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DONSKER-VARADHAN ASYMPTOTICS FOR

DEGENERATE JUMP MARKOV PROCESSES

GIADA BASILE AND LORENZO BERTINI

Abstract. We consider a class of continuous time Markov chains on a com-
pact metric space that admit an invariant measure strictly positive on open
sets together with absorbing states. We prove the joint large deviation princi-
ple for the empirical measure and flow. Due to the lack of uniform ergodicity,
the zero level set of the rate function is not a singleton. As corollaries, we
obtain the Donsker-Varadhan rate function for the empirical measure and a
variational expression of the rate function for the empirical flow.

1. Introduction

The energy transport in insulators can be described within a kinetic approach
analogous to the kinetic theory of gases. At low temperatures the lattice vibrations,
responsible of energy transport, can be modeled as a gas of interacting particles
(phonons) and their time-dependent distribution function solves a Boltzmann type
equation. The basic scheme to derive phononic Boltzmann equations from the
underlying microscopic dynamics is introduced in [26]. Following this approach,
in [5] a harmonic chain of oscillators perturbed by a conservative weak stochastic
noise is analyzed and the following linear Boltzmann equation is derived

∂tW (t, r, k) + v(k)∂rW (t, r, k) =

∫

T

dk′R(k, k′)[W (t, r, k′)−W (t, r, k)]. (1.1)

Here W is the energy density distribution of phonons with wave number k ∈ T

(the one dimensional torus), r is the space coordinate, t is the time and v(k) is the
velocity of a phonon with wave number k and it is given by the gradient of the
dispersion relation. The scattering kernel R is positive and symmetric. Referring
to [5] for explicit expressions of R and v and the analogous equation in higher
dimensions, we point out the following features. The velocity is finite for small k
while R behaves like k2 for small k, and like k′2 for small k′. This means that
phonons with small wave numbers travel with finite velocity, but they have low
probability to be scattered, therefore their mean free paths have a macroscopic
length (ballistic transport).

The equation (1.1) can be interpreted as the Fokker-Planck equation for the
Markov process (K(t), Y (t)) on T × R, where the wave number K(t) is a jump
process and the position Y (t) is an additive functional of K, namely Y (t) =∫ t

0 ds v(K(s)). In view of the behavior of the kernel R mentioned above, k = 0 is an
absorbing state for the process K(t). On the other hand, the skeleton associated to
K admits an invariant measure π0 for which the mean jump time is integrable. As
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we prove, this condition implies the ergodicity of the process with K(0) different
from 0. Nevertheless, in dimension one and two the variance of the mean jump
time with respect to π0 is infinite, so that the standard central limit theorem for
the position Y (t) fails. More precisely, in one dimension the position converges to
a 3/2 stable Lévy process under the proper scaling [4,15], while in two dimensions
it converges to a Brownian motion under an anomalous scaling with logarithmic
corrections [3]. The purpose of the present paper is to analyze how the degenerate
behavior of the kernel R affects the large deviations properties of the process K.

In the general context of continuous time Markov processes, the empirical mea-
sure associates to a given trajectory the fraction of time spent on the different
states up to a time T . Under ergodicity assumptions, the empirical measure con-
verges to the invariant measure. The corresponding large deviations asymptotic
is the content of the Donsker-Varadhan theorem, with a rate function given by a
variational formula that can be computed explicitly only in the reversible case. A
natural generalization of this framework in the setting of jump processes takes into
account, together with the empirical measure, the empirical flow which counts the
number of jumps between the different states per unit of time. We remark that
a relevant dynamical observable, the empirical current, is directly related to the
empirical flow.

The joint large deviation asymptotics for the empirical measure and flow can
be derived by contraction from the corresponding result for the empirical process,
which yields the information on arbitrary sequences of jumps. The corresponding
rate function can be always written in a (simple) closed form. The Gallavotti-
Cohen large deviation principle [20,23] and the associated fluctuation theorem can
be obtained by projection [8]. Moreover, by contraction one also derives a dual
variational formula for the rate function of the empirical measure.

Alternatively, the joint large deviations for the empirical measure and flow can be
directly derived by tilting the underlying Markov chain. Indeed, with this approach
it has been firstly derived in [17] for a Markov chain with two states. Always
in the context of discrete state space, a large deviations principle for flows and
currents have been discussed in [1] in relation to statistical mechanics models. The
general case of countable state space is analyzed in [6], to which we refer for further
references.

With respect to this setting, the phononic chain described above lives on a
continuous state space and lacks uniform ergodicity due to the presence of zero
as absorbing state. In particular the classical Donsker-Varadhan conditions [13,14]
do not hold. Motivated by this model, we consider a class of continuous time
Markov chains which are degenerate in the sense that there exist states with infinite
holding time, but the corresponding skeletons admit an invariant measure for which
the mean jump time is integrable. For simplicity, we restrict to the case of compact
state space. We prove a large deviation principle for the empirical measure and
flow, with an initial state different from the absorbing ones.

The rate function is the continuous version of the one derived in [6] for discrete
space states. The presence of absorbing states is however reflected in the properties
of the rate function. Its zero level set is not a singleton and more precisely it contains
convex combinations of the invariant measure with the associated flow and measures
supported by the absorbing states with zero flow. Indeed, with sub-exponential
probability, the chain may spend almost all the time in a small neighborhood of
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the absorbing states. Analogous degenerate large deviation asymptotics have been
obtained in [21,22] in the context of renewal processes and in [9,10] in the context
of interacting particle systems.

From the large deviation principle for the empirical measure and flow we de-
duce by contraction the large deviation principle for the empirical measure. The
corresponding rate function can be expressed by the Donsker-Varadhan variational
formula, which in this case also admits a not trivial zero level set. Furthermore,
we also obtain a variational expression for the rate function describing the large
deviation asymptotics of the empirical flow.

The large deviation upper bound for the empirical measure and flow is proven
by perturbing the rates of the underlying Markov chain. We remark that this step
can be accomplished since the Radon-Nikodym derivative of the corresponding laws
can be expressed in terms of the empirical measure and flow. We derive the lower
bound by considering first deviations of measures and flows with support bounded
away from the absorbing state. For this class we can construct perturbed Markov
chains with nice ergodic properties, which have these measures and flows as typical
behavior. We then complete the proof by a density argument.

2. Notation and results

Let E be a compact Polish space, i.e. metrizable complete and separable, en-
dowed with its Borel σ-algebra. The spaces of continuous functions on E and
E ×E, endowed with the uniform norm ‖ · ‖, are denoted by C(E) and C(E ×E).
We consider a continuous time Markov chain ξt, t ∈ R+ on the state space E,
defined by transitions rates c(x, dy) = r(x)p(x, dy), where r : E → R+ and p is a
transition kernel on E. Throughout all the paper we assume the transition rates
satisfy the following conditions which in particular imply that ξ is not explosive
and Feller.

Assumption 2.1.

(i) The function r : E → R+ is continuous. We set E0 := {x ∈ E : r(x) = 0}.
(ii) There exists a probability λ on E, strictly positive on open sets, such that

p(x, dy) = p(x, y)λ(dy) for some strictly positive density p ∈ C(E × E).
(iii) The function 1/r is integrable with respect to λ, i.e., λ

(
1/r

)
< +∞.

In order to prove the large deviations lower bound we also need the following
technical condition.

(iv) For δ > 0, let Aδ := {x ∈ E : r(x) < δ} be the (open) level set of r. There
exists a sequence δn → 0 such that supn λ(A2δn )/λ(A2δn\Aδn) < +∞.

Since r is continuous E0 is closed. Moreover, in view of condition (iii) λ(E0) = 0.
Assumption (ii) implies that the kernel p is Feller and satisfies the Doeblin condition.
In view of [25, Thm. 16.0.2] the discrete time Markov chain with kernel p is uniform
ergodic. That is, there exists a probability π0 on E such that pn(x, ·) converges in
total variation to π0 uniformly with respect to x ∈ E. Moreover, since λ is strictly
positive on open sets, π0 enjoys the same property. In view of items (ii) and (iii),
π0

(
1/r

)
< +∞ and therefore

π(dx) :=
1

π0

(
1/r

) π0(dx)

r(x)
(2.1)
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defines a probability on E. As it is simple to check, π is an invariant probability
for the continuous time chain ξ.

As discussed in the Introduction, the main novelty of this paper is that we allow
the set E0 to be not empty. If this is the case, the points in E0 are absorbing states
for the chain ξ. In particular any probability supported on a subset of E0 is also
an invariant measure and ξ is not uniformly ergodic. Then the standard conditions
for the Donsker-Varadhan theorem, see e.g., [13, 14] do not hold. The phononic
chain described by (1.1) (see [5] for the explicit expression of the rates) meets the
requirements in Assumption 2.1 with E0 the singleton at the point 0.

We next state the ergodic theorem for the chain ξ. For x ∈ E we denote by
Px the distribution of the process ξ with initial condition x. Observe that Px is a
probability on the Skorokhod space D(R+;E) whose canonical coordinate will be
denoted by Xt, t ∈ R+. The expectation with respect to Px is denoted by Ex.

Theorem 2.2. Let f ∈ C(E) and x ∈ E \ E0. Then

lim
T→+∞

1

T

∫ T

0

dt f(Xt) = π(f) in Px probability.

Moreover, the convergence is uniform with respect to x in a compact subset of E\E0.

We denote by M1(E) the space of probability measures on E endowed with
the topology of weak convergence. Given T > 0, the empirical measure µT is the
continuous map from D(R+;E) to M1(E) defined by

µT (f) (X) :=
1

T

∫ T

0

dt f(Xt), f ∈ C(E). (2.2)

Theorem 2.2 can be then restated as follows. As T → +∞ the family
{
Px◦µ

−1
T

}
T>0

converges to δπ uniformly with respect to x in a compact subset of E \ E0.
To describe the large deviation asymptotic of the empirical measure, we follow

the approach introduced in [6] for discrete state space. Within this scheme, together
with the empirical measure it is also considered the empirical flow which accounts for
the number of jumps between two given states. For this purpose, we let M+(E×E)
be the space of finite positive measures on E×E equipped with the bounded weak*
topology. This is defined as follows. Let M(E × E) be the set of finite signed
measure on E×E. The weak* topology on M(E×E) is then defined by identifying
it with the dual of C(E × E). For Q ∈ M(E × E) denote by ‖Q‖TV the total
variation of Q and, given ℓ > 0, let Bℓ :=

{
Q ∈ M : ‖Q‖TV ≤ ℓ

}
be the closed

ball of radius ℓ in M(E ×E). The bounded weak* topology on M(E ×E) is then
defined by declaring a set A ⊂ M(E ×E) open if and only if A∩Bℓ is open in the
weak* topology of Bℓ for any ℓ > 0. In particular, the bounded weak* topology is
stronger than the weak* topology and, as follows from the Banach-Alaoglu theorem,
for each ℓ > 0 the closed ball Bℓ is compact with respect to the bounded weak*
topology. The space M(E × E) endowed with the bounded weak* topology is a
locally convex, complete, linear topological space, and a completely regular space,
i.e., for each closed set C ⊂ M(E ×E) and each Q ∈ M(E ×E) \C there exists a
continuous function f : M(E × E) → [0, 1] such that f(Q) = 1 and f(Q′) = 0 for
all Q′ ∈ C). We refer to [24, § 2.7] for the proof of the above statements and for
further details. We finally regardM+(E×E) as a (closed) subset of M(E×E) and
consider it endowed with the relative topology and the associated Borel σ-algebra.
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For T > 0, the empirical flow QT is the map from D(R+;E) to M+(E × E)
defined Px a.s., x ∈ E, by

QT (F ) (X) :=
1

T

∑

t∈[0,T ] :
Xt− 6=Xt

F
(
Xt− , Xt

)
, F ∈ C(E × E).

Observe indeed that the right hand side is well defined because Px a.s., x ∈ E, the
set of discontinuities ofXt is locally finite. In view of Theorem 2.2, a straightforward
martingale decomposition, see Proposition 5.2 below, yields the following law of
large numbers for empirical flow. LetQπ(dx, dy) := π(dx)c(x, dy), then as T → +∞
the family

{
Px◦Q

−1
T

}
T>0

converges to δQπ uniformly with respect to x in a compact

subset of E \ E0.
We regard the pair (µT , QT ) as a map from D(R+;E) to the product space

M := M1(E) ×M+(E × E) defined Px a.s., x ∈ E. Our main result is the large
deviation principle for the family

{
Px ◦ (µT , QT )

−1
}
T>0

. We start by defining the

rate function. Let Ψ: R+ → R+ be the convex function Ψ(a) := a log a− (a− 1), in
which we understand that Ψ(0) = 1. We then define the functional I : M → [0,+∞]
by

I(µ,Q) :=





∫∫
µ(dx)c(x, dy) Ψ

( Q(dx, dy)

µ(dx)c(x, dy)

)
if Q(·, E) = Q(E, ·),

+∞ otherwise.

(2.3)

Observe that I(µ,Q) < +∞ implies that the two marginals of Q are equal and
Q(dx, dy) ≪ µ(dx)c(x, dy). Moreover, since the second marginal of µ(dx)c(x, dy) is
absolutely continuous with respect to λ, I(µ,Q) < +∞ also implies dQ = q dλ×dλ,
see Lemma 4.4 below. It is thus possible to express I in terms of the density
q as follows. Given µ ∈ M1(E), decompose it into the absolutely continuous
and singular parts with respect to λ. Namely, dµ = ̺ dλ + dµs where ̺ is a sub-
probability density on E and µs is singular with respect to λ. Let Φ: R2

+ → [0,+∞]
be the convex lower semi-continuous function defined by Φ(a, b) := a log(a/b)−a+b.
If I(µ,Q) < +∞ then the marginals of Q are equal and

I(µ,Q) =

∫∫
λ(dx)λ(dy) Φ

(
q(x, y), ̺(x)r(x)p(x, y)

)
+ µs(r). (2.4)

In particular, if µ = µs then I(µ,Q) < +∞ implies Q = 0.

Theorem 2.3. As T → +∞ the family
{
Px ◦ (µT , QT )

−1
}
T>0

satisfies, uniformly
with respect to x bounded away from E0, a large deviation principle with good convex
rate function I. Namely, the functional I has compact level sets and for each
compact E1 ⊂ E \ E0, each closed C ⊂ M, respectively each open A ⊂ M,

lim
T→+∞

sup
x∈E1

1

T
logPx

(
(µT , QT ) ∈ C

)
≤ − inf

(µ,Q)∈C
I(µ,Q),

lim
T→+∞

inf
x∈E1

1

T
logPx

(
(µT , QT ) ∈ A

)
≥ − inf

(µ,Q)∈A
I(µ,Q).

By the stationarity condition for π, the measure Qπ(dx, dy) = π(dx)c(x, dy) has
equal marginals. We thus deduce, as must be the case, that I(π,Qπ) = 0. On
the other hand, if E0 is not empty, the zero level set of I contains other points
and the law of large numbers stated in Theorem 2.2 cannot be deduced from the
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large deviation result. More precisely, if the measure µ is supported on a subset of
E0, then I(µ, 0) = 0 and, by convexity, I vanishes on the segment α(π,Qπ) + (1−
α)(µ, 0), α ∈ [0, 1]. The representation (2.4) implies that elements of this form are
the only zeros of I.

As a corollary of the previous theorem, we deduce the large deviations asymptotic
for the empirical measure. We emphasize that the corresponding rate function is
the standard Donsker-Varadhan functional.

Corollary 2.4. Let Î : M1(E) → [0,+∞] be the functional defined by

Î(µ) = sup
φ∈C(E)

{
−

∫∫
µ(dx)c(x, dy)

[
exp{φ(y)− φ(x)} − 1

]}
.

As T → +∞ the family
{
Px◦µ

−1
T

}
T>0

satisfies, uniformly with respect to x bounded

away from E0, a large deviation principle with convex rate function Î.

As a further projection of Theorem 2.3, we obtain a variational expression, that
appears to be new, of the rate function for the empirical flow.

Corollary 2.5. Let Ĩ : M+(E × E) → [0,+∞] be the functional defined by

Ĩ(Q) =





sup
α∈(−rm,+∞)

{∫∫
Q(dx, dy) log

[ Q(dx, dy)

Q(dx,E)c(x, dy)
(r(x) + α)

]
− α

}

if Q(·, E) = Q(E, ·)

+∞ otherwise,

where rm := min r. As T → +∞ the family
{
Px ◦ Q−1

T

}
T>0

satisfies, uniformly

with respect to x bounded away from E0, a large deviation principle with convex

rate function Ĩ.

3. Law of large numbers

We denote with {Zi}i≥0 the skeleton of the process ξ, namely the sequence of
the visited states, and with {τi}i≥0 the collection of the holding times. The skele-
ton {Zi}i≥0 is a Markov chain with transition probability p(x, dy). Conditioned
to the skeleton {Zi}i≥0, {τi}i≥0 are independent, exponentially distributed ran-
dom variables with parameters r(Zi). In particular they have the same law as
{r(Zi)

−1ei}i≥0, where {ei}i≥0 are i.i.d. exponential random variables with param-
eter 1.

We denote with Tn, n ≥ 0, the jump times Tn :=
∑n−1

i=0 τi for n ≥ 1 and T0 = 0.
We then define the clock process T (t) := T⌊t⌋, where ⌊·⌋ denotes the integer part.
The inverse function n(t) := inf{n : Tn ≥ t} gives the number of jumps up to time
t. By definition, the following inequality holds

Tn(t)−1 < t ≤ Tn(t), (3.1)

where we take T−1 = 0.

Proposition 3.1. Let π0 ∈ M1(E) be the unique invariant measure of the chain
{Zi}. Then for each f ∈ C(E) and Z0 ∈ E \ x0

lim
n→∞

1

n

n−1∑

i=0

f(Zi)τi = π0(f/r) in probability. (3.2)
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Moreover, the convergence is uniform with respect to Z0 in a compact subset of
E \ E0.

Postponing the proof above statement, we first show that it implies the law of
large numbers for the continuous time chain ξ.

Proof of Theorem 2.2. Recalling the definition of the empirical measure (2.2),

µT (f) =
1

T

n(T )∑

i=0

f(Zi)τi.

For each f ∈ C(E), ε > 0, and σ > 0

Px

(∣∣µT (f)− π(f)
∣∣ > ε

)
≤ Px

(∣∣∣ 1
T
n(T )−

1

π0(1/r)

∣∣∣ > σ
)

+ P

(∣∣µT (f)− π(f)
∣∣ > ε,

∣∣∣ 1
T
n(T )−

1

π0(1/r)

∣∣∣ ≤ σ
)
.

(3.3)

From (3.2) with f = 1, we deduce that the sequence {Tn/n}n≥1 converges in
probability to π0(1/r) and therefore, in view of (3.1), the family of random variables

{n(T )/T }T>0 converges in probability to
(
π0(1/r)

)−1
. This implies that the first

term on the right hand side of (3.3) vanishes as T → ∞.
On the other hand, on the event

{∣∣ 1
T n(T )−

1
π0(1/r)

∣∣ ≤ σ
}
,

∣∣∣µT (f)−
1

T

α(T )∑

i=0

f(Zi)τi

∣∣∣ ≤ ‖f‖
1

T

α(T )+⌊σT⌋+1∑

i=α(T )−⌊σT⌋−1

τi,

where α(t) = ⌊t/π0(1/r)⌋. In view of condition (ii) in Assumption 2.1, for each
i ≥ 1 and Z0 ∈ E

E
(
τi
)
=

∫
pi−1(Z0, dx)

∫
p(x, dy)

1

r(y)
≤ C

∫
pi−1(Z0, dx)

∫
λ(dy)

1

r(y)
,

where C = max p(x, y). By condition (iii) in Assumption 2.1, we thus get

sup
i≥1

E
(
τi
)
< +∞. (3.4)

Hence, by Chebychev inequality, the second term on the right hand side of (3.3)
vanishes as σ → 0 uniformly in T . �

Proof of Proposition 3.1. Recalling that, conditionally on {Zi}, {τi} have the same

law as {r(Zi)
−1ei}, we set Sn(f) =

1
n

∑n−1
i=0 f(Zi)r(Zi)

−1ei and define

u<
n,i :=

1

r(Zi)
1I{r(Zi)−1≤n1/4}, u>

n,i :=
1

r(Zi)
1I{r(Zi)−1>n1/4}.

We decompose accordingly

Sn(f) =
1

n
f(Z0)r(Z0)

−1e0 + S<
n (f) + S>

n (f), (3.5)
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where

S<
n (f) :=

1

n

n−1∑

i=1

f(Zi)u
<
n,iei,

S>
n (f) :=

1

n

n−1∑

i=1

f(Zi)u
>
n,iei.

Trivially, the first term on the r.h.s. of (3.5) vanishes as n → ∞, uniformly with
respect to Z0 in a compact subset of E \E0. Let us next show that S>

n (f) converges
to zero in L1. We have

E
(
|S>

n (f)|
)
≤

1

n
‖f‖

n−1∑

i=1

E
(
u>
n,i

)
,

where, by Chapman-Kolmogorov,

1

n
‖f‖

n−1∑

i=1

∫
pi−1(Z0, dx)

∫
p(x, dy)

1

r(y)
1I{r(y)−1>n1/4}

≤ ‖f‖ sup
x∈E

∫
p(x, dy)

1

r(y)
1I{r(y)−1>n1/4},

which vanishes as n → ∞ by conditions (ii) and (iii) in Assumption 2.1.
We next show that S<

n (f) converges to π0(f/r) in L2. We have

E
(
S<
n (f)− π0(f/r)

)2
≤

1

n2

n−1∑

i=1

E

(
f(Zi)u

<
n,iei − π0(f/r)

)2

+
2

n2

∑

1≤i<j≤n−1

E

([
f(Zi)u

<
n,iei − π0(f/r)

][
f(Zj)u

<
n,jej − π0(f/r)

])
.

(3.6)

By definition of u<
n,i, E

(
f(Zi)u

<
n,iei

)2
≤ ‖f‖2n1/2. Therefore the first sum on the

right hand side of (3.6) vanishes as n → ∞. In order to estimate the second sum
on the r.h.s. of (3.6), we observe that for each 1 ≤ i < j ≤ n− 1

∣∣∣E
(
f(Zi)

[
u<
n,i − r(Zi)

−1
]
f(Zj)

[
u<
n,j − r(Zj)

−1
])

≤ ‖f‖2
(
sup
x∈E

∫
p(x, dy)

1

r(y)
1I{r(y)−1>n1/4}

)2

,

which vanishes as n → ∞ by conditions (ii) and (iii) in Assumption 2.1. Therefore
we can replace u<

n,i by r−1(Xi) in the second term of the r.h.s. of (3.6). By the
same computations presented above, we get that each term in this modified sum is
uniformly bounded, that is

∣∣∣E
([

f(Zi)r(Zi)
−1ei − π0(f/r)

][
f(Zj)r(Zj)

−1ej − π0(f/r)
])∣∣∣ ≤ C2 ‖f‖2, (3.7)

where C := supx∈E

∫
p(x, dy) 1/r(y). Given m < n− 1, we now split the sum
∑

1≤i<j≤n−1

=
∑

1≤i<m
i<j≤n−1

+
∑

m≤i<j≤n−1
j−i≤m

+
∑

m≤i<j≤n−1
j−i>m

.
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By (3.7), the first and the second sum give a contribution of order m/n, then it
remains to estimate the last sum. Since π0(·) =

∫
π0(dx)p(x, ·), for ℓ ≥ 0 we can

write
∣∣∣
∫
pℓ+1(x, dy)

f(y)

r(y)
− π0(f/r)

∣∣∣ =
∣∣∣
∫ (

pℓ(x, dz)− π0(dz)
) ∫

p(z, dy)
f(y)

r(y)

∣∣∣

≤ C ‖f‖ sup
x∈E

‖pℓ(x, ·)− π0(·)‖TV.
(3.8)

Therefore

1

n2

∑

m≤i<j≤n−1
j−i>m

∣∣∣E
([

f(Zi)r(Zi)
−1ei − π0(f/r)

][
f(Zj)r(Zj)

−1ej − π0(f/r)
])∣∣∣

≤ C2 ‖f‖2 sup
ℓ≥m

(
sup
x∈E

‖pℓ(x, ·)− π0(·)‖TV

)2

.

Since condition (ii) in Assumption 2.1 implies the Doeblin condition for p, the
uniform ergodicity of the chain, see e.g., [25, Thm. 16.0.2], implies that the r.h.s.
above vanishes as m → ∞. We then conclude the proof taking the limit n → ∞
and then m → ∞. �

4. Large deviations upper bound

We denote the marginals of Q ∈ M+(E×E) byQ(1) and Q(2). For F ∈ C(E×E)
we let rF : E → R+ be the continuous function defined by

rF (x) :=

∫
c(x, dy) eF (x,y); (4.1)

observing that for F = 0 we get r0 = r. Given φ ∈ C(E) and F ∈ C(E × E) let
Iφ,F : M → R be the continuous affine map defined by

Iφ,F (µ,Q) := Q(1)(φ)−Q(2)(φ) +Q(F )− µ
(
rF − r

)
. (4.2)

In this section we first prove, by an exponential tilt of the underlying probability,
the large deviation upper bound with rate function supφ,F Iφ,F . As in [6], this
step can be easily accomplished since we are considering the joint deviations of the
empirical measure and flow. We then show that the rate function thus obtained
coincides with (2.3). We remark that the upper bound estimate holds uniformly
with respect to all initial conditions in E.

Proposition 4.1. As T → +∞ the family
{
Px ◦ (µT , QT )

−1
}
T>0

satisfies, uni-

formly with respect to x ∈ E, a large deviation upper bound with lower semi-
continuous convex rate function supφ,F Iφ,F . Namely, for each closed C ⊂ M

lim
T→+∞

sup
x∈E

1

T
logPx

(
(µT , QT ) ∈ C

)
≤ − inf

(µ,Q)∈C
sup
φ,F

Iφ,F (µ,Q)

where the supremum is carried out over all (φ, F ) ∈ C(E)× C(E × E).

We start by proving the exponential tightness, that is there exists a sequence
{Kℓ}ℓ∈N of compacts in M such that

lim
ℓ→∞

lim
T→∞

sup
x∈E

1

T
logPx

(
(µT , QT ) /∈ Kℓ

)
= −∞.
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Recall M = M1(E) ×M+(E × E). Since M1(E) is compact with respect to the
topology of weak convergence and M+(E×E) is endowed with the bounded weak*
topology, the previous bound follows from the exponential tightness of the sequence
of positive random variables {QT (1)}T>0, which count the total number of jumps
per unit of time.

Lemma 4.2. Let aℓ → +∞. Then

lim
ℓ→∞

lim
T→∞

sup
x∈E

1

T
logPx

(
QT (1) > aℓ

)
= −∞.

Proof. Given F ∈ C(E × E), let MF be the process defined by

M
F
t = exp

{
t
[
Qt(F )− µt(r

F − r)
]}

, t ∈ R+. (4.3)

By standard Markov chain computations, see e.g., [11, §VI.2], MF is a mean one
positive Px martingale, x ∈ E. By choosing F (x, y) = γ > 0, (x, y) ∈ E × E, for
a > 0, T > 0 we then write

Px

(
QT (1) > a

)
= Ex

(
e−T{γQT (1)−µT (rγ−r)}

M
F
T 1I{QT (1)>a}

)

≤ e−Tγa eT‖r‖(eγ−1)
Ex

(
M

F
T

)
= e−Tγa eT‖r‖(eγ−1).

The statement follows. �

Lemma 4.3. For each (φ, F ) ∈ C(E) × C(E × E) and each measurable B ⊂ M,

lim
T→∞

sup
x∈E

1

T
logPx

(
(µT , QT ) ∈ B

)
≤ − inf

(µ,Q)∈B
Iφ,F (µ,Q).

Proof. Fix x ∈ E and observe that the following path-wise continuity equation
holds Px a.s.,

0 = φ(XT )− φ(X0)−
∑

t∈[0,T ]

[
φ(Xt)− φ(X−

t )
]

= φ(XT )− φ(X0)− T
[
Q

(2)
T (φ) −Q

(1)
T (φ)

]
.

(4.4)

In view of (4.2) and (4.4), recalling the martingale introduced in (4.3), for each
T > 0

Px

(
(µT , QT ) ∈ B

)

= Ex

(
exp

{
− T Iφ,F (µT , QT )−

[
φ(XT )− φ(x)

]}
M

F
T 1IB(µT , QT )

)

≤ sup
(µ,Q)∈B

e−T Iφ,F (µ,Q)
Ex

(
exp

{
−
[
φ(XT )− φ(x)

]}
M

F
T 1IB(µT , QT )

)

≤ sup
(µ,Q)∈B

e−T Iφ,F (µ,Q)e2‖φ‖,

where in the last step we used Ex

(
M

F
T

)
= 1. The statement follows. �

Proof of Proposition 4.1. In view of the exponential tightness proven in Lemma 4.2,
it is enough to prove the upper bound for compacts. For each compact K ⊂ M, by
Lemma 4.3 and the min-max lemma in [18, App. 2, Lemma 3.3]

lim
T→+∞

sup
x∈E

1

T
logPx

(
(µT , QT ) ∈ K

)
≤ − inf

(µ,Q)∈K
sup
φ,F

Iφ,F (µ,Q).

Finally, as the map (µ,Q) 7→ Iφ,F (µ,Q) is continuous and affine, the functional
supφ,F Iφ,F is lower semi-continuous and convex. �
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Recalling that the functional I is defined in (2.3), we show that it coincides with
supφ,F Iφ,F .

Lemma 4.4. For each (µ,Q) ∈ M,

I(µ,Q) = sup
φ,F

Iφ,F (µ,Q). (4.5)

In particular, I is lower semicontinuous and convex. Moreover, if I(µ,Q) < +∞
then Q ≪ λ× λ and (2.4) holds.

Proof. Clearly, supφ
{
Q(1)(φ)−Q(2)(φ)

}
< +∞ if and only if Q(1) = Q(2). For µ ∈

M1(E) we denote by Qµ ∈ M+(E × E) the measure Qµ(dx, dy) := µ(dx)c(x, dy)
and set Λ(µ,Q) := supF

{
Q(F )−Qµ

(
eF −1

)}
. Recalling (4.1) and (4.2), the proof

of (4.5) is achieved once we show that if Q(1) = Q(2) then Λ(µ,Q) = I(µ,Q).
For Q with equal marginals we next prove that Λ(µ,Q) ≤ I(µ,Q). We can

assume I(µ,Q) < +∞ so that Q ≪ Qµ. Then

Q(F )−Qµ
(
eF − 1

)
=

∫∫
dQµ

{ dQ

dQµ
F −

(
eF − 1

)}
.

Since Ψ(a) = supλ∈R

{
λa−

(
eλ − 1

)}
, a ∈ R+, we complete this step by taking the

supremum over F .
To obtain the converse inequality, we first prove that if Λ(µ,Q) < +∞ then

Q ≪ Qµ. Let B̃ be a Borel set in E × E such that Qµ(B̃) = 0, we show that also

Q(B̃) = 0. By regularity of the measure Qµ there exists a sequence of open sets

An ⊃ B̃ in E×E such that limn Q
µ(An) = Qµ(B̃) = 0. By approximating indicator

of open sets with continuous functions we can take as test function F = γ1IAn , γ > 0,
and deduce

γ Q(B) ≤ γ Q(An) ≤ Λ(µ,Q) +
(
eγ − 1

)
Qµ(An).

We conclude by taking first the limit as n → ∞ and then γ → ∞. To prove
Λ(µ,Q) ≥ I(µ,Q) (for Q with equal marginals) we can assume Λ(µ,Q) < +∞ so
that Q ≪ Qµ. Pick an array of continuous functions {Fk,n} equibounded in n such
that {Fk,n}n≥0 converges to log

[(
dQ/dQµ ∧ k

)
∨ 1/k

]
in L1(E × E, dQµ). Then

Λ(µ,Q) ≥

∫∫
dQµ dQ

dQµ
log

[( dQ

dQµ
∧ k

)
∨

1

k

]
−

∫∫
dQµ

{[( dQ

dQµ
∧ k

)
∨

1

k

]
− 1

}
.

By monotone convergence, we conclude taking the limit k → ∞.
To prove the last statement of the lemma, we decompose the measure µ into

its absolutely continuous and singular parts with respect to λ, i.e. µ = µac + µs.
Accordingly, there exists a Borel set B ⊂ E such that µs(B) = µs(E) and λ(B) = 0.
Since Qµ(dx, dy) = µ(dx)r(x)p(x, y)λ(dy), it holds Qµ(E × B) = 0. As Q ≪ Qµ

and Q(1) = Q(2), this implies Q(E × B) = Q(B × E) = 0. Since the restriction
of Q to (E \ B) × E is absolutely continuous with respect to Qµac ≪ λ × λ, then
Q ≪ λ× λ. Straightforward manipulations now yield (2.4). �

The following estimate will be used in the proof of the lower bound.

Lemma 4.5. Let (µ,Q) ∈ M be such that I(µ,Q) < +∞. Then
∫∫

Q(dx, dy) log
1

r(x)p(x, y)
< +∞.



12 G. BASILE AND L. BERTINI

Proof. For k > 0, choose as test function in the variational formula (4.5) the func-
tion (x, y) 7→ log

(
k ∧ 1/r(x)p(x, y)

)
. We deduce

∫∫
Q(dx, dy) log

(
k ∧

1

r(x)p(x, y)

)

≤ I(µ,Q) +

∫∫
µ(dx)c(x, dy)

(
k ∧

1

r(x)p(x, y)
− 1

)
≤ I(µ,Q) + 1

where we used that c(x, dy) = r(x)p(x, y)λ(dy). By taking the limit k → ∞ we
conclude the proof. �

5. Large deviations lower bound

We state a general result concerning the large deviation lower bound in which

we denote by Ent(P̃ |P ) the relative entropy of the probability P̃ with respect to P .

Lemma 5.1. Let {Pα
n , α ∈ A}n∈N be a sequence of family of probability measures

on a completely regular topological space X . Assume that for each z ∈ X there

exists a sequence of family of probability measures {P̃α
n (z)} weakly convergent to δz

uniformly with respect to α ∈ A and such that

lim
n→∞

sup
α∈A

1

n
Ent

(
P̃α
n (z)

∣∣Pα
n

)
≤ J(z) (5.1)

for some J : X → [0,+∞]. Then the sequence of family {Pα
n , α ∈ A}n∈N satisfies

uniformly with respect to α ∈ A the large deviation lower bound with rate function
given by sc−J , the lower semi-continuous envelope of J , i.e.,

(sc−J) (z) := sup
U∈Nz

inf
w∈U

J(w)

where Nz denotes the collection of the open neighborhoods of z.

This lemma is proven in [16, Prop. 4.1] in a Polish space setting without the
dependence on the parameter α. The proof extends to the present setting. Note
that in the our application we shall work only with sequences so that one can avoid
the details of the general topological setting.

Our strategy to prove the large deviations lower bound is the following. We first
prove the lower bound for a nice subset of M. In view on Lemma 5.1 we then
recover the full lower bound by a suitable density argument. More precisely, we let

M0 :=
{
(µ,Q) ∈ M : K := supp(µ) ⊂ E \ E0, supp(Q) = K ×K,

dµ = ̺ dλ with ̺ continuous and ̺ > 0 on K,

dQ = q dλ× dλ with q continuous and q > 0 on K ×K
}
.

(5.2)

We shall prove the entropy bound (5.1) with J given by the restriction of I, as
defined in (2.3), to M0, that is

J(µ,Q) :=

{
I(µ,Q) if (µ,Q) ∈ M0,

+∞ otherwise.
(5.3)

Then we complete the proof of the lower bound by showing that the lower semi-
continuous envelope of J coincides with I.
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Proposition 5.2. Let (µ,Q) ∈ M0 and K := supp(µ). Then there exists a Markov

family P̃x, x ∈ K, such that P̃x ◦ (µT , QT )
−1 → δ(µ,Q) uniformly with respect to

x ∈ K and

lim
T→∞

sup
x∈K

1

T
Ent

(
P̃x, [0,T ]

∣∣Px, [0,T ]

)
≤ I(µ,Q), (5.4)

where Px, [0,T ] denotes the restriction of Px to D([0, T ], E).

Proof. We can assume I(µ,Q) < +∞, so that Q has equal marginals. Let dµ =
̺ dλ, dQ = q dλ × dλ, and let c̃ be the transition rates on K defined by c̃(x, dy) =

q(x, y)/̺(x)λ(dy). We denote by P̃x the law of the chain with rates c̃ starting from
x. Since Q has equal marginals, then it is easy to check that ̺ dλ is an invariant
measure of the chain. Moreover, the chain is Feller and satisfies c̃(x, dy) ≥ c0λ(dy),
x ∈ K, with c0 := minK×K q(x, y)/̺(x) > 0. Then, by the arguments of Section 3,

µT converges to ̺ dλ in P̃x probability, uniformly with respect to x ∈ K. In order
to prove the law of large numbers for the empirical flow QT , we use the following
semi-martingale decomposition. For each F ∈ C(E × E)

tQt(F ) =

∫ t

0

ds

∫
c̃(Xs, dy)F (Xs, y) +Mt(F ),

where the P̃x martingale M(F ) has predictable quadratic variation

〈M(F )〉t =

∫ t

0

ds

∫
c̃(Xs, dy)F (Xs, y)

2.

Since c̃(x, dy) ≤ Cλ(dy), then 〈M(F )〉t ≤ C t λ(F 2). Therefore, as the map K ∋
x 7→

∫
c̃(x, dy)F (x, y) is continuous, the law of large numbers of the empirical

measure µT implies

lim
T→+∞

QT (F ) =

∫∫
µ(dx)c̃(x, dy)F (x, y) = Q(F ), in P̃x probability,

uniformly with respect to x ∈ K. Since by Lemma 4.2 the family {QT}T>0 is

tight, this implies the law of large numbers P̃x ◦ (µT , QT )
−1 → δ(µ,Q) uniformly

with respect to x ∈ K. Observe that this argument also shows that for each F the
family of random variables {QT (F )}T>0 converges to Q(F ) in L2 with respect to

P̃x, uniformly in x ∈ K,
Set F ∗(x, y) := log[q(x, y)/̺(x)r(x)p(x, y)], (x, y) ∈ K×K. Then, by an explicit

computation of the Radon-Nikodym derivative, see e.g., [11, §VI.2],

1

T
Ent

(
P̃x, [0,T ]

∣∣Px, [0,T ]

)
=

1

T
Ẽx

(
log

dP̃x, [0,T ]

dPx, [0,T ]

)
= Ẽx

(
QT (F

∗)− µT (r
F∗

− r)
)
.

Recalling the representation (2.4) for I, the law of large numbers just proven yields

lim
T→∞

1

T
Ent

(
P̃x, [0,T ]

∣∣Px, [0,T ]

)
= Q(F ∗)− µ(rF

∗

− r) = I(µ,Q),

uniformly with respect to x ∈ K. �

We next show that the lower semi-continuous envelope of J , as defined in (5.3),
coincides with I. A set C ⊂ M is called I-dense in D ⊂ M if and only if for
each (µ,Q) ∈ D such that I(µ,Q) < +∞ there exists a net {(µα, Qα)} ⊂ C such
that (µα, Qα) → (µ,Q) and limα I(µα, Qα) = I(µ,Q). We remark that by the lower

semi-continuity of I, the second condition is equivalent to limα I(µα, Qα) ≤ I(µ,Q).
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Theorem 5.3. The set M0 defined in (5.2) is I-dense in M.

The proof is split in few lemmata in which we use the following notation. Let
A and B be respectively a Borel subset of E of strictly positive λ measure and a
Borel subset of E×E of strictly positive λ×λ measure. For a function f ∈ L1(dλ),
respectively a function F ∈ L1(dλ× dλ) we set

−

∫

A

f :=
1

λ(A)

∫

A

λ(dx) f(x), —

∫∫

B

F :=
1

(λ× λ)(B)

∫∫

B

λ(dx)λ(dy)F (x, y).

Lemma 5.4. Let

M1 :=
{
(µ,Q) ∈ M : K := supp(µ) ⊂ E \ E0, supp(Q) = K ×K,

∃ D1, . . . , Dℓ ⊂ K disjoint open sets such that λ
(
K \

⋃

i

Di

)
= 0,

dµ =
∑

i

ai 1IDi dλ, ai > 0, i = 1, .., ℓ,

dQ =
∑

i,j

bij 1IDi×Dj dλ× dλ, bij > 0, i, j = 1, .., ℓ
}
.

(5.5)

The set M0 is I-dense in M1.

Proof. Let (µ,Q) ∈ M1 with I(µ,Q) < +∞, so that Q(1) = Q(2). Denoting with
d(·, ·) the distance in E, by Urysohn lemma, for each Di, i = 1, .., ℓ, and n ∈ N

there exists a continuous function φn
i : K → [0, 1] such that

φn
i (x) =

{
1 if x ∈ Di

0 if d(x,Di) ≥
1
n ,

where Di is the closure of Di. We define the sequence (µn, Qn) by dµn = ̺ndλ,
dQn = qndλ× dλ, with ̺n = 0 in E \K and qn = 0 in (E × E) \ (K ×K), and

̺n(x) =
∑

i

ai
φn
i (x)∫
dλφn

i

λ(Di),

qn(x, y) =
∑

i,j

bij
φn
i (x)∫
dλφn

i

φn
j (y)∫
dλφn

j

λ(Di)λ(Dj).

In particular {(µn, Qn)} ⊂ M0, (µn, Qn) → (µ,Q) and, since Q(1) = Q(2), Q
(1)
n =

Q
(2)
n . In view of (2.4),

I(µn, Qn) =

∫∫

K×K

λ(dx)λ(dy)Φ
(
qn(x, y), ̺n(x)r(x)p(x, y)

)
.

Since r(x)p(x, y) > 0 in K ×K and ̺n ≥ c > 0 in K, by dominated convergence
we conclude that I(µn, Qn) → I(µ,Q). �

Lemma 5.5. Let

M2 :=
{
(µ,Q) ∈ M : K := supp(µ) ⊂ E \ E0, supp(Q) = K ×K,

µ ≪ λ, Q ≪ λ× λ
}
.

(5.6)

The set M1 is I-dense in M2.
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Proof. Given an integer n, pick a family of disjoint open sets Dn
1 , .., D

n
n ⊂ K such

that λ
(
K \

⋃
iD

n
i

)
= 0 and the diameter of Dn

i vanishes as n → ∞, i = 1, . . . , n.

For (µ,Q) ∈ M2 with Q(1) = Q(2), let dµ = ̺ dλ and dQ = q dλ × λ. We define
dµn = ̺ndλ and dQn = qndλ×dλ, with ̺n = 0 in E\K, qn = 0 in (E×E)\(K×K),
and

̺n(x) := −

∫

Dn
i

̺ if x ∈ Dn
i ,

qn(x, y) := —

∫∫

Dn
i ×Dn

j

q if (x, y) ∈ Dn
i ×Dn

j .

In particular, since Q(1) = Q(2), Q
(1)
n = Q

(2)
n . Moreover, {(µn, Qn)} ⊂ M1, and

(µn, Qn) → (µ,Q). In view of (2.4),

I(µn, Qn) =

∫∫

K×K

λ(dx)λ(dy)Φ
(
qn(x, y), ̺n(x) r(x)p(x, y)

)

=
∑

i,j

λ(Dn
i )λ(D

n
j ) —

∫∫

Dn
i ×Dn

j

{
qn log

qn
̺n

+ qn log
1

rp
−
(
qn − ̺n rp

)}
.

By convexity of the function a log(a/b), using Jensen’s inequality we get

qn(x, y) log
qn(x, y)

̺n(x)
≤ —

∫∫

Dn
i ×Dn

j

q log
q

̺
, (x, y) ∈ Dn

i ×Dn
j

so that

I(µn, Qn) ≤ I(µ,Q) +
∑

i,j

∫∫

Dn
i ×Dn

j

dλ× dλ
(
q − qn

)
log

1

rp

+
∑

i,j

∫∫

Dn
i ×Dn

j

dλ× dλ
(
̺n − ̺

)
rp.

Since both rp and log(1/rp) are continuous in K×K, we conclude the proof taking
n → ∞. �

The next lemma is the key step and relies on the technical condition (iv) in
Assumption 2.1.

Lemma 5.6. Let

M3 :=
{
(µ,Q) ∈ M : µ ≪ λ, Q ≪ λ× λ

}
. (5.7)

The set M2 is I-dense in M3.

Proof. For δ > 0 let Aδ ⊂ E be the open set defined by Aδ := {x ∈ E : r(x) < δ}.
Given (µ,Q) ∈ M3, with Q(1) = Q(2), we write dµ = ̺ dλ and dQ = q dλ× dλ. For
δ > 0, we set

̺δ(x) :=





̺(x) if x ∈ E \A2δ

1
λ(A2δ\Aδ)

∫

A2δ

λ(dx′) ̺(x′) if x ∈ A2δ \Aδ

0 if x ∈ Aδ,
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and

qδ(x, y) :=





q(x, y) if (x, y) ∈
(
E \A2δ

)2

1
λ(A2δ\Aδ)

∫

A2δ

λ(dy′) q(x, y′) if (x, y) ∈ E \A2δ ×A2δ \Aδ

1
λ(A2δ\Aδ)

∫

A2δ

λ(dx′) q(x′, y) if (x, y) ∈ A2δ \Aδ × E \A2δ

1(
λ(A2δ\Aδ)

)
2 Q

(
A2δ ×A2δ

)
if (x, y) ∈

(
A2δ \Aδ

)2

0 if x ∈ Aδ or y ∈ Aδ.

By letting dµδ := ̺δ dλ and dQδ := qδ dλ × dλ, it follows that (µδ, Qδ) ∈ M2 and

(µδ, Qδ) → (µ, Q). Moreover, since Q(1) = Q(2), Q
(1)
δ = Q

(2)
δ . In view of (2.4),

I(µδ, Qδ) =

∫∫
dλ× dλΦ

(
qδ, ̺δ rp

)
. (5.8)

Consider first the integral over (E \A2δ)
2. By definition of (µδ, Qδ),

lim
δ↓0

∫∫

(E\A2δ)2
dλ× dλ Φ

(
qδ, ̺δ rp

)
= I(µ,Q). (5.9)

The proof of the lemma will be achieved by showing that the other contributions
to the right hand side of (5.8) vanish ad δ ↓ 0.

Consider the integral over E \A2δ ×A2δ \Aδ, namely
∫∫

E\A2δ×A2δ\Aδ

dλ× dλ Φ
(
qδ, ̺δ rp

)

=
λ(A2δ)

λ(A2δ\Aδ)

∫∫

E\A2δ×A2δ\Aδ

λ(dx)λ(dy)Φ
(
−

∫

A2δ

q(x, ·), −

∫

A2δ

̺(x) r(x)p(x, ·)
)
+Rδ

where

Rδ =

∫∫

E\A2δ×A2δ\Aδ

λ(dx)λ(dy)

{
λ(A2δ)

λ(A2δ \Aδ)
−

∫

A2δ

q(x, ·) log
λ(A2δ)

λ(A2δ\Aδ)

−
∫
A2δ

r(x)p(x, ·)

r(x)p(x, y)

−
( λ(A2δ)

λ(A2δ\Aδ)
−

∫

A2δ

̺(x)r(x)p(x, ·) − ̺(x)r(x)p(x, y)
)}

.

By choosing δ = δn as in condition (iv) of Assumption 2.1 and using that p is
strictly positive, it follows that limn Rδn = 0. Moreover, by Jensen inequality,

λ(A2δ)

λ(A2δ\Aδ)

∫∫

E\A2δ×A2δ\Aδ

λ(dx)λ(dy)Φ
(
−

∫

A2δ

q(x, ·), −

∫

A2δ

̺(x) r(x)p(x, ·)
)

≤

∫∫

E\A2δ×A2δ

dλ× dλΦ(q, ̺ rp).

Hence

lim
n

∫∫

E\A2δn×A2δn\Aδn

dλ× dλΦ
(
qδn , ̺δnrp

)

≤ lim
n

∫∫

E\A2δn×A2δn

dλ× dλΦ(q, ̺ rp) = 0

(5.10)
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We next consider the integral over A2δ \Aδ × E \A2δ, namely
∫∫

A2δ\Aδ×E\A2δ

dλ× dλ Φ
(
qδ, ̺δ rp

)

=
λ(A2δ)

λ(A2δ\Aδ)

∫∫

A2δ\Aδ×E\A2δ

λ(dx)λ(dy)Φ
(
−

∫

A2δ

q(·, y),−

∫

A2δ

̺(·)r(·)p(·, y)
)
+Rδ,

where

Rδ =
λ(A2δ)

λ(A2δ\Aδ)

∫∫

A2δ\Aδ×E\A2δ

λ(dx)λ(dy)

{
−

∫

A2δ

q(·, y) log
−
∫
A2δ

̺(·) r(·)p(·, y)

−
∫
A2δ

̺(·) r(x)p(x, y)

+−

∫

A2δ

̺(·) r(x)p(x, y) −−

∫

A2δ

̺(·) r(·)p(·, y)

}
.

By condition (ii) in Assumption 2.1, there exists c > 0 such that p(x, y) ≥ c. We
thus deduce

Rδ ≤
λ(A2δ)

λ(A2δ \Aδ)

∫∫

A2δ\Aδ×E\A2δ

λ(dx)λ(dy)−

∫

A2δ

q(·, y) log
‖rp‖

cr(x)
+ ‖rp‖µ(A2δ).

By definition of the set Aδ, r(x) > δ for x ∈ A2δ \Aδ. Hence

Rδ ≤

∫∫

A2δ×E\A2δ

λ(dx)λ(dy) q(x, y) log
‖rp‖

cδ
+ ‖rp‖µ(A2δ)

≤

∫∫

A2δ×E\A2δ

λ(dx)λ(dy) q(x, y) log
2‖rp‖

cr(x)
+ ‖rp‖µ(A2δ),

where in the last inequality we used r(x) < 2δ for x ∈ A2δ. In view of Lemma 4.5

we conclude that limδ↓0 Rδ ≤ 0. By using Jensen inequality as in the previous step
we deduce

lim
δ↓0

∫∫

A2δ\Aδ×E\A2δ

dλ× dλ Φ
(
qδ, ̺δ rp

)
= 0. (5.11)

We finally consider the integral over (A2δ \Aδ)
2, namely

∫∫

(A2δ\Aδ)2
dλ× dλ Φ

(
qδ, ̺δ rp

)

=
( λ(A2δ)

λ(A2δ\Aδ)

)2
∫∫

(A2δ\Aδ)2
dλ× dλΦ

(
—

∫∫

(A2δ)2
q,—

∫∫

(A2δ)2
̺ rp

)
+Rδ,

where

Rδ =

∫∫

(A2δ\Aδ)2
λ(dx)λ(dy)

{( λ(A2δ)

λ(A2δ\Aδ)

)2
—

∫∫

(A2δ)2
q log

λ(A2δ)

λ(A2δ\Aδ)

—
∫∫

(A2δ)2
̺ rp

−
∫
A2δ

̺ r(x)p(x, y)

+
λ(A2δ)

λ(A2δ\Aδ)
−

∫

A2δ

̺ r(x)p(x, y) −
( λ(A2δ)

λ(A2δ \Aδ)

)2
—

∫∫

(A2δ)2
̺ rp

}
.

As in the previous step, we now use that p(x, y) ≥ c for some c > 0. We deduce

Rδ ≤
( λ(A2δ)

λ(A2δ\Aδ)

)2
∫∫

(A2δ\Aδ)2
λ(dx)λ(dy)—

∫∫

(A2δ)2
q log

λ(A2δ)

λ(A2δ\Aδ)

‖rp‖

cr(x)

+ ‖rp‖µ(A2δ)λ(A2δ\Aδ).
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Since r(x) > δ for x ∈ A2δ \Aδ,

Rδ ≤

∫∫

(A2δ)2
λ(dx)λ(dy) q(x, y) log

λ(A2δ)

λ(A2δ \Aδ)

‖rp‖

cδ
+ ‖rp‖µ(A2δ)λ(A2δ\Aδ)

≤

∫∫

(A2δ)2
λ(dx)λ(dy) q(x, y) log

λ(A2δ)

λ(A2δ \Aδ)

2‖rp‖

cr(x)
+ C µ(A2δ)λ(A2δ \Aδ),

where in the last inequality we used r(x) < 2δ for x ∈ A2δ. By choosing δ = δn,
where δn is the sequence in condition (iv) of Assumption 2.1 and using Lemma 4.5,
we deduce that limn Rδn ≤ 0. By using Jensen inequality as in the previous steps
we conclude

lim
n→∞

∫∫

(A2δn\Aδn )2
dλ × dλ Φ

(
qδn , ̺δn rp

)
= 0 (5.12)

Since ̺δ vanishes on Aδ and qδ vanishes on
(
Aδ × E

)
∪
(
E × Aδ

)
, (5.9)-(5.12)

yield the statement. �

Lemma 5.7. Let

M4 :=
{
(µ,Q) ∈ M : µ ⊥ λ, Q = 0

}
, (5.13)

The set M3 is I-dense in M4.

Proof. Consider a Borel partitionE =
⋃

i D
n
i such that λ(Dn

i ) > 0 and the diameter
of Dn

i vanishes as n → ∞. Given µ ⊥ λ, we set dµn = ̺ndλ, where

̺n(x) =
µ
(
Dn

i

)

λ
(
Dn

i

) , x ∈ Dn
i

and Qn = 0. In particular (µn, Qn) ∈ M3 and (µn, Qn) → (µ, 0). Moreover

lim
n→∞

I(µn, Qn) = lim
n→∞

∫∫
λ(dx)λ(dy)̺n(x)r(x)p(x, y) = µ(r) = I(µ, 0)

where we used the representation (2.4) for I(µ,Q). �

Proof of Theorem 5.3. Let (µ,Q) ∈ M be such that I(µ,Q) < +∞. We decompose
µ into the absolutely continuous and singular parts with respect to λ, i.e. µ = µac+
µs and we recall that by Lemma 4.4 Q ≪ Qµac . In particular, letting α = µac(E),

(µ,Q) = α
( 1

α
µac,

1

α
Q
)
+ (1− α)

( 1

1− α
µs, 0

)
.

In view of Lemmata 5.4–5.6 there exists a sequence {(µ1,n, Q1,n)} ⊂ M0 such
that (µ1,n, Q1,n) → (α−1µac, α

−1Q
)
and I(µ1,n, Q1,n) → I

(
α−1µac, α

−1Q
)
. More-

over, by Lemmata 5.4–5.7, there exists a sequence {(µ2,n, Q2,n)} ⊂ M0 such that
(µ2,n, Q2,n) → ((1− α)−1µs, 0

)
and I(µ2,n, Q2,n) → I

(
(1− α)−1µs, 0

)
.

The sequence {α(µ1,n, Q1,n) + (1 − α)(µ2,n, Q2,n)} is in M0 and converges to
(µ,Q). By the convexity of I,

I
(
α(µ1,n, Q1,n) + (1− α)(µ2,n, Q2,n)

)
≤ αI(µ1,n, Q1,n) + (1− α)I(µ2,n, Q2,n)

so that

lim
n

I
(
α(µ1,n, Q1,n) + (1 − α)(µ2,n, Q2,n)

)

≤ αI(α−1µac, α
−1Q

)
+ (1− α)I((1 − α)−1µs, 0

)
= I(µ,Q)

where we used the representation (2.4) in the last equality. �
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Proof of Theorem 2.3 (conclusion). The upper bound follows from Proposition 4.1
and Lemma 4.4, which also yields the convexity and lower semi-continuity of I.
Recalling (5.3), Lemma 5.1 and Proposition 5.2 imply the uniform lower bound
with rate function sc−J . In view of the lower semi-continuity of I and Theorem 5.3
we conclude sc−J = I. Finally, the goodness of the rate function I follows from
the exponential tightness proven in Lemma 4.2 and [12, Lemma 1.2.18]. �

6. Projections

Large deviations of the empirical measure. In the context of irreducible finite
state Markov chain, the representation of the Donsker-Varadhan functional in terms
of I has been obtained in [2, 18]. This result has been proven for countable state
space in [7]. The proof presented below relies on the variational representation
of Lemma 4.4 and on the Sion’s minimax theorem. It takes advantage of the
compactness of E.

Proof of Corollary 2.4. Let I1 : M1(E) → [0,+∞] be the functional

I1(µ) := inf
Q∈M+(E×E)

I(µ,Q). (6.1)

By contraction principle and Theorem 2.3, as T → +∞ the family
{
Px ◦ µ−1

T

}
T>0

satisfy a large deviation principle with rate function I1. To complete the proof it

is therefore enough to show Î = I1.

We first prove the inequality I1 ≥ Î. In view of (2.3) we can restrict the infimum
on the right hand side of (6.1) to elements Q ∈ M+(E×E) satisfying Q(1) = Q(2).
For such elements, by the variational characterization of I proven in Lemma 4.4,

I(µ,Q) = sup
F∈C(E×E)

{
Q(F )− µ

(
rF − r

)}
.

Fix f ∈ C(E) and choose F (x, y) = f(y)− f(x), (x, y) ∈ E×E. Since Q(1) = Q(2),

I(µ,Q) ≥ −

∫∫
µ(dx)c(x, dy)

[
ef(y)−f(x) − 1

]
.

As the right hand side does not depend on Q we deduce

I1(µ) ≥ −

∫∫
µ(dx)c(x, dy)

[
ef(y)−f(x) − 1

]

and the result follows by optimizing on f .

We next prove the inequality I1 ≤ Î. Fix µ ∈ M1(E) and observe that I1(µ) ≤
I(µ, 0) = µ(r) < +∞. By Lemma 4.4,

I1(µ) = inf
Q

sup
φ,F

Γµ(Q,φ, F )

where the infimum is carried out over all Q ∈ M+(E × E), the supremum over all
(φ, F ) ∈ C(E) × C(E × E), and Γµ : M+(E × E)× C(E) × C(E × E) → R is the
continuous functional defined by

Γµ(Q,φ, F ) = Q(1)(φ) −Q(2)(φ) +Q(F )− µ(rF − r).

As follows from a direct application of Hölder inequality, the map F 7→ µ(rF ) is
convex. Hence, for each Q the map (φ, F ) 7→ Γµ(Q,φ, F ) is concave. Since for
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each (φ, F ) the map Q 7→ Γµ(Q,φ, F ) is affine, we would like to apply the Sion’s
minimax theorem to get

I1(µ) = sup
φ,F

inf
Q

Γµ(Q,φ, F ). (6.2)

Since neither M+(E × E) nor C(E) × C(E × E) is compact, (6.2) needs however
to be justified. Postponing this step, we first conclude the argument. By choosing
on the right hand side of (6.2) Q(dx, dy) = µ(dx)c(x, dy)eF (x,y) we get

I1(µ) ≤ sup
φ,F

∫∫
µ(dx)c(x, dy)

[
eF (x,y)

(
F (x, y) + φ(x) − φ(y)

)
−
(
eF (x,y) − 1

)]

≤ sup
φ

∫∫
µ(dx)c(x, dy) sup

λ∈R

[
eλ
(
λ+ φ(x) − φ(y)

)
−
(
eλ − 1

)]

= sup
φ

{
−

∫∫
µ(dx)c(x, dy)

[
eφ(y)−φ(x) − 1

]}
= Î(µ).

We are left with the proof of (6.2). To this end we apply the generalization of the
Sion minimax theorem proven in [19] that states the following. Under the continuity
and convexity/concavity assumptions discussed before, a sufficient condition for the
minimax identity

inf
Q

sup
φ,F

Γµ(Q,φ, F ) = sup
φ,F

inf
Q

Γµ(Q,φ, F )

is that there exist a nonempty convex compact K ⊂ C(E) × C(E × E) and a
compact H ⊂ M+(E × E) such that

inf
Q

sup
φ,F

Γµ(Q,φ, F ) ≤ inf
Q6∈H

sup
(φ,F )∈K

Γµ(Q,φ, F ). (6.3)

We choose H =
{
Q ∈ M+(E × E) : ‖Q‖TV ≤ h

}
(here ‖Q‖TV is the total mass

of Q) for some h > 0 to be fixed later and let K be the singleton K = {(0, 1)}. If
Q 6∈ H then

Γµ(Q, 0, 1) = Q(1)− (e− 1)µ(r) ≥ h− (e − 1)µ(r).

Since, as already observed,

inf
Q

sup
φ,F

Γµ(Q,φ, F ) ≤ I(µ, 0) = µ(r),

by choosing h ≥ eµ(r) the condition (6.3) holds and we have concluded the proof
of (6.2). �

Large deviations of the empirical flow.

Proof of Corollary 2.5. Let I2 : M+(E × E) → [0,+∞] be the functional

I2(Q) := inf
µ∈M1(E)

I(µ,Q). (6.4)

By contraction principle and Theorem 2.3, as T → +∞ the family
{
Px ◦Q

−1
T

}
T>0

satisfy a large deviation principle with rate function I2. To complete the proof it

is therefore enough to show Ĩ = I2.

We first prove the inequality I2 ≥ Ĩ. We use the variational characterization
(4.5) restricting to Q with equal marginals. Given α ∈ (−rm,+∞), we chose

F (x, y) = log
[ Q(dx, dy)

Q(dx,E)c(x, dy)
(r(x) + α)

]
.
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By direct computations Qµ(eF − 1) = α, so that

I(µ,Q) ≥ Q(F )−Qµ
(
eF − 1

)

=

∫∫
Q(dx, dy) log

[ Q(dx, dy)

Q(dx,E)c(x, dy)
(r(x) + α)

]
− α.

The result follows by optimizing over α. We observe the choice of F is not really
legal since it could be not continuous, however a truncation procedure similar to
the one in Lemma 4.4 leads to the same conclusion.

We next prove I2 ≤ Ĩ. By definition of Ĩ we can assume that Q has equal
marginals. Given Q, if there exists α > −rm such that

∫∫
Q(dx,E)/(r(x) +α) = 1

we chose

µQ(dx) =
Q(dx,E)

r(x) + α
,

then I2(Q) ≤ I(µQ, Q). By a direct computation

I(µQ, Q) =

∫∫
Q(dx, dy) log

[ Q(dx, dy)

Q(dx,E)c(x, dy)
(r(x) + α)

]
− α ≤ Ĩ(Q).

If such α does not exists, by monotone convergence
∫

Q(dx,E)

r(x) − rm
≤ 1

and we can chose

µQ(dx) =
Q(dx,E)

r(x) − rm
+
(
1−

∫∫
Q(dz, E)

r(z)− rm

)
δx0

(dx),

with x0 such that r(x0) = rm. From (2.4) by direct computation we obtain

I(µQ, Q) =

∫∫
Q(dx, dy) log

[ Q(dx, dy)

Q(dx,E)c(x, dy)
(r(x) − rm)

]
+ rm ≤ Ĩ(Q),

where the last inequality follows by monotone convergence. �
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