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ABSTRACT: In recent years, there has been a significant focus on improving the effectiveness of
radiotherapy (RT) and particle therapy in treating tumors while minimizing damage to healthy tissue.
A promising development is offered by the observation of the so-called FLASH effect, where ultra-high
dose rates delivered in a short time have shown to protect healthy tissues while maintaining anti-tumor
efficacy. However, conventional detectors face challenges in monitoring charged beams at these
ultra-high dose rates due to non-linear effects. To address this challenge, the FlashDC (Flash Detector
beam Counter) has been developed. It uses air fluorescence to monitor beam fluence and spatial
distribution in real-time with high accuracy and minimal impact on treatment delivery. This innovative

*Corresponding author.

© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of
BY Sissa Medialab. Original content from this work may be used under the .
terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this httpS://dOl.OI'g/lO, 1088/1748-022 1/19/02/C02043

work must maintain attribution to the author(s) and the title of the work, journal citation
and DOL.


https://orcid.org/0000-0001-8752-092X
mailto:antonio.trigilio@lnf.infn.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1748-0221/19/02/C02043

detector offers a linear response for various charged beams, dose rates, and energies, making it a
cost-effective solution. Multiple prototypes have been developed and optimized using Monte Carlo
simulations. The analysis of data from recent test beam campaigns with electrons delivered at FLASH
intensities has demonstrated a linear correlation between the detector signal and the delivered dose
per pulse, confirming that fluorescence can be used for beam monitoring in FLASH-RT studies.
This contribution introduces the FlashDC monitor, discusses its expected performance, and presents
preliminary test beam results obtained with electron beams in FLASH mode.

Keyworps: Beam-line instrumentation (beam position and profile monitors, beam-intensity monitors,
bunch length monitors); Instrumentation for particle-beam therapy; X-ray fluorescence (XRF) systems
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1 Introduction

External Beam Radiotherapy (EBRT) stands out as a pivotal tool in cancer therapeutics, significantly
impacting patient life expectancy across a wide spectrum of pathologies, constituting over 50% of
global cases as of 2021 [1]; used independently or in conjunction with chemotherapy and surgery,
EBRT strategically administers ionizing particles (mainly photons and electrons in the MeV energy
range), following an optimized treatment protocol to eradicate malignancies while mitigating collateral
damage to adjacent healthy tissues. Advancements in early diagnostic modalities and sophisticated
imaging techniques play a crucial role in increasing the annual rate of successfully treated patients;
however, radiation-induced toxicity on healthy tissues, though subject to control and reduction, imposes
stringent constraints on the maximum deliverable dose, both within a singular therapeutic session and
throughout the total treatment. While this approach safeguards patients against severe side effects,
it concurrently limits the efficacy in tumor control during therapy, particularly in cases featuring
radio-resistant tumors of heightened clinical significance.

Over the years, efforts to enhance the Therapeutic Index (TI) have been centered on achieving
heightened spatial conformity, strongly concentrating DNA damage to the tumor volume. A notable
example is provided by techniques involving multiple fields, where the total dose is dispensed through
a sophisticated overlapping of beams featuring diverse energies and directions within intensity-
modulated radiation therapy. Furthermore, the escalating adoption of particle therapy leverages the
intrinsic precision of proton or heavy ion beams, complemented by their superior relative biological
effectiveness compared to photons and electrons.

In recent years, a novel field of investigation has emerged as a potential alternative to conventional
approaches in radiotherapy. Experimental evidences from multiple in vivo studies [2] indicate
a significant and distinct response when subjecting tissues to therapy irradiation with beams at
a mean dose-rate (D,,) exceeding 40 Gy/s, placing it within the Ultra-High Dose Rate (UHDR)
range. This phenomenon, termed the FLASH effect [3], consists in a probability of cell killing in
tumors strongly comparable to conventional irradiation (D,, ~ 0.1 Gy/s), while exhibiting heightened
radio-resistance (reduced radiation-induced damage) in healthy tissues. The FLASH effect is currently
under investigation as a potential change-of-paradigm in radiotherapy, offering the prospect of elevated
allowable doses with diminished side effects on healthy tissues, thereby enabling superior dose



delivery to radio-resistant tumors, both with pre-clinical experiments and envisioning advanced
treatment planning systems capable of exploiting its beneficial effect following an optimized beam
configuration [4].

From a clinical perspective, the FLASH effect has been observed across various irradiation
modalities, including electrons, photons, and protons, at different energy levels and for diverse
pathologies [5]. However, a comprehensive quantitative characterization in terms of fundamental beam
parameters remains lacking, and its underlying mechanisms are yet to be fully elucidated. Existing
hypotheses propose a dependence on the temporal structure of the beam, which at the moment is
dependent on the existing technology of clinical linear accelerators (linacs), which commonly deliver
particle beams in pulses lasting 1 to 10 ps, with a Pulse Repetition Frequency (PRF) ranging from
100 to 1000 Hz. Among the important parameters currently investigated with regard to their roles
in triggering the FLASH effect, the most frequently cited [6] are: the dose per pulse, representing
the dose within a single particle bunch delivered to the patient; the instantaneous dose-rate, obtained
by dividing the dose per pulse by the pulse duration; and the mean dose-rate, derived from the total
dose administered during the entire treatment divided by the overall treatment time.

To date, achieving the UHDR regime has primarily involved elevating the dose per pulse to values
ranging from 0.1 to 10 Gy, resulting in an instantaneous dose-rate ranging from 10° to 107 Gy/s. This
is at least four orders of magnitude higher than the conventional radiotherapy dose rate, typically
around 100 Gy/s. This approach enables the delivery of substantial doses (tens of Gy) within a few ms
using the PRF of standard linacs, that typically sits at 10 to 1000 Hz. Alternatively, achieving the
UHDR regime could involve reducing the time between pulses while maintaining dose per pulse levels
consistent with conventional radiotherapy. Deciphering the distinct contributions of dose per pulse
and the temporal structure of dose delivery is anticipated to be a pivotal step in fully characterizing
the FLASH effect in the near future. This presents a challenge to a fundamental aspect of clinical
machine commissioning and experimental precision: beam monitoring.

Broadly, a beam monitor is a device employed for real-time assessment of characteristics relevant
to irradiation quality and safety, such as beam instantaneous rate and spatial distribution [6]. It is
distinguished by high spatial and temporal resolution, a broad response dynamic range, radiation
hardness, and high beam transparency, typically positioned at the exit of the acceleration system
to minimize impact on the transport line. Progress in FLASH effect experimentation necessitates
a reliable beam monitoring system for characterizing dose release over time and, from a clinical
perspective, monitoring treatments to ensure safety and repeatability in FLASH modality. Essential
requirements in this context include linearity of response with dose rate, extending to extreme values
encountered in UHDR modality, and optimal temporal resolution to discern the temporal structure
down to individual pulses.

Meeting these requirements presents a non-trivial challenge. Conventional radiotherapy devices,
such as standard transmission ionization chambers, exhibit sub-optimal performance in the UHDR
regime due to the exceedingly high particle flux, leading to reduced ion collection efficiency attributed
to volume recombination. Consequently, novel devices and technologies are under investigation as
potential candidates to overcome current limitations and achieve the necessary performance (accuracy
and precision) for beam monitoring at UHDR. The FlashDC (Flash Detector Counter) project aims
to address this need by developing a monitor specifically designed for FLASH radiotherapy. This
monitor is intended to measure the number of beam particles per pulse in real time, offering high



spatial and temporal resolution, a broad dynamic range, and delivering a linear output signal with
respect to the beam current up to values of instantaneous dose-rate of 10’ Gy/s, avoiding saturation
usually associated with the UHDR regime.

2 Materials and methods

2.1 Fluorescence

Several authors [7] have proposed the use of luminescence-based detectors to address the challenges
of beam monitoring in the UHDR range of intensities, employing established techniques such as
scintillation and Cherenkov light production and detection. Notably, these detectors are advantageous
due to their ability to emit light proportionally to beam intensity, providing prompt emissions with a
mean time of photon release on the order of a few ns or less. However, they present certain drawbacks:
scintillators require construction from complex materials to ensure radiation hardness, leading to
increased costs and reduced availability; on the other hand, Cherenkov light is energy-dependent and
emitted in a cone, introducing complexity in the geometry of light detection.

A viable solution to overcome these limitations involves the use of an air detector, exploiting the
phenomenon of fluorescence, which entails the emission of optical photons (wavelengths from 290 to
430 nm [8]) due to the molecular excitation of nitrogen following the passage of a charged particle.
While fluorescence in air has been extensively studied in the context of electron passage through air,
particularly in extensive air showers from cosmic rays in the atmosphere, it offers a convenient solution
for UHDR beam monitoring; given that low-energy electrons are commonly used in pre-clinical
studies of FLASH-RT, existing data can be leveraged to make a preliminary investigation on the
feasibility of a fluorescence-based beam monitor for UHDR.

The mean lifetime of the excited states of nitrogen molecules, and consequently, the mean emission
interval of optical photons, is approximately 10 ns. This duration is sufficient to capture typical FLASH
pulses ranging from 1 to 10 ps, with repetition rates on the order of 1 to 1000 Hz. The isotropic
nature of emission facilitates straightforward 3D beam monitoring, enabling the reconstruction of
beam position and direction with spatial resolution determined solely by the intrinsic granularity
of the light collection system.

The rate of molecular excitation is directly proportional to the deposited energy, establishing a link
between the number of photons produced per unit length, referred to as photon yield, and the specific
energy loss (dE /dx) of the electron, as described by the Bethe formula. For electrons with kinetic
energies above 2 MeV, this photon yield remains approximately constant. Experimental setups [9] have
measured this yield to be around 7 photons/m per electron, representing several orders of magnitude
less than a typical plastic scintillator and ensuring superior radiation hardness. This constancy is
advantageous for beam monitoring since a detector equipped with a suitable photon detection system
would yield a signal directly proportional to the instantaneous dose-rate. Importantly, this signal
remains unaffected by energy dependence over the wide dynamic range (10 to 1000 MeV) relevant for
conventional radiotherapy and potential future applications involving very-high energy electrons.

Moreover, using an active volume of air minimizes detector interference with the beam, preserving
expected irradiation conditions. This design choice results in a device that is both simple and
cost-effective to produce. The anticipated fluorescence spectrum, along with pressure and temperature
dependencies, as well as the impact of quenching elements like oxygen and argon at different



concentrations, have been documented in the literature [10]. These factors can be appropriately
considered through dedicated detector calibration processes.

2.2 FlashDC detector

In contrast to Cherenkov production and other scintillation processes, air fluorescence has not
undergone extensive investigation for its potential application in monitoring UHDR conditions in
FLASH radiotherapy. The initial challenge addressed by the FlashDC project involves conducting a
proof-of-principle study to assess the accuracy achievable in measuring beam intensity and position
using this technique. Previous test beam campaigns [11] with preliminary prototypes successfully
confirmed geometry dependence on position relative to the beam and established a linear correlation
of the signal with the dose(-rate) per pulse. Qualitative outcomes indicate that a detector with an
air-filled active volume and a straightforward readout system employing standard light sensors is a
promising candidate for developing a beam monitor based on air fluorescence, although conclusive
quantitative evidence for the efficacy of fluorescence in beam calibration regarding spatial distribution
and intensity was premature. To increase the level of detail and provide with a more conclusive set of
data, recent prototype results presented in this contribution focused on investigating background noise
from secondaries and environmental factors, with an appropriate geometry of the sensitive volume
implemented to subtract spurious contributions and measure the signal exclusively from fluorescence.

The detector has been specifically designed for installation on the ElectronFlash [12] accelerator,
an advanced research linac for pre-clinical studies on the FLASH effect, installed at the Pisan Center
for Flash Radiotherapy (CPFR) in Pisa, Italy, and capable of delivering a dose rate for a single pulse
up to 10° Gy/s, with a nominal beam energy of 9 MeV. Notably, this linac allows for adjusting the
triode gun current to modify the charge injected within a single pulse (lasting 4 ps) and thereby vary
the dose within each pulse. This feature makes it an ideal testing ground for assessing the linearity
of the signal as a function of the dose in the UHDR regime.

The prototype of the air detector, as depicted in figure 1, is contained within a cylindrical structure
specifically designed for direct attachment to the ElectronFlash, facilitated by a screw located on
the external surface, resulting in an internal diameter of 6.3 cm and an external diameter of 15 cm,
matching the dimensions of the Beam Exit Window (BEW). Made of plastic, the structure includes
a hollow aperture on the beam line, which can be optionally sealed from the external environment
using a thin Tedlar foil. Inside the cylinder, a sliding leaf, also made of plastic, enables the opening or
closing of an aperture to control the passage of fluorescence light toward the light collection device,
depending on the objective of the acquisition. Complete closure of the aperture allows measurement
of only the contribution from the background, generated from the large number of secondary photons
and electrons scattered inside the room, which is in turn dependent from the fluence of primary
particles, as confirmed by preliminary Monte Carlo simulations.

The optical photons generated at this stage traverse an additional cylindrical pipe made of plastic,
attached to the external layer of the container, with black internal walls to prevent photon reflection.
This pipe has a length of 1.2 m, allowing the optical photons to freely drift. At its end, the optical
photons are converted into an output current signal by a photomultiplier tube (PMT). The PMT is
enclosed by a hollow cylinder made of PMMA with a thickness of 1.5 cm, serving to shield against
secondary electrons entering the photocathode region. The overall spatial configuration and the
resulting distance of the PMT from the BEW of 1.2 m have been determined based on mechanical



constraints and the available space within the facility. It is worth emphasizing that it is necessary to
distance the PMT from the beam line in order to reduce the number of particles reaching the PMT
by means of the solid angle [11], avoiding saturation of signal.

Figure 1. The prototype of the FlashDC experiment, unmounted from the linac BEW.

The initial segment of the detector installed on the ElectronFlash machine is depicted in figure 2.
The current output from the PMT undergoes analysis using a digital oscilloscope, wherein the signal
is integrated across the pulse duration to obtain a charge value. The linac current was set, based on
guidance from local operators, at 9 different presets, corresponding to the following values of dose per
pulse D), (Gy): 0.4,0.7,3,6,9, 12, 15, 18, and 23, with pulse duration #,, equal to 4 ps and a PRF of
100 Hz. For each data point, measurements were acquired for the fotal signal (comprising fluorescence
and background) with the leaf open and for the background with the pipe closed at the BEW entrance.
Due to radiation protection considerations and machine heating concerns, the ElectronFlash could
deliver only 30 pulses for each current, resulting in relatively low statistics.

Figure 2. Portion of the experimental setup at CPFR with the detector mounted on the BEW.

Throughout the entire data acquisition process, the response quality of the air volume, which
is not insulated from the external environment, remained unaffected by volume saturation thanks to
constant renewal of the molecules. However, due to the substantial quantity of fluorescence photons
generated, taking into account also the geometric acceptance, it became imperative to reduce the gain
of the PMT to 4 x 10° photoelectrons/photon; this adjustment was necessary to sustain a consistent
signal throughout the pulse, preventing saturation. Nonetheless, this reduction in gain resulted in
a deterioration of the signal-to-noise ratio, placing the sensor in a sub-optimal operating region.
This necessitated careful consideration in subsequent analyses, introducing additional systematic
uncertainties to account for these non-ideal operating conditions.



3 Results

The initial examination of the comprehensive signal, corresponding to the opening of the leaf, resulting
from individual pulses administered at varying values of D, is depicted in figure 3. This analysis
was conducted through the post-processing of data files recorded by the oscilloscope. The findings
confirm the anticipated correlation between the charge observed by the PMT and the beam current,
demonstrating a progressively escalating amplitude with increasing doses per pulse. The acquisition
time window was meticulously set at 10 ps, and the presented plot has been magnified to emphasize
the pertinent segment of the signal. The integration process, aimed at determining the cumulative
charge collected over the pulse, was executed within the time interval spanning from 2.9 to 6.5 ps.
This interval was chosen to ensure the constancy of the waveform, thereby ensuring a conservative
assessment of the resulting charge.

— 23 Gy/pp
15 Gy/pp

% 40 —— 9Gy/pp
S 35 — 3Gy/pp
S = —— 0.4 Gy/pp
£ |
E
©

T
time [us]

Figure 3. Examples of a single pulse event, at different values of D, (representing a sample of the complete
set of values explored) as seen post-processing the wave-form file saved by the oscilloscope. The amplitude
increases with D, as expected.

Figure 4 illustrates an instance of waveforms captured at a consistent D, value delivered by
the ElectronFlash, specifically at 23 Gy/pulse. This example pertains to a single pulse and serves to
contrast signals obtained from the two configurations employed for the initial background subtraction
in the FlashDC experiment. In this context, the red curve represents the overall signal, encompassing
both fluorescence and background components, while the black curve is derived solely from the
measurement of the background. An observation that emerges is the relatively modest signal-to-noise
ratio, attributable to the necessity for a low gain setting, essential to discern the uniformity of the
readout response across f, while preventing signal saturation.
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Figure 4. Examples of a single pulse event as seen post-processing the wave-form file saved by the oscilloscope.
The two curves highlight the difference between the signal amplitude seen in the different configurations of total
signal vs. background only acquisition.

For comprehensive coverage, table 1 presents the outcomes derived from the integration of charge
values plotted on histograms. The mean values, along with their associated uncertainties obtained
through Gaussian fits, are included. Figure 5 provides a visual representation, exemplifying selected
histograms (not comprehensive for clarity purposes) corresponding to the complete set of pulses
acquired for the specified D, values illustrated in a single waveform event in figure 3.

Table 1. Summary of the results of the test beam campaign at CPFR verifying the background subtraction
method implemented in the prototype of the FlashDC experiment. Each value has been obtained by fitting a
Gaussian histogram of the charge measured within 30 pulses at different values of D ,.

Total signal Background

Dose per pulse Mean charge Err. Mean charge Err.

(Gy) (®) (PO
0.4 1.1 0.2 0.3 0.2
0.7 2.7 0.2 0.5 0.1
12.5 0.2 4.3 0.2
6 20.4 0.2 7.0 0.1
31.6 0.5 11.9 0.1
12 45.8 0.5 16.5 0.2
15 55.8 0.3 20.5 0.2
18 64.5 0.8 24.2 0.1
23 86.4 0.3 34.1 0.5
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Figure 5. Histograms of the charge obtained by integrating the PMT signal as read from the oscilloscope
irradiating the prototype with different dose-rates per pulse. The examples pictured refer to the total signal with
opened leaf.

Maintaining consistency, the systematic uncertainty on the dose per pulse is set at 3% of the beam
current value, following guidance from CPFR dosimetric personnel. Notably, with this configuration,
the background-to-signal ratio ranges substantially between 30% and 40%; it is important to highlight
that, despite the error on the fit parameter being on the order of 0.2 pC, the subsequent analysis of
the anticipated linear trend incorporates an additional systematic uncertainty of 3% on the charge
value. This precautionary measure is motivated by low statistical counts and pronounced fluctuations
in waveform amplitude resulting from the PMT low gain. It is essential to note that this qualitative
consideration does not compromise the validity of the drawn conclusions.

The conclusive outcome of the test beam campaign investigating the linearity of the fluorescence
signal in relation to the dose per pulse is illustrated in figure 6. The plot presents the normalized
charge signal relative to its maximum; it can be seen that, as D, decreases from 20 Gy to 1 Gy, there
is a corresponding decline in the charge signal from approximately 100% to approximately 20%.
These findings strongly suggest that employing a detector devoid of material (except air) along the
beam line enables the differentiation of the signal attributed to the generation of optical photons from
fluorescence in air against the background. Furthermore, the discerned variation holds promise for
real-time beam monitoring of the dose-rate per pulse.
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Figure 6. Results of the scan in current of the detector response as a function of the dose per pulse,
background subtracted.

4 Conclusions

The comprehensive series of measurements conducted with the FlashDC detector has systematically
validated the anticipated geometric dependencies and demonstrated linearity with respect to the
dose per pulse, as documented in [11]. The optimal temporal resolution achievable with this
technique facilitated a thorough tracking of the beam evolution. With the final prototype, a successful
implementation of a background rejection method has been achieved. This method proves effective
in discriminating the fundamental signal, and exhibits a robust response across the entire range of
intensities explored, without signs of performance degradation over time. This foundational operating
principle holds promise for efficient beam monitoring at UHDR, and potentially extends to lower dose
rates. Future developments will explore additional applications in medical and fundamental physics,
including experimentation with lower dose-rate beams akin to those employed in intra-operative
electron radiation therapy treatments — an area of active research.

It is noteworthy that none of the prototypes necessitated methods to enhance signal transmission
to the readout system, as the latter tended to saturate due to the high rate of optical photon production.
To address this challenge, the acceptance was reduced by distancing the PMT from the beam line,
and the gain was adjusted to values considered sub-optimal for sensor functionality. Consequently,
efforts are underway to implement alternative readout methods, with preliminary work aligning with
the FRIDA! project for dosimetry and beam monitoring at UHDR. Furthermore, optimization of the
detector geometry is imperative to reduce background and enhance the signal-to-noise ratio. The
uncontrolled production of scattered secondaries across the treatment room exacerbates this challenge.

'Flash Radiotherapy with hIgh Dose-rate particle beAms, a multidisciplinary collaboration funded by the INFN-CSN5
investigating various challenges related to the phenomenological understanding and modeling of the FLASH effect
(https://web.infn.it/FRIDA/index.php/it/).


https://web.infn.it/FRIDA/index.php/it/

Addressing this issue may involve situating the next prototype beyond the chamber walls, necessitating
the development of a new collimation system. These efforts will aim to refine the performance of the
detector and broaden its applicability in demanding radiation monitoring scenarios.
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