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We review the current applications of artificial intelligence (AI) in functional genomics. The recent explo-
sion of AI follows the remarkable achievements made possible by ‘‘deep learning”, along with a burst of
‘‘big data” that can meet its hunger. Biology is about to overthrow astronomy as the paradigmatic repre-
sentative of big data producer. This has been made possible by huge advancements in the field of high
throughput technologies, applied to determine how the individual components of a biological system
work together to accomplish different processes. The disciplines contributing to this bulk of data are col-
lectively known as functional genomics. They consist in studies of: i) the information contained in the
DNA (genomics); ii) the modifications that DNA can reversibly undergo (epigenomics); iii) the RNA tran-
scripts originated by a genome (transcriptomics); iv) the ensemble of chemical modifications decorating
different types of RNA transcripts (epitranscriptomics); v) the products of protein-coding transcripts
(proteomics); and vi) the small molecules produced from cell metabolism (metabolomics) present in
an organism or system at a given time, in physiological or pathological conditions. After reviewing main
applications of AI in functional genomics, we discuss important accompanying issues, including ethical,
legal and economic issues and the importance of explainability.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-
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1. Introduction

In the last decades, the fast development of high-throughput
technologies in biological sciences has led to the production of
large amounts of data. These data are aimed at the quantification
and characterization of selected ensembles of biological molecules,
such as DNA, RNA, proteins and metabolites, with the ultimate goal
to understand how these molecules contribute to determine the
structure, function and dynamics of a living system, such as a cell,
tissue or organism. Disciplines that aim at collecting and analysing
large sets of biological data are generally indicated as ‘‘omics” by
derivation of the word genome, used to indicate the whole amount
of DNA present in each cell of an organism, with an extra flavour of
openness to big challenges [1]. The different disciplines that con-
tribute to generate this massive volume of biological data are
named after the main target of investigation, be it the DNA infor-
mation content of an organism or system (genomics), the modula-
tions that DNA can reversibly undergo (epigenomics), the RNA
transcripts originated by a genome (transcriptomics), the set and
dynamics of RNA modifications (epitranscriptomics), the transla-
tional products of protein-coding transcripts (proteomics) or the
metabolites (metabolomics) that can be present in a given organism
or system, at a given time and condition, in physiological and
pathological states. All these disciplines are independent fields of
study, but the knowledge and data that they produce converge into
the ambitious goal of functional genomics, a field of research aimed
at characterizing the action and interaction of all main actors (DNA,
RNA, proteins and metabolites, along with their modifications) that
link a set of observable characteristics of a cell or individual (that
is, the phenotype) to the functional interplay between the underly-
ing genetic characteristics (the genotype) and the environmental
conditions.

Omics data can get easily too bulky and complex to be investi-
gated through visual analysis or statistical correlations. This has
encouraged the use of the so-calledMachine Intelligence or Artificial
Intelligence (AI) [2], able not only to manage amounts of data that
are intractable for human minds, but also to extract information
that go beyond our current understanding of the system under
investigation and, importantly, to improve automatically through
experience gained on training data.

Within AI, independence from the need of being explicitly pro-
grammed to perform a given task is the distinguishing feature of
Machine Learning (ML) algorithms, including Linear Regression,
Clustering and Bayesian Networks (Table 1). The first applications
of ML methods in Biology date back to the early 1980s [3]. More
recently, ML programs have been applied in all research areas
related to functional genomics, such as genomics [4–6], transcrip-
tomics [7], proteomics [8,9] and metabolomics [10,11].
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Among ML methods, the most promising to address omics-data
complexity are the ones collectively known as Deep Learning (DL)
methods. These methods process information by performing math-
ematical operations (named neurons, in analogy to the ‘‘computa-
tional elements” in the brain) arranged in multiple layers (thus
deep) connected to one other (thus referred to as a neural network)
(Table 2). Although the first neural network models were imple-
mented more than 60 years ago, at the beginning they constituted
a fascinating but unsustainable resource, due to prohibitive mone-
tary and computational costs. The Perceptron, the first neural net-
work architecture introduced to the scientific community in 1958
by Frank Rosenblatt [12], had limited learning ability. Moreover,
despite being the size of a large room, the computer that was run-
ning the Perceptron algorithm had quite limited processing power.
In general, effective application of DL methods has become possi-
ble only in the last decade thanks to steep increase in processor
performance that reached their high computational demand, espe-
cially following the repurposing of gaming-aimed Graphical Pro-
cessing Units (GPUs) [13]. In the same years, tremendous
decrease of sequencing costs favoured availability of a flood of
large genome-scale datasets and made functional genomics a fer-
tile ground for DL applications [14–16].

DL methods in recent years have opened up interesting and
exciting perspectives in core areas of research (e.g., image analysis,
language analysis and also omics sciences) [17,18], having many
important advantages over traditional ML techniques such as Prin-
cipal Component Analysis (PCA) [19], Bayesian Methods (BMs)
[20], Support Vector Machines (SVMs) [21], Random Forests (RFs)
and Decision Trees (DTs) [22] (Table 1). The main advantage of
DL over ML methods is the end-to-end learning, that is the possi-
bility of obtaining classification or prediction results directly from
the raw data. While not saving the process from possible sources of
bias (e.g., input data selection for the network training phase), end-
to-end learning benefits from avoiding the potential bias intro-
duced by manual intervention in the various data processing
stages. Also, DL methods ease the integration of different input
data types (textual, numeric, images, audio files). Finally, DL archi-
tectures have a much higher capability of abstraction compared to
traditional ML techniques.

Modern DL architectures, such as Deep Neural Networks
(DNNs) [23], Deep Belief Networks (DBNs) [24], Recurrent Neural
Networks (RNNs) [25], Deep Boltzmann Machines (DBMs) [26],
Convolutional Neural Networks (CNNs) [27], AutoEncoders (AEs)
[28,29] and Generative Adversarial Networks (GANs) [30] (Table 2),
have moved a long way from the Rosenblatt’s Perceptron in terms
of both efficiency and performance. Yet, progress came at the cost
of decreased transparency and loss of the ability to trace associa-
tive feature extraction and classification processes. This loss of



Table 1
A summary of commonly used machine learning methods, including a brief description of their distinctive features and indication of core applications.

Learning Type Method Description and Most Relevant Features Main Applications References

LR Linear Regression is a supervised learning method to investigate the linear relationship between a
dependent and one or more independent variables. LR was the oldest and the most widely used type of
regression. To overcome the limit of linear assumption many regression techniques have been
developed, varying in the type of cost function used: Non-Linear Regression, Polynomial Regression,
Logistic Regression (Sigmoid function), Poisson Regression and many others.

Classification.
Functional causal
modelling.
Metabolomics.
Genotype-
phenotype
associations.

2001 [49]
2005 [50]
2006 [51]
2008 [52]
2012 [53]
2014 [54]

SVM Support Vector Machines are supervised learning methods for binary classification. SVMs represent
data as points in space and construct a hyperplane or set of hyperplanes in a high-dimensional space
to separate the points and predict the belonging to a category [21]. SVMs can perform linear
classification and non-linear classification using kernel methods, a class of algorithms for high-
dimensional pattern analysis.

Cancer genomics
classification.
Outliers detection.
Discovery of new
biomarkers and
new
drug targets.

2003 [55]
2007 [56]
2008 [57]
2011 [58]
2013 [59]
2014 [60]

Supervised RDF Random Decision Forests are learning methods that train and average predictions provided by many
Decision Trees (DTs). DTs are ML approaches in which predictions are represented by a series of
decisions to predict the target value of a variable starting from features observations [61]. Target
variable can take continuous (Regression Trees) or discrete values (Classification Trees). DTs are often
unstable methods, but have the big advantage to be easily interpretable.

Genome-Wide
Association (GWA).
Epistasis detection.
Pathway analysis.
Visualization of
decision processes.

2003 [62]
2004 [63]
2006 [64]
2009 [65]
2012 [66]
2015[67]

Naive
Bayes

Bayes Classifiers are ML methods that use the Bayes’ theorem for the classification process. A strong
assumption for Naive Bayes is mutual feature-independence. These classifiers are very fast and,
despite their simplicity, they are efficient in many complex tasks, also with small training data sets.

Short-sequences
classification.
Multi-class
prediction.
DNA barcoding.
Biomarker
selection.

2001 [68]
2002 [69]
2006 [70]
2009 [71]

k-NN The k-Nearest Neighbours is an instance-based learning algorithm used for classification or regression.
The algorithm assigns weights to neighbour contribution. The nearest neighbours contribute more to
the computed average than distant ones.

Cancer genomics
classification.
Gene expression
analysis.

2005 [72]
2006 [73]
2010 [74]

PCA Principal Component Analysis is a statistical procedure for the reduction of the dimensionality of
variable space. PCA consists in a linear coordinate transformation that projects variables from an high-
dimensional space to a low-dimensional space trying to maintain the variance as much as possible
[19]. One of the main limits of this method is that it can capture only linear correlations between
variables. To overcome this disadvantage, Sparse PCA and Nonlinear PCA have been recently
introduced.

Dimensionality
reduction.
Cancer
classification.
SNPs tagging.
Visualization of
genetic distances.
Proteomic analysis.

2004 [75]
2007 [76]
2009 [77]
2011 [78]
2013 [79]
2014 [80]

Unsupervised DBNs A Dynamic Bayesian Network is a Bayesian Network (a probabilistic graphical model that uses
Bayesian inference for probability computations) with a temporal extension able to model stochastic
processes over time [20]. The advantage of this kind of architectures is that they can model very
complex time series and relationships between multiple time series.

Gene regulation
analysis.
Epigenetic data
integration.
Protein sequencing.

2007 [81]
2010 [82]
2012 [83]
2014 [84]
2016 [85]

LDA Linear Discriminant Analysis is a linear dimensionality reduction technique for the projection of a
dataset on a lower-dimensional space. LDA is very similar to PCA, but in addition to maximizing data
variance, LDA is also interested in finding axes that minimize variance.

Data pre-processing.
Motifs
identification.
Cancer genomics
classification.

2000 [86]
2008 [87]
2009 [88]

k-
Means

k-Means Clustering is a vector-quantization method for the partition of observations into k clusters. At
each step the algorithm re-updates centroids as cluster barycenters and re-assigns each data point to
the nearest centroid. k-Means is at the same time a simple and efficient algorithm for clustering
problems.

Genome clustering.
Gene expression
pattern recognition.
Image
segmentation.

2005 [89]
2007 [90]
2015 [91]
2016 [92]
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explainability stems from the increased architecture complexity,
moving from the single layer of neurons of the Perceptron to the
many layers of hidden neurons intervening between the input
and output layers of advanced DL models. Of note, loss of explain-
ability entails new risks of obtaining variously biased results and,
therefore, it is currently one of the most active research areas in
AI (see Sections 5 and 6). Explainability is indeed a major issue
for the exploitation of DL potential, especially in the biomedical
research and healthcare domains, where features selected by the
learning system towards the output decision need to be made
understandable in human terms. In fact, the ability of DL architec-
tures to extract much more elaborate features than visual deduc-
tion and infer associations based on very high abstraction levels
facilitates new investigative strategies. However, it also raises
major ethical and legal issues due to the cryptic rationale support-
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ing the machine decisions, that is given as a black-box impeding to
evaluate the process and to clear possible sources of errors or
biases (see Section 7). Finally, more and more sophisticated DL
architectures are subject to increased training complexity, due to
the exploding number of model configuration parameters (e.g.,
the weights - or contribution to the prediction - of each node in
an artificial neural network) that need to be estimated from the
training data. Moreover, DL architectures need a careful and long
tuning of configuration hyper-parameters (e.g. the learning rate
for training a neural network) that are external to the model and
whose value cannot be estimated from the data, but that can
strongly impact training speed and model performance. The reader
is referred to excellent recent reviews [4,31,32] for a detailed dis-
cussion on parameter and hyper-parameter setting in biological



Table 2
A summary of most relevant deep learning architectures, including a brief description of their distinctive features and indication of core applications.

Learning
Type

Method Description and Most Relevant Features Main
Applications

References

DNNs Deep Neural Networks are neural networks with many hidden layers of artificial neurons. The output
of a layer represents the input of the following layer [23]. This kind of architecture allows to capture
non-linear relationships and provides complex representations of input data.

Cancer
genomics.
Protein
sequence
classification.
Phenotype
from
genotype
prediction.

2017 [93]
2018 [94]
2018 [95]
2019 [96]
2020 [7]

MLP The Single Layer Perceptron (SLP) is a ML algorithm for linear binary classification. Neurons of the
layer learn optimal weights for input signals one at a time and generate two linearly separable classes
[12]. The Multilayer Perceptron (MLP) contains many SLPs organized into three or more layers with
feed-forward connections. Unlike SLP, MLP can perform also non-linear classifications.

Protein
structure
prediction.
Molecular
Classification.
Cancer
genomics.

1982 [3]
2006 [97]
2009 [98]
2010 [99]
2013 [100]

CNNs Convolutional Neural Networks are hierarchical architectures inspired by biological processes
governing the organization of animals’ visual cortex. This architecture uses combination of
convolution and pooling layers and can detect complex local and global patterns [27]. They work by
scanning multidimensional arrays such as 2D images or weight matrices of DNA motifs. To be
efficient, CNNs require many layers and large labelled datasets.

Modelling
regulatory
elements.
Detection of
DNA
accessibility.
Finding
Binding-sites
sequences.

2016 [101]
2016 [102]
2016 [103]
2017 [104]
2018 [105]
2018 [106]
2019 [107]

Supervised RNNs Recurrent Neural Networks are deep architectures able to capture temporal dynamic behaviours.
They are suitable for processing time series or sequential data and in general to predict outputs
depending on previous states. RNNs hidden layers retain information from previous layers and feed to
the next layer, providing the architecture with a sort of memory [25].

Transcription
factor
binding sites
prediction.
Mutation and
variants
identification.
Protein
homology
detection.

2017 [108]
2017 [109]
2018 [110]
2019 [111]
2019 [107]

LSTM Long Short TermMemory is a particular type of RNN architecture with feedback connections. It is able
to retain information over a long time and to learn long-term dependencies [112]. LSTMs can
overcome the vanishing gradient problem, typical of traditional RNNs. They are useful to make
predictions, especially when dealing with time series with lags, even wide, between events.

Splicing
prediction.
Gene
expression
regulation.
Detection of
genomic
long-term
correlations.

2015 [113]
2015 [114]
2016 [115]
2017 [116]
2019 [117]
2020 [118]

DBMs Deep Boltzman Machines are a kind of RNNs based on a stochastic maximum likelihood algorithm.
The network contains undirected connections between all layers and has the ability to learn internal
representations that become increasingly complex and abstract [26]. The main disadvantage of this
kind of networks is the slow speed.

Protein
function
prediction.
SNPs pattern
recognition.
Cancer
genomics.

2004 [119]
2017 [120]
2017 [121]
2017 [122]
2018 [123]

DBN Deep Belief Networks can be viewed as a composition of Restricted Boltzmann Machines (two-layers
generative stochastic neural networks) where each layer learns the entire input [24]. Unlike DBMs,
only the first two layers of DBNs have undirected connections. A disadvantage of this kind of networks
is the high computational cost of the training process since layers must be trained one at a time.

Enhancers
prediction.
Gene
expression
pattern
recognition.
Cancer
classification.
Drug
discovery.

2014 [124]
2016 [125]
2016 [126]
2017 [127]
2017 [128]
2017 [129]

AEs AutoEncoders are neural networks trained to reconstruct the input. The output layer of an AE has the
same number of neurons as the input layer, while one or more hidden layers have a lower
dimensionality, in order to force the AE to compress data and to extract important features neglecting
unimportant ones [28,29]. Many variants can make representation very robust and precise:
Variational AEs, Spares AEs, Denoising AEs, Contractive AEs, Convolutional AEs.

Dimensionality
Reduction.
Mutation and
variants
identification.
Methylation
analysis.
Drug
discovery.

2014 [130]
2016 [103]
2017 [131]
2018 [132]
2019 [133]
2020 [134]

(continued on next page)
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Table 2 (continued)

Learning
Type

Method Description and Most Relevant Features Main
Applications

References

Unsupervised GANs Generative Adversarial Networks are architectures made of two neural networks, one against the
other [30]. The first neural network, called the generator, generates new instances, the second neural
network, the discriminator, evaluates if the generated instances can belong to the training data-set or
not. This way GANs are able to generate new data that are indistinguishable from the observed ones.

Data denoising.
Data
augmentation.
Missing data
imputation.
Genome
editing.

2017 [135]
2018 [136]
2018 [137]
2019 [138]
2019 [139]
2020 [140]
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applications of DL architectures. Taken together, these considera-
tions make DL a powerful tool to be handled with care.

Here we review the main applications of AI methods in func-
tional genomics and the interlaced fields of genomics, epige-
nomics, transcriptomics, epitranscriptomics, proteomics and
metabolomics. In particular, we focus on recent years applications
following the raising of big data production in functional genomics
and the natural crossing of this discipline with the flourishing field
of AI (Fig. 1). In this framework, we also discuss important aspects
of data management, such as data integration, cleaning, balancing
and imputation of missing data. Furthermore, we address legal,
ethical and economic issues related to the application of AI meth-
ods in the functional genomics domain. Finally, we endeavour to
provide a glimpse of possible future scenarios.
Alan Turing - Mathematician and philosopher It seems
probable that once the machine thinking method had started,
it would not take long to outstrip our feeble powers. . . They
would be able to converse with each other to sharpen their
wits. At some stage, therefore, we should have to expect
the machines to take control.
2. Functional genomics

Functional genomics is the science that studies, on a genome-
wide scale, the relationships among the components of a biologi-
cal system - genes, transcripts, proteins, metabolites, etc. - and
how these components work together to produce a given pheno-
type. The term ”functional genomics” takes root in the scientific
community at the time of the rising of the first genome sequenc-
ing projects. These projects are ultimately aimed at determining
the complete genome sequence of a given organism and to anno-
tate functionally relevant features therein, such as protein-coding
and non-coding genes as well as DNA regulatory regions. The
landmark such endeavour is the Human Genome Project (HGP),1

a worldwide collaborative project launched in 1990 and officially
completed in 2003 (International Human Genome Sequencing Con-
sortium [33]). However, the first completely sequenced genome
from a eukaryote, that of the budding yeast Saccharomyces cere-
visiae, was released already in 1996 [34] and provided material
to start exploring the complex relationships between genes and
gene products at the genome scale. Indeed, a tentative definition
of functional genomics was first published in 1997 by Hieter and
Boguski [35], that at the beginning of their paper state: ‘‘An infor-
mal poll of colleagues indicates that the term [functional genomics]
is widely used, but has many different interpretations. There is
even some sentiment that the term is unnecessary and that it does
nothing more than refer to biological research as a whole.” Never-
theless, in the same paper, they also recognize that ‘‘[. . .] the con-
1 https://www.genome.gov/human-genome-project.
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cept of functional genomics has arrived and it is stimulating the
creation of new ideas and approaches to understanding biological
mechanisms in the context of knowledge of whole genome struc-
ture.”. Functional genomics is eventually defined by these authors
as a ‘‘new phase of genome analysis”, following the conclusion of
the ‘‘structural genomics” phase (i.e., construction of a physical
map and sequencing of the genome). This ‘‘new phase” consisted
in developing and applying genome-wide experimental approaches
and computational techniques to infer gene functions.

The impressive advances occurred since the beginning of this
century in massively parallel sequencing technologies and related
protocols have changed the face of functional genomics. Today, we
can claim that the term is not open to different interpretations any
more: it refers to a discipline integrating a large variety of ‘‘omics”
data and relying on a plethora of high-throughput experimental
methodologies and computational approaches to understand the
behaviour of biological systems, being the system a cell, tissue or
entire organism, in either healthy or pathological conditions.

Specifically, the data used in functional genomics analyses are
produced in the context and with the technologies of ‘‘omics” dis-
ciplines, including genomics, epigenomics, transcriptomics, epi-
transcriptomics, proteomics and metabolomics (Fig. 2).
Elaine Rich – Computer scientist Artificial Intelligence is the
study of how to make computers do things which, at the
moment, people do better.
3. AI applications in functional genomics

In the last decades, ML has been widely used in many areas of
‘‘omics” sciences, especially those characterized by the production
of large amounts of data and/or complex mechanisms governed by
the synergic participation of different factors. Important applica-
tions include: prediction of DNA regulatory regions; discovery of
cell morphology and spatial organization; identification of associa-
tions between phenotypes and genotypes; classification of DNA
methylation and histone modifications; biomarkers discovery;
transcriptional enhancers detection; cancer diagnosis and analysis
of evolutionary mechanisms [36–42] (see Fig. 3).

Since the 1980s we have witnessed the first attempts to apply
supervised training techniques to ‘‘omics” sciences. In 1982,
Stormo et al. used the Perceptron algorithm to distinguish E. coli
translational initiation sites from all other sites in a library of over
78.000 nucleotides of mRNA sequence [3]. In 1993, Rost and San-
der implemented a neural network to predict the protein sec-
ondary structure [43]. DL techniques began to be massively used
in functional genomics only in the second decade of the 2000s,
due to the improvement of PC performance and the collapse of
genome sequencing costs [44–46].

In 2015, two important deep architectures have been imple-
mented and applied to functional genomics, producing results of
great scientific impact. DeepBind [47] is a fully automatic stand-

https://www.genome.gov/human-genome-project


Fig. 1. A timeline of momentous events in functional genomics and artificial intelligence from their foundation until the time they crossed their paths.
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alone software for the prediction of sequence specificities of DNA
and RNA binding proteins. DeepSEA (deep learning-based
sequence analyser) [48] predicts chromatin effects of sequence
alterations with single-nucleotide resolution, by learning regula-
tory sequences from large-scale chromatin-profiling data. Both
methods, based on deep architectures, have overcome many chal-
lenges such as the processing of millions of sequences, the gener-
alization between data from different technologies, the tolerance
of noise and missing data and the end-to-end and totally automatic
learning, without the need for hand-tuning. These approaches out-
performed other state-of-the-art methods and encouraged many
scientists to follow similar exciting paths.

In the next sections, we analyse in detail some of the highest
impact applications of ML and DL in the main disciplines converg-
ing into functional genomics.
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Yoshua Bengio – Computer scientist I don’t think that any
of the human faculties is something inherently inaccessible
to computers. I would say that some aspects of humanity
are less accessible and creativity of the kind that we appreci-
ate is probably one that is going to be something that’s going
to take more time to reach. But maybe even more difficult for
computers, but also quite important, will be to understand
not just human emotions, but also something a little bit more
abstract, which is our sense of what’s right and what’s
wrong.



Fig. 2. The many facets of functional genomics: contributing ‘‘omics” disciplines, target biological features and core high-throughput technologies for data production.
Abbreviations: 4sU-Seq: 4-thiouridine (4sU)-labeled RNA Sequencing; BS-Seq: Bisulfite sequencing; ChIP-Seq: Chromatin ImmunoPrecipitation followed by sequencing;
DNase-Seq: DNase I hypersensitive sites sequencing; GRO-seq: Global Run On Sequencing; HPLC: high-performance liquid chromatography; HTS: High- Throughput
Sequencing; LC-MS: Liquid Chromatography coupled with Mass Spectrometry; LC-MS/MS: Liquid Chromatography coupled with tandem Mass Spectrometry; MALDI-TOF:
Matrix-assisted laser desorption/ionization (MALDI) Time Of Flight; MALDI-TOF/TOF: MALDI coupled with tandem Time Of Flight; MS: Mass Spectrometry; MS/MS: tandem
Mass Spectrometry; NET-Seq: Nascent RNA Transcript Sequencing; RNA-Seq: RNA Sequencing; SAGE: serial analysis of gene expression; TLC: thin-layer chromatography..
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3.1. Genomics

The concept of ‘‘genome” was first proposed in 1920 by Hans
Winkler, then professor of Botany at the University of Hamburg,
referring to ‘‘the haploid number of chromosomes” located in the
nucleus [141]. In the current era of biological research, with the
technological progress in sequencing and the discovery of the
DNA complexity, this concept has been extended to the whole
set of DNA sequences in a cell or organism (i.e., accounting for
the number of copies of the basic set of chromosomes, or ploidy,
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and including the DNA material from extranuclear organelles such
as the mitochondria).

Genomics can be defined as the ‘‘science of genomes”. The term
was coined in 1986 by Thomas Roderick to describe the nascent
discipline of sequencing, mapping, annotating and analysing gen-
omes [35]. The first complete genome sequence of a eukaryotic
organelle (the human mitochondrion, 16.6 kb in length) was deter-
mined in 1981 [142]; the first free living organism (H. influenzae,
1.8 Mb) was sequenced in 1995 [143]; and the first eukaryotic
genome (S. cerevisiae, 12.1 Mb) was completed in 1996 [34].



Fig. 3. AI applications in functional genomics.
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Sequencing of the human genome (3 Gb), a milestone in the geno-
mics field, took 13 years and was completed in 2003 [33].

Starting from early low-throughput methods (the first genera-
tion of sequencing technologies) [144–146], in a few decades the
field was first revolutionized by high parallelization of sequencing
reactions, reaching the production of millions of short reads in few
hours of run (the second generation) [147,148]; more recently, it
further evolved towards single molecule sequencing and very long
sequencing reads (the third generation) [149–151].

Today, thanks to the advent of high-throughput sequencing
techniques, hundreds of thousands of genomes from different
kingdoms have been fully sequenced, including over 15.000
eukaryotic genomes (GENOME NCBI),2 and the term genomics has
now expanded to include the investigation of DNA structure, func-
tion, evolution, and editing.

As pointed out by Libbrecht and Stafford Noble [152], ML has
been widely used in genomics to annotate sequence elements,
identify splice sites, find promoters and enhancers, etc. A large
amount of genome sequences have been used to train ML models
to recognize specific functional elements. In 1990, an important
paper by Bucher [153] was published, where an Optimized-
Weight-Matrix algorithm has been applied to hundreds of unre-
lated promoter sequences to identify promoter elements.

Of note, this ML application, as others in the following years,
has been made possible by establishment of databases such as
the Eukaryotic Promoter Database (EPD)3 or the European Nucleo-
tide Archive (ENA).4 In 2002, SVM and NB prediction methods [69]
have been applied for splice site prediction and showed improve-
ments and advantages over traditional relevant features selection
methods. In 2006, Segal et al. proposed an important combined
experimental and computational approach [154] to investigate the
nucleosome organization. In the proposed pipeline, nucleosome-
bound sequences from yeast were isolated at high resolution and
used to construct a probabilistic nucleosome-DNA interaction model
for linking nucleosome positions to specific chromosome functions
and predicting the genome-wide organization of nucleosomes. In
2007, Heintzman et al. mapped five histone modifications and four
transcription factors on 30 Mb of the human genome using a cluster-
ing ML approach [90]. In 2012, Hoffman et al. applied an unsuper-
vised Dynamic BN method [83] to analyse different types of omics
2 shorturl.at/rAJT5.
3 https://epd.epfl.ch//index.php.
4 https://www.ebi.ac.uk/ena/browser/home.
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data (such as histone modification marks and binding sites for mod-
ifiers of chromatin structure), all of which derived from a human
chronic myeloid leukemia cell line, to analyse the entire genome at
1-bp resolution, despite the presence of noise and missing data
(See Sections 4.2 and 4.1).

DL methods have only been applied in the genomic field in
more recent years. An open-source package based on CNNs named
Basset [101] for the annotation and interpretation of the non-
coding genome was proposed in 2016. The following year, Killoran
et al. proposed a GAN to generate DNA sequences with specific
properties [135]. More recently, Avsec et al. [155] introduced a
DL approach to unravel the influence of motif spacing between
neighbour transcription-factor binding sites on transcription factor
cooperativity.

Unsupervised approaches, such as GANs and AEs (see Table 1)
have a great ability to extract very representative features and
learn complex representations of the input data without any type
of supervision and addressing. Moreover, they can efficiently
denoise and reduce dimensionality without loss of information.

In recent years, representation models used for Natural Lan-
guage Processing (NLP) have been applied to biological sequence
data processing [156,157]. In a sense biological sequences may
be considered as sentences of a language. A widely used method
in NLP is LSTM [112], based on RNN architecture, which is suitable
for extracting semantic and contextual information from long
sequences. In 2013, Mikolov et al. proposed Word2Vec [158], an
unsupervised word embedding method to perform low-
dimensional vector representation of natural language words. This
method is capable of capturing the context of a word in a docu-
ment, underline relationships between words, and capture seman-
tic and syntactic similarities. In 2015, Vaswani et al. [159]
proposed Transformer, a new architecture based on attention
mechanism. Transformers are designed to handle sequential data,
like LSTM and RNN, and in this sense they are suitable for text
translation and interpretation; however, they neither use recur-
rence nor process inputs in their order. Transformers use a random
initialization and are based on dynamic word embeddings (unlike
other NLP architectures that use static word embedding). In 2018,
Devlin et al., introduced a new NLP method named BERT (Bidirec-
tional Encoder Representations from Transformers) [160] where
the authors applied the bidirectional training of Transformer,
which was highly performing in capturing semantic meaning and
context words.

https://epd.epfl.ch//index.php
https://www.ebi.ac.uk/ena/browser/home


C. Caudai, A. Galizia, F. Geraci et al. Computational and Structural Biotechnology Journal 19 (2021) 5762–5790
Very recent papers reported interesting applications of unsu-
pervised word embedding methods on biological sequences.
Woloszynek et al. [161] used Word2Vec to embed nucleotide
sequences, in particular k-mers obtained from 16S rRNA amplicon
surveys, and managed to extract relevant features related to
sequence context, taxonomy and classification. Ostrovsky-
Berman et al. presented Immune2vect [162], an adaptation of
Word2Vec for B-cell receptor sequencing data, where they embed-
ded immune sequencing data in low-dimensional vector-
representations to extract relevant features such as n-gram proper-
ties and classify immunoglobulin heavy-chain variable (IGHV)
genes. Recently Le et al. [163] presented a new technique made
up of a BERT and a CNN for DNA enhancer prediction. This
approach turned out to be more efficient thanWord2Vec in captur-
ing the hidden information in DNA sequences because the word
embedding generated with BERT is dynamic, and nucleotides can
be represented in different positions and assume different vector
values. This is an advantage over static word embeddings, where
the same vectors are obtained for the same words regardless of
their context, because it provides more detailed and accurate
representations.

A major goal in genomics is the identification of genetic variants
that underpin human traits, particularly diseases. HTS technologies
greatly accelerated our ability to identify gene mutations responsi-
ble for human disorders that are caused by variation of large effect
in a single gene (e.g., Huntington disease, Duchenne muscular dys-
trophy). Additionally, thousands of genome-wide association stud-
ies (GWAS) have produced long lists of genetic variants associated
with common diseases (e.g., asthma, diabetes, heart disease),
which are often due to weak contribution of multiple genes and
environmental factors. Nevertheless, our understanding of the
genetic determinants of these complex diseases still remains lim-
ited. This is partly due to unexpected phenotypic readouts origi-
nating from functional interactions between two or more genes,
as in the case of a genetic mutation whose presence can mask
the effects of an allele at another locus (a.k.a. epistasis). Systematic
genetics screens conducted in model organisms have fostered a
better understanding of the interplay between genotype and phe-
notype, and provide a framework for the development of personal-
ized genetics in humans by mapping phenotypes between
organisms [164]. The most comprehensive analyses have been con-
ducted in the budding yeast Saccharomyces cerevisiae [165,166],
which has led to quantitative phenotypic measurements for tens
of million pairs of mutations in yeast. These massive screening
efforts have been leveraged together with ML and DL methods
for multiple scopes, including: automatic prediction of growth
impact of selected genetic interactions in yeast metabolic network,
based on both regression and a genetic algorithm that improved
prediction accuracy [167]; association of genetic interactions to
functional impact, based on RF regression [168]; and costruction
of an interpretable or ‘visible’ NN, named DCell, which simulates
a basic eukaryotic cell growth [169] and predicts response to
genetic perturbation in terms of cellular fitness.

The advent of powerful genome editing technologies, such as
CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic
Repeats-CRISPR-associated protein 9) has enabled scalable manipu-
lation of DNA to functionally characterize genes and gene regula-
tory elements in a number of different organisms and in human
cell model systems. A key point for successful application of
CRISPR-Cas9 is the proper design of short RNAs (broadly referred
to as gRNAs, acronym to guide RNAs), which provide scaffold to
and guide the enzymatic complex to target sites for editing, based
on sequence complementarity of 17–20 nucleotides at the 5’-end
of the gRNA. In particular, in the gRNA design process, it is crucial
to optimize the engineered sequence towards specific interaction
with the editing target (on-target activity) while minimizing unin-
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tended interactions with other genomic sites (off-target activity),
which may arise from sequence similarity with the genuine target.
Various ML methods and DL methods have been developed to opti-
mize gRNA design and predict both on-target and off-target activ-
ity, including: CRISTA [170], an RF-based regression model that
scores the propensity of a genomic site to be cleaved by a given
gRNA; DeepCRISPR [171], a computational platform that uses data
augmentation technique to expand the training dataset of experi-
mentally validated gRNA sequences and feeds two CNNs (one for
on- and one for off-target activity prediction), with gRNA represen-
tations produced by pre-trained autoencoders; CROTON [172], an
end-to-end framework based on deep multi-task CNNs and neural
architecture search to predicting CRISPR-Cas9 editing outcomes;
and the complementary tools CRISPR-ONT and CRISPR-OFFT
[173], attention-based CNNs trained to predict gRNA on- and off-
target activities, respectively.

Combining efficient gene perturbation provided by CRISPR-Cas9
technology with manifold transcriptional phenotyping provided by
single-cell RNA sequencing (scRNA-seq) offers an unprecedented
opportunity to explore genetic interactions in mammalian cells
at large scale. This experimental framework was recently explored
by Norman et al. [174], who applied recommender system ML for
dimensionality reduction of the high-dimensional map of tran-
scriptional states (phenotypes) associated to gene perturbation,
to allow visual analysis and predict genetic interactions.

Several groups have explored ML and DL approaches both to
identify disease-associated genetic interactions and to predict the
genetic risk of complex diseases in populations from genome-
wide maps of genetic variation, such as the occurrence of single-
nucleotide polymorphisms (SNPs) or small nucleotide insertions
or deletions (indels) in human genomes. In 2014, Kircher et al. pro-
posed CADD (Combined Annotation-Dependent Depletion) [60], an
SVM approach for the classification of functional, deleterious and
pathogenic variants, which was trained with millions of both
high-frequency human derived alleles and simulated variants.
The method outperformed existing methods at distinguishing var-
ious pathogenic variants that underlie diseases from nearby benign
variants. In 2016, Quang and Xie implemented DANN [115], a
method for annotating the pathogenicity of genetic variants devel-
oped by using the same feature set and training data as CADD, but
based a DNN, more suitable than SVMs to capture non-linear rela-
tionships between features. In the same year, Ionita-Laza et al.
[175], proposed an alternative method based on unsupervised
spectral approach (Eigen) that scores genetic variants for disease-
association. In 2018, Zhou et al. [106] proposed ExPecto, an end-
to-end framework based on a CNN, which was trained on multiple
omics data obtained from 200 human tissues and cell types, to pre-
dict cell-type-specific effects of genetic sequence variation on gene
expression and disease risk. Finally, concerning the analysis of raw
sequencing data to identify the presence of genetic variation, in
2018 the genomics team at Google Brain published a deep learning
architecture, named DeepVariant, based on a CNN trained to call
SNPs and indels variants from piles of aligned sequencing reads
[176]. This method won the highest performance award for SNPs
in US Food and Drug Administration-sponsored variant calling
Truth Challenge in May 2016.

3.1.1. Cancer genomics
In the last decades, the rise of NGS techniques has revolution-

ized the medical approach to cancer [177]. Genomics has become
increasingly important in clinical study, prevention, treatment
and monitoring practices. Cancer genomics studies differences in
DNA sequences and gene expression between tumour and normal
cells, with the aim to understand the dynamics underlying the for-
mation and spread of tumours at the genetic, metabolic, systemic
and environmental level. The Cancer Genome Atlas [178] project
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collected multi-level NGS data for 33 different types of common
tumours, an enormous data resource made available to study
tumour-specific as well as recurrent cancer mechanisms. The
availability and integration of large quantities of genomic,
proteomic and epigenomic information has allowed increasingly
comprehensive representations of complex dynamics, such as can-
cer formation[179], to be obtained. Indeed, integration of multiple
omics data can help overcome possible noise and/or bias of single
data layers, thus improving the relevance of extracted representa-
tive features. In this framework, data integration has been an active
field of research for ML and DL techniques applied to omics data,
especially cancer genomics [180,181] (see Section 4.3 for a more
detailed discussion on data integration). In particular, the introduc-
tion of autoencoders, such as denoising autoencoders, has allowed
robust representations of heterogeneous data to be provided, and
extraction of highly representative and predictive features to be
more easily performed [182–184]. Indeed, AI applications to cancer
genomics can provide useful information for a rapid growth of pre-
cision medicine and for disease prevention and monitoring.

ML applications to mutation detection and interpretation can
help in identifying cancer-predisposing genes such as BRCA1/2
and in predicting cancer risk [185,186]. AI performances in cancer
genomics are very promising. As an example, AI results in the diag-
nosis of melanoma and breast cancer are very reliable and often
surpass expert evaluation [187,188]. Many ML techniques have
been applied to cancer detection and classification, and especially
to biomarker identification. In 2003, Vlahou et al. obtained good
ovarian cancer classification results by applying a Decision Tree
[62]. In the early 2010s, two groups, Abeel et al. [189] and Chen
et al. [190], applied SVM for cancer biomarkers identification. In
recent years, deep architectures have been applied to variant call-
ing and mutation detection. In 2016, Yuan et al. proposed Deep-
Gene, a DNN cancer classifier, [191] and in 2018 Qi et al. used a
MVP for prioritizing pathogenic missense variants [192]. In the
same year, Malta et al. proposed a one-class LR for the extraction
of transcriptomic and epigenetic features associated with dediffer-
entiated oncogenic states [193]. Survival models, such as Sur-
vivalNet [194], a DL approach for the screening of large cancer
genomic datasets, can be useful for prognosis accuracy improve-
ment and prediction of cancer outcomes.

A recent and promising field of application for AI methods in
cancer genomics concerns the computational investigation of syn-
thetic lethal interactions in cancer cell lines to guide anti-cancer
drug design. Synthetic lethality refers to a type of genetic interac-
tion where the simultaneous perturbation of two genes leads to
cell death or severe impairment of cell viability, while a perturba-
tion of either gene alone does not. Concomitant availability of thor-
ough maps of genetic interactions obtained in model organisms
[166], catalogues of cancer genomics data [178], powerful tools
for genome editing (e.g. CRISPR-Cas9 editing system) and single
cell high-throughput sequencing technologies opened the way to
systematic phenotypic discovery at single cell resolution, which
is utterly important to tackle tumour cell heterogeneity. In 2017,
Way et al. [195] developed an ML approach based on ensemble
logistic regression, which was trained on both mutation and tran-
scriptomic profiles of glioblastoma from The Cancer Genome Atlas
[178], to predict genes that may exhibit synthetic lethality in can-
cer cells lacking the neurofibromin 1 tumour suppressor gene. In
2019, Das et al. implemented DiscoverSL [196], a multiparameter
RF classifier trained on multi-omic cancer data from The Cancer
Genome Atlas [178] to predict and visualize synthetic lethality in
cancers. In 2020, Wan et al. developed EXP2SL [197], a semi-
supervised NN-based method, which was trained on a large collec-
tion of cancer cell line expression signatures from the LINCS1000
Program [198], to predict cancer cell-line specific synthetic lethal
interactions.
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Other important applications of AI in cancer genomics concern
identification of regulatory variants in noncoding domains [199],
bioactivity prediction [200], anticancer drug prioritization [201]
and sensitivity prediction [202,203]. All of these applications rep-
resent important steps towards personalized medicine, increasing
accurate and less invasive prevention, treatment and monitoring
paths based on the specific characteristics of the patients and the
environment in which they live [204].
Erik Brynjolfsson – Director of Stanford Human-Centered
AI We can virtually eliminate global poverty massively
reduce disease and provide better education to almost every-
one on the planet. That said, AI and ML can also be used to
increasingly concentrate wealth and power, leaving many
people behind, and to create even more horrifying weap-
ons. . . The right question is not ‘What will happen?’ but ‘What
will we choose to do?’ We need to work aggressively to make
sure technology matches our values.
3.2. Epigenomics

Epigenomics is a discipline that studies epigenetic processes at
the genome scale. These processes include the regulatory mecha-
nisms of gene activity and inheritance that are dictated by genome
architecture and independent of changes in the DNA sequence. The
term epigenetics, coined in 1942 by British biologist Conrad
Waddington, indicates a regulatory layer of gene expression
mainly mediated by small chemical compounds (such as Methyl-,
Acetyl- or Phosphate-groups) that can be reversibly attached to
DNA (e.g., DNA methylation) or chromatin proteins (e.g., methyla-
tion, acetylation, phosphorylation and other chemical modifica-
tions occurring at the tails of histone proteins). These epigenetic
marks are dynamically orchestrated (i.e., layered, interpreted or
removed) from the so-called ‘‘writer”, ‘‘reader” and ‘‘eraser” pro-
teins. They cause DNA modulation both in terms of spatial organi-
zation and capacity to interact with the gene regulatory machinery,
ultimately resulting in switching on or off the expression of the
affected genes. In addition to DNA methylation and histone modi-
fications, chromatin remodelling complexes in concert with other
DNA binding proteins (such as enhancer-binding proteins and
mediators of long-range chromatin looping) provide further epige-
netic mechanisms that collectively define the three-dimensional
(3D) organization of the genome. This, in turn, defines chromatin
regions of active (i.e., transcriptionally competent) or repressed
(i.e., inaccessible to transcriptional machinery) states. Epigenomics
aims at systematically charting ensembles of epigenetic marks and
landscapes of active and repressed genomic regions (i.e., the epi-
genome) in different cell types and states, to characterize the func-
tional effect on gene expression. In fact, each cell type has a unique
epigenome that allows a specific differentiation and reflects a
specific state for the cell [205]. Identification of chromatin states,
local density of epigenetic marks, long-range chromatin contacts
and histone modification patterns has proven relevant for studying
and interpreting regulatory regions, cell specific activity and
disease-associated patterns. To this end, many ML and DL tech-
niques have been applied to define cell type-specific profiles of
DNA methylation (or methylomes) and histone modifications, clas-
sify chromatin regions into active and repressed states and, more
recently, classify tumour types based on high-throughput methy-
lome data and predict 3D genome folding [206–208].

In 2015, Ernst and Kellis developed ChromImpute [67], an ML
approach based on regression trees to make large-scale prediction
of epigenomic marks (such as DNA methylation and histone
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marks) and chromatin states (such as DNA accessibility). The
authors demonstrated the performance of their inference method
on a large compendium of publicly available epigenomic maps,
achieving strong agreement between experimentally observed
and computationally imputed signals. In 2016, Zhang and co-
workers developed IDEAS [85], an integrative epigenome annota-
tion system based on quantitative Hidden Markov Models (HMMs)
for the characterization of epigenetic dynamics and the detection
of regulatory regions. The proposed method is able to handle mul-
tiple genomes and to compare inferred epigenomic events at base
resolution across different cell types, to identify recurrent as well
as cell specific patterns. Wang et al. [209] developed a stacked
denoising autoencoder architecture, named DeepMethyl, that uses
both DNA sequence features and 3D genome structure to predict
DNA methylation status of CpG sites. Recently, Kelley and
co-workers proposed Basenji [105], a CNN approach to predict
cell-type-specific epigenetic and transcriptional profiles using only
DNA sequence as input.

Epigenomics data are often affected by noise and biases (see
Section 4.2), and ML and DL methods have been widely used in
recent years for data quality enhancement. In 2017, Koh et al.
[210] used a CNN to denoise and improve data quality of histone
ChIP-seq (chromatin immune-precipitation sequencing) data. In
2019, Hiranuma et al. proposed AIControl [211], a regression algo-
rithm for genome-wide detection of binding-enriched regions,
which integrates many publicly available control datasets to
improve background subtraction and signal discrimination. The
advantage of data integration exploited by AIControl is the ability
to subtract different kind of biases affecting ChIP-seq data, thus
providing an effective method to remove background signals from
experiments lacking control samples. Most recently, Lal et al. intro-
duced AtacWorks [212], a DL-based toolkit, which trains a residual
NN model consisting of multiple stacked residual blocks, to
denoise low-coverage or low-quality single-cell sequencing data
obtained by ATAC-seq (Assay for Transposase-Accessible Chromatin
using Sequencing), a high-throughput technique that captures
genome-wide open chromatin sites as a proxy for active regulatory
regions.

Several ML approaches have been applied to modelling chro-
matin structure from experimental data obtained by chromosome
conformation capture (3C) and its derived technologies (such as
4C, 5C and Hi-C) [213,214]. In 2012, Ernst and Kellis presented
ChromHMM [215], an automated method based on a multivariate
HMM for the inference of chromatin states starting from sets of
aligned reads for each chromatin modification mark under investi-
gation. In 2014, Gusmao et al. [84] proposed an HMM for the detec-
tion of transcription factor binding sites and open chromatin
regions integrating structural information such as DNase I hyper-
sensitivity and histone modifications. Chrom3D [216] and Chrom-
Struct [217,218] use Monte Carlo optimization with loss-score
function minimization for the estimation of the chromatin struc-
ture starting for Hi-C data. Many of the computational frameworks
for the 3D-modelling of chromatin also provide visualization tools
[219], in order to allow chromatin structural patterns to be visually
interpreted and relationships between chromatin states, genomic
positions and pathological modifications to be more easily under-
stood. In 2020, Fudenberg et al. developed Akita [220], a CNN that
predicts local 3D genome structures in terms of locus-specific con-
tact frequencies. The Akita algorithm, which was trained on a col-
lection of high-resolution Hi-C maps, takes a genomic region of one
million base pairs as input and predicts contact frequencies
between any pair of 2,048 bp long windows of DNA sequence
within this region. In the same year, Schwessinger et al. developed
DeepC [221], a DNN that leverages transfer learning approach and
tissue-specific Hi-C data, to train models that predict genome fold-
ing in megabase-sized DNA windows. These trained models are
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then exploited to predict both chromatin domain boundaries at
high-resolution and sequence determinants of genome folding,
which allows DeepC to also predict the impact of genetic variants
of different size (e.g., from large structural variations to SNPs) on
3D-structure.
Ginni Rometty – CEO of IBM Some people call this artificial
intelligence, but the reality is this technology will enhance us.
So instead of artificial intelligence, I think we’ll augment our
intelligence.
3.3. Transcriptomics

The transcriptome is the complete set of transcribed genes pre-
sent within a cell at a given point of time. The first use and defini-
tion of the word ‘‘transcriptome” date back to 1997 in a work by
Velculescu et al. [222], where the authors analysed and character-
ized the genes expressed in yeast, the only eukaryote for which the
entire genome sequence was available at the time [34]. Transcripts
were quantified using one of the earliest sequencing-based tran-
scriptomic methods to be developed, namely the serial analysis
of gene expression (SAGE) [223]. Velculescu et al. [222] define
the transcriptome as ‘‘the identity of each expressed gene and its
level of expression for a defined population of cells”. The term
came later to be used in a broader meaning, and can now be
applied to a defined population of cells, a tissue, an organ or an
entire organism. It encompasses the whole transcript content,
comprising both protein- and non-protein-coding transcribed
genes, from the most commonly known infrastructural RNAs
(transfer and ribosomal RNAs) and messenger RNAs (involved in
protein translation) to the most recently identified small and long
non-coding RNAs (defined by a heuristic length cut off of 200 bases
[224]), circular RNAs [225], Piwi-interacting RNAs [226], and many
other novel non-coding RNA (ncRNA) types. In fact, consortia-
based projects for the systematic annotation and characterization
of functional elements, such as the ENCyclopedia Of DNA Elements
- ENCODE (www.encodeproject.org) [227,228], detected an unex-
pected pervasive transcription across genomes, with about 80% of
mammalian genomic DNA being actively transcribed, the vast
majority of this classified as ncRNA. Compared to the genome,
the transcriptome is intrinsically variable and dynamic, making
its definition and analysis considerably more complicated.

Transcriptomics is the study of the transcriptome in given phys-
iological or pathological conditions of interest, aimed at capturing
the dynamic link between the genome of an organism and its phe-
notypical characteristics. Ideally, it tries to identify all RNA types
and sequences present in a given cell at a given time; to determine
the transcriptional structure of genes in terms of start sites, 5’ and
3’ ends, exons, introns and splicing patterns; to detect gene expres-
sion levels and unravel possible regulation mechanisms at the
whole-genome scale using high-throughput techniques. Instead
of focusing on the function of individual genes or transcripts, tran-
scriptomics has the ambition to characterize the whole transcrip-
tome and its changes across a variety of cells, developmental
stages, in different biological and environmental conditions. Since
the late 1990s, transcriptomics research has been repeatedly
revolutionized by the new technological innovations in the field,
re-specifying at each step what was possible to investigate. The
development of microarrays [229,230] and, later, NGS technologies
[231,232] have been two key moments in this process. Microarrays
allow quantification of a set of already known and preselected RNA
sequences since their output signals rely on hybridization of the
target molecules with ad hoc designed probes being anchored on
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the array. NGS technologies applied to RNA sequencing
(RNA-seq) [233,234] are able to capture transcribed molecules
independent of prior knowledge since they reconstruct the
sequence of assayed RNA molecules as part of the detection step
(such in the sequencing-by-synthesis approach, where the target
sequence is revealed by synthesis of the complementary strand
accompanied by a detection system of the nucleotides inserted
during synthesis). As a result of increased throughput, higher accu-
racy, and lower cost of these specialized NGS technologies, the last
two decades have witnessed an exponential growth in transcrip-
tomics studies, which have provided valuable resources for exten-
sive investigations of transcriptional and post-transcriptional
regulation [235].

3.3.1. Protein-coding and non protein-coding transcript classification
One core goal of functional genomics is the classification of

transcriptome elements, such as the annotation of transcripts as
mRNAs (i.e., protein-coding) or ncRNAs, or the prediction of coding
potential for each of the multiple transcript products (i.e., iso-
forms) originating from the same gene locus due to alternative-
splicing (AS) events. Many in silico (bioinformatics) methods have
attempted to solve this task, but it can be surprisingly difficult in
practice. In fact, the proposed solutions often results in manually
curated and time-consuming workflows with a number of limita-
tions. The ENCODE and GENCODE projects [227,228,236] played
a crucial role in this context. In the vast majority of cases, the char-
acterization of novel transcripts is based on the comparison with
current sets of genome annotations available from public data-
bases, such as transcript and protein sequences collected from dif-
ferent organisms, known protein domains and structures,
integrated with multi-omics experimental data. The more the sup-
porting evidences, the higher the confidence to call the transcript
under investigation as being or being not protein-coding [237–
239].

Classification of transcript type provides one application where
AI can be crucial. Indeed, this is a typical ML task for which several
methods and tools, based on both supervised and unsupervised
learning, have been made available. For example, SVM methods
were successfully applied to assign coding potential to transcripts
according to selected sequences and structure features. In particu-
lar, diverse classification algorithms variably integrated relevant
characteristics such as: the length of an open reading frame
(ORF), which is the specific mRNA sub-sequence dictating the ser-
ies of amino acids to produce a protein; the corresponding amino
acid composition; the predicted protein secondary structure; the
predicted proportion of protein residues exposed to the solvent;
the existence of corresponding homologous in other organisms;
and the synonymous versus non-synonymous substitution rates
[240–243].

Furthermore, classifiers based on ML algorithms were also pro-
posed to distinguish long ncRNAs (lncRNAs) from protein-coding
transcripts. For example, Pian et al. [244] used an RF method with
some new specific features. Since protein-coding transcripts seem
to have longer ORFs compared to lncRNAs, the authors selected the
following two specific features for better discrimination: [i.] the
longer ORF length (MaxORF) obtained in the three possible lecture
schemes (i.e., starting in silico translation of each triplet of nucleo-
tides into the corresponding amino acid at position 1, 2 or 3 of the
given transcript); and [ii.] the normalized MaxORF value, obtained
by taking into account the total length of the transcript. Similarly,
other algorithms that extract a selection of features from
sequences and feed it into traditional ML algorithms to assess cod-
ing potential have been developed and are available [245,246].

Even though the integration of additional information not
intrinsically derived from transcript sequences may improve the
transcript classification, it can also introduce dependence on reli-
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able annotation and be limited by current scientific knowledge,
which is biased towards mainstream topics or species (e.g., less
available for lncRNAs compared to mRNAs, or for non-model com-
pared to model organisms). Furthermore, manual feature selection
made as in traditional ML can introduce biases in the classification,
because they are designed and picked by hand. Conversely, DL
methods using neural networks can de novo discover complex
and hidden biological rules in transcript raw data, thus becoming
a more powerful tool to investigate the transcriptomes of the myr-
iad of species made available by current high-throughput sequenc-
ing technologies [247–250].

3.3.2. Gene-expression data analysis
Gene expression is the dynamic process that converts the infor-

mation encoded within the genome into final functional gene
products, giving rise to a range of proteins or ncRNAs. Identifying
the molecular mechanisms that control differential gene expres-
sion is a major goal of both basic and applied biological research.
Gene-expression data frommicroarrays or RNA-seq platforms have
been widely used to distinguish tissues, biological vs. physiological
conditions, disease phenotypes, and identify valuable disease
biomarkers. A typical problem with high-throughput technologies
is the disproportion of dimensions between samples and variables
in the dataset. In fact, the high-dimensional number of assayed
variables, such as the expression levels of tens of thousands of
genes or transcripts, typically far outnumbers that of available
samples under investigation (e.g., biological replicates, individuals
with a disease). Moreover, these high-dimensional datasets are
often sparse and noisy (see Sections 4.1 and 4.2 for a more detailed
discussion). Practically, the increase in sparsity hampers the collec-
tion of data with statistical power, making it extremely difficult to
gain biological insights from these data using traditional analytical
approaches. This phenomenon is called the ‘‘curse of
dimensionality”.

Specialized ML algorithms can be powerful tools to address
such issues and other serious challenges. Unsupervised learning
approaches such as clustering and PCA have been extensively used
to find inherent patterns within the data without reference to prior
knowledge, for example, to identify gene signatures in gene-
expression profiles that might otherwise be overlooked. Global
gene-expression correlations (or meta-analyses) are even possible,
by comparing numerous genome-wide studies.

Talavera et al. [251] performed a meta-analysis of about 1,500
yeast microarray datasets containing several stress-related experi-
ments. They used an agglomerative clustering algorithm to identify
groups (blocks) of transcripts showing high correlation of RNA
levels across multiple conditions. Subsequent functional enrich-
ment analyses of the obtained transcriptional blocks, performed
using yeast genome annotations of biological processes based on
Gene Ontology subsets (also known as GO slims), showed that
those groups of consistently up- or down-regulated genes were
indeed associated with biological processes linked to responses
to different external stimuli (e.g., oxidative stress, osmotic stress,
DNA damage stimulus, glucose limitation). This strategy highlights
how functional information at the transcript block level, rather
than at the single-gene level, in differential expression analyses
can effectively help to make hypotheses and model molecular bio-
logical mechanisms of the system under investigation.

Microarrays or RNA-seq data can also be used by AI approaches
as training sets to effectively learn how to discriminate distinct
clinical groups and correctly assign patients to them [252]. In a
very recent work [253], the authors analysed about 200 soft-
tissue sarcoma samples from The Cancer Genome Atlas project
[178] to gain novel insights into the many subtypes differing in
prognosis and treatment, which unfortunately have considerable
morphological overlap among each other and make differential
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diagnosis really difficult. To this end, the authors applied different
ML algorithms: PCA for dimensionality reduction; a DNN to inves-
tigate the overlap of gene-expression patterns of the soft-tissue
sarcomas with gene-expression patterns of healthy human tissues;
an RF approach to identify novel diagnostic markers. Finally, tumor
subtype-specific prognostic genes were identified and tested as
predictive of the metastasis-free interval using k-NN analysis.

Very interestingly, in the latest phase of the ENCODE project
[254], hierarchical clustering was used to define core gene sets that
correspond to major cell types in 53 primary cells from different
locations in the human body. Clustering of these primary cells
revealed that most cells in the human body share a few broad tran-
scriptional programs, which define five major cell types: epithelial,
endothelial, mesenchymal, neural, and blood cells. Based on gene-
expression profiles, this new set of cell types redefined the basic
histological paradigm by which tissues have been traditionally
classified.

Due to the raise of technologies able to profile molecules within
an individual cell, such as scRNA-seq, the task of dimensionality
reduction to allow visualization and analysis of high-dimensional
datasets has becoming increasingly demanding. Consequently,
non-linear methods, such as t-distributed Stochastic Neighbour
Embedding (t-SNE) [255] and Uniform Manifold Approximation
and Projection (UMAP) [256], gained momentum when dealing
with large and heterogeneous samples over conventional linear
methods such as PCA [257].

The scarce amount of RNA material inherent to scRNA-seq
experiments is reflected in the very noisy and incomplete nature
of output data. In particular, one major problem related to
scRNA-seq experiments is the high percentage of zero-valued
observations (a.k.a. dropouts), which stimulated the development
of several ML- and DL-based approaches for data imputation (See
Section 4.1 for a more detailed discussion on data imputation). In
2018, Li et al. proposed ScImpute [258], an iterative LASSO regres-
sion for the imputation of dropout values in scRNA-seq data. Gong
et al. developed DrImpute [259], a clustering-based approach that
uses a consensus strategy to impute missing values for a given tar-
get gene in scRNA-seq data, based on gene expression values of
other cells belonging to the same cluster. Arisdakessian et al.
implemented DeepImpute [260], a DNN architecture embedding
a divide-and-conquer approach to extract relevant patterns useful
for imputation of missing expression values for target genes.
Specifically, given a set of target genes with dropouts in a scRNA-
seq data, DeepImpute builds multiple sub-neural networks, each
aimed at learning the relationship between the input genes (pre-
dictor genes) and a subset of target genes with dropouts (with
zero-values of gene expression to be imputed), thus reducing the
complexity by learning smaller problems. Ghahramani et al.
[136] applied a GAN to integrate and denoise different scRNA-seq
datasets derived from diverse laboratories and experimental proto-
cols, and perform dimensionality reduction. In 2019, Grønbech
et al. used an unsupervised DL approach based on Variational
AEs [133] to estimate gene expression levels directly from raw
scRNA-seq data.

3.3.3. Alternative-splicing code detection
Eukaryotic mRNA AS constitutes an important source of protein

diversity [261]. It has been reported that most (i.e., 95%) of multi-
exon human genes can undergo AS events [262,263]. Aberrant AS
has been shown to be associated with many diseases [264–272].
In addition to providing information on RNA abundance, RNA-seq
data can be used to infer AS patterns and identify differential AS
events linked to different sample conditions, such as treatment
vs. control, disease vs. normal, diverse developmental stages, etc.
The seminal work on developing DL methods to decipher the splic-
ing code was done by Leung and colleagues [271]. The authors
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have predicted splicing patterns from mouse RNA-Seq data by
using a DNN, with millions of variables representing both the
genomic features and the tissue context, which outperformed pre-
vious attempts that were based on shallower architectures.

3.3.4. Alternative polyadenylation event detection
Several tools have been introduced in the literature to predict

polyadenylation sites (PASs) from human genomic sequences.
DNAFSMiner [273] predicts PASs from sequences using k-mer fea-
tures in an SVM model. Dragon PolyA Spotter [274] also predicts
PASs from sequences using both an ANN and an RF. POLYAH
[275] discriminates real PASs from other hexamer signals using a
linear discriminant function. This algorithm focuses only on the
canonical PAS (i.e., the AATAAA sequence motif) in the analysis,
although alternative PASs (variants of the AATAAA sequence) may
influence the site discrimination. Polyadq [276] uses a quadratic
discriminant function to predict real PAS regions. This tool consid-
ers two PAS signals in the analysis.

However, the biology underlying alternative polyadenylation is
more complicated, and the choice for the polyadenylation machin-
ery to recognize a given PAS depends not only on the PAS itself but
also on downstream U/GU-rich elements (AUEs and DAEs). Poly-
asvm [277] predicts polyA sites from sequences using an SVM
model. PolyAR [278] also predicts polyA sites from sequences using
a linear discriminant function. Both of these tools use hand-picked
sequence features. In order to overcome this limit, DL models such
as DeepPolyA [279], DeeReCT-PolyA [280], and Conv-Net [281]
have been recently introduced to predict PASs and recognize rela-
tively dominant gene PASs (i.e., most frequently used PASs in a
given gene). Of note, all of these models use CNNs to extract fea-
tures from input genomic sequences. Although the secondary
structure near a PAS is also crucial for the PAS to be selected for
the polyadenylation process [282–284], none of these tools con-
sider RNA secondary structures in their prediction procedures.
Geoffrey Hinton - Cognitive psychologist and computer sci-
entist I have always been convinced that the only way to
get artificial intelligence to work is to do the computation in
a way similar to the human brain. That is the goal I have been
pursuing. We are making progress, though we still have lots
to learn about how the brain actually works.
3.4. Epitranscriptomics

Among the diverse regulatory mechanisms of molecular biol-
ogy, it has been emerging that all classes of cellular RNA are subject
to co- and post-transcriptional modification. The transcriptome
modification status is dynamic, revealing a novel and finer layer
of complexity in gene expression regulation. Similar to epige-
nomics, this regulatory mechanism seems orchestrated by writer,
reader, and eraser RNA-binding proteins, which can rapidly alter
transcript expression levels upon environmental and developmen-
tal changes. Taken together, the multitude of RNA modifications,
including both non-substitutional chemical modifications and
editing events, constitute the ‘‘epitranscriptome” [285]. Early
reports about RNA modifications deriving from studies on abun-
dant non-coding RNAs such as transfer RNAs and ribosomal RNAs
in prokaryotes and simple eukaryotes date back to decades ago
[286,287]. However, only recently, technical advances and refined
computational approaches have revealed thousands of novel mod-
ification sites within different species of cellular RNA, including
mRNAs and lncRNAs. Currently, over 150 distinct post-
transcriptional modifications are known to occur on diverse RNA
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types [288,289], and the number of discovered epitranscriptomic
marks is ever-growing. Nevertheless, knowledge about the func-
tion and specific location of RNA modifications remains scarce thus
far. Accordingly, epitranscriptomics is the research field devoted to
identifying the full spectra of RNAmodifications and characterizing
them in both protein-coding and non-protein-coding RNA, where
they seem to have roles beyond simply fine-tuning of RNA struc-
ture and function, as numerous studies on various disease syn-
dromes have highlighted.

In 2012, two independent groups [290,291] achieved a
transcriptome-wide mapping of a specific type of modification
(i.e., methylation on the sixth position of the purine ring in RNA
adenine, or m6A). These results demonstrated the feasibility of
identifying RNA modifications across the entire transcriptome
and established the field of epitranscriptomics [292]. Availability
of large collections of experimentally identified m6A modification
sites stimulated the development of many supervised learning
algorithms for the prediction of transcriptome modification sites.
Among others, the top performing was SRAMP [293], a predictor
of m6A modification sites based on multiple RF classifiers. In
2019, Chen et al. [294] developed WHISTLE, an ML approach that
outperformed other algorithms by integrating multiple genomic
features (e.g., gene expression profiles, RNA methylation profiles,
and protein–protein interaction networks) to predict m6A modifi-
cation sites rather than rely only on transcript sequences. The next
year, Dao and co-workers [295] established iRNA-m6A, an
SVM-based classifier for the identification of m6A sites in multiple
tissues of human, mouse and rat. The classifier worked on a set of
optimal features selected from three kinds of sequence encoding
features (i.e., physical–chemical property matrix, mono-
nucleotide binary encoding and nucleotide chemical property)
computed from the input RNA sequences. Most recently, Zhang
et al. introduced DNN-m6A [296], a DNN-based method outper-
forming preexisting methods in the same task (i.e., prediction of
m6A modification sites in RNA sequences of different mammalian
tissues).

As mentioned above, transcripts can either be edited (i.e., with
base replacement), or covalently linked to small molecules. The
former case (i.e., introduction of base changes) can be detected
directly by using RNA-seq techniques due to the mismatches that
will emerge when the sequencing reads are mapped back to the
reference genome. The latter case (i.e., covalent link to small mole-
cules) is more complicated to detect because conventional NGS
approaches would erase information about the chemical modifica-
tion during the sample preparation, specifically during the reverse
transcription step. In this mandatory step of NGS protocols, an
enzyme called reverse transcriptase (RT) converts RNA into com-
plementary DNA (cDNA) by reading the trascript as a template
and inserting base by base the complementary DNA nucleotide in
the growing cDNA strand. Consequently, modifications that do
not affect Watson–Crick base pairing during cDNA synthesis will
be canceled out.

Experimental assays dedicated to the detection of non-
mutational RNA modifications have been developed, such as
immunoprecipitation with ad hoc antibodies. Importantly, these
methods can be applied to a limited number of RNA modifications
since they rely on availability of effective antibodies. Other meth-
ods exploit the natural consequence of a handful of RNA modifica-
tions to induce the RT to arrest during cDNA synthesis, or to make
errors (i.e., incorporate non-complementary nucleotides) into the
nascent cDNA. In both cases, disturbance in the RT processing will
become visible in so-called RT-signatures, that are typical for a
given RNA modification and will become visible by mapping the
set of sequencing reads spanning the modified RNA position under
investigation back to the reference genome. These RT-signatures
include accumulation of sequencing reads with identical ends,
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which match the modified RNA position that caused the RT to stall,
or in variable patterns of mismatches, which arise frommisreading
of the modified RNA residue by the RT. Most recently, Werner and
co-workers [297] used an RF approach to predict RNA modifica-
tions based on RT-signatures. Their results show strong variability
in the success rates depending not only on the type of RNA modi-
fication but also on the specific RT enzyme used in the cDNA syn-
thesis step.

The prediction of transcriptome-wide modification sites from
transcript sequences is a prototypical supervised learning task.
However, for most RNA modifications the number of known posi-
tive cases (i.e., experimentally identified sites of modification on
transcripts) is too scarce for training robust predictive models.
Recently, Salekin and co-workers [298] proposed a GAN-based
approach to overcome this problem by successfully mimicking
the underlying data distribution and achieving RNA modification
site prediction by unsupervised feature learning from input RNA
sequences.
Eliezer Yudkowsky - Computer scientist and writer By far,
the greatest danger of Artificial Intelligence is that people
conclude too early that they understand it.
3.5. Proteomics

The proteome is the whole set of proteins expressed and mod-
ified after expression by a biological system, being this a cell, a tis-
sue, an organ or an organism. It changes from one system to
another (e.g., from cell to cell). It also changes over time in the
same system, reflecting the underlying transcriptome and the
complex regulatory systems that control protein expression levels,
movements within the cell, post-translational modifications, and
participation in metabolic pathways. Proteomics is the discipline
that studies proteomes using large-scale approaches. The term
‘‘proteomics” was first used by Marc Wilkins in 1996 to indicate
the ‘‘PROTein complement of a genOME” [299], though the highly
dynamic nature of proteomes makes proteomics more complex
than genomics [300].

Proteomics uses a variety of techniques to explore the overall
protein content of a system at a given time, as well as analyze pro-
tein function, regulation, post-translational modifications, fluctua-
tions in expression levels, movements and interactions. In
particular, conventional (e.g., chromatography-based techniques,
Western blotting, X-ray crystallography), advanced (e.g., protein
microarrays, gel-based approaches), quantitative (e.g., isotopic
protein labeling), and high throughput (e.g., mass spectrometry-
based approaches) techniques are available to investigate
proteomes [301]. Mass spectrometry (MS) is the leading high-
throughput technique for the study of protein mixtures. It is used
to determine the molecular weight of proteins through the mea-
sure of molecular mass-to-charge ratio (m/z). In MS, molecules
are transformed to gas-phase ions, then a mass analyser is used
to separate ions in electric or magnetic fields by their m/z values,
and finally the amount of each ion species is measured [302]. In
tandemMS (MS/MS) [303] two or more mass analysers are coupled
together to increase the ability of identifying and separating dis-
tinct ions with similar molecular weights. Depending on the mole-
cule at hand, different approaches to ion separation are adopted:
liquid chromatography followed by mass spectrometry (LC-MS)
and tandem LC-MS (LC-MS/MS) are analytical chemistry tech-
niques in which LC is used to separate mixtures with multiple
molecular species, and MS or tandem MS is used to detect individ-
ual ion species [304]. Both matrix-assisted laser desorption
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ionization-time of flight mass spectrometer (MALDI-TOF) [305]
and tandem MALDI-TOF (MALDI-TOF/TOF) [306] couple a ionisa-
tion technique (MALDI), that creates ions from large molecules
with minimal fragmentation, to a mass spectrometer (TOF), which
measures the time ions take to reach the detector when acceler-
ated through the same potential of an electric field.

Proteomics encompasses several levels of investigation, such as:
protein primary structure (e.g., detection of homology and protein
families, motif recognition, multiple sequence alignment, sequence
classification); secondary structure (SS) (e.g., identification of local
sub-structures); 3D structure (e.g., folding prediction, structure
comparison, domain classification, identification of 3D patterns,
analysis of chemical and topological features); protein function
and functional interactors (e.g., function classification, prediction
of active sites and critical residues, prediction of binding sites, anal-
ysis of substrates and modulators, analysis of structure–function
relationships, drug design). In particular, study of the SS of proteins
usually refers to Q3 or Q8 accuracy, respectively defined as the per-
cent of residues for which 3 general states (helix, strand, and coil) or
a finer dictionary of 8 such states [307] are well predicted.

In 2003, Kim and Park proposed the SVMpsi method [55], based
on SVMs, to maximize the Q3 measure. In 2005, Garrow et al. intro-
duced TMB-Hunt [72], a program that uses a k-NN algorithm for
classifying protein sequences as trans-membrane beta-barrel
(TMB) or non-TMB. DL-based methods for the study of SS are more
recent, such as DeepCNF [103], which used CNNs to detect complex
relationship between sequence and structure of proteins and
SSREDNs [108], based on a Deep Recurrent Encoder-Decoder Net-
works architecture to capture complex nonlinear relationship
between protein features and SS and also interactions among con-
tinuous residues. In the same years, Sønderby and Winther [113]
implemented an LSTM, and Fang and co-workers [308] a Deep
Inception-Inside-Inception Neural Network for the SS prediction
starting from amino-acid sequences. ML methods have been also
used for overall tertiary structure [58,309], torsion angles
[57,310,311] and loop prediction [312,313]. Notably, in the 2018
edition of the Critical Assessment of Protein Structure Prediction
(CASP), a NN-based software developed by the AI research team
at Google DeepMind, named AlphaFold, outperformed all other
participating methods in accurately predicting both overall folding
and distance between pairs of residues [314]. In the 2020 edition, a
new version of the AlphaFold method was presented, which used a
completely different model [315], and provided unprecedented
results that have resonated throughout the whole community of
life science researchers. In particular, the latest AlphaFold architec-
ture includes a new self-supervised learning module (the Evo-
former module) based on two transformers (a two tower
architecture) for the embedding of the following two pieces of core
information that the system tries to collect from public databases,
starting from a given input amino acid sequence: 1. a Multiple
Sequence Alignment (MSA) and 2. a list of potentially similar
structures (or templates). In the Evoformer module, the two
tranformer-based representations of sequence and structure infor-
mation communicate with each-other throughout the neural net-
work for many learning cycles (48 cycles) until they reach solid
representations that will be passed on to the last module (the
Structure module). Finally, the NN of the Structure module outputs
the predicted protein structure by mapping the abstract represen-
tations received from the Evoformer module to actual 3D atom
coordinates (see Supplementary material in [315] for more
details). Of note, the AlphaFold source code has been made freely
available to the scientific community right after publication, and
its outstanding ability to predict protein structures has been
already leveraged to create a free database of structures that covers
all 20,000 human proteins plus the full proteomes of several other
biologically significant organisms (https://alphafold.ebi.ac.uk/).
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Protein function prediction basically consists in the classifica-
tion of protein functions associated with various structural charac-
teristics. Experimental function annotations is expensive and time-
consuming, and information concerning domains, motifs, families,
interactions and linkages is large and complex. For these reasons, it
is impossible to analyse this information without computational
approaches. In 2017, Liu proposed an efficient RNN approach
[109] for the classification of protein functions directly from the
primary sequences. DeepFunc [96] and DeepPred [316] are two
recent DL approaches for the prediction of protein function. Their
promising results demonstrate that DL have significant potential
in protein function prediction because of the complexity of the task
and the size and variety of the datasets [317,318].

Protein physical interactions, including protein–protein interac-
tions, protein-drug interactions, and binding of proteins to DNA or
RNA, are core determinants of cell function, and, effective tools for
their systematic investigation would be desirable to gain a solid
understanding of cell biology and disease mechanisms. Despite
technological advances, experimental investigation of protein–pro-
tein interactions is still expensive, laborious, and limited in scale,
thus precluding unbiased and systematic efforts. In the last years,
accumulating wealth of sequence and structure data has promoted
the use of computational approaches to address large-scale inves-
tigation of protein–protein interactions.Back in 2004, Dohkan et al.
[119] proposed an SVM approach to predict protein–protein
interactions based on several protein features, such as annotated
functional domains. In 2016, An et al. [319] proposed RVM-BiGP,
an ML method for predicting protein–protein interactions from
protein sequence, based on RVM classifier combined with
Bi-gram probabilities, for protein sequence feature representation,
and PCA, for dimensionality reduction. In 2018, Huang et al.[320]
proposed a DL method based on a NN and an autoencoder-like
architecture to complete sparse and disconnected protein–protein
interaction networks via prediction of missing interactions.

Among protein-DNA interactions, transcription factors that
bind to regulatory regions in DNA play a central role in regulating
various cellular processes by setting cell specific transcriptional
programs, and modulating gene expression in response to internal
and external stimuli. In 2017, Qin et al. developed TFImpute [321],
a DNN that can predict cell-specific binding patterns by learning
from experimental data concerning different transcription factors
and cell lines. In 2018, Shen et al. proposed KEGRU [110], a DL
model to predict TF binding sites based on a Bidirectional Gated
Recurrent Unit network combined with k-mer embedding of DNA
sequences.

Recently, Rives et al. [322] trained a transformer on 86 billion
amino acids across 250 million protein sequences. This unsuper-
vised pre-trained model provides a multiscale representation of
protein structures, containing information on secondary and ter-
tiary chains organization, homology, contacts, and mutational
effects. The learned representations could also be used for promis-
ing application such as generating new sequences and designing
functional proteins.
Elon Musk - Co-founder of OpenAI AI doesn’t have to be
evil to destroy humanity. If AI has a goal and humanity just
happens in the way, it will destroy humanity as a matter of
course without even thinking about it, no hard feelings.
3.6. Metabolomics

Metabolomics is a discipline aimed at studying the comprehen-
sive profile of metabolites in a cell, a tissue or a whole organism.

https://alphafold.ebi.ac.uk/
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Metabolites are small molecules that are transformed during meta-
bolic processes, and the whole set produced by a specific cell (the
metabolome) provides a functional readout of the cellular biochem-
ical activity [323]. This new discipline emerged at the beginning of
this century and rapidly grew thanks to the improvements in
instrument technology. Metabolomics studies can be focused on
a specific set of metabolites and the particular pathways they take
part in (referred to as targetedmetabolomics), or be aimed at global
metabolite profiling [324] (referred to as untargeted or shotgun or
discovery metabolomics). Targeted metabolomics experiments
can be performed using mass spectrometry (MS) and nuclear mag-
netic resonance (NMR), whereas LC-MS is the technique of choice
for untargeted metabolomics [323]. In metabolomics, ML and DL
techniques have mainly been applied to data pre-processing (such
as peak identification and peak integration), and compound identi-
fication and quantification [325]. In 2008, Yuan and co-workers
used an LDA for the exploration of metabolomics data [87]. In
the same year, Cavill et al. implemented a genetic algorithm
[326] to analyse NMR spectra of rats’ urine to classify liver and
kidney toxicity. In 2012, Hao et al. proposed BATMAN [327], a
Bayesian automated metabolite analyser for NMR spectra. The
process of manual peak fitting, alignment and binning can be
time-consuming and can introduce artefacts or errors, so the adop-
tion of ML in this field is preferable to classical approaches. BAYE-
SIL [328] is a fully-automatic and publicly-accessible system to
automate compound identification and quantification from NMR
spectra of complex mixtures, including biological samples. In par-
ticular, the algorithm is a spectral deconvolution system that views
spectral matching as a Monte Carlo inference problem within a
probabilistic graphical model, which rapidly approximates the
input NMR spectrum with the most probable metabolic profile.
After several spectral processing steps, BAYESIL couples the given
spectrum against a reference compound library containing the sig-
natures of more than 60 metabolites. The deconvolution process is
able to capture both the identity and quantity of metabolites pre-
sent in a complex mixture under examination, such as a person’s
biofluid (specifically, serum or cerebrospinal fluid). Alakwaa and
co-workers [329] applied feed-forward networks, a DL framework,
to predict estrogen receptor status from breast cancer metabolo-
mics data. The authors benchmarked their DL approach against
six other ML-based methods, all of which were trained on a cohort
of 271 breast cancer tissues (i.e., 204 estrogen receptor positive
and 67 estrogen receptor negative) assayed by gas chromatogra-
phy followed by time-of-flight mass spectrometry, and found that
the DL approach is a better classifier for the given task. The biolog-
ical interpretation of the DL hidden layers revealed significant
pathways, such as central carbon metabolism in breast cancer
and glutathione metabolism, and allowed the biosynthetic
enzymes involved in the metabolomics pathways to be mapped.
Hector Klie - CEO of DeepCast.ai and Professor of Computa-
tional and Applied Mathematics at Rice University Ulti-
mately, the physics we know needs to rely on data to
unmask the physics that we do not yet know.
3.7. Modelling the system: Functional genomics, AI and Systems
Biology

Two main approaches to leverage experimental results and
enrich our understanding of biological processes are currently
adopted: data-driven and model-based. Nowadays, the data-
driven approach is mainly used in the domain of DL, which relies
on black-box systems for automated decision making. Typically,
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ML and DL models map the features of a system into a class or a
score without exposing the guiding reasons or explaining the
structure and the dynamics of the underlying system. This is one
of the key hurdles against an extensive use of AI for understanding
biology. Indeed, for example, in clinical decisions people tend to
pose little trust in results whose predictive mechanism is not
known. The general aspects regarding this lack of interpretability
and explainability are briefly treated in Section 5.

The model-based approach, conversely, is the traditional
domain of systems biology, whose aim is to decipher the complex-
ity of biological systems and understand their structure, compo-
nents, relationships and dynamics based on biological, genetic, or
chemical perturbation and monitoring of the effects on the system
[330]. In this framework, to understand the system structure and
operation mode, system components and their properties must
be identified, and attempts must be made to infer how these inter-
act and evolve dynamically to generate observable biological
behavior [331]. In particular, dynamics is typically modelled by a
set of ordinary differential equations that describe how chemical
and molecular species in the system evolve over time. It is impor-
tant to point out that the actual predictive value of the results
strongly depends on accurate and effective estimation of model
parameters, and the differential models depend on many unknown
parameters (e.g., rate constants and initial concentrations), which
are classically inferred from relatively few experimental measure-
ments. For this limitation, it has been possible to successfully
model only some relatively simple biological systems (e.g.,
lactose- and galactose-utilization systems in bacteria, such as
Escherichia coli [332] and Streptococcus [333]), whilst modelling
more complex systems still remains prohibitive.

Given the increasing success of AI techniques for large-scale
biological data generation and analysis, experimental design and
model validation, researchers are inquiring how data-driven
approaches can be integrated into model-based strategies to solve
the problem of parameter estimation and hidden dynamics infer-
ence, to help elucidate biological system structure, mechanisms,
and dynamics. This possibility has been discussed during the
meeting reported by Wang et al. [334], where convergence of
data-driven and theoretical approaches was considered to be an
important step to complete the cycle data-model-data, which is
typical of experimental sciences like physics and biology. A
promising approach to foster this convergence is to use existing
theoretical models to constrain the AI results. Nowadays, availabil-
ity of high-throughput data, and tools to handle it, permit efficient
model validation and/or refinement. Along this line, some recent
solutions proposed in the literature deserve attention, as they let
model-based and data-driven approaches effectively converge
towards a deep understanding of biological processes. Costello
and Garcia Martin [335] predict the dynamics of the limonene
and isopentenol pathway by solving a problem of system identifi-
cation where the most appropriate model is selected by an ML
strategy trained by time-series proteomics data. Yazdani et al.
[336] leverage the principle of physics-informed neural networks
[337], which further deviates from being purely data driven, in that
a mathematical model (with parameters to be identified) is used as
a strong constraint in training the network. On this basis, the
authors developed a systems-biology-informed DL method capable
of estimating model parameters as well as inferring hidden system
dynamics. This approach was successfully tested on yeast glycoly-
sis, cell apoptosis and ultradian endocrine models. Fortelny and
Bock[338] also use knowledge from systems biology to constrain
their results, thus following the same principle of physics-
informed neural networks. The authors map a biological network
into a neural network where each node represents a molecule
and each edge represents an interaction, whose existence and
strength, when known, are derived from a mechanistic model.
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New interactions can then be discovered from experimental evi-
dence and used to refine the structure of the network. The review
paper by Muzio et al. [339] explains the structure of graph convo-
lutional networks and graph neural networks, and lists a series of
applications where these networks are successfully used to analyze
biological networks, including protein function prediction, pro-
tein–protein interactions and in silico drug discovery and develop-
ment. Other review papers, e.g. by Eraslan et al. [15], Zampieri et al.
[10], Antonakoudis et al. [340] and Gilpin et al. [341], raise the
issue of the competitive vs. collaborative nature of data-driven
and model-based approaches, stressing the importance of using
appropriately constrained mathematical models to help AI tools
produce new knowledge of biological mechanisms.
Klaus Schwab - Founder and CEO of the World Economic For-
um We must address, individually and collectively, moral
and ethical issues raised by cutting-edge research in artificial
intelligence and biotechnology, which will enable significant
life extension, designer babies, and memory extraction.
4. Data management issues for AI applications in functional
genomics

Most ML or DL algorithms take their input in the form of a
matrix, where to each column corresponds a sample and to each
row a variable (i.e., feature) describing the samples. The nature
of these matrices depends on both the context and the specific
application. In functional genomics, and in bioinformatics in
general, such a representation is advantageous since most data
naturally come in this form. For example, RNA-seq data are usually
arranged as matrices containing the quantification of gene or tran-
script abundance (rows) across a set of samples representing dif-
ferent conditions (columns). As a consequence of this mutual
suitability of matrices for ML and bioinformatics, programming
languages such as R and python, which use data matrices (data
frames) as core data structure, have become popular tools.

In many real bioinformatics applications, however, data matri-
ces may be incomplete and/or contain errors. Different protocols,
experimental conditions and machineries may cause biases and
artefacts. Moreover, some data point may be missing for some of
the samples. Yet, the need of implementing a holistic approach
to the understanding of every genomic element function requires
considering data of different nature. In this scenario, data imputa-
tion, denoising and integration should be part of the design of ML
and AI for functional genomics.
Vivienne Ming - Theoretical neuroscientist AI might be a
powerful technology, but things won’t get better simply by
adding AI.
4.1. Data imputation

As mentioned above, it is not uncommon to experience the nui-
sance of dealing with incomplete data. The reasons of these miss-
ing values are multifold, including: unavailability, measurement
failures, and integration of databases with different schemas.
According to the probability of data to be missing, Little and Rubin
[342] have defined three classes: missing completely at random
(MCAR), missing at random (MAR), and not missing at random
(NMAR). The first class, MCAR, describes the case in which all the
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measures have the same probability to be missed. This is likely,
for example, in microarray data where reading failures can happen
everywhere. If the probability of missing data is evenly distributed
only within a group, then the data are MAR. The last class covers
the cases in which neither MCAR nor MAR apply.

In any case, before feeding ML or AI algorithms, the question
about which strategy is more suitable for dealing with missing data
needs to be answered. As explained by Cismondi et al. [343], there
are two main alternatives: 1) remove either variables or samples
with missing values, 2) impute missing data. The first is widely dis-
couraged since it begets biases [344]. The second approach, i.e.,
data imputation, consists in filling the gaps of the data matrix by
forecasting the most appropriate value for each missing measure-
ment. Several strategies have been proposed in over thirty years of
research on this topic, as witnessed by the wide literature
[345,346].

A common factor of most proposed approaches is that the con-
cept of ‘‘appropriate value” coincides with accurately approximate
the missing value. This concept has experimentally been chal-
lenged by Desouto et al. [347], who show that clustering and clas-
sification tasks do not benefit from complex imputation strategies.
Conversely, simple methods, such as replacing missing values with
average values, perform similarly well. The authors move the
attention to the ability of imputation methods to preserve signifi-
cance. This point of view implies that data imputation cannot be
used as a black-box, but the method should be chosen in accor-
dance with the specific task. In his seminal book [348], Stef Van
Buuren provides an overview of imputation techniques by subdi-
viding them in three classes: statistical imputation, that leverages
on univariate (e.g., the mean) or multivariate (e.g., the k-NN
[349]) statistics; multiple imputation, that creates n > 1 complete
datasets and then merges them by minimizing a given objective
function; model based imputation, that utilizes ML approaches
(e.g., clustering [350]). Due to their simplicity and broad applicabil-
ity, methods of the first class are more common. However, in the
absence of guidelines, the data analysts must rely only on their
experience to choose the more appropriate imputation technique.
To address this issue, in [351], the authors provide a broad exper-
imentation of 6 univariate and multivariate statistical methods
applied to different types of missing data (i.e., MAR, NMAR, MCAR).
Their experiments revealed that, in general, multivariate methods
are more accurate in predicting missing values.

A linked problem to the above is that of missing columns in
multi-omics data integration. Here, we deal with multiple data
tables, each describing a disjoint set of features of the same cohort
of samples. To integrate this data, some algorithms, such as the
similarity network fusion [352], require an exact correspondence
between cohorts of samples. Consequently, the presence of just
one missing column in the table is enough to compromise applica-
bility of the method. Imputing an entire column is much more
challenging than imputing spotted values, and statistical methods
might not be adequate to the task. To face this problem, some spe-
cialized methods have been proposed. Voillet et al. [353] propose
an approach where multiple imputation is mixed with PCA. In
short, they generate a set of plausible imputations by ‘‘borrowing”
missing columns from other samples, then they perform separate
PCA analysis and choose the option that best fits the consensus
PCA. Other alternatives are mainly based on PCA [354,355].
Garry Kasparov - Chess Grand-master Deep Blue was intel-
ligent the way your programmable alarm clock is intelligent.
Not that losing to a 10 million alarm clock made me feel any
better.
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4.2. Data denoising

Omics data often consist of quantification of the abundance of
certain features in a cell or in a bulk of cells. Abundance values
are subject to several sources of bias, including both biological
variability and technical artefacts. Moreover, measured features
typically far outnumber available samples. In some cases, technol-
ogy advances and availability of technical replicates can help to
estimate and correct measurement errors, but cannot help against
biological variability [356], which has generally a larger impact
[357].

As the old adage in computer science ‘‘garbage in, garbage out”
reminds, clean data is an essential prerequisite for ML and AI pro-
grams in general, which rely on this data to learn. Data denoising is
the task of both correcting artefacts (i.e., data normalization) and
removing incorrect or irrelevant measures (i.e., feature selection).

There are two classic approaches to denoising [358], differing in
the use or lack of a model (which is often empirical). An example of
the first class is the normalization of RNA-seq data [359], where
the expression profile modelled as a negative binomial distribu-
tion. As for the second class, most denoising methods not using a
model are based on setting thresholds [360]. Rather than apply
value correction, these latter methods filter out weak signals and
not significant features. Both approaches have their pros and cons.
Model-based denoising can correct artefacts, therefore allowing
heterogeneous datasets to be merged. This happens, for example,
when normalizing gene expression data obtained by microarray
technology [361]. The problem in this case is that both applicabil-
ity and effectiveness of the method depend on the degree of adher-
ence of the model to the given data set. Model-free approaches, on
the other hand, are always applicable. However, thresholds are
scale-dependent and an inadequate choice can cause the removal
of relevant features which accidentally fails to meet the cut-off
value. Multi-scale filters, such as that proposed by Nounou et al.
[362], can mitigate this problem.

A recent approach to data denoising uses DL. The idea, exposed
by Eraslan et al. [15], is to embed the computation of features into
the ML model. Denoising autoencoders [363] (and in particular
those based on deep networks [364]) are one of the most common
solutions along this line. Briefly, these networks differ from the
standard autoencoders in that they are trained to reconstruct the
input from a corrupted version of it. Autoencoders (either standard
or denoising) have the additional advantage of being modular,
which allows them to be combined with other techniques. For
example, denoising autoencoders can be stacked to build more
complex networks [29] or combined with a Bayesian model to
denoise single-cell sequencing data [365].
Gray Scott - Futurist and philosopher The real question is,
when will we draft an artificial intelligence bill of rights? What
will that consist of? And who will get to decide that?
4.3. Data integration

Using a metaphor, we could think of the different lines of omics
data within a cell (genomics, proteomics, transcriptomics, etc.) as
elements in a symphony orchestra, where the displayed cell phe-
notype is the result of the synchronous playing of all of the ele-
ments. Listening to a single element (i.e., analysing a single
omics data track) can provide an idea of the melody, but most
nuances would be missed. The rationale behind data integration
in functional genomics is that only the comprehensive analysis of
all omics events and their interactions can provide a complete view
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of the cell state. A well-known example supporting this view is
provided by the relationship between DNA methylation and gene
expression [366,367].

In general, there can be three types of data integration [368]:
horizontal integration, which involves disjoint data sets of the same
omics type; vertical integration, which combines different types of
omics data in the same cohort of samples; and parallel integration,
which mixes the two cases above. The first type of integration is
particularly useful to combine data sets coming from different
sources, with the goal of reducing the disequilibrium between
the number of samples and the number of genomic features. The
second type of approach is mostly used to characterize the features
that induce an observed phenotype. Finally, the third approach is
best suitable in the presence of heterogeneous data.

From a mathematical point of view, the input of integration
algorithms consists of a set of matrices (one for each type of omics
data) where each row corresponds to a gene and columns are the
samples. The goal here is that of producing a new matrix in which
multi-level relationships are highlighted. In [369], the authors pro-
vide a taxonomy of integration algorithms. A major distinctive fea-
ture is whether they return their output in the form of a network or
not. In the first case, the output is a square matrix, which can be
conveniently interpreted as an adjacency matrix where each row/-
column corresponds to a gene and the values represent the
strength of each relationship. The advantage of these algorithms
is that they allow the use of pathways [370] and community detec-
tion algorithms [371] for subsequent analyses. The second
approach returns a matrix whose rows represent the genomic fea-
tures. The advantage of this class of algorithms stands in the pos-
sibility of using differential analysis or clustering for downstream
analyses. On the other hand, these methods can impose restrictions
on either the sample space or the feature space. For example, the
gene-wise weights schema proposed in [372] (where each gene
is assigned a score computed as a linear combination of the corre-
sponding profiles) requires the input matrices to be in the same
feature space (i.e., genes). This constraint can be bypassed in
certain cases by using gene target prediction methods such as
TargetScan [373].

Huang et al. [374] subdivide the integration algorithms accord-
ing to an orthogonal taxon that discriminates based on whether
phenotype labels of samples (e.g., disease or normal) are used or
not. The latter category comprises unsupervised matrix factoriza-
tion methods, such as Bayesian methods and network-based meth-
ods. Unsupervised matrix factorization consists in projecting the
omics spaces into a lower dimensional space [375,376]. These
methods combine data integration and feature selection, and are
particularly useful for clustering applications (see [377] for an
extensive review). Bayesian methods [378,376] leverage on a priori
assumptions on data distribution and on the relationships among
datasets. Thanks to Bayes’ rule, these methods can easily estimate
the posterior probabilities of certain patterns to belong to a specific
phenotype. Supervised methods have the same goals as Bayesian
methods, namely the identification of complex interactions
and/or profiles. However, they make explicit use of labels in the
training set to learn the model. This opens to ML and AI
approaches. For example, in [379] the authors make use of autoen-
coders to integrate three omics data types of liver cancer and learn
patterns leading to different survival profiles. We expect that
supervised integration will experience great advances thanks to
ML and AI [380].
Yann LeCun - Computer scientist Our intelligence is what
makes us human, and AI is an extension of that quality.
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5. Explainability and interpretability of AI in functional
genomics

Israelsen and Ahmed [381] define trust as the psychological pro-
cess in which a subject decides to create a relationship of depen-
dence on a trustee after examining its characteristics. This
definition does not pose any limit on the nature of the trustee,
which can be anything, including software. Besides people’s natu-
ral inclination, trust depends on two fundamental aspects: the rep-
utation of the trustee and the cost derived from its failure.
Bioinformatics applications are often characterized by high failure
costs. For example, genomic research projects leverage on AI for
finding loci of interest for a given genotype. Failure of the AI model
in this case can cause the failure of the entire project. Not surpris-
ingly, the AI community has started to invest substantial effort to
develop techniques to enhance algorithm reliability so as to
improve their reputation and, in turn, trust.

Both interpretability and explainability of AI algorithms go in
the direction of enforcing trust [382]. Although a common formal
definition of these concepts is not established, interpretability con-
cerns how the AI model comes to its conclusions, whereas explain-
ability is focused on why the model arrives to certain conclusions
in a given case.

According to these informal definitions [383], interpretability
has the ultimate goal of verifying that model accuracy derives from
a correct representation of the problem and not from artefacts pre-
sent in the training data. In fact, an AI system may achieve a high
testing accuracy not on the basis of a ‘‘real understanding” but
because it was able to find unknown hidden relationships among
training and testing data. In the absence of such relationships,
however, the accuracy of these classifiers can significantly drop,
thereby making them unsuitable for real bioinformatics tasks
[384].

Explainability is mainly linked to the principle of the right to
explanation, namely, the right of an individual to be explained
the reasons why an algorithm has taken a decision that affects
his/her life. This principle is receiving more and more attention
in many legislations. In the United States, for example, it is already
recognized at least for certain business sectors (in particular
finance) while in the European Union, thanks to the General Data
Protection regulation (GDPR), it has been extended to any field.

Besides granting personal rights, explainability can be useful to
perform ex-post analyses of the strategies used by an AI system to
make certain choices and derive new knowledge from them. A
famous example in this direction was the Go match where AlphaGo
[385] won against a world pluri-champion using a move that had
never been seen before. Ex-post analyses revealed the winning
strategy adopted by the network.

Broadly speaking, explainability and interpretability can be
achieved by exploiting two major strategies [386]: transparency
orpost hocanalysis. The idea of transparency is that the explanation
of the model is the model itself. This is the case of simple classifiers
such as trees, rule-based classifiers and linear classifiers, which can
easily be interpreted directly. In decision trees, the explanation of
the reasons that led to a certain decision can easily be obtained by
inspecting the path from which the decision was originated. The
advantage of models of this class stands in their natural inter-
pretability and explainability. On the other hand, these simple
models are not capable of learning non-linear relationships and,
consequently, they may not be suitable for complex applications.

The vast majority of AI systems are too complex to be directly
understood. In this case they must be treated as black-boxes and
explanation must be derived via post hoc analyses. These can be
performed based on two main strategies: use of model-agnostic
(i.e., methods that leverage only on the input and output) or
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model-dependent methods. The advantage of the former strategy
is that it is always applicable, whereas the latter can take advan-
tage of peculiar characteristics of the AI system of interest. In some
cases, the explanation is achieved by deriving a transparent model
that mimics the original one. For example, in [387] the authors
derived a rule-based classifier from an SVM, while in [388] the
authors made something conceptually similar with a neural net-
work. However, this is not generally possible and explanation is
often provided in the form of lower dimensional visualization of
as a set of examples.
Kathy Baxter - Architect of Ethical AI Practice at Sales-
force Unfortunately, we have biases that live in our data,
and if we don’t acknowledge that and if we don’t take specific
actions to address it then we’re just going to continue to per-
petuate them or even make them worse.
6. Software and data sharing issues

Readers coming from the computer science field are often not
used to sharing software and data. In spite of the fact that commu-
nities like Kaggle (www.kaggle.com) are providing the AI commu-
nity with valuable datasets useful for algorithm design, for many
applications the burden of data collection remains under the
responsibility of developers. AI applications in bioinformatics are
different in this respect, since both algorithm design and produc-
tion of new knowledge can take advantage of the large amount
of publicly available software and data. However, the nature of
both this data and that of AI applications in healthcare (which, in
the end, is one of the main final goals of all the bioinformatics sub-
fields, including functional genomics), raise issues on the pros and
cons of data sharing, as well as on the possible conflicts between
economic and ethical aspects.
Amit Ray - Spiritual master and writer As more and more
artificial intelligence is entering into the world, more and
more emotional intelligence must enter into leadership.
6.1. Data sharing and privacy

Straight from the definition of functional genomics, a new para-
digm of research that steps away from the inspection of a few tar-
get genes and considers the genome as a whole arises. As a direct
consequence, we have now the opportunity of ‘‘recycling” datasets
acquired using omics technologies for new research projects.

Recycling (and sharing) data has both ethical and economic
advantages. From the ethical point of view, the circulation of data
among laboratories reduces the need for animal experimentation
without compromising the battle for health. When experiments
are sources of distress or pain, reuse assumes a particular signifi-
cance. As far as economic advantages are concerned, the cost of
storing, protecting and sharing data is much lower than that of
producing new data, considering high-throughput technologies
cost decrease. It may be claimed that sharing is democratic as well,
because it grants data access to small laboratories whose limited
budget does not allow them to produce their own data. A further
advantage of sharing is that it contributes to the creation of large
data collections, which are required to both train AI algorithms
and increase their accuracy [389].
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In this framework, it is not surprising that stakeholders (start-
ing from funders and publishers) are giving great impulse to data
sharing (see Table 3 for a description of the most common data
repositories for AI applications). The other side of the coin is that
leaks due to malicious or incautious use of genomic data [390]
may have severe privacy implications, and even lead to discrimina-
tion phenomena [391].

To preserve privacy, large collaborative sharing projects have
invested in security by applying sophisticated anonymization algo-
rithms and defining strict data access protocols. Public data are
only available in the form of quantification of genomic features,
while raw reads are restricted to qualified institutions. All these
precautions, however, are not necessarily able to meet patients
security and expectations in terms of privacy [392]. Anonymity,
for example, is challenged by linking strategies [390], which make
re-identification progressively easier with the increase of dataset
dimensionality. As discussed in [393], and experimentally shown
in [394], under certain conditions, re-identification can success-
fully disclose the majority of identities in large datasets. On the
side of user rights, the basic principle of withdrawal, which grants
the right to discontinue the participation into a research study,
with consequent deletion of all personal data (both in raw and
aggregated form), can be denied in large-scale international shar-
ing projects due to the impracticability of keeping track of data.
A thornier problem is the potential privacy violation that can
derive from the advances of AI algorithms. Further progress may
enable AI methods to derive new and more refined genotyping
information, which had not been taken into account at the time
the informed consent was signed [395].

At first sight, it would seem that we are called to decide
whether to sacrifice privacy on the altar of AI driven healthcare
or vice versa. In reality, there is a huge ongoing effort to find solu-
tions that balance both needs [396]. De-identification can be
enforced by selective data suppression. The k-anonymity [397],
for example, is a method to selectively remove or generalize data
until no attribute combination is shared by less than k records. Dif-
ferential privacy [398] introduces controlled noise in the data to
maximize the probability for the output of a given query of a data-
base of n records, to be similar to that of the database with n� 1
records. Due to the mathematical guarantees offered by this
method, specialized AI algorithms have been developed. For exam-
ple, Abadi et al. [399] introduce a framework for DL with differen-
tial privacy. Other privacy preserving solutions include learning
from encrypted data or using generative neural network models
to simulate realistic data [400].
Tristan Harris - Co-founder and CEO of Apture Humane
technology starts with an honest appraisal of human nature.
We need to do the uncomfortable thing of looking more clo-
sely at ourselves.
5 The MIT licence states: ‘‘THE SOFTWARE IS PROVIDED ‘‘AS IS”, WITHOUT
WARRANTY OF ANY KIND”
6.2. Open-source software: Liability and reliability

As for data, sharing software has fostered the development of
functional genomics. Integrated software suites and standardized
file formats have made the creation of analysis pipelines less
stressful, while web applications have granted access to large-
scale experimentation to laboratories with limited computational
resources as well. Indeed, software sharing has also positive eco-
nomic effects.

Nowadays, several researchprojects relyon theabundanceofpub-
licly available tools for large-scale screening, with the aim of narrow-
ing downexpensive and time-consuming in vitro experiments only to
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the most promising genomic features. In these cases, however, the
project success strictly depends on available software reliability.

Most bioinformatics software is released under the GPL (Gen-
eral Public Licence) or the MIT licence, both of which offer the great
opportunity to reuse code, thereby supporting fast development of
new tools. At the same time, both have a disclaimer that heavily
limits warranty and liability5, thus leaving all the responsibility of
software failures to the end user. Although acceptable in general,
this absence of guarantees calls for caution, for example in mission
critical applications where programming protocols such as the defen-
sive programming [407] should be used to enhance software quality.

The above observations raise the natural question about
whether we can trust bioinformatics tools or not. As discussed by
Lawlor and Walsh [408], several critical issues need to be
addressed to improve the reliability of bioinformatics software.
However, a careful choice allows us to give a positive answer to
this question. For example, in [409] the authors make an ex-post
assessment of three common alignment tools (bwa, bowtie and
bowtie2). In the same work, the authors face the problem of the
assessment in the absence of a golden standard providing useful
suggestions for developers.

In general, the bioinformatics community is becoming aware of
the need for reliable tools, as witnessed by both the request of pub-
lishers for accurate tests before publishing software and the num-
ber of proposals of best practices that are being discussed
[410,411]. The adoption of these practices is expected to become
popular in the near future, with a consequent increase of tools reli-
ability. In a recent work, Mahmud and co-workers [32] discuss the
exploitation of a set of open-source DL tools and open access data,
and compare these tools from qualitative, quantitative, and bench-
marking points of view. Table 3 summarizes some useful sources of
general-purpose software, cloud computing services and popular
frameworks to support AI applications; such frameworks are
appreciated also in the bioinformatics community.
Stephen Hawkins - Theoretical physicist and cosmolo-
gist Success in creating AI would be the biggest event in
human history. Unfortunately, it might also be the last,
unless we learn how to avoid the risks.
7. Legal, ethical and economic issues

AI applications in functional genomics, and in healthcare in par-
ticular, are often devoted to identify specific patterns that are sub-
sequently used by decision makers for diagnosis and therapy.
Classifiers, however, are not infallible and can commit two types
of errors: assigning non-member elements to a class (false posi-
tives) or failing to recognize that some elements belong to a class
(false negatives). In case the class is ‘‘diseased”, false positives
may subject people to unnecessary distress, as well as increase
costs, by promoting unnecessary and often expensive screenings
[412]; on the other hand, false negatives would result in delays
before the correct diagnosis is formulated, and have a dramatic
impact in pathologies like cancer, where timing of diagnosis
strongly affects the long term outcome of therapies. Unsurpris-
ingly, misclassification is the major source of economic and legal
issues. Due to the different scenarios caused by the two types of
errors, some authors have proposed a cost-based assessment of
classification performance [413]. However, the application of



Table 3
A list of AI-related useful resources publicly available from the word wide web, including some great lectures and courses as well as popular frameworks, cloud services,
platforms, software libraries and data repositories.

Source Type Source
Availability

Description Hyperlink/Reference

MIT Open
Learning Library

6.036 Introduction to Machine Learning. shorturl.at/aeCDL

MIT Open
Learning Library

6.S191 Introduction to Deep Learning. shorturl.at/sJWY3

UC Berkeley CS182 Designing, Visualizing and Understanding Deep Neural Networks shorturl.at/iCHJ3
Teaching Aid The Royal

Institution
Artificial Intelligence, the History and Future by Chris Bishop. shorturl.at/mvOUZ

MIT Deep
Learning Series

Deep Learning State of the Art 2020 by Lex Fridman shorturl.at/jC246

A.I. Wiki A Beginner’s Guide to Important Topics in AI, Machine Learning, and Deep Learning. shorturl.at/hpuwH
NVIDIA
Developer Blog

Deep Learning in a Nutshell: History and Training. shorturl.at/uDJMT

Udacity AI The school of Artificial Intelligence udacity.com/school-
of-ai

DataCamp ML Machine Learning Courses shorturl.at/isSX0
Online Courses Coursera Artificial Intelligence Certifications shorturl.at/ejzNV

Udemy Artificial Intelligence Courses shorturl.at/vV046
Google
Developers

Machine Learning Crash Course shorturl.at/bkrIV

Google AI Learn with Google AI ai.google/education

Microsoft Azure Cloud computing platform created by Microsoft. azure.microsoft.com
[401]

Cloud Computing
Services

Amazon Web
Service

On-demand cloud computing web services providing a variety of basic abstract technical infrastructure
and distributed computing building blocks and tools.

aws.amazon.com
[402]

Google Cloud
Platform

Cloud computing services running on the same infrastructure used by Google cloud.google.com
[403]

PyTorch open-source machine learning library based on the Torch library pytorch.org [404]
Keras Open-source software library with a Python interface for artificial neural networks. keras.io [405]
Scikit-learn open-source machine learning library for Python, built upon the SciPy library (Scientific Python). scikit-learn.org

Neural Network
Frameworks

Tensor Flow Free and open-source software library for machine learning with a particular focus on training and
inference of deep neural networks.

tensorflow.org
[399,406]

fast.ai open-source deep learning library providing high-level components to quickly and easily provide state-
of-the-art results. Based on Pytorch, provides online courses, documentation and community.

fast.ai

Google Colab Infrastructure optimized for ML/DL model implementation/ running; TensorFlow engine; Jupyter
Notebooks environment; google account requested.

colab.
research.google.com

Tensor Flow
Hub

Repository of hundreds well documented ML models from different domains, available as Jupyter
notebooks, linked to and ready to be ran in Google Colab.

tfhub.dev

Kaggle Repository of community published data and code; Jupyter Notebooks environment. kaggle.com
Repositories Scientific Data

Collection
Multi-Omics Data Sharing: a compendium of multi-omics datasets ready for reuse. shorturl.at/knLRZ

Open AI
Microscope

Collection of visualizations of every significant layer and neuron of eight important and largely used
vision models.

microscope.
openai.com

ImageNet Image database for AI applications. image-net.org
Lucid Collection of infrastructures and tools for research in neural network interpretability. github.com/

tensorflow/lucid
Papers With
Code

A free and open resource of ML papers, including code and evaluation tables, organized by topics. paperswithcode.com
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methods of this type is complicated. In fact, although the cost of
false positives can be reasonably estimated based on screening
costs, quantifying false negatives is definitely more problematic
[414] since it would imply assigning a cost value to human life.

While pursuing error free methods, two strategies can be
adopted to contrast misclassification: 1) adopt guidelines that
involve the re-examination by human experts for the most com-
plex cases; and 2) develop ad hoc AI methods trained to recognize
classification errors. As an example of the latter case, Aboutalib
et al. [415] proposed a deep network designed to reanalyse sam-
ples that were classified as positive with another method. The goal
in this case was that of finding false positives.

Another important issue concerning the use of AI in either func-
tional genomics or precision medicine is that of data fairness.
Newspapers are plenty of stories telling about discriminatory
behaviour of AI systems. This behaviour usually comes from the
fact that algorithms are trained on biased or unbalanced data.
Learning from population biased data, for example, could lead to
5782
identify ancestry-specific variants and biomarkers. If this can be
useful to identify rare variants (see for example [416], where a
population of Sardinian subjects was used to find new loci associ-
ated with the levels of blood lipids and inflammatory markers), it
also involves the potential risk of increasing disparity among
underrepresented and overrepresented populations [417]. In order
to mitigate this risk, local initiatives of large-scale data collection
(see for example the Japanese version of The Cancer Genome Atlas
[418]) should be internationally supported and integrated with
existing data banks.
Alan Kay - Computer scientist Some people worry that arti-
ficial intelligence will make us feel inferior, but then, anybody
in his right mind should have an inferiority complex every
time he looks at a flower.
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8. Conclusion

The outbreak of AI has affected virtually all the fields of
research, especially those dealing with big data, such as functional
genomics. Among the different branches of functional genomics,
next- and third-generation sequencing technologies have pro-
duced a vast amount of data in the last years. Uncovering the rela-
tionships between variants and diseases, epigenetic mutations and
gene expression, binding site positions and regulatory processes
has become more and more attractive, largely because of the
development and availability of AI instruments. In particular, deep
architectures can reach high levels of abstraction and ability to
hierarchically organize large amounts of data of different nature
but highly interconnected, making them more interpretable.

On the cons side, deep AI architectures make us unable to
explain how correct results on critical tasks were eventually
achieved. The relevance of identifying a cancer-related gene
expression profile is undoubted, although obscurity of the underly-
ing feature selection process may undermine the practical value of
the finding. Lack of explainability of some DL paths also makes it
difficult to choose the best architecture to use for a given task,
which is why the sharing and free availability of software,
resources and databases are crucial for the rise of AI applications
in functional genomics.

In view of the crucial applications often addressed by biology
and, in particular, by functional genomics, it would be preferable
to deal with AI tools able to help a mechanistic understanding of
biological processes. In other words, it is important to enable sys-
tems biology to draw advantages from AI results in functional
genomics. This entails the ability to help validating, or even build-
ing, theoretical models aimed at having a predictive value on the
static and/or dynamic behavior of biological systems of various
complexities.

Interpretability, in the sense described above, can surely help AI
to be more easily accepted in practical applications such as medi-
cine. In our opinion, increase in the amount and variety of reliable
massive data, and its integration with theoretical modelling will
contribute to increase the trust of humans in AI-based predictions
and decisions in the future. As far as the future of AI in systems
biology is concerned, two different scenarios have been proposed,
encompassing either competition or collaboration between data-
and model-driven approaches. We believe that collaboration and
integration between the two approaches would be most helpful
to reach an understanding of system relationships and mecha-
nisms. In fact, on the one hand, model-based approaches can pro-
vide knowledge-based constraints; on the other hand, AI results
can help to establish parameters of systems biology models.

One of the most impressive achievements of AI methods in
functional genomics so far is undoubtedly the revolution intro-
duced by the DeepMind AlphaFold method in the field of protein
structure prediction, to the point that this went from being one
of the biggest challenge in biology to be considered as a solved
problem [419]. The ground-breaking success of the AlphaFold soft-
ware largely rely on transformers, which outperform state-of-the-
arts deep architectures in sequence representations and context
interpretation. In fact, their introduction has stimulated many
applications in the field of biology, since unsupervised models
based on the attention mechanism, pretrained on large datasets,
performs effectively in homology detection, residue-residue inter-
action representation, secondary structure prediction and genera-
tive biology [156,157], in addition to protein tertiary structure
predictions [315].

Functional genomics, as well as all the fields of medicine, biol-
ogy and other sciences where both individual and collective
rights are involved, is a complex field of research. Those who
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want to use AI in this field will find that it is difficult to navigate,
not only for the great variety and large amount of available data,
not just to understand what question to ask and which instru-
ment to use, but also because this field is highly sensitive to legal,
ethical and moral aspects. This review is intended to help those
willing to approach the application of AI methods to functional
genomics to identify the multiple facets of the topic and find
some useful tools for orientation. AI opens up many possibilities,
which we must not refuse for fear of not understanding all the
steps. The road that follows the development of AI is just begin-
ning to unfold. It brings many promises and many potential dan-
gers with it. The path is likely to be long and irreversible. It will
change our lives and we need to change our minds as soon as
possible in order to adapt, accept and manage the resulting
changes in the best possible way, to ensure that they bring as
many benefits as possible and as few negative consequences as
possible.
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