
Computer Methods and Programs in Biomedicine 241 (2023) 107733

Contents lists available at ScienceDirect

Computer Methods and Programs in Biomedicine

journal homepage: www.elsevier.com/locate/cmpb

Surformer: An interpretable pattern-perceptive survival transformer for 

cancer survival prediction from histopathology whole slide images

Zhikang Wang a,b,1, Qian Gao a,1, Xiaoping Yi a, Xinyu Zhang c, Yiwen Zhang d, Daokun Zhang c, 
Pietro Liò e, Chris Bain c, Richard Bassed f , Shanshan Li d, Yuming Guo d, Seiya Imoto g, 
Jianhua Yao h,∗, Roger J. Daly b,∗∗, Jiangning Song b,∗∗

a Xiangya Hospital, Central South University, Changsha, Hunan, PR China
b Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
c Faculty of Information Technology, Monash University, Melbourne, Australia
d Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
e Department of Computer Science and Technology, The University of Cambridge, Cambridge, United Kingdom
f Victorian Institute of Forensic Medicine, Melbourne, Australia
g Human Genome Center, The Institute of Medical Science, The University of Tokyo, Japan
h Tencent AI Lab, Tencent, Shenzhen, PR China

A R T I C L E I N F O A B S T R A C T

Keywords:

Survival analysis

Multiple instance learning

Whole slide image

Deep learning interpretation

Background and Objective: High-resolution histopathology whole slide images (WSIs) contain abundant valuable 
information for cancer prognosis. However, most computational pathology methods for survival prediction have 
weak interpretability and cannot explain the decision-making processes reasonably. To address this issue, we 
propose a highly interpretable neural network termed pattern-perceptive survival transformer (Surformer) for 
cancer survival prediction from WSIs.

Methods: Notably, Surformer can quantify specific histological patterns through bag-level labels without any 
patch/cell-level auxiliary information. Specifically, the proposed ratio-reserved cross-attention module (RRCA) 
generates global and local features with the learnable prototypes (𝑝𝑔𝑙𝑜𝑏𝑎𝑙 , 𝑝𝑙𝑜𝑐𝑎𝑙𝑠) as detectors and quantifies 
the patches correlative to each 𝑝𝑙𝑜𝑐𝑎𝑙 in the form of ratio factors (rfs). Afterward, multi-head self&cross-

attention modules proceed with the computation for feature enhancement against noise. Eventually, the designed 
disentangling loss function guides multiple local features to focus on distinct patterns, thereby assisting 𝑟𝑓𝑠 from 
RRCA in achieving more explicit histological feature quantification.

Results: Extensive experiments on five TCGA datasets illustrate that Surformer outperforms existing state-of-

the-art methods. In addition, we highlight its interpretation by visualizing rfs distribution across high-risk and 
low-risk cohorts and retrieving and analyzing critical histological patterns contributing to the survival prediction.

Conclusions: Surformer is expected to be exploited as a useful tool for performing histopathology image data-

driven analysis and gaining new insights for interpreting the associations between such images and patient 
survival states.
1. Introduction

Survival analysis of time-to-event data has been widely applied in 
varied domains, like biology, engineering, economics, and medicine [1–

4]. Particularly in the area of medicine, it plays a critical role in our 
understanding of the effect of specific patient features with respect to 
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survival status. The precise prognosis of malignant cancers can guide 
treatment and clinical management options, thereby having prominent 
commercial and clinical significance.

In the current clinical paradigm, survival analysis is realized based 
on the visual inspection of pathological alterations/features in cell mor-

phology, invasiveness, or inflammation/infiltration in histopathology 
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slides [5–7]. For instance, Goff et al. [6] proposed that the spatial pro-

portion of tumor-infiltrating lymphocytes (TILs) in breast cancer might 
serve as an important prognostic indicator. Campbell et al. [7] found 
that high-grade ductal carcinoma in situ (HG-DCIS) has more TILs com-

pared to non-high-grade DCIS (nHG-DCIS). Nevertheless, cancer patient 
survival prediction is a challenging task for clinicians and pathologists 
due to its subjective nature. Clinicians and pathologists with distinct 
knowledge and experience can have different interpretations on the 
same histopathology image. Besides, inspecting gigapixel histopathol-

ogy images is laborious and time-consuming, significantly intensifying 
the workload and pressure on pathologists. Therefore, it is urgent to 
study targeted and automated survival prediction algorithms with sig-

nificant performance.

In recent years, the combination of whole slide imaging and deep 
learning techniques has advanced the development of automated whole 
slide image (WSI)-based cancer diagnosis/subtyping algorithms [8–10], 
some even achieving performances on par with expert pathologists. 
However, current WSI-based survival analysis algorithms still suffer 
from limited performance and interpretability. The performance and 
interpretability gap between the two tasks results from their differ-

ent objectives: cancer diagnosis/subtyping algorithms merely need to 
detect critical instances from the whole slides while survival analysis re-

quires to integrate instance-level and global-level features in the tumor 
and surrounding tissues for assessing the patient’s risk of mortality. As a 
result, most existing multiple instance learning (MIL) methods [11–13]

that follow the standard MIL assumption (if a bag contains at least one 
positive instance, it is labeled positive, else negative) cannot effectively 
interpret the correlations between the global and local features, making 
them unsuitable for the survival analysis task.

1.1. Related work

Typically, WSIs come with a gigapixel resolution, making it infeasi-

ble for existing hardware to execute the computation in an end-to-end 
function. As such, computationally efficient patch-based methods dom-

inate this area. These techniques can be categorized into two groups: 
ROI (regions of interest)-based and WSI-based methods.

ROI-based methods: Traditional methods generally select several dis-

criminative patches from manually annotated Regions of Interest (ROI) 
and extract features for prediction. At the early stage, ROI-based meth-

ods utilized hand-crafted features of the ROI for survival prediction 
[14–18]. Barker et al. [14] utilized a coarse-to-fine analysis of the local-

ized characteristics in pathology by firstly extracting spatially localized 
features and secondly analyzing a single representative tile from each 
group for brain tumor detection. Cheng et al. [15] proposed a novel 
bioimage informatics pipeline for automatically characterizing the topo-

logical organization of different cell patterns in the tumor microenvi-

ronment. Notably, the proposed features provided new insights into the 
topological organizations for cancers and could also combine genomic 
data to develop new biomarkers. Yu et al. [17] extracted 9,879 quantita-

tive image features and utilized regularized machine-learning methods 
to select the top features and distinguish shorter-term and longer-term 
survivors. With the technology advancing, deep learning-based models 
with better representation learning capability have outperformed tradi-

tional hand-crafted-based methods. Mobadersany et al. [19] proposed a 
computational approach to learn patient outcomes, which took advan-

tage of the power of both adaptive machine learning algorithms and 
traditional survival models. The proposed survival convolutional neu-

ral networks (SCNNs) are able to integrate both histopathology images 
and genomic biomarkers.

WSI-based methods: With the advances of deep learning technologies 
and publish of large datasets, WSI-based methods dominate the state-

of-the-art performance owing to their strong representation capability, 
ranging from characterizing prominent morphological phenotypes to 
2

predicting human eye invisible gene mutations.
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Limited by the huge pixel size of whole slide images (WSIs) and to 
date hardware computational capability, most methods approach WSIs 
through weakly-supervised multiple instance learning (MIL). Specifi-

cally, MIL comprises two steps: (1) extracting small patches from the 
WSIs as independent instances, (2) generating the bag representation 
through the bag of instances by pooling or various aggregation method-

ologies, and conducting the final prediction. Yao et al. [13] proposed 
the deep attention multiple instance survival learning (DeepAttnMISL) 
by leveraging the siamese Multiple Instance Fully Convolutional Net-

work (MI-FCN) and an attention-based MIL pooling to construct WSI 
features. Meanwhile, K-means clustering was adopted based on deep-

transferred features to reduce computational costs. To enable more 
precise prediction, Wang et al. [20] proposed a deep learning frame-

work leveraging hierarchical graph-based representations to explore 
multi-scale topological structures of WSIs comprehensively. In addition, 
Chen et al. [21] proposed the patch-based graph convolutional network 
(Patch-GCN), which is also a spatially resolved graph-based algorithm. 
Patch-GCN hierarchically aggregates instance-level histology features to 
model local and global topological structures in the tumor microenvi-

ronment. Huang et al. [22] introduced the Transformer to adaptatively 
aggregate patch-level features according to the spatial information and 
correlation between patches for survival analysis. Aiming to capture in-

tratumoral heterogeneity during the survival prediction, Carmichael et 
al. [23] developed a novel variance pooling architecture that enables 
a MIL model to incorporate intratumoral heterogeneity into its predic-

tion.

1.2. Contributions

This study proposes an innovative MIL neural network termed 
pattern-perceptive survival transformer (Surformer) for WSI-based 
survival analysis. Briefly, Surformer comprises three components: 
a ratio-reserved cross-attention module (RRCA), a multi-head self-

attention module (MHSA) [24], and a multi-head cross-attention mod-

ule (MHCA). RRCA simultaneously detects global features and multiple 
pattern-specific local features through a learnable global prototype 
𝑝𝑔𝑙𝑜𝑏𝑎𝑙 and multiple local prototypes 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 and quantifies the patches 
correlative to each 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 in the form of ratio factors (rfs). The ratio 
information is subsequentially embedded into the feature space for rep-

resentation enhancement. As a quantification index, rfs differentially 
analyze the high-risk and low-risk patients and indirectly interpret the 
model prediction. The MHSA and MHCA establish and disentangle the 
contextual connections between features, aiming to further optimize the 
learnable prototypes and improve the network’s ability against noise. 
Weight sharing between different modules is adopted for stabilizing 
the network training. Eventually, the proposed disentangling loss 𝑑𝑖𝑠

constrains local features to focus on distinct patterns, thereby assisting 
𝑟𝑓𝑠 from RRCA in achieving more explicit quantification. The proposed 
RRCA and 𝑑𝑖𝑠 jointly contribute to the advanced interpretability of the 
Surformer.

To validate the performance of Surformer, we conduct bench-

marking experiments on five TCGA tumor datasets, including Blad-

der Urothelial Carcinoma (BLCA), Breast Invasive Carcinoma (BRCA), 
Glioblastoma & Lower Grade Glioma (GBMLGG), Lung Adenocarci-

noma (LUAD), and Uterine Corpus Endometrial Carcinoma (UCEC). The 
experimental results demonstrate that the proposed Surformer can ac-

curately model the risk function of the population, standing out from 
state-of-the-art methods. Besides, the proposed Surformer can quantify 
specific histological patterns and explicitly interpret the statistical cor-

relations between patterns and overall survival. In summary, both the 
state-of-the-art survival prediction performance and great interpretabil-

ity of Surformer are significant in precision medicine.

The contribution of this paper can be summarized as follows:

(1) The proposed Surformer achieves significant performance im-

provement compared with current state-of-the-art methods on five 

benchmarking datasets;
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Fig. 1. Overview of the proposed pattern-perceptive survival transformer, termed Surformer. It consists of two steps: (1) the pre-processing step for converting the 
gigapixel WSI into computable feature vectors; (2) the feed-forward step for predicting the overall survival of patients. Here, we denote the ratio factors, local 
features, and global features with gray, yellow, and green lines, respectively. We apply the disentangling loss on the multiple local features to guide them in having 
distinct pattern attention. Eventually, both local features, and global features, and their combination will be utilized for hazard rate analysis through independent 
layers. Meanwhile, we interpret and analyze the proposed Surformer in terms of attention visualization (a), Kaplan-Meier survival curve visualization (b), 𝑟𝑓𝑠
analysis (c), and 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 detected patch retrieval and histological analysis.
(2) The novel ratio-reserved cross-attention module and the dis-

entangling loss cooperate to achieve the quantification of the critical 
histological patterns in the form of ratio factors 𝑟𝑓𝑠;

(3) We interpret the model by statistically analyzing the 𝑟𝑓𝑠 across 
high-risk and low-risk cohorts and retrieving and analyzing the critical 
histological patterns (detected by each 𝑝𝑙𝑜𝑐𝑎𝑙 of RRCA) that contribute 
to the overall survival.

2. Method

Given a patient 𝑖, he/she is annotated with labels 𝑡𝑖 and 𝛿𝑖 and is 
paired with at least one WSI. Here, 𝑡𝑖 indicates the overall survival, 
whereas 𝛿𝑖 represents the censorship (i.e., uncensored or censored). Our 
objective is to train a deep neural network with a strong capability 
in overall survival analysis through the provided WSIs and labels. The 
overall framework is shown in Fig. 1. In the following section, we will 
introduce the pre-processing step, the proposed RRCA, the feed-forward 
3

step, and loss functions in sequence.
2.1. Pre-processing step

Firstly, we use an automated segmentation algorithm to distinguish 
each WSI’s foreground (tissue region) and background, and then crop 
the tissue region into patches with a fixed size. Secondly, an Ima-

geNet pre-trained model is leveraged to embed each patch from the 
original high-dimensional image space into the low-dimensional fea-

ture space. Following [21], we construct the pre-trained model by 
the first Convolution Block and the first three Residual Blocks of the 
ResNet50 model [25]. Accordingly, each patch is embedded into a 
1024-dimensional feature vector, with the bag of instances represented 
as 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑁} ∈ ℝ𝑁×1024, in which the first and second di-

mensions are termed as instance dimension and feature dimension, re-

spectively. After the feature embedding, training and inference can be 
operated in the low-dimensional feature space rather than the original 
high-dimensional image space, which significantly reduces the subse-
quent computational costs.
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Fig. 2. Illustration of the ratio-reserved cross-attention module (RRCA), multi-head self-attention module (MHSA), and multi-head cross-attention module (MHCA).
2.2. Ratio-reserved cross-attention module

In Fig. 2, we illustrate the ratio-reserved cross-attention mod-

ule (RRCA), multi-head self-attention module (MHSA) and multi-head 
cross-attention module (MHCA). In this subsection, we first detail the 
proposed RRCA module and then summarize the differences between 
the three modules from both functional and architectural perspectives.

RRCA is the most important component of Surformer. As shown in 
Fig. 2 (a), RRCA has a query, gallery and key. Specifically, query 𝑄
arises from the 𝑝𝑔𝑙𝑜𝑏𝑎𝑙 and 𝑝𝑙𝑜𝑐𝑎𝑙𝑠, and key 𝐾 and value 𝑉 arise from 
the transformed features 𝐹1. 𝑝𝑔𝑙𝑜𝑏𝑎𝑙 ∈ ℝ1×𝑑 and 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 ∈ ℝ𝑛×𝑑 are both 
predefined learnable parameters and will be optimized through the loss 
functions in the training phase. Formally,

𝑄 =𝐿𝑁([𝑝𝑔𝑙𝑜𝑏𝑎𝑙, 𝑝𝑙𝑜𝑐𝑎𝑙𝑠])𝑊 𝑄 + 𝑏𝑄,

𝐾 =𝐿𝑁(𝑓 ′)𝑊 𝐾 + 𝑏𝐾 ,

𝑉 =𝐿𝑁(𝑓 ′)𝑊 𝑉 + 𝑏𝑉 ,

(1)

where 𝑊 ∈ ℝ𝑑×𝑑′ indicates a linear projection operation and 𝑏 is the 
bias. We keep the multi-head strategy of MHSA, partitioning the fea-

tures into 𝑚 segments along the feature dimension and getting 𝑄 ∈
ℝ(𝑛+1)×𝑚×(𝑑′∕𝑚) and 𝐾, 𝑉 ∈ ℝ𝑁×𝑚×(𝑑′∕𝑚). Next, we conduct the cross-

product multiplication operation to get the attention matrix 𝑚𝑡 ∈
ℝ𝑚×(𝑛+1)×𝑁 and apply 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 operation along the third dimension to 
get normalized 𝑚𝑡′. For simplicity, the number of heads 𝑚 is supposed 
as 1 and the process can be formulated as follows:

𝑚𝑡′
𝑖,𝑗

=
𝑒𝑥𝑝(𝑚𝑡𝑖,𝑗 )∑𝑁

𝑗=1 𝑒𝑥𝑝(𝑚𝑡𝑖,𝑗 )
, 𝑚𝑡𝑖,𝑗 =

𝑄𝑖𝐾𝑗√
𝑑𝑘

, (2)

where 
√
𝑑𝑘 is a scaling factor and, 𝑖 and 𝑗 present the indices of 𝑞𝑢𝑒𝑟𝑦

and 𝑘𝑒𝑦, respectively. Each element of the attention matrix indirectly 
indicates the similarity between query and key. The final aggregated 
features are generated as follows:

𝐹2 = (𝑚𝑡′ × 𝑉 )𝑊 + 𝑏. (3)

In the above computation process, both 𝑝𝑔𝑙𝑜𝑏𝑎𝑙 and 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 function as 
detectors to gather correlative features from WSIs. We denote the fea-

tures detected by 𝑝𝑔𝑙𝑜𝑏𝑎𝑙 and 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 as global features 𝐹𝑔𝑙𝑜𝑏𝑎𝑙2 and local 
features 𝐹𝑙𝑜𝑐𝑎𝑙2, respectively. Here, the 𝑝𝑔𝑙𝑜𝑏𝑎𝑙 is similar to the classifica-

tion token of Bert [26] and targets to aggregate all valuable features for 
survival prediction. Regarding 𝑝𝑙𝑜𝑐𝑎𝑙𝑠, the disentangling loss (2.4) is em-

ployed on the detected features. By optimizing the indirect constraints, 
4

each 𝑝𝑙𝑜𝑐𝑎𝑙 is encouraged to exhibit distinct histological pattern atten-
tion, thereby achieving pattern-specific local feature aggregation from 
the whole image.

The rfs are also derived from the 𝑚𝑡. Essentially, 𝑟𝑓𝑠 are the quan-

tification of the patches detected by each 𝑝𝑙𝑜𝑐𝑎𝑙 . Specifically, we first 
slice the attention matrix that is related to the 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 and get 𝑚𝑡𝑙𝑜𝑐𝑎𝑙𝑠 ∈
ℝ𝑚×𝑛×𝑁 . Then, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 and 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 operations are conducted along the 
first and second dimensions for generating the final affinity scores be-

tween each instance and 𝑝𝑙𝑜𝑐𝑎𝑙𝑠. The softmax function can be formulated 
as follows:

𝑚𝑡′′
𝑖,𝑗

=
𝑒𝑥𝑝(𝑚𝑡𝑙𝑜𝑐𝑎𝑙𝑠

𝑖,𝑗
)

∑𝑛

𝑖=1 𝑒𝑥𝑝(𝑚𝑡
𝑙𝑜𝑐𝑎𝑙𝑠
𝑖,𝑗

)
. (4)

Afterwards, we adopt the maximum operation to get the highest affinity 
score for each instance. To relieve the adverse influence of the noise, a 
pre-defined threshold is utilized to filter out the instances that are not 
correlated to any 𝑝𝑙𝑜𝑐𝑎𝑙𝑠. Generally, the threshold is 1∕𝑛 +0.1. At last, we 
quantify the remaining instances corresponding to each 𝑝𝑙𝑜𝑐𝑎𝑙 and the 
final ratio factors (𝑟𝑓𝑠) can be expressed as:

𝑟𝑓𝑠 = {
𝑛𝑢𝑚𝑖∑𝑛

𝑗=1 𝑛𝑢𝑚𝑗

; 𝑖 = 1, ..., 𝑛}, (5)

where 𝑖 and 𝑗 are the indices and 𝑛𝑢𝑚𝑖∕𝑗 indicates the number of de-

tected patches correlated 𝑖∕𝑗𝑡ℎ 𝑝𝑙𝑜𝑐𝑎𝑙 .

Although RRCA, MHCA, and MHSA look similar, they essentially 
have big differences. From the functional perspective, the three modules 
have distinct characteristics. As the key module in Surformer, RRCA 
has three functions: (1) detect and aggregate both global and local 
critical features related to survival analysis from the transformed fea-

ture vectors 𝐹1 with the assistance of the 𝑝𝑔𝑙𝑜𝑏𝑎𝑙 and 𝑝𝑙𝑜𝑐𝑎𝑙𝑠, (2) reduce 
the instance dimension from 𝑁 to 𝑛 + 1 (𝑁 ≫ 𝑛), making the subse-

quent computation efficiently, (3) generate the 𝑟𝑓𝑠 that represent the 
spatial ratio of specific histological features related to 𝑝𝑙𝑜𝑐𝑎𝑙𝑠. Likewise, 
MHCA takes the aggregated features, 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 and 𝑝𝑔𝑙𝑜𝑏𝑎𝑙 as input, aiming 
to further distill critical features and optimize the learnable prototypes 
(𝑝𝑙𝑜𝑐𝑎𝑙𝑠 and 𝑝𝑔𝑙𝑜𝑏𝑎𝑙). MHSA aims to establish long-range dependencies 
between the generated features, thereby mutually enhancing their rep-

resentativeness. From the architectural perspective, the three modules 
are highly similar. Both RRCA and MHCA are derived from the MHSA. 
The main differences between RRCA and MHSA lie in the 𝑟𝑓𝑠 genera-

tion process and the residual operation between the input and output 
features. In the term of input, RRCA takes 𝑝𝑙𝑜𝑐𝑎𝑙𝑠, 𝑝𝑔𝑙𝑜𝑏𝑎𝑙 , and trans-

formed features 𝐹1, while MHSA only takes the aggregated global and 
local features. Regarding MHCA, it takes aggregated features as input 

and has an additional residual operation between input and output fea-
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tures. Meanwhile, MHCA does not generate the 𝑟𝑓𝑠. As a result, the 
commonality between RRCA and MHCA ensures that their parameters 
can be shared during computation.

Algorithm 1: Overview of feed-forward step

Input: one bag of instances 𝐹 = {𝑓1 , ..., 𝑓𝑁} ∈ℝ𝑁×1024 , one global prototype 
𝑝𝑔𝑙𝑜𝑏𝑎𝑙 ∈ℝ1×𝑑 and multiple local prototypes 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 ∈ℝ𝑛×𝑑

Output: The patient hazard rate 𝑃 ∈ℝ4

1: DPL for feature transformation:

𝐹1 = DPL(𝐹 );

2: RRCA and FFN for feature detection and aggregation:

𝐹2 , 𝑟𝑓𝑠 = FFN(RRCA(𝐹1 , 𝑝𝑔𝑙𝑜𝑏𝑎𝑙 , 𝑝𝑙𝑜𝑐𝑎𝑙𝑠)),
𝐹2 = {𝐹𝑔𝑙𝑜𝑏𝑎𝑙2 ∈ℝ1×𝑑 , 𝐹𝑙𝑜𝑐𝑎𝑙2 ∈ℝ𝑛×𝑑} ;

3: MHSA and FFN for feature engineering:

𝐹3 = FFN(MHSA(𝐹2)) ;
4: MHCA and FFN for feature engineering:

𝐹4 = FFN(MHCA(𝐹3 , 𝑝𝑔𝑙𝑜𝑏𝑎𝑙 , 𝑝𝑙𝑜𝑐𝑎𝑙𝑠)) ;
5: Spatial ratio factors embedding:

𝐹 ′
𝑙𝑜𝑐𝑎𝑙4 = 𝐹𝑙𝑜𝑐𝑎𝑙4 × (𝛼 + 𝑟𝑓𝑠), 𝐹 ′

4 = {𝐹 ′
𝑙𝑜𝑐𝑎𝑙4 , 𝐹𝑔𝑙𝑜𝑏𝑎𝑙4} ;

6: MHSA and FFN for feature engineering:

𝐹5 = FFN(MHSA(𝐹 ′
4 )) ;

7: Compression Layer (CompL) for local feature dimension reduction:

𝐹 ′
𝑙𝑜𝑐𝑎𝑙5 = 𝐶𝑜𝑚𝑝𝐿(𝐹𝑙𝑜𝑐𝑎𝑙5) ;

8: Hazard rate prediction based on 𝐹 ′
𝑙𝑜𝑐𝑎𝑙5 , 𝐹𝑔𝑙𝑜𝑏𝑎𝑙5 and their combination.

2.3. Feed-forward step

In this subsection, we introduce the feed-forward computation of 
the proposed Surformer. The pseudocode is illustrated in Algorithm 1. 
We first use a deep projection layer (DPL) [10] to perform a non-linear 
transformation on the bag of features 𝐹 and obtain the transformed 
features 𝐹1 = {𝑓1_1, 𝑓1_2, … , 𝑓1_𝑁} ∈ ℝ𝑁×𝑑 . Particularly, the DPL is con-

structed by two fully connected layers with intermediate ReLU and 
LayerNorm functions. Then, RRCA operates on the pre-defined learn-

able prototypes (global prototypes 𝑝𝑔𝑙𝑜𝑏𝑎𝑙 ∈ℝ1×𝑑 and local ones 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 ∈
ℝ𝑛×𝑑 ) and transformed bag features 𝐹1. RRCA adaptatively aggregates 
critical features over the whole bag of instances (output both global 
features 𝑓𝑔𝑙𝑜𝑏𝑎𝑙 ∈ ℝ1×𝑑 and local features 𝑓𝑙𝑜𝑐𝑎𝑙𝑠 ∈ ℝ𝑛×𝑑 ) and generates 
spatial ratio factors 𝑟𝑓𝑠 corresponding to different histological features. 
Subsequently, the MHSA and MHCA components explore long-range 
dependencies between the aggregated features in an encoder-decoder 
pipeline, which can better optimize the learnable prototypes (𝑝𝑔𝑙𝑜𝑏𝑎𝑙 and 
𝑝𝑙𝑜𝑐𝑎𝑙𝑠) and empower the model’s robustness against the noise. After-

ward, we explicitly encode the 𝑟𝑓𝑠 into the local features after MHCA 
with the soft multiplication operation, which can be formulated as fol-

lows:

𝐹 ′
𝑙𝑜𝑐𝑎𝑙4 = 𝐹𝑙𝑜𝑐𝑎𝑙4 × (𝛼 + 𝑟𝑓𝑠) (6)

where 𝛼 is a predefined hyperparameter. By adding the hyperparam-

eter 𝛼, we can weaken the ratio fluctuations caused by sample speci-

ficity, thereby improving the training stability. Eventually, we utilize 
the MHSA to establish the long-range dependencies between the rfs-
encoded local features and global ones. Each attention module is fol-

lowed by one independent Pre-LN feed-forward network (FFN) [27] for 
feature recalibration.

Although the proposed RRCA successfully compresses the feature di-

mension from ℝ𝑁×𝑑 to ℝ𝑛×𝑑 (𝑛 ≪𝑁), the dimension of flattened local 
features grows significantly as 𝑛 increasing, which leads to the computa-

tional overhead for optimizing the classification layers. To combat this 
issue, we apply a compression layer on the local features to reduce the 
channel dimensions before the final prediction. Then, the proposed dis-

entangling loss 𝑑𝑖𝑠 is imposed on the compressed local features 𝐹 ′
𝑙𝑜𝑐𝑎𝑙

to indirectly constrain 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 with distinct histological attention. Mod-

ule reuse is also adopted to facilitate training and increase the stability 
of models. As such, our two MHSA modules shared the same param-
5

eters. Not only that, RRCA and MHCA also share parameters for their 
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common architecture. Three classification layers are utilized to predict 
the overall survival on top of the global features 𝐹𝑔𝑙𝑜𝑏𝑎𝑙5, local features 
𝐹 ′
𝑙𝑜𝑐𝑎𝑙5, and their combination.

2.4. Loss function

Disentangling Loss: In RRCA, we utilize the cross-attention mech-

anism to calculate the affinities between instances and 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 and quan-

tify the spatial ratio information of histological patterns. Although 
𝑝𝑙𝑜𝑐𝑎𝑙𝑠 are initially randomly initialized, the end-to-end training cannot 
guarantee 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 with distinct visual attention, thus the 𝑛 local features 
will have overlapping characteristics and the affinity between each in-

stance and 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 will be indistinct. Considering that our intention is 
quantifying each category of histological patches in the form of 𝑟𝑓𝑠, we 
propose a disentangling loss 𝑑𝑖𝑠 to disentangle the local features by ap-

plying constraints in the feature space. Instead of directly applying this 
loss function onto the features after the final FFN, we insert a compres-

sion layer, which comprises a linear layer for dimension reduction, a 
𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 for regularization, and a 𝑅𝑒𝐿𝑈 activation function for non-

linearization. Meanwhile, the compression layer, which acts as a buffer 
between the strong feature constraints and the reused feature extrac-

tion modules, can improve the training stability. Specifically, 𝑑𝑖𝑠 can 
be formulated as follows:

𝑑𝑖𝑠 =
2

𝑁(𝑁 − 1)

𝑁∑
𝑖

𝑁∑
𝑗,𝑗≠𝑖

< 𝐹 ′
𝑙𝑜𝑐𝑎𝑙5,𝑖, 𝐹

′
𝑙𝑜𝑐𝑎𝑙5,𝑗 >

||𝐹 ′
𝑙𝑜𝑐𝑎𝑙5,𝑖||2, ||𝐹 ′

𝑙𝑜𝑐𝑎𝑙5,𝑗 ||2
. (7)

Essentially, it aims to increase the mutual distances among 𝐹𝑙𝑜𝑐𝑎𝑙𝑠′ and indi-

rectly pass the constraints to the detectors 𝑝𝑙𝑜𝑐𝑎𝑙𝑠.
Cross-entropy-based Cox proportional loss [28]: The survival 

prediction datasets have both censored and uncensored data. To achieve 
the prediction, we first convert the continuous overall survival time into 
four non-overlapping bins: [𝑡0, 𝑡1), [𝑡1, 𝑡2), [𝑡2, 𝑡3), [𝑡3, 𝑡4), where 𝑡0 = 0, 
𝑡4 =∞, and 𝑡1, 𝑡2, 𝑡3 are the quartiles of overall survival for uncensored 
patients. For patient 𝑗 with 𝑡𝑗 , we get his/her discretised class label 𝑦𝑗
by referring to the above bins. Therefore, the final loss function can be 
formulated as:

𝑐𝑜𝑥 =− 𝑐𝑗 ⋅ 𝑙𝑜𝑔(𝑓𝑠𝑢𝑟𝑣(𝑦𝑗 ,𝐹 ′
𝑗
))

− (1 − 𝑐𝑗 ) ⋅ 𝑙𝑜𝑔(𝑓𝑠𝑢𝑟𝑣(𝑦𝑗 − 1, 𝐹 ′
𝑗
))

− (1 − 𝑐𝑗 ) ⋅ 𝑙𝑜𝑔(𝑓ℎ𝑎𝑧𝑎𝑟𝑑 (𝑦𝑗 ,𝐹 ′
𝑗
)),

(8)

where 𝐹 ′
𝑗

indicates the bag-level representation of 𝑗𝑡ℎ patient and 𝑓ℎ𝑎𝑧𝑎𝑟𝑑
represents the prediction of hazard rates. In terms of 𝑓𝑠𝑢𝑟𝑣, it can be 
formulated as:

𝑓𝑠𝑢𝑟𝑣(𝑦𝑗 ,𝐹 ′
𝑗
) =

𝑦𝑗∏
𝑖=0

(1 − 𝑓ℎ𝑎𝑧𝑎𝑟𝑑 (𝑖, 𝐹 ′
𝑗
)). (9)

Total Loss: In total, there are four loss functions in the training 
process. One 𝑑𝑖𝑠 enforces constraints in the feature space. Three cross-

entropy-based Cox proportional loss functions 𝑐𝑜𝑥 [28] optimize the 
hazard rates based on the global features, local features, and their com-

bination.

Eventually, the total loss function for the whole model can be for-

mulated as:

 = 𝑐𝑜𝑥(𝐹𝑔𝑙𝑜𝑏𝑎𝑙5, 𝑐, 𝑦) +𝑐𝑜𝑥(𝐹 ′
𝑙𝑜𝑐𝑎𝑙5, 𝑐, 𝑦)

+𝑐𝑜𝑥([𝐹𝑔𝑙𝑜𝑏𝑎𝑙5, 𝐹
′
𝑙𝑜𝑐𝑎𝑙5], 𝑐, 𝑦) +𝑑𝑖𝑠,

(10)

where 𝑐 indicates the censoring of the data, 𝑦 is the label, and [⋅] repre-

sents the concatenation operation.

2.5. Implementation details

In the pre-processing step, we crop each WSI into a series of 256 ×
256 non-overlapping patches and discard the background patches (sat-
uration < 15). The modified ImageNet pre-trained ResNet50 model (one 
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Table 1

Data details of the BLCA, BRCA, GBMLGG, LUAD and UCEC 
datasets. CS, US, and AP represent censored samples, uncen-

sored samples and average patches, respectively.

Number of Samples CS US AP

BLCA 436 236 200 15014

BRCA 1022 889 133 9760

GBMLGG 1041 700 341 7495

LUAD 515 314 201 10973

UCEC 538 460 78 16142

Convolutional Block and three Residual Blocks) embeds original patches 
into a collection of feature vectors. In the feed-forward process, we train 
our network in an end-to-end fashion through the Adam optimizer for 
20 epochs. The learning rate and weight decay are initialized as 2e-4 
and 1e-5, respectively. We train the model with a batch size of 1 and 
32 steps for gradient accumulation. All the experiments are conducted 
on one NVIDIA GeForce RTX 3090 Graphic Card.

In the experiments, each dataset is randomly split into training and 
testing sets with a ratio of 0.8 and 0.2. We introduce the five-fold 
cross-validation for verifying the feasibility, stability, and effectiveness 
of the proposed algorithm. Furthermore, we compare our proposed 
Surformer against several state-of-the-art weakly-supervised deep learn-

ing approaches. For a fair comparison, all these methods follow the 
same splitting and training strategy. We utilize the cross-validated con-

cordance index (c-index) to measure the predictive performance of 
each model. Surformer is available for academic purposes at https://

github .com /ZacharyWang -007 /Surformer.

3. Results

3.1. Dataset description

In this paper, we conduct experiments across five different tumor 
types from The Cancer Genome Atlas (TCGA). The datasets are selected 
under rigorous criteria, including dataset size and balanced distribu-

tion of uncensored-to-censored patients. All the WSIs are processed 
at 20× magnification. The details of each dataset are shown in Ta-

ble 1. Specifically, there contains Bladder Urothelial Carcinoma (BLCA) 
(n=437), Breast Invasive Carcinoma (BRCA) (n=1,022), Glioblastoma 
& Lower Grade Glioma (GBMLGG) (n=1,011), Lung Adenocarcinoma 
(LUAD) (n=515), and Uterine Corpus Endometrial Carcinoma (UCEC) 
(n=538). After the segmentation and cropping operations, WSIs in 
BLCA, BRCA, GBMLGG, LUAD and UCEC have an average of 15,014, 
9,760, 7,495, 10,973, and 16,142 patches, respectively. Meanwhile, we 
also introduce the number of censored samples (CS) and uncensored 
samples (US) of each dataset.

3.2. Ablation study

Analysis of the number of local prototypes. Different kinds of 
tumor are generally caused by different genetic aberrations, resulting 
in diversification in histological phenotypes. In Surformer, we utilize 
RRCA and 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 to detect diversified histological patterns relative to 
the overall survival. In this process, the number of 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 determines 
the varieties of patterns in consideration. Here, we specifically analyze 
the influence of the number of 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 for different tumors. The experi-

ment results are shown in Table 2. For BLCA and BRCA datasets, Sur-

former achieves the best performance with five 𝑝𝑙𝑜𝑐𝑎𝑙𝑠, reaching 0.571 
and 0.668, respectively. For GBMLGG, LUAD and UCEC datasets, Sur-

former performs best with four 𝑝𝑙𝑜𝑐𝑎𝑙𝑠, reaching 0.861, 0.651, and 0.686, 
respectively. In terms of overall performance, models with four 𝑝𝑙𝑜𝑐𝑎𝑙𝑠
achieve the best results. Notably, the performance of Surformer on most 
tumor types drops dramatically when the numbers of 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 are two or 
six. This suggests a small number of 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 cannot cover the wide range 
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of histological patterns but superfluous 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 may inversely introduce 
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Table 2

Analysis of the number of local prototypes on TCGA datasets in 
terms of c-index.

Number BLCA BRCA GBMLGG

2 0.556 ± 0.047 0.621 ± 0.071 0.849 ± 0.026

3 0.553 ± 0.045 0.646 ± 0.064 0.852 ± 0.028

4 0.552 ± 0.047 0.644 ± 0.058 0.861 ± 0.018

5 0.571 ± 0.032 0.668 ± 0.063 0.855 ± 0.020

6 0.566 ± 0.046 0.640 ± 0.073 0.853 ± 0.021

Number LUAD UCEC Overall

2 0.635 ± 0.067 0.620 ± 0.121 0.652

3 0.637 ± 0.059 0.637 ± 0.025 0.665

4 0.651 ± 0.042 0.686 ± 0.014 0.679

5 0.615 ± 0.076 0.645 ± 0.027 0.671

6 0.626 ± 0.067 0.610 ± 0.092 0.659

Table 3

Ablation study on the TCGA-LUAD and TCGA-BRCA datasets. 
Specifically, we evaluate the significance of the proposed global 
prototype 𝑝𝑔𝑙𝑜𝑏𝑎𝑙 , local prototypes 𝑝𝑙𝑜𝑐𝑎𝑙𝑠, ratio factors rfs and 𝑑𝑖𝑠

in terms of c-index.

BRCA LUAD

0 𝑝𝑙𝑜𝑐𝑎𝑙 0.619 ± 0.093 0.605 ± 0.076

1 𝑝𝑙𝑜𝑐𝑎𝑙 + 𝑟𝑓𝑠 0.632 ± 0.074 0.615 ± 0.065

2 𝑝𝑔𝑙𝑜𝑏𝑎𝑙 + 𝑝𝑙𝑜𝑐𝑎𝑙 0.636 ± 0.083 0.629 ± 0.050

3 𝑝𝑔𝑙𝑜𝑏𝑎𝑙 + 𝑝𝑙𝑜𝑐𝑎𝑙 + 𝑟𝑓𝑠 0.645 ± 0.071 0.647 ± 0.064

4 𝑝𝑔𝑙𝑜𝑏𝑎𝑙 + 𝑝𝑙𝑜𝑐𝑎𝑙 + 𝑑𝑖𝑠 0.641 ± 0.063 0.632 ± 0.059

5 Surformer 0.644 ± 0.058 0.651 ± 0.042

too much noise. Generally, Surformer performs best with different num-

bers of 𝑝𝑙𝑜𝑐𝑎𝑙 on different tumor datasets, which indirectly verifies the 
inter-tumor heterogeneity.

Ablation study of each proposed module. In this subsection, we 
verify the effectiveness of the RRCA and 𝑑𝑖𝑠 through experiments on 
the BRCA and LUAD datasets. Specifically, RRCA is analyzed in the 
form of global prototype 𝑝𝑔𝑙𝑜𝑏𝑎𝑙 , local prototypes 𝑝𝑙𝑜𝑐𝑎𝑙𝑠, and ratio fac-

tors 𝑟𝑓𝑠. All the experimental results are shown in Table 3. Here, we 
set the number of 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 as four for a fair comparison. 𝑀𝑜𝑑𝑒𝑙0 only uti-

lizes the 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 to detect and aggregate features all over the instances. 
Compared with 𝑀𝑜𝑑𝑒𝑙0, 𝑀𝑜𝑑𝑒𝑙1 additionally embeds the 𝑟𝑓𝑠 into the 
feature space. 𝑀𝑜𝑑𝑒𝑙2 and 𝑀𝑜𝑑𝑒𝑙3 add 𝑝𝑔𝑙𝑜𝑏𝑎𝑙 on top of 𝑀𝑜𝑑𝑒𝑙0 and 
𝑀𝑜𝑑𝑒𝑙1. The outstanding performance of 𝑀𝑜𝑑𝑒𝑙0 indicates that our 
cross-attention operation using 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 for feature detection is effective 
in aggregating critical features related to overall survival. By comparing 
with 𝑀𝑜𝑑𝑒𝑙0, 𝑀𝑜𝑑𝑒𝑙1 achieves 1.3% and 1.0% improvements on BRCA 
and LUAD, respectively, which can conclude that embedding 𝑟𝑓𝑠 in the 
feature space is helpful in improving the feature representation of WSIs. 
By comparing 𝑀𝑜𝑑𝑒𝑙0 and 𝑀𝑜𝑑𝑒𝑙2, 𝑀𝑜𝑑𝑒𝑙2 achieves 1.7% and 2.4% im-

provements on BRCA and LUAD, respectively, which proves that 𝑝𝑔𝑙𝑜𝑏𝑎𝑙
can be complementary to 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 for the feature engineering. Meanwhile, 
it also verifies that combining global and local features together can 
significantly improve network performance. In 𝑀𝑜𝑑𝑒𝑙4, we add 𝑑𝑖𝑠 on 
top of the 𝑀𝑜𝑑𝑒𝑙2. Although the improvements are limited compared 
with other components, it helps to regulate the feature distribution and 
indirectly optimize 𝑝𝑙𝑜𝑐𝑎𝑙𝑠, thus greatly improving the algorithm’s inter-

pretability. 𝑀𝑜𝑑𝑒𝑙5, which integrates all the components, achieves the 
best performance. In summary, we can conclude that each component 
can work well independently and cooperatively.

3.3. Comparison with state-of-the-art methods

In Table 4, we compare our approach with other weakly-supervised 
learning methods for WSI-based overall survival prediction. As we can 
see, Surformer significantly outperforms all previous techniques on 
the other four tumor types, with the exception of the BLCA dataset. 

GBMLGG is known for its intertumoral and intratumoral heterogeneity, 

https://github.com/ZacharyWang-007/Surformer
https://github.com/ZacharyWang-007/Surformer
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Fig. 3. Kaplan-Meier survival curves of our proposed Surformer across five cancer types. High-risk and low-risk patients are represented by red and blue lines, 
respectively. The x-axis shows the time in months and the y-axis presents the probability of survival. Log-rank test is used to test for statistical significance in 
survival distributions between low-risk and high-risk patients (P-Value < 0.05).
Table 4

Performance comparison with state-of-the-art methods on TCGA datasets in 
terms of c-index.

Methods BLCA BRCA GBMLGG

MIL (Deep Set) ([11]) 0.500 ± 0.000 0.500 ± 0.000 0.498 ± 0.014

Attention MIL ([12]) 0.536 ± 0.038 0.564 ± 0.050 0.787 ± 0.028

DeepAttnMISL ([13]) 0.504 ± 0.042 0.524 ± 0.043 0.734 ± 0.029

DeepGraphConv ([29]) 0.499 ± 0.057 0.574 ± 0.044 0.816 ± 0.025

Patch-GCN ([21]) 0.560 ± 0.034 0.580 ± 0.025 0.824 ± 0.024

Patch-GCN+VarPool ([23]) 0.573 ± 0.027 0.587 ± 0.021 0.832 ± 0.016

Ours 0.571 ± 0.032 0.668 ± 0.063 0.861 ± 0.018

Methods LUAD UCEC Overall

MIL (Deep Set) ([11]) 0.496 ± 0.008 0.500 ± 0.000 0.499

Attention MIL ([12]) 0.559 ± 0.060 0.625 ± 0.057 0.614

DeepAttnMISL ([13]) 0.548 ± 0.050 0.597 ± 0.059 0.581

DeepGraphConv ([29]) 0.552 ± 0.058 0.659 ± 0.056 0.620

Patch-GCN ([21]) 0.585 ± 0.012 0.629 ± 0.052 0.636

Patch-GCN+VarPool ([23]) 0.577 ± 0.021 0.641 ± 0.043 0.642

Ours 0.651 ± 0.042 0.686 ± 0.014 0.687

on which we achieve a c-index of 83.2%, surpassing other methods by 
at least 3.9%. The outstanding improvements demonstrate Surformer’s 
superiorities in feature aggregation and generalization. VarPool [23] is 
known for incorporating intratumoral heterogeneity into its prediction. 
They achieve this by computing the variance of learned projections of 
instances. According to the experimental results, VarPool only slightly 
surpasses us on the BLCA dataset by 0.2%, and Surformer outperforms it 
on the other four datasets by a large margin. Therefore, we can conclude 
that optimizing detection prototypes (e.g., 𝑝𝑔𝑙𝑜𝑏𝑎𝑙 and 𝑝𝑙𝑜𝑐𝑎𝑙𝑠) with the 
whole training data is a more advanced strategy for tackling the hetero-

geneity challenge. Patch-GCN ([21]) is a novel context-aware method 
using the graph neural network. Edges in the graph help to build in-

stance connections; however, many connections may not contribute to 
the final survival prediction (e.g., instance communications between be-

nign cells). In Surformer, we adopt the learnable prototypes to collect 
critical features and generate their ratio information. Critical features 
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and ratio information cooperate to make the final prediction in the fol-
lowing computation. In conclusion, our proposed Surformer is a more 
sophisticated method for WSI-based survival prediction.

4. Discussion

4.1. Kaplan–Meier curve analysis

The Kaplan–Meier estimator, also known as the product limit estima-

tor, is a non-parametric statistic used to estimate the survival function 
from lifetime data. In medical research, it is widely used to measure 
the fraction of patients living for a certain amount of time after treat-

ment. In Fig. 3, we utilize Kaplan-Meier curves to visualize the quality 
of patient stratification between predicted low-risk and high-risk pa-

tient populations on BLCA, BRCA, LUAD, UCEC, and GBMLGG datasets. 
Specifically, we classify patients into high-risk and low-risk cohorts 
according to the survival probability in the middle of the uncensored pa-

tients’ timeline. To increase the reliability of the curves, we collect and 
present all the testing data across the five-fold cross-validation. It is ob-

vious that Surformer can distinguish high-risk (red) and low-risk (blue) 
patients with only the paired WSI. At the same time, we use the log-

rank test to measure the statistical difference between the two cohorts. 
The P-Values on BLCA, BRCA, LUAD, UCEC, and GBMLGG datasets are 
0.03191, 0.00021, 0.02493, 0.00019, and 0.00000, respectively. All of 
the P-Values are below 0.05, demonstrating the tremendous statistical 
significance of the observed difference derived by our Surformer.

4.2. Differential analysis of rfs

This section conducts the differential analysis of rfs across high-risk 
and low-risk patients in five cancer types. As introduced in Section 2.2, 
rfs are the quantification of the patches detected by each 𝑝𝑙𝑜𝑐𝑎𝑙. There-

fore, for easy understanding, we simply replace the index of rfs with 
corresponding 𝑝𝑙𝑜𝑐𝑎𝑙 in Fig. 4. Meanwhile, deep learning models are 
typically denounced by their generalization ability and robustness. We 
specifically visualize the ratio distribution on both training and testing 
data. As we see, Surformer achieves a high-level distribution consis-

tency on the two sets, thereby validating its outstanding capacity for 

generalization and robustness.
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Fig. 4. Illustration of the RRCA generated 𝑟𝑓𝑠 on five different tumor types. Box plots are utilized to present the distributions on both training and testing sets. 
High-risk and low-risk patients are colored green and orange, respectively.
For the BLCA dataset, high-risk patients have more patterns related 
to 𝑝𝑙𝑜𝑐𝑎𝑙1 and fewer patterns related to 𝑝𝑙𝑜𝑐𝑎𝑙0 and 𝑝𝑙𝑜𝑐𝑎𝑙3. In terms of 
𝑝𝑙𝑜𝑐𝑎𝑙2, although correlated patches are also taken for final survival 
prediction, there are no apparent differences between high-risk and 
low-risk cohorts. For the BRCA dataset, high-risk patients have more 
patterns related to 𝑝𝑙𝑜𝑐𝑎𝑙0 and 𝑝𝑙𝑜𝑐𝑎𝑙2 and fewer patterns related to 𝑝𝑙𝑜𝑐𝑎𝑙1
and 𝑝𝑙𝑜𝑐𝑎𝑙4. In terms of 𝑝𝑙𝑜𝑐𝑎𝑙3, there is no significant difference between 
high-risk and low-risk patients. For the GBMLGG dataset, a big differ-

ence only occurs between 𝑝𝑙𝑜𝑐𝑎𝑙0 and 𝑝𝑙𝑜𝑐𝑎𝑙3. High-risk patients have 
more patterns related to 𝑝𝑙𝑜𝑐𝑎𝑙3 and fewer patterns related to 𝑝𝑙𝑜𝑐𝑎𝑙0. 
For the LUAD dataset, noticeable differences exist on 𝑝𝑙𝑜𝑐𝑎𝑙1, 𝑝𝑙𝑜𝑐𝑎𝑙2 and 
𝑝𝑙𝑜𝑐𝑎𝑙3. High-risk patients have more patterns related to 𝑝𝑙𝑜𝑐𝑎𝑙0. For the 
UCEC dataset, there is no significant difference between high-risk and 
low-risk patients. High-risk patients have a little bit more patterns re-

lated to 𝑝𝑙𝑜𝑐𝑎𝑙0 and a little bit fewer patterns related to 𝑝𝑙𝑜𝑐𝑎𝑙3.
Through the visualization and analysis of 𝑟𝑓𝑠 in Fig. 4, we can con-

clude that 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 plays a critical role in model interpretability in the 
form of 𝑟𝑓𝑠. The apparent distribution results are more convincing 
than the direct prediction from the end-to-end models. Furthermore, 
in subsequent Subsection 4.3, we will continue to analyze the 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 by 
visualizing the attentive patches and deciphering their cell types.

4.3. Patch retrieval and analysis of 𝑝𝑔𝑙𝑜𝑏𝑎𝑙 and 𝑝𝑙𝑜𝑐𝑎𝑙𝑠

For sets of WSIs belonging to different patient cohorts, we perform 
𝑝𝑔𝑙𝑜𝑏𝑎𝑙 interpretation by visualizing attention regions on the original 
WSIs and 𝑝𝑙𝑜𝑐𝑎𝑙𝑠 interpretation by conducting histological analysis of 
the patches detected by each 𝑝𝑙𝑜𝑐𝑎𝑙. Here, we take two WSIs from BRCA 
and LUAD testing datasets as examples.

𝑝𝑔𝑙𝑜𝑏𝑎𝑙 interpretation: In Fig. 5 (a,d), we present the original WSIs 
after the automated segmentation operation. The tissue regions and in-

side blanks are circled with green and blue lines, respectively. In Fig. 5
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(b,e), we visualize the attention heatmaps of Surformer. Typically, tu-
mor cells appear darker in the H&E-stained WSIs. Apparently, the final 
predictions are not merely based on the tumor cells, but also the interac-

tions with surrounding benign cells. These intuitionistic visualizations 
can help to improve the pathologists’ efficiency in recognizing critical 
regions in survival analysis.

𝑝𝑙𝑜𝑐𝑎𝑙𝑠 interpretation of BRCA: In accordance with Table 4 and 
Fig. 4, Surformer functions best with five 𝑝𝑙𝑜𝑐𝑎𝑙𝑠, and patches corre-

lated to 𝑝𝑙𝑜𝑐𝑎𝑙0, 𝑝𝑙𝑜𝑐𝑎𝑙1 and 𝑝𝑙𝑜𝑐𝑎𝑙4 are critical for stratifying high-risk and 
low-risk patients. In Fig. 5 (c), we retrieve the top five patches corre-

sponding to each 𝑝𝑙𝑜𝑐𝑎𝑙 and segment and categorize the cells within the 
patches through trained HoverNet [30]. It is easy to find that 𝑝𝑙𝑜𝑐𝑎𝑙0
and 𝑝𝑙𝑜𝑐𝑎𝑙4 are related to vast, and few immune cell infiltrates in tumor 
cells, respectively. 𝑝𝑙𝑜𝑐𝑎𝑙1 correlates to patches with a small number of 
immune cells. By correlating with the 𝑟𝑓𝑠 distribution in Fig. 4, Sur-

former figures out that vast immune cell infiltrates are one of the most 
important signatures for breast cancer patients; high-risk patients tend 
to have more vast immune cell infiltrates. Besides, a modest number of 
immune cell infiltrates and immune cell counts have a negligible im-

pact on the ultimate survival prognosis. Our findings about the immune 
cell infiltrates can also be supported by some clinical research [6,31], 
demonstrating our potency in BRCA survival analysis.

𝑝𝑙𝑜𝑐𝑎𝑙𝑠 interpretation of LUAD: In terms of the LUAD dataset, ac-

cording to Table 4 and Fig. 4, Surformer performs best with four 𝑝𝑙𝑜𝑐𝑎𝑙𝑠
and patches correlated to 𝑝𝑙𝑜𝑐𝑎𝑙1 and 𝑝𝑙𝑜𝑐𝑎𝑙2 are critical for stratifying 
high-risk and low-risk patients. Here, we carry out cell segmentation 
and classification on the obtained top patches, which are identical to 
the previous process. Particularly, 𝑝𝑙𝑜𝑐𝑎𝑙1 and 𝑝𝑙𝑜𝑐𝑎𝑙2 correspond to tu-

mor cells and immune cells, respectively. Patients with a high portion 
of immune cells and a low portion of tumor cells tend to have better sur-

vival conditions. In terms of immune cell infiltrations, Surformer does 
not detect big differences between high-risk and low-risk cohorts.

In conclusion, the model prediction is relying on the comprehen-
sive analysis of the key histological features. Meanwhile, Surformer can 
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Fig. 5. Global and local interpretation of WSIs. Two WSIs from BRCA and LUAD datasets are presented: (a,d) are the original segmented images and (b,e) present 
9

the attentive patches onto the images. (c,f) present the patches detected by each 𝑝𝑙𝑜𝑐𝑎𝑙 . Cells in patches are segmented and classified by the HoverNet [30].
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provide visualization and statistical enrichment analysis of informative 
histological patterns derived from whole slide images, which can be of 
particular interest and assistance to pathologists with regard to survival 
analysis and associated variables.

4.4. Conclusions

Survival analysis can provide constructive guidance to pathologists 
and physicians for proposing precision therapy, which has significant 
commercial and clinical value. In this study, we have proposed a novel 
neural network with high interpretability, termed pattern-perceptive 
transformer (Surformer), for WSI-based survival prediction. Specifi-

cally, Surformer can quantify specific histological patterns and ex-

plicitly interpret the final prediction with statistical analysis through 
bag-level labels. Extensive benchmarking experiments on five TCGA 
benchmark datasets illustrated that Surformer outperformed other ex-

isting state-of-the-art methods and highlighted a superiority in terms of 
both predictive performance and interpretability of deep learning mod-

els for cancer survival prediction. While Surformer exhibits impressive 
performance, it fails to model the spatial contextual features of WSIs, 
thereby ignoring the significance of the tumor microenvironment in sur-

vival analysis. Consequently, our future work will particularly improve 
the algorithm by jointly encoding contextual and long-range global fea-

tures for better survival analysis. In conclusion, the development and 
availability of data-driven deep learning-based tools such as Surformer 
proposed in this study represent a useful step forward towards the 
implementation of digital pathology tools for informed clinical decision-

making underpinning precision oncology.
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