained models of VGG16 and Wide ResNet-50 were used.
The VGG16 and Wide ResNet-50 pre-trained models expect input images normalised in
mini-batches of 3-channel RGB images of shape (3 × H × W), where H and W are expected
to be 224. The final classification layers were replaced with fully connected and dropout
layers; see Figure 2. ReLU and log-softmax activation functions were also used. The initial
layers from training were frozen, and the modified layer was fine-tuned with the EuroSAT
dataset. The model was trained for 25 epochs with a batch size of 64. Adam [48] was used
as the model optimiser with categorical cross-entropy loss for loss calculation. To enhance
the model’s efficiency in terms of computation time and performance, model enhancement
techniques such as gradient clipping, early stopping, data augmentation, and adaptive
learning rates were used.
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Figure 2. Model architectures: (a) modified VGG16 architecture with training and freezing layers, and (b) wide ResNet-50
architecture with training and freezing layers.

3.3. Model Performance Enhancement Methods
3.3.1. Data Augmentation

The diversity and volume of training data play eminent roles in training a robust DL
model. Basic data augmentation techniques [49] enhance the diversity of the data to some
extent by introducing visual variability, which helps the model to interpret the information
with more accuracy. For the EuroSAT dataset, the data augmentation techniques used were
Gaussian blurring, horizontal flip, vertical flip, rotation, and resizing. There are many data
augmentation techniques available, but due to the inherent uniformity in the EuroSAT
dataset, most of the data augmentation techniques did not have a significant impact.

3.3.2. Gradient Clipping

Gradient clipping [50] can prevent vanishing and exploding gradient issues that mess
up the parameters during training. In order to match the norm, a predefined gradient
threshold is defined. Gradient norms that surpass the threshold are reduced to match the
norm. The norm is calculated over all the gradients collectively, and the maximum norm
is 0.1.

3.3.3. Early Stopping

Early stopping is a regularisation technique for deep neural networks which stops the
training after an arbitrary number of epochs once the model performance stops improving
on a held-out validation dataset. In essence, throughout training, the best model weights
are saved and updated. When parameter changes no longer provide an improvement
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(after a certain number of iterations), training is terminated and the last best parameters
are utilised (Figure 3). This process reduced overfitting and enhanced the generalisation
capability of deep neural networks.

Figure 3. Early stopping: training is stopped as soon as the performance on the validation loss stops
decreasing even though the training loss decreases.

3.3.4. Learning Rate Optimisation

The learning rate is a hyperparameter that controls how much the model weights are
updated in response to the anticipated error in each iteration. Choosing the learning rate
may be difficult, since a value that is too small can lead to a lengthy training procedure with
significant training error, whereas a value too big can lead to learning a sub-optimal set of
weights too quickly (without reaching the local minima) or an unstable training process [51].
To reduce the learning rate, ReduceLROnPlateau was used [52]. When learning becomes
static, models frequently benefit from reducing the learning rate by a factor of 2–10. The
learning rate was lowered by a factor of 0.1 with patience (number of epochs with no
improvement) as 2. Adam was used as the optimiser with the maximum learning rate
of 0.0001.

4. Results

In this section, the results are separately demonstrated for the two different transfer
learning approaches employed for the study. For training each model, all the hyperparame-
ters were finalised by preliminary experiments. The models were trained with a 75/25 split
for training and testing, respectively. In other words, the models were trained on 75% of
data (randomly selected) and tested on the other 25%. Similarly, five different such sets
were used for evaluation. Data augmentation is implemented to increase the effective
training set size.

4.1. VGG16—Visual Geometry Group Network

The EuroSAT dataset on VGG16 architecture was fine-tuned by freezing the top layers
and training only the added classification layers (Figure 2a) with different hyperparameters.
The pre-trained weights had the advantage of the learnings that they achieved on the
ImageNet dataset.

While training without data augmentation (WDA), a validation accuracy of 98.14%
was achieved, whereas training with data augmentation resulted in a better accuracy of
98.55% (Table 2). The early stopping method was used with patience of 5, and the model
with the highest validation accuracy was saved. This approach helped in preventing the
overfitting of the model and saved computational time. Due to early stopping, the training
stopped at the 21st epoch (18th—WDA); the total number of epochs was 25. It took 2 h, 4
min, 12 s to train 21 epochs, which means approximately 6.1 min for each epoch. However,
without data augmentation, it took 1 h, 47 min, 24 s to train 18 epochs, which means
approximately 5.9 min for each epoch (Table 2).
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Table 2. Comparative experimental results of VGG16 and Wide ResNet-50 with and without data augmentation.

Model Epochs Trained Total Time Time Per Epoch Accuracy

VGG16 (Without Data Augmentation) 18 1 h 47 min 24 s 5.9 min 98.14%
VGG16 (With Data Augmentation) 21 2 h 4 min 12 s 6.1 min 98.55%
Wide ResNet-50 (Without Data Augmentation) 14 1 h 19 min 48 s 5.5 min 99.04%
Wide ResNet-50 (With Data Augmentation) 23 2 h 7 min 53 s 5.6 min 99.17%

Figure 4 shows the training and validation loss and accuracy diagrams. It can be
seen that in the first epoch, both the loss and accuracy improved exponentially and then
showed a linear relation in epochs 2–10. During this period, some instability in learning
was observed, and towards the end, no significant improvement was noticed. Since an
adaptive learning rate with ReduceLROnPlateau was used, the learning rate was updated
thrice during the training, which certainly helped the model to achieve the optimum result.

Figure 4. The VGG16 results representing the history of training and validation (a) loss and (b) accuracy across the epochs.

4.2. Wide ResNet-50—Wide Residual Network

In the first approach of training WDA, the model was able to achieve a validation
accuracy of 99.04%, which was outperformed by the approach with data augmentation,
which achieved an accuracy of 99.17% (Table 2). Hence, the model with the best perfor-
mance was considered. With early stopping, the training stopped at the 23rd epoch (total
25 epochs), whereas WDA training stopped at the 14th epoch. The best model took 2 h,
7 min, 53 s to run 23 epochs with 5.6 min per epoch, which was better than the VGG16
(Table 2).

The loss and accuracy graphs showed steady learning in the first epoch (Figure 5). To-
wards the 15th epoch, the learning showed almost a linear relationship with some instability
in between. Furthermore, between the 15th and 23rd epochs, delayed and little learning
was achieved because of the updating of the learning rate to smaller optimum values to
calculate the best result. The learning rate changed thrice in the entire training period.
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Figure 5. The Wide ResNet-50 results representing the history of training and validation (a) loss and (b) accuracy across
the epochs.

Figure 6a demonstrates the confusion matrix of VGG16, based on validation data,
which shows the class-wise performance of the model. The Forest, Highway, Residential,
and Sea/Lake classes showed the best performance—above 99% accuracy. Permanent Crop,
Herbaceous Vegetation, and Pasture seem to have been predicted most poorly. Annual
Crop, Permanent Crop, Pasture, and Herbaceous Vegetation were misclassified because
of the similarity in topological features. By analysing the images of these classes, it was
understood that they share common features that might confuse the model.

Figure 6b shows the confusion matrix for Wide ResNet-50. The Forest and Sea/Lake
classes were predicted most accurately: 99.86%. The class Permanent Crop was predicted
least accurately: 97.39%. There was improved accuracy and fewer misclassifications for
all classes except River. Figure 7 demonstrates some of the correct predictions using Wide
Resnet-50 and also shows a River scene that was incorrectly predicted as Highway (see the
middle panel). The modified VGG16 also incorrectly predicted this River scene as Highway
and predicted the Permanent Crop scene, shown in the top-middle panel in Figure 7, as
Herbaceous Vegetation.

Figure 6. The confusion matrices for the (a) VGG16 and (b) Wide ResNet-50 architectures applied to the EuroSAT dataset.
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Figure 7. The Wide ResNet-50 sample results. Shown are the actual and predicted values of sample inputs from the test
dataset. Note that VGG16 also predicted these scenes the same as Wide ResNet-50, but incorrectly predicted the top-middle
scene as Herbaceous Vegetation.

5. Discussion

In this study, the challenge of LULC classification was addressed using deep transfer
learning techniques. For this task, two prominent transfer learning architectures, namely,
VGG16 and Wide ResNet-50, were used on the EuroSAT dataset. Focusing on the LULC
classification of the RGB bands of the EuroSAT dataset, a state-of-the-art accuracy of 99.17%
was achieved by using Wide ResNet-50.

Experimentally, the best fine-tuning parameters were found for VGG16 and Wide
ResNet-50 with the RGB bands of the EuroSAT dataset. The parameters that contributed
to the best performance were used to create the final models. The models were compared
with and without data augmentation. Both of these architectures were compared based on
computational training time, the number of epochs trained, and test data accuracy (Table 2).
From the results, it was observed that Wide ResNet-50 was computationally more feasible,
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as the time taken for each epoch to train was less than that of VGG16, even though the
former is a deeper network.

The number of epochs trained was less without data augmentation due to early stop-
ping and limited data. The model converged early and did not show much improvement,
hence consuming a shorter training time. In contrast, more epochs were used with data
augmentation because it generated more data for the model to learn the features from,
which provided better generalisation and ultimately led to a better accuracy. With more
high-resolution data, the architecture proposed herein can create and learn more adversarial
examples [53] and make better predictions.

From the confusion matrix shown in Figure 6b, one can see that the Forest class,
followed by the Sea/Lake class, was the best handled, as it was hardly misclassified.
Similarly, due to similar topological features, Herbaceous Vegetation, Annual Crop, Pasture,
and Permanent Crop classes were confused. The Highway class was misclassified as the
River class because of a similar linear appearance. A similar trend was observed in the
VGG16 confusion matrix (Figure 6a). The presence of clear and distinct topological features
for the Forest and Sea/Lake classes, i.e., mostly green and blue for both the images, led
to accurate results. Similarly, Pasture, Herbaceous Vegetation, and Annual Crops were
misclassified to higher degrees. Again, the Highway and River classifications were also
confused because of similar topological features. Thus, from these trends, it was concluded
that the model’s training was mimicking human learning patterns. With the presence
of more inter and intra-class variability in the dataset, these faulty learning patterns
could be significantly improved. Another effective approach would be incorporating the
invisible bands, such as near-infrared, into the models for distinguishing between road
and river [7,36]. From the feature understanding capability depicted by the confusion
matrices of both the models, the learning pattern of the architectures was found to be quite
comparable. The major difference lay only on how well the model was understanding
everything, i.e., the classification accuracy.

In this research, the performances of Wide ResNet-50 and VGG16 with multiple
validation datasets were intensively compared. The prediction accuracy of Wide ResNet-50
on the EuroSAT dataset was found to be better than of VGG16 by at least 0.6% of the total
validation set. As mentioned in Table 2, the best performing model of Wide ResNet-50
achieved 99.17%, whereas it was 98.55% for VGG16. Thus, it was understood that Wide
ResNet-50 performed better than VGG16. As shown in Table 1, the accuracy of 99.17%
achieved using Wide ResNet-50 with the RGB bands was higher than the highest accuracy
of 98.74% achieved using the DDRL-AM model with RGB bands.

6. Conclusions

The objective of this article was to investigate how the transfer learning architectures
for LULC classification perform. The study was based on two potential architectures,
namely, VGG16 and Wide ResNet-50, fine-tuned with RGB bands of the EuroSAT dataset
for the classification. Much like the findings in other experiments, it was found that transfer
learning is a quite reliable approach that can produce the best overall results. The proposed
methodology improved the state-of-the-art and provided a benchmark with an accuracy of
99.17% for the RGB bands of the EuroSAT dataset.

The classification results prior to and after data augmentation were compared. Data
augmentation techniques elevated the diversification of the dataset, as they only increased
the visual variability of each training image without generating any new spectral or
topological information. Evidently, the experimental results with data augmentation
outperformed those from the same model architecture trained on the original dataset.
Model enhancement techniques such as regularisation, early stopping, gradient clipping,
learning rate optimisation, and others were implemented to make the model training more
efficient, improve the performance, and ultimately reduce the computational time required.
The Wide ResNet-50 architecture was found to generate better results than VGG16, though
the same data augmentation approaches were applied to both. Even though Wide ResNet-
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50 produced better results, the learning patterns of the models were similar; the only
difference was found in the accuracy of the class predictability.

This problem may be solved by supplementing the quality and quantity of data. The
generation of datasets with higher inter and intra-class variability, supported by robust
deep learning architectures with data augmentation techniques, could effectively increase
the representational power of the deep learning network. Thus, the proposed methodology
is an effective exploitation of the satellite datasets available and deep learning approaches
to achieve the best performance. The applications can be extended to multiple real-world
Earth observation applications for remote sensing scene analysis.
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Abbreviations
The following abbreviations are used herein:

BR Blue Ratio
CI Color-Infrared
CNNs Convolutional Neural Networks
DDRL-AM Deep Discriminative Representation Learning with Attention Map
DL Deep Learning
LULC Land Use and Land Cover
NASNet Mobile Neural Architecture Search Network Mobile
NNIR Normalised Near-Infrared
PCA Principal Component Analysis
ResNet Residual Networks
RGB Red–Green–Blue
SDAResNet Saliency Dual Attention Residual Network
SWIR Short-Wave Infrared
TL Transfer Learning
VGG Visual Geometry Group
VIRE Vegetation Index based on Red Edge
WDA Without Data Augmentation
WRNs Wide Residual Networks (WRNs)
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