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ABSTRACT
ISS
OBJECTIVES The purpose of this study was to follow the long-term progression of diabetic cardiomyopathy by

combining cardiac magnetic resonance (CMR) and molecular analysis.

BACKGROUND The evolution of diabetic cardiomyopathy to heart failure affects patients’morbidity and mortality. CMR

is the gold standard to assess cardiac remodeling, but there is a lack of markers linked to the mechanism of diabetic

cardiomyopathy progression.

METHODS Five-year longitudinal study on patients with type 2 diabetes mellitus (T2DM) enrolled in the CECSID

(Cardiovascular Effects of Chronic Sildenafil in Men With Type 2 Diabetes) trial compared with nondiabetic age-matched

controls. CMR with tagging together with metabolic and molecular assessments were performed at baseline and 5-year

follow-up.

RESULTS A total of 79 men (age 64 � 8 years) enrolled, comprising 59 men with T2DM compared with 20 nondiabetic

age-matched controls. Longitudinal CMR with tagging showed an increase in ventricular mass (DLVMi ¼ 13.47 � 29.66

g/m2; p ¼ 0.014) and a borderline increase in end-diastolic volume (DEDVi ¼ 5.16 � 14.71 ml/m2; p ¼ 0.056) in men with

T2DM. Cardiac strain worsened (Ds ¼ 1.52 � 3.85%; p ¼ 0.033) whereas torsion was unchanged (Dq ¼ 0.24 � 4.04�;

p ¼ 0.737), revealing a loss of the adaptive equilibrium between strain and torsion. Contraction dynamics showed

a decrease in the systolic time-to-peak (DTtP ¼ �35.18 � 28.81 ms; p < 0.001) and diastolic early recoil-rate

(DRR ¼ �20.01 � 19.07 s-1; p < 0.001). The ejection fraction and metabolic parameters were unchanged. Circulating miR

microarray revealed an up-regulation of miR122-5p. Network analysis predicted the matrix metalloproteinases (MMPs)

MMP-16 and MMP-2 and their regulator (tissue inhibitors of metalloproteinases) as targets. In db/db mice we demon-

strated that miR122-5p expression is associated with diabetic cardiomyopathy, that in the diabetic heart is overexpressed,

and that, in vitro, it regulates MMP-2. Finally, we demonstrated that miR122-5p overexpression affects the extracellular

matrix through MMP-2 modulation.

CONCLUSIONS Within 5 years of diabetic cardiomyopathy onset, increasing cardiac hypertrophy is associated with

progressive impairment in strain, depletion of the compensatory role of torsion, and changes in viscoelastic contraction

dynamics. These changes are independent of glycemic control and paralleled by the up-regulation of specific microRNAs

targeting the extracellular matrix. (Cardiovascular Effects of Chronic Sildenafil in Men With Type 2 Diabetes [CECSID];

NCT00692237) (J Am Coll Cardiol Img 2021;14:1130–42) © 2021 The Authors. Published by Elsevier on behalf

of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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AB BR E V I A T I O N S

AND ACRONYM S

CMR = cardiac magnetic

resonance

ECM = extracellular matrix

EDVi = indexed end-diastolic

volume

EF = ejection fraction

HF = heart failure

HfpEF = heart failure with

preserved ejection fraction

HfrEF = heart failure with

reduced ejection fraction

LGE = late gadolinium

enhancement

LV = left ventricle

LVMi = indexed left ventricular

mass

miRNA = microRNA

MMP = matrix

metalloproteinase

mRNA = messenger RNA

qPCR = quantitative

polymerase chain reaction

RR = recoil rate

TtP = time to peak

T2DM = type 2 diabetes

mellitus
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C ardiovascular complications are the main
causes of morbidity and mortality in patients
with type 2 diabetes mellitus (T2DM), ac-

counting for about two thirds of overall deaths (1).
The Framingham Heart Study showed a 2- to 5-fold in-
crease in heart failure (HF) in individuals with T2DM,
even when adjusted for the most common risk factors
(2), supporting the existence of a specific diabetic
cardiomyopathy.

Traditionally, diabetic cardiomyopathy was
described as an early diastolic dysfunction triggered
by hyperglycemia or inflammatory myocardial in-
juries, which can occur in the absence of other known
cardiovascular diseases, potentially evolving into a
systolic dysfunction (3). Recently, the initial stage
was recorded according to the common categories for
HF as a restrictive pattern with preserved ejection
fraction (HFpEF), which can evolve toward dilated
with reduced ejection fraction (HFrEF) (4).

In the 2012 CECSID (Cardiovascular Effects of
Chronic Sildenafil in Men With Type 2 Diabetes) trial,
we demonstrated that cardiac magnetic resonance
(CMR) with tagging accurately identifies the early
asymptomatic stages of diabetic cardiomyopathy. We
validated the use of CMR in short-term follow-up and
described a decoupling between the shortening of
cardiac fibers (strain), which was reduced, and the
rotational motion of the apex relative to the base
(torsion), which was increased (5).

Despite the increasing awareness of cardiac risk in
diabetic cardiomyopathy, few studies have investi-
gated the role of glycemic control for its evolution,
but all seem to concur that strict glycemic control
does not halt or reverse cardiac disease progression
(6). Thus, there is an urgent need for biomarkers to
monitor cardiac worsening. MicroRNAs (miRNAs)
have recently emerged as potential noninvasive bio-
markers offering diagnostic, prognostic, and thera-
peutic targets for diabetic cardiomyopathy (7).
However, few studies validated their role prospec-
tively and provided a biologic proof for the mecha-
nism involved in the clinical settings they were
identified.
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array to identify the mi-RNAs differently
expressed with diabetic cardiomyopathy
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RNAs, we found that the miR-122-5p, previ-
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diabetic cardiomyopathy. Then, we proved,
for the first time, that miR-122-5p targets the
metalloproteinases and cardiac extracellular
matrix (ECM), providing a molecular expla-
nation for the observed changes in the
contraction dynamics of the diabetic heart.

METHODS

SUBJECTS AND PROTOCOL. Patients with
T2DM participating in the CECSID trial
(NCT00692237) were followed up yearly

(from 2008 to 2012) with a routine clinical assessment
(Supplemental Methods 3) and a full CMR imaging
evaluation performed 5 years after the first imaging.
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nonfunctioning thyroid nodules) and enrolled as
controls for the follow-up assessment. The CMR scan
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[EF]), and areas of myocardial fibrosis (late gadolin-
ium enhancement [LGE]).
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Alongside clinical and radiological evaluations
(CMR), circulating plasma miRNAs were collected at
enrollment and 5-year follow-up. A microarray anal-
ysis with more than 3,000 known human miRNAs was
undertaken to identify those differentially expressed.
The identified miRNAs were tested against diabetic
cardiomyopathy progression. The potential biologic
targets for the identified miRNAs were screened using
web-based software. Then ex vivo (diabetic mouse
models) and in vitro experiments (miRNA Trans-
fection, Luciferase assay, and zymography) were
carried out to provide direct proof of their direct
involvement in the molecular pathways sustaining
diabetic cardiomyopathy progression. All subjects
gave their written informed consent. The clinical
protocol was approved by the Hospital Ethics Com-
mittee (746/07).

CMR IMAGING. CMR imaging studies were performed
by an experienced operator (NG) as previously
described (5) (Supplemental Methods 4) using a 1.5-T
scanner (Avanto, Siemens, Healthcare Solutions,
Erlangen, Germany) with an 8-element phased-array
surface receiver coil and electrocardiogram trig-
gering. Ventricular volumes were measured using
breath-hold balanced, steady-state free precession
sequences (cineMR) of 10 to 12 short-axis slices
covering the whole left ventricle (LV) from base to
apex. Myocardial strain and torsion were calculated
applying on cineMR sequences a grid generated by
saturating orthogonal tags. LGE imaging was per-
formed after the intravenous injection of contrast
agent (0.1 mmol/kg Gd-DOTA, Guerbet, Villepinte,
France) to rule out previous myocardial infarction. All
sequences were performed in vertical and horizontal
long- and short-axis orientations.

Kinetics, geometry, and cardiac performance were
analyzed using Harmonic Phase tecnology (HARP,
version 1.1, Diagnosoft Inc., Morrisville, North Car-
olina) (Supplemental Methods 4) and revealed a low
intraobserver variability.

CMR CARDIAC CONTRACTION DYNAMICS. Using
nonlinear regression analysis with dynamic fit, we
previously (5) showed that the best equation
describing systolic twist is a monoexponential rise to
a nonzero asymptote (Supplemental Methods 4),
Tt(t) ¼ Tmax[1�exp(bt$t)], where Tt(t) is the instanta-
neous LV torsion function of time t, Tmax is the
asymptotic maximum torsion, and bt is the twist time
constant. Conversely, diastolic untwist is best
described by a monoexponential decay (with a zero-
torsion asymptote) as Tut(t) ¼ T0exp(-but$t), where
Tut(t) is the instantaneous LV recoil, T0 is the proto-
diastolic torsion before the onset of torsion decay
and but is the untwist (or recoil) time constant; but can
be used as an index for LV relaxation.

Although this is an oversimplified model, the
equation supports the hypothesis that the CMR
parameters describing LV torsion are directly related
to contraction and the viscoelasticity of the
myocardium.

Additional calculated parameters were the time to
peak (TtP), defined as the time (ms) the heart takes to
reach Tmax; and the normalized recoil rate (RR) ¼
d(Tut)/dt, defined as the slope of the linear regression
of recoil during the first 100 ms after peak torsion.
Calculated in this way, the RR was then normalized
for peak torsion as RR ¼ RR/Tmax.

For clinical interpretation of dynamics see
Supplemental Methods 2.

IDENTIFICATION OF DIFFERENTIALLY EXPRESSED

miRNAs. The longitudinal analysis of serum miRNA
profiles was assessed at baseline and at 5 years of
follow-up using a double approach (Supplemental
Methods 5 to 8). The entire set was randomly split
into two. Half the samples were processed using an
array strategy and the other one-half were used to
confirm the findings by real time quantitative poly-
merase chain reaction (RT-qPCR). Array data in pa-
tients with T2DM were also further tested against a
different control group of nondiabetic subjects with
pulmonary hypertension to exclude miRNA modu-
lation related to nondiabetes-specific cardiovascular
disorders (data not shown).

DIABETIC MOUSE MODEL. Male BKS.Cg-Dock7mþ/
þLeprdbJ (db/db) mice aged 5 and 22 weeks (6 in
each group), obtained from the Charles River Labo-
ratory (Calco, Italy), were maintained in a pathogen-
free facility. All experiments were performed in
accordance with Italian and European law (2010/63/
EU) and the study was approved by the Sapienza
University’s Animal Research Ethics Committee and
by the Italian Ministry of Health (165/2016-PR). Fast-
ing blood glucose was determined in each group at 5
and 10 weeks of age, respectively. db/db mice are
widely used to follow T2DM progression and com-
pliances because they present hyperinsulinemia early
and develop severe T2DM by 8 to 10 weeks of age
(10,11). The 5-week-old mice were thus considered as
normoglycemic, hyperinsulinemic controls compared
with the diabetic older mice exhibiting features of
diabetic cardiomyopathy.

CELL CULTURES IN LOW AND HIGH GLUCOSE.

HEK293 and HL-1 cell culture were cultured as pre-
viously described (12). Human corpus cavernosum
primary cultures (human pericytes) were obtained
from nondiabetic donors undergoing penile
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TABLE 1 Characteristics of the 51 Patients With T2DM Completing Both the Baseline and

5-Year Follow-Up CMR Assessment and 20 Nondiabetic Controls

Baseline 5-Year Follow-Up Controls

Age, yrs 60 � 7 64 � 8 63 � 9

Complications and comorbidities

Hypertension 20 (39) 20 (39) 8 (40)

AMI 0 (0) 5 (10) –

Dyslipidemia 26 (51) 22 (44) 10 (50)

Diabetic nephropathy 0 (0) 1 (2) –

Diabetic retinopathy 0 (0) 7 (15) –

Diabetic neuropathy 0 (0) 7 (15) –

Hypogonadotropic hypogonadism 0 (0) 9 (18) –

Hypergonadotropic hypogonadism 0 (0) 3 (6) –

Subclinical hypogonadism 2 (4) 15 (29) –

Erectile dysfunction 15 (29) 18(35) –

Treatment

Metformin 27 (53) 34 (67) –

Secretagogues 14 (27) 10 (20) –

Insulin 0 (0) 2 (5) –

Liraglutide 0 (0) 4 (8) –

Statin 14 (27) 28 (55) 10 (50)

ACE inhibitor 8 (16) 16 (31) 6 (30)

AT1-blocker 13 (25) 15 (29) 5 (25)

Calcium-channel blocker 7 (14) 12 (24) 4 (20)

b-blocker 5 (10) 8 (16) 2 (10)

AT1-blocker þ diuretic 4 (9) 9 (18) 4 (20)

Diuretic 3 (6) 16 (31) 6 (30)

Values are mean � SD or n (%).

ACE ¼ angiotensin¼converting enzyme; AMI¼ acute myocardial infarction; AT1¼ angiotensin 1; CMR¼ cardiac
magnetic resonance; T2DM ¼ type 2 diabetes mellitus.
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reconstruction for recurvatum penile surgery. After
seeding, only sprouting cells were used for sub-
cultivation. Cells at low passages were used for ex-
periments. Cells were maintained throughout in
Dulbecco’s Modified Eagle Medium (DMEM) low
glucose (1 g/l) or high glucose (25 mmol/l, 4.5 g/l)
supplemented with 10% Fetal Bovine Serum
(Life Technologies, California) 2 mmol/l L-glutamine,
1 U/ml penicillin, and 1 mg/ml streptomycin solution
(Sigma Aldrich, Missouri), as shown (13). HL-1 and
human pericytes were stimulated with 2 ng/ml re-
combinant transforming growth factor b1 (Peprotech,
London, United Kingdom) for 48 h.

miRNA TRANSFECTION AND 3’UTR LUCIFERASE

ASSAY. In this study, 105 cells were seeded in tripli-
cate in 12-well plates and allowed to settle for 16 h
and then transfected with Lipofectamine 3000 (Life
Technologies, California) according to the manufac-
turer’s instructions. The cells were cotransfected with
250 ng of pISImmP16 3’ UTR (Addgene, Massachu-
setts) or MMP2 3’ UTR plasmid, kindly provided by Dr.
Giovanna Castoldi (Bicocca University, Monza, Italy),
with or without 10 nmol/l of miR122-5p, miR595
(Sigma Aldrich, California), or miR499 (Origine, Mas-
sachusetts). Firefly luciferase activity was measured
24 h after transfection with the Dual-Luciferase Re-
porter Assay System (Promega, Mannheim, Germany)
using a GloMax 96 Microplate Luminometer (Prom-
ega) according to the manufacturer’s instructions.

REAL-TIME PCR ANALYSIS. For miRNA real-time
PCR and tissue gene expression analyses see
Supplemental Methods 6.

METALLOPROTEINASE GELATIN ZYMOGRAPHY.

The medium was collected 48 h after transfection and
gelatinase (matrix metalloproteinases [MMP] type 2
and 9) activity was visualized using zymography. The
medium was separated under nonreducing conditions
in a 12% Sodium Dodecyl Sulphate - PolyAcrylamide
Gel Electrophoresis (SDS-PAGE) solution containing
10 mg/ml gelatin. After electrophoresis, the gels were
incubated with 2% Triton X-100 (twice for 60 min) to
remove Sodium Dodecyl Sulphate (SDS) incubated
overnight at 37�C in buffer containing 50 mmol/l Tris-
HCl (pH 7.5), 10 mmol/l CaCl2, 100 mmol/l NaCl, and
2%Triton X-100. Gels were stained in 0.25%Coomassie
blue for 1 h and destained until bands of activity were
clearly visible. Gels were acquired with the Syngene G-
box system (Syngene Bioimaging, Haryana, India) and
MMP-2 and MMP-9 bands were quantitatively
analyzed using ImageJ Software (National Institutes of
Health, Bethesda, Maryland).

STATISTICAL ANALYSIS. Continuous variables are
reported as mean � SD. All variables were tested for
normality using the Shapiro-Wilk test. Pearson test
was performed to evaluate the potential correlation
between clinical variables and miRNA levels. A 2-step
analytic approach was used to test possible differ-
ences between cardiac dynamics parameters
throughout the study timeframe: the first step con-
sisted of nonlinear regression analyses with dynamic
fit to compute individual cardiac dynamics’ co-
efficients, and the second step consisted of pairwise
(pre-post) comparisons using Student’s t-test. The
approach was selected for consistency with the pub-
lished CECSID trial (5) and because individual co-
efficients can be used for subsequent follow-up
evaluations. Regarding the other outcome measures,
independent and pairwise comparisons were per-
formed using Student’s t-test and one way-analysis of
variance, and linear regression models were used to
explore dependency (SPSS for Windows, version 18.0,
IBM). Data from in vitro experiments are presented as
the mean� SE of the mean from at least 3 separate
experiments. Data significance was analyzed using
Student’s t-test for parametric data or Mann-Whitney
test for nonparametric data. A p< 0.05 was consid-
ered statistically significant.
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TABLE 2 Metabolic and Anthropometric Parameters

Baseline 5-Year Follow-Up Delta p Value

Weight (kg) 81.59 � 14.93 82.10 � 15.19 0.52 � 4.36 0.495

BMI (kg/m2) 27.42 � 4.50 27.28 � 4.28 �0.04 � 1.61 0.877

Waist circumference (cm) 99.45 � 11.81 99.63 � 13.04 0.18 � 6.95 0.871

HbA1c (mmol/mol) 57.40 � 11.42 55.10 � 12.73 �2.10 � 0.97 0.230

Total cholesterol (mmol/l) 5.45 � 1.07 5.11 � 1.95 –0.34 � 1.29 0.139

LDL (mmol/l) 3.22 � 1.12 2.81 � 0.99 �0.42 � 1.14* 0.048

HDL (mmol/l) 1.30 � 0.31 1.40 � 0.36 0.10 � 0.03 0.091

Triglycerides (mmol/l) 1.38 � 0.82 1.36 � 0.64 �0.19 � 0.89 0.906

Creatinine (mmol/l) 82.20 � 14.21 79.91 � 21.89 �2.28 � 13.54 0.312

Microalbuminuria (mg/l) 14.65 � 23.07 18.83 � 34.79 3.38 � 8.79 0.518

Values are mean � SD. *p < 0.05.

BMI ¼ body mass index; HDL ¼ high-density lipoprotein; LDL ¼ low-density lipoprotein.
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RESULTS

CLINICAL CHARACTERISTICS OF THE STUDY

POPULATION. A total of 79 men (age 64 � 8 years)
were enrolled, including 59 patients with T2DM who
had completed the CECSID trial. Eight of these were
lost to follow-up: 4 refused to undergo the last CMR
examination, 1 died due to colorectal carcinoma, and
3 were excluded for symptomatic ischemic heart
disease, no longer matching the inclusion criteria.
The full dataset was, therefore, available for 71 sub-
jects, 51 individuals with T2DM, and 20 controls
(Table 1). Metabolic and anthropometric parameters
remained unchanged throughout the study time
(Table 2, Supplemental Results 9.1, Supplemental
Table 1). All patients with diabetes and no control
subjects showed baseline (5) and follow-up CMR-
tagged imaging features consistent with diabetic
cardiomyopathy (Supplemental Table 2). Post-hoc
analysis revealed that 5 patients with diabetes
(9.8%) showed focal subendocardial LGE areas
consistent with asymptomatic ischemic damage,
despite no 2-dimensional echo hypokinetic areas;
these subjects were excluded in the subgroup anal-
ysis (Supplemental Results 9.1).

CMR GEOMETRY, KINETICS, AND PERFORMANCE:

LONGITUDINAL ANALYSIS. Analysis of cardiac
geometry showed an increase in LVMi, shaping a
further progression of LV hypertrophic degree with
an estimated increase of 3.37 � 7.41 g/m2/year indi-
vidual variation in baseline mass. A borderline in-
crease in EDVi (p ¼ 0.056) was also observed.

Analysis of torsion and strain revealed worsening
of strain, but no change in torsion (Table 3).

Analysis of contraction dynamics revealed a
reduced TtP and RR. Similarly, there was a decrease
in the systolic (Tmax) and diastolic (T0) torsion
coefficient with an increase in twist time constant
(bt), but no change in recoil time constant (but). EF
(Table 3) and metabolic status (Supplemental Results
9.2) remain unchanged. For cross-sectional and lon-
gitudinal correlations see Supplemental Results 9.3.

SUBGROUP ANALYSIS. Although patients with acute
symptomatic coronary syndrome were excluded
during follow-up, post hoc CMR analysis revealed
that 5 additional patients presented focal areas of LGE
consistent with myocardial scar, not previously
detected as electrocardiogram abnormalities or 2-
dimensional echo ventricular contraction defects.
All analyses were repeated excluding these subjects
(Supplemental Results 9.2). In short, cardiac geome-
try analysis proved the significant progression of LV
hypertrophy, but the unchanged EDVi suggests that
dilation is probably associated with the ischemic
damage, whereas hypertrophy might also develop
independently. As with the whole cohort, impaired
strain and unaffected torsion were observed, whereas
EF remained unchanged. Subgroup analysis for
hypogonadism was not significant.

miRNA ARRAY STUDY. Individual microarray anal-
ysis was performed using the common 2-steps
biostatistics approach (10) (Supplemental Methods 5)
on patient serum samples at baseline and follow-up
to check for any longitudinal differential expression
of circulating miRNAs. miR122-5p was confirmed as
regulated (Figure 1) and selected as differentially
expressed. Linear regression demonstrated that
miR122-5p predicted RR (b ¼ �11.33; 95% confidence
interval [CI]: �20.43 to �2.24; p ¼ 0.03). Target-scan
and network analysis revealed that miR122-5p pre-
dicted the MMPs and their regulators (tissue inhibitor
of metalloproteinases-1) as converging targets.

To prove the involvement of miR-122-5p in diabetic
cardiomyopathy, we first analyzed its tissue and cell
expression. Then, we tested its up-regulation in the
high-glucose settings. Finally, we explored the pre-
dicted targets documenting whether its up-regulation
could suppress MMPs or modify their enzymatic
activity, thus providing compelling evidence that
miR-122-5p affects ECM remodeling.

miR122-5P EXPRESSION IS ASSOCIATED WITH DIABETIC

CARDIOMYOPATHY IN VIVO. miR122-5p was once
considered a tissue-specific miRNA because it is highly
expressed in the liver. However, later studies investi-
gated its role in HF (14). The predominant factor in
diabetes-mediated complications is endothelial
dysfunction. T2DM causes amplification of endothelial
cell dysfunction, glycosylation of ECM proteins, and
vascular denervation, ultimately leading to impaired
neovascularization and diabetic wound healing.MMPs
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TABLE 3 CMR Assessment of Dynamics and Geometric and Performance Parameters

Baseline 5-Year Follow-up Delta p Value

Torsion, q (�) 19.53 � 4.41 19.28 � 4.64 0.24 � 4.04 0.737

Strain, s (%) �12.17 � 2.76 �10.65 � 3.15 1.52 � 3.85† 0.033

Tmax 26.31 � 6.07 19.04 � 4.76 �7.27 � 6.18* 0.000

bt 0.22 � 0.07 0.55 � 0.22 0.33 � 0.21* 0.000

TTP (ms) 160.19 � 27.96 125.0 � 25.0 �35.18 � 28.81* 0.000

T0 21.95 � 5.37 15.32 � 3.90 �6.63 � 4.90* 0.000

but 0.20 � 0.07 0.15 � 0.11 �0.04 � 0.13 0.146

RR (s-1) 47.88 � 17.28 27.87 � 13.11 �20.01 � 19.07* 0.000

LVMi (g/m2) 118.52 � 25.37 131.99 � 27.27 13.47 � 29.66† 0.014

EDVi (ml/m2) 60.53 � 15.06 65.70 � 15.15 5.16 � 14.71 0.056

CI (g/ml) 2.01 � 0.44 1.97 � 0.41 �0.03 � 0.34 0.628

EF (%) 60.76 � 9.02 60.76 � 6.42 0.00 � 8.31 0.998

Values are mean � SD. *p < 0.0001. †p < 0.05.

bt ¼ torsion constant; but ¼ recoil constant; CI ¼ concentricity index; EDVi ¼ end-diastolic volume index;
EF ¼ ejection fraction; LVM ¼ left ventricular mass index; RR ¼ normalized recoil rate; Tmax ¼ torsion coefficient;
T0 ¼ decay coefficient; TTP ¼ time to peak; other abbreviation as in Table 1.
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are highly expressed by pericytes, local regulatory cells
that are important for maintaining vascular homeo-
stasis and hemostasis (15). miR122-5p expression
analysis on the liver and the heart isolated from 5- and
22-week-old wild-type mice confirmed that miR122-5p
is expressed and regulated in heart tissue (Figure 2A)
and the endothelial cell compartment (Figure 2B).

miR122-5P DIRECTLY BINDS MMP-2 3’UTR AND

MODULATES ECM GENE EXPRESSION. miR122-5p was
predicted by TargetScan and miRanda analysis to
bind the MMP-2 messenger RNA (mRNA) 3’UTR. To
determine whether MMP-2 was regulated by miR122-
5p, we cotransfected HEK293 cells with a wild-type
construct (3’UTR-MMP-2) and an unrelated control
miRNA (miR499) or with miR122-5p. There was a
significant decrease in luciferase in cells over-
expressing miR122-5p, suggesting that it directly
binds the 3’UTR of MMP-2 (Figure 3A). Since we
demonstrated that miR122-5p is mainly produced by
the endothelial compartment, we evaluated MMP-2
modulation after miR122-5p overexpression in a hu-
man pericyte cell model. As reported in Figure 3B,
miR122-5p reduced MMP-2 expression and increased
the mRNA levels of various ECM markers.

HYPERGLYCEMIA EXACERBATES THE MMP-2 RELATED

ECM REMODELING INDUCED BY miR122-5P. To resemble
the diabetic milieu, pericytes were cultured in high-
glucose conditions (25 mmol/l) and after 1 week the
cells were transfected with miR122-5p or miR499
unrelated control. Real-Time-qPCR analysis showed
reduced MMP-2 levels in miR122-5p overexpressing
cells, whereas the ECM markers COL1A1, ITGb1, and
VINCULIN were increased (Figure 4A). MMP-2 down-
regulation parallels the decreased activity of these
cells, as demonstrated by zymography analysis on
supernatant from miR122-5p overexpressing peri-
cytes (Figure 4B). The high-glucose environment
alone was sufficient to reduce MMP-2 activity
(Figure 5A) and induce ECM remodeling (Figure 5B).

DISCUSSION

Our study provides the first description of longitudi-
nal change in CMR features and circulating miRNAs in
a homogeneous cohort of men with T2DM followed
up to 5 years after diagnosis. Despite good glycemic
control, we observed a tendency toward left ventric-
ular chamber dilation accompanied by an upscaling of
cardiac hypertrophic degree. The cardiac kinetics
changed accordingly: torsion, increased at baseline,
plateaued, thus failing to compensate for any further
strain reduction observed at follow-up. The twisting
and untwisting coefficients followed the progressive
depletion of the spring mechanism, consistent with a
deterioration of the viscoelastic myocardial proper-
ties, mirrored by miR122-5p up-regulation. In vitro
studies demonstrated that miR122-5p down-regulates
MMP-2, one of the enzymes responsible for ECM
rearrangement in diabetes (16) (Central Illustration).

The clinical significance of the evolution of cardiac
hypertrophy toward a “thick and dilated” phenotype
lies in the 5% incidence of acute coronary syndrome
and an additional 8% CMR findings of asymptomatic
ischemic scars, all notwithstanding good metabolic
control throughout the follow-up period.

New glucose-lowering drugs (GLP1-RA and SGLT2i)
have been proven to improve cardiovascular events
in patients with T2DM. However, they are regarded as
second-line treatment and their efficacy appears
more striking in secondary, rather than primary,
prevention (17). Moreover, most of the patients in our
cohort were in good glycemic control not needing
second-line treatments. Very few studies have
longitudinally assessed the progression of cardiac
remodeling in diabetes. In the large Olmsted County
cohort study, 38.5% of patients with HFpEF evolved
toward HFrEF during 5 years (18) through progressive
contractile dysfunction or unique remodeling
contributing to the pathophysiology of HFpEF. How-
ever, this cohort held the limit of observational
studies and included a higher prevalence of HFpEF in
women (men and women may progress differently
(19)), the evaluations were performed using conven-
tional echocardiography, and the EF decrease was
greater in those who were older and had coronary
artery disease. In our prospective study on younger



FIGURE 1 Circulating miRNA Regulation in T2DM Patients
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FIGURE 2 miR-122-5p Expression Is Associated With Diabetic Cardio
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men studied with CMR, we did not find a decrease in
EF during 5 years.

Significant advances have been made in under-
standing diabetic cardiomyopathy pathophysiology,
but the role of glycemic control in accelerating or
slowing cardiac remodeling is still unclear. Hypergly-
cemia is undoubtedly amajor trigger for inflammatory/
profibrotic pathways within the myocardium (20) as
well as responsible for the progression towardHF,with
an 8% increased risk for each 1% increase in HbA1c (21).
Although metabolic parameters were unchanged in
our cohort, and patients were in good control, heart
disease progressed. This is consistent with previous
observations showing that except in the very early
stage, strict glycemic control is insufficient to revert
pathological cardiac processes (22).

Other important mediators are involved in the
homeostasis of heart function. In recent years, miR-
NAs have been recognized as potential biomarkers for
myopathy In Vivo
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FIGURE 3 miR-122-5p Directly Binds the MMP-2 mRNA 30 UTR
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a wide spectrum of diseases, including T2DM (23).
miR122-5p has been linked to T2DM and its compli-
cations (24) being also a prognostic biomarker for all-
cause and cardiovascular mortality (25).

Our study observed at the 5-year follow-up a
consistent up-regulation of miR122-5p in patients
with CMR features of diabetic heart, confirming
miR122-5p as a valuable biomarker to assess subclin-
ical diastolic dysfunction (e.g., reduced RR) and
earlier stages of diabetic cardiomyopathy (e.g.,
HFpEF) evolving toward dilated hypertrophy.

Target-scan and network analysis revealed
converging evidence that the matrix proteins (namely
MMP-2) could be a common target for miR122-5p.
MMPs are a group of proteolytic enzymes involved
in the ECM remodeling (26).

Through mechano-transduction, cardiac ECM reg-
ulates myocardial tension transmission in response to
mechanical forces. Recent findings suggest the SGLT-
2 mediated effects on mechanosensitive ion channels
as potential pathways by which they act, improving
diastolic dysfunction and cardiovascular risk in dia-
betic cardiomyopathy (27).

Also, imbalances in ECM processing by MMPs,
specifically MMP-2 and MMP-9, have been associated
with a wide spectrum of cardiovascular disorders,
including diabetic cardiomyopathy (28), often with
conflicting findings. Some of these inconsistencies
are probably due to measuring their total serum
levels, rather than assessing their tissue protease ac-
tivity. However, even when measured through
myocardial sampling approaches, the normal matrix
architecture and balance between MMPs and tissue
inhibitors of metalloproteinases could be affected by
sample handling, thus not necessarily reflecting the
dynamic nature of this proteolytic system (16). The
transition from an apparently compensated remod-
eling to a failing heart depends on this equilibrium,
which needs to be quantified promptly, using sensi-
tive approaches.

Consistent with previous data on experimental
models of diabetic cardiomyopathy (29), our in vitro
data showed that increased miR122-5p levels down-
regulate MMP-2 activity. Interestingly, a longitudi-
nal evaluation of 53 patients with T2DM found
reduced MMP-2 tissue activity at 3 months of follow-
up (30), supporting our findings.

In our previous study, we demonstrated that the
early stage of diabetic cardiomyopathy involves
increased ventricular torsion due to defective
shortening in the more fragile subendocardial fibers
(5). The systolic twist is an intrinsic movement of
the healthy heart resulting from the helical orien-
tations of the fibers. It facilitates uniform trans-
mural fiber shortening and wall stress, thereby
improving the efficiency of ventricular contraction.
This functional geometry also accommodates fiber
length changes at constant ventricular volume
(isometric contraction and relaxation), which im-
proves ventricular ejection and filling. However,
when torsion increases without a significant in-
crease in shortening, in other words, when twisting
is decoupled from strain, torsion becomes a form of
dissipated energy. In diabetic cardiomyopathy,



FIGURE 4 High-Glucose Exacerbates MMP-2-Related ECM Remodeling Induced by miR-122
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subendocardial fibrosis (5) causes torsion to rise and
strain to decrease. The damage this triggers is
initially limited to the thinner and shorter sub-
endocardial fibers, which are orthogonal to the
subepicardial fibers; this leads to increased torsion
of the subepicardial fibers because it is no longer
antagonized. The torsion measured by CMR com-
prises the absolute difference in these forces (31)
(Supplemental Figure 1).

Our long-term follow-up showed that the already
increased torsion did not progress further. In fact,
the maximum torsion angle progressively diminishes
when many cardiac fibers have undergone fibrotic
changes (32), but only after extensive remodeling
has already occurred (e.g., increased EDV) (33). At
baseline, our patients had a low-normal EDVi and
increased torsion. Five years later, they presented
increased EDVi and unchanged torsion with reduced
shortening, confirming the depletion of the
compensatory mechanism described. The progres-
sive increase in LVMi depicts an evolution toward
“both thick and dilated hypertrophy” (34) (Central
Illustration).

As previously mentioned, the description of the
stages of diabetic cardiomyopathy has changed over
time. Two types of remodeling (restrictive or dilated
diabetic cardiomyopathy) have been described, only
partially overlapping with HFpEF and HfrEF defini-
tions, and the transition from restrictive to dilated
diabetic cardiomyopathy is considered “unlikely” (35)
because each phenotype has specific underlying
mechanisms (36). In restrictive diabetic cardiomyop-
athy, concentric LV remodeling is caused by coronary
microvascular endothelial inflammation. A second hit

https://doi.org/10.1016/j.jcmg.2020.10.009


FIGURE 5 High Glucose Is Sufficient to Induce MMP Reduction and ECM Remodeling
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(often ischemic) is needed for evolution to dilated
eccentric LV remodeling, which involves loss of EF
with concomitant cardiomyocyte cell death (37). Our
data are consistent with this concept. The impaired
diastolic function found at baseline reflects subclini-
cal impaired contractility, not yet measurable
through a reduced EF. Furthermore, as confirmed by
the subgroup analysis, dilation was a hallmark of si-
lent ischemic damage.

To investigate whether the observed alterations
were intrinsic to the myocardium, we investigated
the dynamics of cardiac contraction (twist) and
relaxation (untwist or recoil). As in a spring, during
twist potential energy is accumulated by the
myocardial fiber (and ECM) and returned in the form
of kinetic energy (about 40%) in the early untwist
(38). Cardiac remodeling in diabetic cardiomyopathy
reduces the potential energy stored during the sys-
tolic phase (39).

Our data revealed these changes in the heart’s
viscoelastic properties: less energy is accumulated
because contraction meets lower resistance in reach-
ing maximum torsion (39). Thus, the systole is shorter
(reduced TTP) and less effective (reduced strain), and
energy is dissipated (increased bt, lower asymptotic
torsion, Tmax). The diastolic phase is also impaired
by a slower recoil rate, resulting in a less effective
suction. The reduced RR reflects the impaired early
untwisting (isovolumic relaxation), as further
confirmed by a significant decrease in T0. The
changes in contraction dynamics, consistent with
changes in the viscoelastic properties of the tissue,
strongly suggest that the cardiac ECM is involved.
Although a larger prospective cohort confirmation is
needed, our results suggested that impaired diastolic
function is related to the changes in miR122-5p, which
could be considered not just a marker, but intrinsi-
cally implicated in the progression of diabetic
cardiomyopathy.

STUDY LIMITATIONS. First, it should be noted that
CMR accuracy could be limited by focal microvascular
ischemic myocardial injury. Our study has limited
information about patients’ microvascular coronary
artery disease progression; however, a dedicated
study cannot be performed as none of the patients
had clinical indication to coronary angiography ac-
cording to current international guidelines (40). It is,
therefore, important to acknowledge the lack of in-
formation about the microcirculation and progression
of coronary artery disease.

Second, T1-mapping analysis would have helped
to investigate interstitial fibrosis better. Although
this is our current approach in ongoing studies
(NCT01803828), at the time this study was
designed, this technique was not yet routinely
available. Third, only men were recruited. This is an
advantage for homogeneity of the data, but obvi-
ously, the findings cannot be extrapolated to
women. Finally, a larger cohort is needed to vali-
date the observed outcomes.

CONCLUSIONS

This study provides a long-term CMR assessment of
the evolution of cardiomyopathy in middle-aged men
with T2DM, demonstrating a gradual progression of
morpho-functional cardiac remodeling, despite good
glycemic control, over a 5-year span. Increased tor-
sion is the hallmark of early stages, but rapidly

https://www.clinicaltrials.gov/ct2/show/NCT01803828?term=NCT01803828&amp;draw=2&amp;rank=1
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reaches a plateau and exhausts its compensatory role.
Ventricular mass increases with time, and the ven-
tricular chamber tends to enlarge. The torsion even-
tually decouples from strain, which is persistently
reduced throughout all stages of diabetic cardiomy-
opathy. The viscoelastic properties of the
myocardium worsen, consistent with profibrotic or
myofilament damage: the twist phase is shorter and
less effective, and the untwist is loose. The heart
seems to progress toward dilated hypertrophy, the
stage immediately before HF, for which current
treatments are largely ineffective. The ECM may be
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involved in this and is a potential new target. CMR
with miRNA analysis may be the only useful tools to
assess such subclinical changes and follow the dia-
betic heart because remodeling does not seem sensi-
tive to strict metabolic control. In conclusion, greater
efforts should be made to understand the molecular
mechanism underlying diabetic cardiomyopathy, and
current treatments should be optimized to prevent
and reverse the “natural” progression toward HF in
patients with T2DM.

ACKNOWLEDGMENT Medical writing assistance was
provided by Marie-Hélène Hayles during the prepa-
ration of the paper.
PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: Cardio-

vascular complications are the main causes of morbidity

and mortality in patients with T2DM, accounting for

about two thirds of overall deaths. The existence of a

specific diabetic cardiomyopathy is supported by the 2- to

5-fold increase in HF in people with diabetes, even when

adjusted for other most common risk factors. This further

confirms diabetes as an independent cardiovascular risk

factor. The mechanism of diabetic cardiomyopathy pro-

gression outside of major adverse cardiac event is still

highly debated, as is the ability of strict glycemic control

to halt or reverse such changes. Understanding the mo-

lecular mechanisms involved could help prevent its evo-

lution into the fibrotic stage. Although novel drugs

appear promising in secondary prevention, primary pre-

vention of diabetic cardiomyopathy remains an unmet

need. Physicians should be aware that, notwithstanding

good glycemic control, 5% of patients enrolled experi-

enced acute coronary syndrome and an additional 8% had

CMR findings of asymptomatic ischemic scars throughout

the follow-up period. The lesson derived from this long

observational analysis is that cardiac remodeling con-

tinues, asymptomatically, involving a different compart-

ment of the cardiac structure and a change in its physical

properties. This underlines that current first-line treat-

ments are largely ineffective against cardiac remodeling

in diabetes and there is an urgent need for noninvasive
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biomarkers offering diagnostic, prognostic, and thera-

peutic targets that could also be used to follow the dia-

betic heart.

TRANSLATIONAL OUTLOOK: In this context of sub-

clinical and asymptomatic cardiac damage, the widely

used conventional echocardiography could not be sensi-

tive enough to measure underlying subclinical cardiac

morpho-functional changes triggered by diabetes melli-

tus and progressing despite glycemic control. CMR with

tagging and more thoughtful analysis of contraction dy-

namics can disclose a wealth of asymptomatic changes

occurring in diabetic cardiomyopathy. More morpho-

functional studies, rather than simply morphological

studies, are needed to follow-up patients with T2DM,

merging imaging data with the search for novel bio-

markers. Clinicians should reconsider cardiac performance

as resulting from both contraction dynamics and elastic

properties. In this context, asymptomatic diastolic

dysfunction is one of the first signs of impaired elastic

properties, which could be independent of the ischemic

damage. We provided evidence that miRNAs, specifically

the mIR122-5p, could represent a novel noninvasive

approach to study diastolic dysfunction due to ECM

remodeling, with the potential to offer diagnostic, prog-

nostic, and therapeutic targets in diabetic cardiomyopa-

thy progression.
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