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Abstract

In our modern digital era, taking photos with smartphones is now a common habit. However,
these 2D photos show only a part of the whole scene. 3D reconstruction, on the other hand,
provides a comprehensive, multi-faceted view of scenes, enriching experiences from personal
memories to professional fields like urban planning and archaeology. This technique is
fundamental in augmented reality and robotic navigation, where a deep grasp of the world’s
3D structure is essential.

Current advancements, while significant, have yet to realize an “ideal” 3D reconstruction
system. Such a system would consistently capture nearly all visible surfaces, being highly
robust in camera tracking, and deliver intricate reconstructions rapidly. It would seamlessly
scale from small to large environments without losing accuracy and perform optimally
across diverse environmental and lighting conditions.

Beyond classic cameras, LiDAR has gained significant attention over the past decade as
another tool to perceive and reconstruct our surroundings. While cameras provide visually
rich data, their depth perception is often limited (hard to estimate), especially in low-light
conditions. Contrastingly, LiDARs, relying on their emitted light, excel in various lighting
scenarios and larger environments, but their measurements are sparse and lack colors.
Hence, to achieve impressive results, an “ideal” 3D reconstruction pipeline should rely on
both sensors to mitigate their limitations. This research exploits similarities between the
two sensors, underscoring the value of integrating uniformly data from both to achieve a
more comprehensive environmental understanding, ensuring accurate performance without
extensive waiting.

However, integrating camera and LiDAR data presents challenges due to their distinct
data natures, necessitating precise calibration, synchronization, and complex multimodal
processing pipelines. Advances in technology have facilitated similarities between LiDAR
generated images and those from passive sensors, opening avenues for visual place recog-
nition. Our exploration in this domain yielded promising results, particularly highlighting
LiDAR’s consistent performance in diverse lighting.

Our research journey then transitioned to bridging the gap between LiDAR and RGB-D
sensors. By devising a Simultaneous Localization and Mapping (SLAM) pipeline adaptable
to both sensors and rooted in photometric alignment, our findings were comparable with
specialized systems. Delving into Bundle Adjustment, our generalized strategy showcased
remarkable efficiency, especially when merging data from both sensors. Further refinement
incorporated geometric information, balancing robustness with precision and achieving
impressive accuracy across varied environments.

In addition, we introduce a robotics perception dataset from Rome, encompassing RGB,
dense depth, 3D LiDAR point clouds, IMU, and GPS data. Recognizing current dataset
limitations and the proficiency of contemporary SLAM and 3D reconstruction methods,
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our dataset offers a fresh challenge to push algorithm boundaries. We emphasize precise
calibration and synchronization, using modern equipment to capture varied settings from
indoor to highways. Collected manually and through vehicles, it is tailored for various
robotic uses.

In essence, this thesis encapsulates the pursuit of enhancing SLAM and 3D reconstruc-
tions through multimodality. By harnessing the capabilities of diverse depth sensors, we
have made significant progress in the domain, paving the way for more integrated, compact,
robust and detailed systems in the future.
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Chapter 1

Introduction

1.1 Motivation

Capturing moments with photos, especially through smartphones, is a daily routine for many.
However, these photos offer just a fixed perspective of a scene, missing the depth and other
viewpoints. This has sparked interest in 3D reconstruction, which provides a fuller view
from various angles, potentially offering a richer way to remember moments than traditional
photos.

3D reconstruction has broader applications than just enhancing memories. In Augmented
Reality (AR), understanding the real-world’s shape and layout is essential to integrate virtual
objects seamlessly. Robots and autonomous vehicles need a detailed understanding of
their environment for safe navigation. In fields like urban planning and archaeology, a
comprehensive 3D view is invaluable, aiding in designing spaces and documenting sites.
While cameras offer rich visual data, obtaining depth and distance can be challenging,
especially in poor-light conditions.

In the evolving world of SLAM and 3D reconstructions, the integration of data from
multiple sensors offers a more comprehensive understanding of environments. Different
sensors bring their unique strengths to the table. For instance, while cameras are readily
accessible and can capture rich visual details, they often struggle to reconstruct large-scale
environments with high accuracy. In addition, they depend on ambient light, making them
less effective in dark or featureless areas. On the other hand, LiDARs which base the
distance measurements on their own light, can operate in varied lighting conditions and
bigger environments. They can provide detailed spatial reconstructions but might result in
sparser outputs and often lack the vibrant color information inherent to camera captures.
In addition, different sensors can have different fields-of-view. By combining them, one
can achieve a more comprehensive coverage of the environment and robustness in more
challenging environments (i.e. dynamics in the scene) thanks to bigger static support.
Overall, a multi-sensor system can be more versatile and adaptable to different applications
and needs.

Nevertheless, fusing data from cameras and LiDARs is a non-trivial task, primarily due
to the inherent differences in the nature of data each sensor provides. Cameras capture
rich, high-resolution color information in 2D, while LiDARs provide sparse but accurate
depth measurements in 3D. Aligning these heterogeneous data sources requires careful
calibration and synchronization. Moreover, the data from each sensor comes with its own set
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of noise characteristics and uncertainties. For instance, cameras might be affected by lighting
conditions, motion blur, or lens distortions, while LiDARs can be influenced by reflectivity
variations and distortion effects (skewing). Developing algorithms that can effectively
combine these data sources often leads to complex multimodal processing pipelines. Some
approaches might treat each sensor’s data independently during initial stages of processing
and then attempt to merge the results in later stages. This can introduce additional challenges,
especially when trying to reconcile conflicts or inconsistencies between the two data types.

Thanks to recent technology enhancements, the images generated from LiDAR point
cloud projections have started to show resemblances to those captured by passive sensors.
This similarity led to our initial exploration into the use of LiDAR images for Visual Place
Recognition (VPR). By applying well-known VPR techniques to LiDAR images, we found
encouraging results. While the outcomes were slightly below those achieved with traditional
images, the advantage of LiDAR’s consistent performance, regardless of lighting conditions,
was evident.

Building on this, our subsequent work aimed to create a bridge between LiDAR and
RGB-D sensors. We developed a SLAM pipeline that worked in exactly the same way for
both sensors (a projection function is the only difference). Relying on photometric odometry
estimation and feature-based loop closures from the previous work, our system showed
results that were in line with some of the specialized SLAM systems designed for either
LiDAR or RGB-D but without an explicit data association and a representation of the model.

Our next step was to explore the realm of Bundle Adjustment. As for SLAM, we put
forth a generalized strategy that was not tied to any specific sensor. Our approach, rooted in
photometric alignment, showed results that were comparable or better compared to some
existing Bundle Adjustment techniques built ad-hoc for RGB-D and LiDARs. Moreover,
when we combined both LiDAR and RGB-D within our unified methodology, we noticed
big improvements in the performance of our algorithm.

In our more recent work, we aimed to enhance our Bundle Adjustment methodology by
incorporating geometric information. Starting with geometry alignment and then refining
through photometric optimization, we developed a system that balances robustness with
precision. The geometric part and the explicit point-to-plane data association, added stability
to our approach, while the photometric refinement brought in finer detail. Notably, our
method scaled well to larger environments, a benefit derived from the sparse geometrical
information. Through extensive validation using a total-station, we found our approach to
achieve a commendable accuracy of 3 centimeters across 1.5 km trajectories, in challenging
environments (covering both indoor and outdoor settings, horizontal and vertical motion
and different light settings).

To conclude, my research path has been motivated by the aspiration to understand
and refine the functionalities in SLAM and 3D reconstructions using multimodality, while
maintaining consistency. By tapping into the potential of various depth sensors, we have
made some progress in the field, contributing to move slightly closer to more cohesive,
stable and detailed systems in the future.

1.2 Overview in 3D reconstruction

This section provides a simplified overview of the typical steps involved in a 3D recon-
struction pipeline, setting the stage for the contributions of this thesis. We will focus on
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Figure 1.1. Generic high-level scheme of typical 3D reconstruction systems for sensors moving in a
mainly static scene. First, sensor calibration is performed before the system is started, extrinsic
calibration may be necessary for systems that works jointly for multiple sensors. Tracking (or
odometry estimation) and loop-closures run in parallel, one estimates the ego-motion of the
sensor and the other triggers optimization to reduce overall drift. In robotics and computer vision
community this usually called SLAM. This block is usually real-time. For more accurate maps a
final refinement is necessary, this can be done offline. By the computer vision community this
is usually called BA. Note that this is just a high-level schema that accounts for most of the
content presented in this thesis. This flow may be slightly different in other case (i.e.calibration
is performed online during SLAM, BA may be part of the online SLAM estimation).

reconstructions derived from sequential data (i.e. images from video stream for cameras)
and scenes captured by a moving sensor, as opposed to unordered data. A figure summarize
this section is Fig. 1.1.

At the outset, any geometric vision pipeline requires intrinsics sensor calibration. For
cameras this involves geometric calibration, which associates each camera image pixel with
its corresponding observation ray, for LiDARs this involves estimating accurately vertical
and horizontal field-of-view. In addition, for algorithms that require both the sensors an
accurate estimate of the offset between the two sensors need to be computed (extrinsics
calibration).

Once calibrated, the system begins to execute multiple tasks concurrently. The primary
objective involves determining the sensor’s ego-motion through odometry or tracking. This
facilitates the integration of data from various images, which can be achieved by utilizing
a scene model or referencing anchor frames. As the system operates, errors might build
up and, when revisiting a previously observed part of the scene, a distinct process, termed
loop-closure, might be needed for corrections. These steps are done simultaneously, for this
reason the name SLAM.

Odometry estimation methods can be direct or indirect. Direct methods align an image
with other images or with a model by comparing pixel values, leveraging raw sensor data to
average out noise and the whole set of pixels for better and more uniform estimate. However,
this method requires a good initial pose estimate. This may for example be obtained by
inertial measurements, by a motion model for frames in a video, with a hierarchical approach
to incrementally increase the converge basin or with an indirect method. Indirect methods,
on the other hand, match some extracted features between measurements or with a model.
Usually features are marked with a unique identifier which encodes the local appearance (or
local geometry).

If a high-quality estimate is desired as the final output, additional steps may be required
which are usually done offline. This might involve motion refinement, structure refinement
and meshing.

In summary, this section has outlined the foundational steps in a 3D reconstruction
pipeline. The state-of-the art in related work will be discussed within the individual chapters
that follow.
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1.3 Thesis Outline

Background. Chapter 2 delves into the foundational concepts crucial for grasping the contri-
butions of this thesis. Specifically, it explores image poses within the SE(3) transformations,
elucidates the elementary pinhole camera model and spherical model, used respectively for
RGB and LiDAR and discuss image interpolation. Furthermore, this section highlights the
powerful Gauss-Newton and Levenberg-Marquardt optimization techniques, touches upon
optimization within manifolds, and examines strategies to enhance the runtime efficiency of
these methods while maintaining accuracy.
Visual Place Recognition on LiDAR data. Chapter 3 examines the efficacy of established
VPR methods when adapted to intensity data from a 3D LiDAR, transformed into an image
format. Our assessments of various VPR processes across multiple robotic/vision datasets
using 3D LiDARs indicate that these adapted techniques can provide dependable loop-
detection. This suggests the viability of deploying LiDAR-only SLAM on a broader scale.
While VPR methods tailored to LiDAR data might underperform slightly compared to
conventional RGB images, they offer the benefit of being unaffected by external lighting
conditions. This characteristic enables consistent SLAM performance across varying times,
such as day or night, without necessitating complex algorithms in the RGB image domain.
Uniform SLAM. In Chapter 4, we introduce a novel direct SLAM system designed for both
LiDAR and RGB-D. While it is typical in SLAM to have systems tailored for individual
sensors, with separate communities addressing camera and LiDAR challenges, our approach
bridges this divide. Our system integrates position tracking with an appearance-centric relo-
calization technique, effectively managing extensive loop closures. Notably, our work stands
out as a pioneering effort to create a more universal approach to depth sensors, leveraging
the LiDAR image for both photometric and feature-centric optimizations. Through different
experiments on various public benchmarks, MD-SLAM has proven its mettle, showing
results comparable with top-tier, sensor-specific systems. To benefit the community we
release the system as open source at https://github.com/rvp-group/mdslam.
LiDAR-RGB Calibration Using a Common Marker. In Chapter 5, we introduce an ex-
trinsic calibration method aimed at precisely identifying the offset between LiDAR and
camera. Proper calibration is crucial when merging data from these two sensors. While
the robotics domain frequently adopts distinct, large, and often costly tags to counter the
sparseness of LiDAR, our approach rely on readily available, smaller markers (e.g., A3
chessboard). Comparative tests indicate that our method peforms on par or better compared
to several calibration techniques, many of which depend on specialized markers like CNC-
printed tags. We release the toolbox as open source at https://github.com/rvp-group/ca2lib.
Uniform Photometric Bundle Adjustment. In Chapter 6, we introduce a cohesive photo-
metric BA approach that seamlessly integrates with both RGB-D and LiDAR systems. This
strategy is designed to enhance trajectories derived from SLAM/GNSS systems, aiming to
maximize its photometric consistency across the entire collection of sensor positions. Our
method implicitly manages data association and offers robust support for both RGB-D and
LiDAR, either individually or jointly. Comparative evaluations reveal the expertise of our
optimization framework, which consistently matches or outperforms dedicated methods for
the two sensors. Furthermore, with precise calibration between the two sensors in place,
our method can be augmented through the combined utilization of both LiDAR and camera.
To facilitate broader adoption and research, we’ve made our CUDA/C++ implementation
publicly accessible at https://github.com/rvp-group/ba-mdslam.

https://github.com/rvp-group/mdslam
https://github.com/rvp-group/ca2lib
https://github.com/rvp-group/ba-mdslam
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Benchmark. In Chapter 7, we introduce a comprehensive robotics perception research
dataset recorded in Rome, which encompasses RGB data, dense depth images, 3D point
clouds, IMU, and GPS data. Recognizing the limitations of current datasets, such as being
confined to specific environments, having simplistic sequences, and the absence of bench-
marks, and given the advancements in the fields of SLAM and 3D reconstruction, our dataset
is primarily designed to cater to these domains and further the progress in autonomous
robotics research. Our dataset stands as a significant contribution to the available resources,
addressing a wide range of challenges from environment diversity and motion dynamics
to sensor frequency. We have employed recent equipment and detailed our methods for
ensuring accurate intrinsic and extrinsic sensor calibrations while maintaining precise tem-
poral synchronization. Our recordings span a range of environments, including multi-floor
buildings, gardens, urban settings, and highways. With a combination of handheld and
vehicular data collection techniques, our setup is versatile and can emulate a variety of
robotic applications, from quadrupeds and drones to autonomous vehicles. Notably, our
dataset includes a precise 6-dof ground truth, which is derived from an innovative method
that refines RTK-GPS estimates using LiDAR point clouds through BA. All sequences,
divided into training and validation sets, and accessible at https://rvp-group.net/slam-dataset.
Multimodal Uniform Bundle Adjustment. In the concluding Chapter 8, we emphasized
the combined strength of LiDAR and camera sensors in 3D reconstruction. By pairing
LiDAR’s depth accuracy with the camera’s visual detail, we simplify the reconstruction pro-
cess. Our integrated BA approach showcases the benefits of using both sensors. This chapter
does not provide an in-depth evaluation, but its aims only to highlight the potential of this
combined method in terms of efficiency and robustness. The message is clear: combining
LiDAR and camera sensors paves the way for more effective 3D reconstruction techniques.
Conclusion. The final part of thesis (Chapter 9), sums up the overall contributions and
discusses opportunities for future works and improvements.
Publications. The content of this thesis is based on publications [32, 33, 46, 34, 16].

https://rvp-group.net/slam-dataset.html
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Chapter 2

Background

In this section, we will explore several fundamental concepts that play a crucial role in
comprehending the key contributions of this thesis. Sec. 2.1 briefly illustrates the main
difference in sensing between camera and LiDAR. Successively, Sec. 2.2 will provide an
introduction to camera and LiDAR geometry, encompassing topics such as 3D rigid body
transformations, different projection models used (i.e.pinhole, spherical) and image inter-
polation. Following that, Sec. 2.3 will delve into the utilization of non-linear optimization
techniques, specifically the Gauss-Newton and Levenberg-Marquardt methods.

Notation. We represent scalars using italic lowercase letters (e.g., i, c), vectors using
bold lowercase letters (e.g., v, t), and matrices using bold uppercase letters (e.g., X, T).
The identity matrix is denoted as I. Occasionally, ordinary multiplications, whether scalar
or matrix, will be indicated with a central dot (e.g., T · p). Please note that this notation
is not intended to signify a dot product; dot products will always be expressed through
transposition and matrix multiplication.

2.1 Distinguishing LiDAR and Camera Sensing

LiDARs and cameras are both essential tools in the realm of sensing and imaging, but they
operate on fundamentally different principles in terms of being active or passive. LiDAR
is an active sensor because it emits its own source of light, typically in the form of laser
beams, to probe the environment. It then measures the time it takes for the emitted laser
beams to bounce back after reflecting off objects, allowing it to determine distances and
create detailed 3D maps of the environment.

On the other hand, a camera is a passive sensor. It does not emit any light of its own.
Instead, it captures the ambient light that is either reflected from or emitted by objects in
its field of view. The information it gathers is based entirely on the light available in the
environment, whether it is sunlight, artificial light, or other sources. So, while LiDAR
actively interacts with its surroundings by emitting and then detecting laser light, a camera
passively records the light that is already present in the scene.

As we progress through this chapter and delve deeper into the thesis, the distinctions
and parallels between these two sensors will be further clarified.
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2.2 Sensor Geometry

To reconstruct a 3D scene from images captured by an optical sensor (i.e. LiDAR, camera),
it is essential to establish a common coordinate system for these images, referred to as
the "global" coordinate system. Additionally, it necessitates the capability to establish a
connection between 3D points within this global coordinate system and the corresponding
(sub)pixels in the images where these points are observed. This section will provide an
overview of the fundamental concepts required to accomplish this task.

2.2.1 Image poses

The pose of an image refers to the sensor’s position and orientation when capturing the
image (excluding any camera movement during exposure time for simplicity). This pose
can be expressed as the transformation from a stable global 3D coordinate system, denoted
as W , to a sensor-local coordinate system, denoted as S, or conversely as its inverse. In
practical applications, it is crucial to maintain clarity regarding the selected direction to
avoid any potential misconceptions.

In any case, since optical sensors function as rigid entities moving through 3D space,
this transformation belongs to SE(3), which represents the special Euclidean group in
three dimensions—a group characterizing rigid body transformations in space. This space
comprises six degrees of freedom: three for translation within 3D space and three for
rotation in 3D space. Elements of SE(3) can be represented in various ways, such as using
quaternions along with translation vectors or as 4× 4 homogeneous transformation matrices.
This section will explore the latter approach, removing the homogeneous row for simplicity,
where the left 3× 3 sub-matrix of the complete 3× 4 matrix represents a rotation matrix,
while the right 3×1 sub-matrix represents a translation vector. For a transformation denoted
as T with rotation R and translation t, it can be expressed as follows: T =

(
R t

)
.

When dealing with a 3D point p represented as a three-dimensional column vector, the
transformation can be applied through homogeneous multiplication. In other words, this
involves elevating the point to 4D space before performing the multiplication, achieved by
introducing a fourth dimension with a value of 1:

Tp = (R t)p = Rp + t (2.1)

Because we define the transformation matrix as 3×4 in size (as opposed to the frequently
used 4× 4), there is no need for any supplementary operation to revert the projection to 3D
space afterward.

Concatenation of two SE(3) transformations produces another transformation in SE(3):

T1T2p = R1 (R2p + t2) + t1 (2.2)

The same holds for inversion (note that R−1 = RT ) since rotation matrices are orthogonal):

T−1
1 T2p = RT

1 (R2p + t2 − t1) (2.3)

with T−1 =
(
RT −RT t

)
. The following notation will be used for transformations: a

transformation TW,S expresses the reference frame S into W (i.e. points are multiplied to
it, from the right, from S into frame W ). Therefore, it holds: (TW,S)−1 = TS,W . Fig. 2.1
illustrates the concept of transforming points between a global and a sensor-local coordinate
system.
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Figure 2.1. Sketch of SE(3) transformations between a global frame W and local sensor frame
S. Both of these frames provide different coordinate systems for the same 3D space. TW,S

expresses S in W , hence trasform point represented in frame S into the frame W . TS,W is the
opposite. We suggest to read TW,S as "transformation of S in W, sensor-in-world" to avoid
ambiguity.

2.2.2 Camera sensor

Every pixel within a camera captures light entering the camera lens from specific angles or
directions. To simplify matters, we consistently assume that these directions can be approx-
imated as a single ray, rather than a more realistic cone-shaped volume. The relationship
between pixels and their associated observation rays is defined by a camera model, and the
specific calibration parameters are often referred to as the intrinsic parameters or simply
intrinsics of the camera. The most general camera model would allocate a distinct ray (or
line, if the starting point of the ray is unknown) for every pixel. While this approach has
been proposed [52], it is seldom employed directly in practice due to its complexity in terms
of calibration and application.

Consequently, camera models commonly simplify the pixel-ray association by reducing
the number of parameters and making certain smoothness assumptions. In fact, many
traditional camera models use a minimal set of parameters, attempting to describe the
camera’s behavior based on fundamental geometric principles and a straightforward lens
distortion function. For the purposes of this background section, we focus on the most
fundamental of these traditional camera models: the pinhole camera model.

Pinhole camera model

This model assumes that all incoming light rays, which eventually reach the camera sensor,
converge at a singular 3D point, commonly referred to as the pinhole or optical center.
Specifically, this point serves as the focal point through which all light is channeled. In a
broader context, it is known as the optical center.

Furthermore, the model assumes that the (planar) image sensor directly faces the optical
center. In other words, the line extending from the optical center to the closest point on
the image sensor plane is perfectly perpendicular to that plane. The precise location on the
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Figure 2.2. Different depth cameras. From left to right respectively Microsoft Kinect [5], Intel D405
[3] and Intel L515 [2]. Kinect, initially designed for gaming, utilizes both infrared and RGB
cameras. It primarily leverages structured light technology, projecting a specific pattern onto a
scene measuring the difference of the calibrated pattern to estimate depth. With its baseline of
around 7 cm can reconstruct depth til 6/7 meters. Differently D405, does not rely on IR emitters,
it is just equipped with two global shutter cameras and with its really small baseline is capable
to reconstruct depth at sub-millimiters accuracy at an ideal range of 7 cm (till a maximum one
of 50 cm). The one on the right, L515, is a depth camera that relies on ToF technology. As for
LiDAR the good thing about active depth sensing is its capability to work in various lighting
conditions, including total darkness. Its maximum depth is of 7 meters.

image plane where this line intersects is termed the principal point.
With these assumptions, the camera can be adequately described using only four essential

parameters: the x and y coordinates of the principal point in the image (denoted as cx and
cy, respectively), and the focal lengths along both the axes, denoted as fx and fy. The focal
lengths represent the distance between the optical center and the image plane. The reason
why there might be two different focal lengths, fx and fy, is because of pixel non-squareness.
While most modern cameras have square pixels, meaning fx is approximately equal to fy,
in some cases (especially older cameras or specific imaging devices), the pixels might be
rectangular. In this case, the focal lengths in the x and y directions would differ. This will be
more evident for LiDAR, during spherical projection Sec. 2.2.3. We include these intrinsics
parameters into the so-called calibration or camera matrix, which we will refer with K. In
the following paragraphs, we explore two operations associated with this camera model:
projection and inverse projection.

Projection. A general projection is a mapping π : R3 → Γ ⊂ R2 from a world point
p = [x, y, z]T to image coordinates u = [u, v]T . Specifically, the pinhole projection of a
point p is computed as

πp(p) = φ(K p), (2.4)

K =

fx 0 cx
0 fy cy
0 0 1

 , (2.5)

φ(v) = 1
vz

[
vx
vy

]
. (2.6)

The result πp(p) is a two-dimensional pixel coordinate. If this coordinate is outside of the
image bounds, then the point is not visible in the image. The same applies if pz ≤ 0, i.e., the
point is not in front of the camera. The intermediate result φ(v), called homogeneous nor-
malization with v = [vx, vy, vz]T , indicates the direction from which the point is observed
by the camera.
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Figure 2.3. Illustration of pinhole camera model. The pinhole is located at the origin of the local
camera coordinate system S. Note that most of the computer vision books refer with this quantity
as C. However, we denote this with S to generalize the sensor. For convenience, the image
sensor is imagined to be mirrored to the front of the camera (which would mirror the image
at the principal point). In the illustration, intersections with the image plane are drawn with
crosses, while those with the 3D world are highlighted with full circles As common in computer
vision, the camera reference frame is conventioned with z-axis pointing forward. An additional
important aspect is the depth d, illustrated in green; this represents the distance between the
pinhole and the point p expressed over the z-axis.

Inverse projection. The inverse-projection takes as input a (sub)pixel coordinate within
the image and the distance of the observed point from the camera at that particular image
position. The inverse projection determines the observation ray corresponding to the given
pixel coordinate u, and if also a distance is given, the observed 3D point along this ray.
Therefore, we can calculate the inverse mapping π−1 : Γ × R → R3, more explicitly
p = π−1(u, d).

p = d

K−1

uv
1


 (2.7)

Note that if d is removed from the above equation (i.e. unknown depth), the result is simply
the normalized image coordinates v = [vx, vy, 1]T indicating the direction of the observation
ray. These may be converted to a direction vector by normalizing the result to unit length.

Camera depth estimation

Estimating depth using cameras, is a challenging task in computer vision. Several techniques
have been developed to estimate depth from camera images []. Currently robust approaches
require stereo vision, typically involving two cameras. Stereo vision uses two slightly offset
cameras (we refer to baseline as the distance between the cameras) to capture images of the
same scene. By finding corresponding points in the two images and calculating the disparity
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Figure 2.4. Triangulation sketch. u and u′ are the distances between points in image plane (from
their origins) corresponding to the scene point 3D p and their camera center. The baseline
is b and fx camera’s focal length along u − x coordinates of the image, should be known
quantity coming from intrinsics and extrinsics calibration. So in short, the above equation says
that the depth d of a point in a scene is inversely proportional to the difference in distance of
corresponding image points and their camera centers. With this information, once can derive the
depth for all pixels in a image.

(horizontal shift) between them, it is possible to estimate depth using triangulation Eq. (2.8).

disparity = u− u′ = b fx
d

(2.8)

This technique relies on the principle that objects at different depths will have different
disparities. As the baseline between camera increases (so the parallax), far objects distances
can be determined. However, this well-known depth estimation technique, may suffer from
illumination consistency and texturless surfaces. For this reason, often "depth cameras"
[5, 3, 2] are equipped with an infrared (IR) pattern. This has different advantages: it
can provide consistent illumination across the scene, reducing the impact of changing
lighting conditions that often affect visible light stereo vision; it can enhance the visibility
of textureless or low-texture surfaces, making it easier to extract feature points for stereo
matching algorithms. These days, depth cameras might use ToF (LiDAR technology). But
because they are small and need to be affordable, their ability to measure depth is limited,
often to just 5 to 8 meters. Fig. 2.2 shows and details some different depth cameras available
in the market at the time of writing.

2.2.3 LiDAR sensor

LiDAR technology, which measures distances using pulsed lasers, comes in two primary
sensor forms: mechanical and solid-state.

Mechanical LiDAR systems use rotating parts (encoders) to steer the laser beams (for
3D sensing they are usually mounted vertically) granting them an unparalleled 360-degree
field of view. This comprehensive scanning capability is a significant advantage, especially
in applications requiring a complete environmental perspective, such as 3D reconstructions
and autonomous vehicles. However, their moving components can make them bulkier, more
prone to wear, and historically more expensive.

In contrast, solid-state LiDAR lacks moving parts. They use electronic methods, such as
phased array optics, to steer the laser beam. This result in increased durability and a more
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Figure 2.5. Different LiDARs available in the market. From left to right respectively Velodyne
Puck [7], Ouster OS-128 [6] and Livox MID-70 [4]. Velodyne Puck, often referred to as the
VLP-16, is a mechanical LiDAR equipped with 16 laser channels and is commonly used in
various applications from drones to robotics due to its balance of performance, size, and price.
It provides a 360 deg horizontal FoV and a vertical one of roughly 30 deg. Ouster OS-128 is
always a mechanical LiDAR but with higher vertical resolution, as its name implies, it has
128 laser channels, offering a denser point cloud which is crucial for applications that require
intricate detail. While the horizontal FoV is always 360 deg due to encoder rotation, its vertical
FoV can reach up to 90 deg. It is the one we have used more in our work, due to its higher
vertical capabilities. Livox MID-70, on the other hand, is a solid-state LiDAR and differentiates
itself with its non-repetitive scanning pattern. Unlike traditional mechanical LiDARs that scan in
a set, predictable pattern, Livox employs a unique approach where the scanning pattern is more
random, aiming to achieve more uniform point cloud distribution.

compact design. While they are generally more affordable and resilient, their field of view
can be limited compared to their mechanical counterparts.

In this thesis, we will focus exclusively on mechanical LiDAR due to its ability to
provide a 360-degree scan. This comprehensive scan can be readily converted into an
image, thanks to its vertically oriented beams and constant rotation. In contrast, solid-state
LiDARs struggle to produce a coherent image from their point cloud, primarily because of
the non-redundant steering of the laser beam.

A typical LiDAR sensor emits a beam of pulsed light waves towards the measurement
direction. The range to the obstacle along the beam is measured from the light pulse’s round
trip time. At a low level, a LiDAR senses the perceived light intensity Ir(ρ, λ) as a function
of the range of the reflection ρ and the wavelength λ. The sensed intensity depends on the
emitted intensity I0(λ) at the same wavelength, as follows [99]:

Ir(ρ, λ) = I0η
O

4πρ2β(ρ, λ) exp
(
−2
∫ ρ

0
σ(r, λ) dr

)
(2.9)

Here, O denotes the beam aperture measured as a solid angle, β is the reflectance of the
object, and σ is the absorption of the medium. Fig. 2.6 illustrates this aspect. The reflectivity
β is affected by the composition, roughness and moisture content and incidence angle of the
beam hitting the surface.

The accuracy of range measurements is primarily determined by the resolution of the
clock that measures the signal’s first return. However, by assessing the phase difference
between the emitted and received signals, we can achieve even greater precision. A single
detection might be prone to noise, so for enhanced accuracy, scanners often emit multiple
pulses. This approach, however, limits the frequency at which range measurements can be
taken.

Mechanical constraints dictate the rotational speed of the sensor. While a 2D sensor can
deflect the beam using a small rotating mirror, a 3D sensor head houses multiple measuring
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Figure 2.6. Illustration of a single beam emitting and receiving light pulse, as described in Eq. (2.9).

units, with modern ones accommodating up to 128 units.

Scanners also measure the intensity of measurements as the amount of light reflected
from the surface. This intensity information is normalized and discretized to an 8 or 16 bit
value. The intensity depends on surface characteristics, and several other factors impact the
measurement. All terms in Eq. (2.9) are continuous. Thus, we can expect that mild changes
of the viewpoint yield mild variations of the intensity when measuring the same 3D point.

Modern LiDAR point clouds are dense enough to be converted into images resembling
those captured by conventional cameras. There are various methods to transform a Li-
DAR point cloud into an image. The most prevalent approach is to generate a panoramic
image by horizontally aligning all vertical beams. For instance, if we have 128 vertical
beams and our encoder completes 1024 steps for a full 360-degree rotation, we can easily
construct a panoramic image with 128 rows and 1024 columns. This method is termed
"projection by ID". However, a significant limitation of this technique is the absence of
a continuous differentiable function, making it less suitable for state estimation. Due to
this limitation and for simmetry with the classic pinhole projection, we define the spherical
projection and its inverse as a function to map points from 3D point cloud to image and
vice-versa. Some details and explanations about LiDAR available in the market (at the time
of writing) are shown in Fig. 2.5.

Spherical LiDAR model

The spherical model refers to the process of mapping or projecting points from a three-
dimensional space onto a two-dimensional spherical surface and vice-versa mapping points
from the image to the 3D space. It is a form of geometric transformation used in various
fields, including cartography, computer graphics, and vision systems. Different from the
pinhole model, this involves a conversion between Cartesian and spherical coordinates
before flattening into the image space.

Projection The same quantities presented in the pinhole projection Sec. 2.2.2 apply here
too. Let K be a camera matrix in the form of Eq. (2.5), where fx and fy specify respectively
the resolution of azimuth and elevation and cx and cy their offset in pixels. The function ψ
maps a 3D point to azimuth and elevation. Thus, the spherical projection of a point is given
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by

πs(p) = K[1,2]ψ(p) (2.10)

ψ(v) =

 atan2(vy, vx)
atan2

(
vz,
√
v2
x + v2

y

)
1

 (2.11)

In the spherical model K[1,2] ∈ R2×3, being the third row in K suppressed. We parameterize
the spherical projection with K for symmetry with respect to the pinhole model, however
this camera matrix contains LiDAR azimuth and elevation resolution. These are calculaed
as follows:

θres = max hFoV −min hFoV
rows φres = max vFoV −min vFoV

cols (2.12)

where min vFoV and max vFoV are taken from the LiDAR datasheet, while min hFoV
and max hFoV depends on the rotation done by the encoder (to acquire an omnidirectional
point cloud, these are respectively 0 and 360 deg). The number of rows are equivalent to the
number of beams vertically distributed, while the number of cols depends on the number of
steps done by the encoder. The focal lengths and principal points are simply parameterized
by:

fx = − 1
θres

cx = cols
2 (2.13)

fy = − 1
φres

cy = rows
2 (2.14)

Inverse projection. Analogously to the pinhole inverse projection, the LiDAR one
takes as input the (sub)pixel coordinate within the image. However, unlike the former, it
uses the range of the observed point from the LiDAR at that specific image position instead
of the depth. It is important to emphasize the difference between range and depth. While
depth is measured along the z-axis of the optical frame (z-forward), the range is simply the
distance between the origin S and the point p expressed in the sensor reference frame (i.e.,
the L2-norm of the point) (see Fig. 2.7 for a visual explanation, range ρ highlighted in red).
Mathematically, we can parameterize the spherical inverse projection as:

p = ρ ψ−1

K−1
[1,2]

uv
1


 ψ−1 =

cos θ cosφ
sin θ cosφ

sinφ

 (2.15)

LiDAR model by ID

In previous section, we delved into a differentiable projection tailored for LiDAR, which is
predominantly employed when state estimation came into play (essentially in all chapters
except for Chapter 5). However, as shown in Fig. 2.8, one require the image for other
applications. Let p be a point detected by the LiDAR and expressed in its frame. Its



16 2. Background

x

x

Figure 2.7. Illustration of the spherical model. Unlike the optical frame, the LiDAR reference frame
is conventionally set with the z-axis pointing up. In the illustration, intersections with the image
plane are drawn with crosses, while those with the 3D world are highlighted with full circles.
The spherical coordinates are sketched in red, with θ representing the azimuth, φ the elevation,
and ρ the range.

projection is computed as:

πid(p) = Aψ(p) (2.16)

A =
[
fx 0 cx
0 1 0

]
(2.17)

ψ(v) =

atan2(vy, vx)
ring(v)

1

 (2.18)

where fx and cx are respectively focal length and principal offsets along azimuthal coor-
dinates. The ring(v) function is either obtained directly from the LiDAR sensor, which
augment every measured point with a number that represents the beam that detected it or,
assuming the cloud is ordered, by dividing the point index by the horizontal resolution of
the sensor. Compared with the spherical projection, the projection by ID does not preserve
the geometric consistency of the scene. Still, it provides an image with no holes, hence what
kind of projection using depends always on the application. The element of the point clouds
(equivalent to perform an inverse projection) can be retrieved simply by look-up table.

2.2.4 Image types

In computer vision, an image is a representation of a visual scene and stored digitally.
Images can be captured by directly by cameras or generated by projection, as illustrated in
previous sections. It is typically represented as a matrix (or a two-dimensional array) of
pixel values. Each pixel value, depending on the image type, can represent various things:

• grayscale image: each pixel value represents a shade of gray, typically ranging from 0
(black) to 255 (white);



2.2 Sensor Geometry 17

(a) Projection by ID. While the image appears without gaps, the function is non-differentiable.
Moreover, horizontal stacking of beams distorts the world points, leading to artifacts manifested
as small triangular shapes. More details in Sec. 2.2.3.

(b) Spherical projection. While the function is differentiable and the world is represented in the
image how is perceived, the image may display empty gaps due to potential miscalibration of
the LiDAR intrinsics. More details in Sec. 2.2.3.

Figure 2.8. Differences between "projection by ID" and Spherical projection.

• color image (often in RGB format): each pixel is usually composed of three values
corresponding to the Red, Green, and Blue color channels. Each channel typically
ranges from 0 to 255, and together, they define the color of the pixel;

• binary image: Each pixel has one of two possible values, often 0 (representing black)
or 1 (representing white);

• depth image: in some applications, an image might represent distances instead of
color. Each pixel value in a depth image corresponds to a distance from the sensor
(depth or range).

• surface normal image: often simply referred to as a "normal map" or "normal image"
represents the orientation of surfaces in a scene. Each pixel in a normal image encodes
the direction that the surface at that location, relative to some coordinate system. In
3D these are commonly encoded through RGB.

Images are the main data source for computer vision tasks. While there are many types
beyond the ones listed earlier, including more complex ones (i.e. hyperspectral images), this
thesis focuses on the most commonly used types, especially for 3D reconstructions.

2.2.5 Image coordinate conventions

Intrinsic calibration has a nuance that can be easily missed: there are two prevalent definitions
for image coordinate systems. This distinction matters when exchanging or scaling intrinsic
calibrations. In both definitions, as common in standard digital image representations the
x-axis in the image (denoted with u in Fig. 2.3 and Fig. 2.7) points right, and the y-axis
points down (denoted with v in Fig. 2.3 and Fig. 2.7).

The first system, termed the "pixel-corner convention," places the origin at the top-left
corner of the top-left pixel. Conversely, the "pixel-center convention" positions the origin at
the center of the top-left pixel. Fig. 2.9 depicts both conventions using a sample image.

While coordinates in both systems can be inter-converted, each is best suited for specific
applications. The pixel-corner convention is handy when projecting points to pixels to
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Figure 2.9. Image coordinate systems. Example coordinates values for pixel-corner in black and
pixel-center in red, within a 3× 3 image.

determine the exact pixel a point maps to. On the other hand, the pixel-center convention
is ideal for tasks like bilinear interpolation with control points at image centers or when
inverse projecting pixel centers.

It is crucial to recognize the significance of the chosen convention when scaling intrinsic
calibrations, especially for multi-resolution methods working on varied image scales. With
the pixel-corner convention, pinhole parameters can be linearly scaled using a straightfor-
ward multiplication by the scaling factor. However, in the pixel-center convention, the
principal point’s location does not scale linearly. Instead, it should first be converted to the
pixel-corner convention by adding 0.5 to its coordinates, scaled, and then reverted to the
pixel-center convention by subtracting 0.5.

Given that many implementations do not specify their convention, there is a risk of
confusion, leading to a half-pixel error in intrinsic calibration. Although this typically has
minimal real-world impact, it is an unnecessary source of inaccuracy.

2.2.6 Image interpolation

The preceding sections detailed the mapping between 3D points and (sub)pixels in an image.
What remains is understanding how to interpret sub-pixel image coordinates resulting from
projection.

At its core, each image pixel typically captures a singular intensity measurement (passive
light for cameras, active for LiDAR). Ideally, to best mirror reality, each pixel should be
viewed as an individual discrete intensity sensor, capturing specific light frequencies and
directions of incoming light. While this perspective is essential and should be pursued
for optimal results, practical runtime performance often necessitates approximations to
enhance processing speed. A frequent requirement, such as for continuous optimization
(as mentioned in Sec. 2.3), is the computation of image gradients, viewing the image
as a continuous function rather than discrete pixels. This can be achieved through pixel
interpolation, with bilinear interpolation being the most prevalent method, which we will
delve into in this section.
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Figure 2.10. Bilinear interpolation illustrated for a group of adjacent 2 × 2 pixels. The control points
u00 to u11 are located in the pixel centers. The value is interpolated for the blue cross at relative
position (u, v)T . Each control point’s value is weighted with the area of the rectangle between
the control point that is opposite to it and point (u, v)T .

Biliner interpolation

Imagine a set of 2× 2 neighboring pixels in an image. Each pixel’s intensity value is linked
to a control point situated at the pixel’s center. Bilinear interpolation provides interpolated
values for the square region between these four control points. For a subpixel position within
this area, we determine its u and v offsets from the top-left control point. This offset would
be (0, 0) directly at the top-left control point and (1, 1) at the bottom-right control point.
The values of the control points are labeled as u00, u01, u10, and u11, which can be either
vectors or scalars. Using these, the desired interpolated value is then derived:

(1− u)(1− v)u00 + u(1− v)u01 + (1− u)vu10 + uvu11 (2.19)

As depicted in Fig. 2.10, to interpolate across the entire image, one would first identify
the relevant control point square and then utilize the aforementioned formula for that square.
This method ensures continuity throughout the image and allows for differentiation within
each square interpolation region.

Bilinear interpolation, as the term indicates, is not purely linear. However, it exhibits
linear (i.e.affine) behavior when examined along lines parallel to either u or the v direction,
equivalently if u or v is held constant. Along any other straight line, the interpolant is
quadratic. Even though the interpolation is not linear in the position (u and v), at a fixed
point it is linear in the interpolation values.

The result of bilinear interpolation is independent of which axis is interpolated first and
which second. If we had first performed the linear interpolation in the v direction and then
in the u direction, the resulting approximation would be the same.

2.2.7 Rolling shutter and “skewing” effects

Camera shutters are categorized into two primary types. The global shutter captures an image
by simultaneously exposing all its pixels to the incoming light, resulting in a consistent
snapshot of the scene throughout the exposure period. On the other hand, the rolling
shutter exposes pixels in a sequential manner, either row-by-row or column-by-column.
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This sequential exposure means that different pixels record the scene at varying times.
Movements within the scene or shifts of the camera during this process can introduce image
distortions. These distortions can adversely affect 3D reconstruction if not properly managed.
While the distortion’s impact lessens when the camera is moved gently, maintaining such
stability with hand-held devices is difficult due to unavoidable minor tremors. Notably, these
minor movements, especially rotational ones compared to slight positional shifts relative to
the scene’s depth, can considerably modify the captured image, heightening its vulnerability
to the rolling shutter effect.

Mechanical LiDARs exhibit a similar effect to the camera’s rolling shutter. As previously
discussed, mechanical LiDARs capture the world vertically "simultaneously" but sense the
scene horizontally over the time it takes for the encoder to complete the intended rotation.
This leads to a “skewing” effect, and, as for rolling shutter cameras, the magnitude of this
effect is directly proportional to the sensor’s movement speed. Various techniques, such as
those mentioned in [102, 28], can be employed to deskew point clouds. The most effective
methods often depend on an inertial sensor to gauge the sensor’s speed at each encoder step.
To ensure broader applicability across sensors, the research presented in this thesis does not
factor in the rolling shutter effect or point cloud deskewing.

2.3 Non-linear Continuous Optimization

This section delves into the utility of non-linear optimization for continuous optimization
challenges. In many Computer Vision tasks, while direct solutions might be elusive, it is
often straightforward to design a function that gauges the quality of a potential solution. Take,
for instance, the task of aligning overlapping photos for a panorama. Directly devising an
algorithm for this might be challenging, but assessing the quality of an alignment is simpler.
One could measure the quality by calculating the sum of squared differences between
corresponding pixels in overlapping image sections. Leveraging image interpolation, this
cost function (or objective function) can be smoothly varied, enabling the computation of
informative Jacobians. With a rough initial alignment, perhaps from keypoint matching or
gyroscope data, non-linear optimization can refine this to a locally optimal alignment. If
the starting point is decent, the outcome is likely satisfactory. Essentially, with a clear cost
function, we can tackle tasks by defining the desired outcome. The optimization techniques
discussed here can address various problems, provided there is a measurable cost function
and a reasonable initial estimate. They offer a way to specify the ideal solution criteria and
then find a solution that aligns with it.

Cost function

The problems addressed in this thesis typically adhere to the following structure. We have a
cost function, that indicates the progress in solving a task. This function relies on a state
vector, xk, which captures the current status of the task (for instance, the current alignment
of images as mentioned earlier). The cost function is essentially a sum of squared residuals,
ek, that change based on the state. ||·||Ω represents the squared Mahalanobis distance. These
squared residuals can be tweaked by a robust loss function, L, which might be employed to
lessen the influence of outliers:
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E(x) =
∑
k

L
∥∥∥ek(xk)Tek(xk)

∥∥∥
Ω

=
∑
k

L ‖ek(xk)‖2Ω (2.20)

Here, k refers to the kth measurement, which is only influenced by a subset xk ∈ x
of the overall state vector x. L should be symmetric with a unique minimum at zero. The
requirements that a robust loss function (as formulated on non-squared scalar residuals, i.e.,
L̄(e(x)) = L(e(x)2)) are:

• for robust loss functions L̄, the influence function dL̄(x)
dx ;

• L̄(e(x)) should be convex in x;

• whenever d
2L̄(e(x))
d2x is singular, it should hold: dL̄(e(x))

dx 6= 0.

For optimal convergence, it is essential that the residuals are minimal and have a zero
mean at their best point. This means that the values of the various ek should hover around
zero, both positively and negatively, when in a solution state. For instance, rather than
utilizing a vector’s norm as a residual (which is invariably positive), it might be more
beneficial to use the vector directly as the residual. The rationale behind this will be evident
in the subsequent derivation.

2.3.1 Gauss-Newton method

In this section, we will delve into the Gauss-Newton (GN) method, a strategy for optimizing
states concerning the cost functions outlined earlier. This method’s exposition draws
inspiration in part from the srrg2_solver documentation [49]. We start with an initial
state estimate, x, aiming to adjust it to minimize the cost function E(x).

For the algorithm to work effectively, it needs insight into the shape of the cost function.
Given that evaluating this function is typically resource-intensive, it is crucial to limit the
number of evaluations. If evaluations were cheap and quick, we could assess the function
for all possible state values x and choose the one yielding the lowest cost. However, this
approach is often impractical. Instead, the algorithm incrementally adjusts the state to reduce
the cost progressively.

To grasp the local shape of the function, we employ linearization on the individual
residuals within the cost. Near the current state x, specifically for x + ∆x where ∆x is a
minor change, we approximate the residuals in the following manner:

ek(x + ∆x) ≈ ek(x) + Jk∆x (2.21)

In the equation Jk denotes the Jacobian of the residual ek(x) with respect to x at the
current value of x. We set in these approximations into the cost function E from Eq. (2.20)
to obtain a local approximation for the complete cost:

E(x + ∆x) =
∑
k

L
∥∥∥(ek(x + ∆x))T ek(x + ∆x)

∥∥∥
Ω

(2.22)

≈
∑
k

L
∥∥∥(ek(x + Jk∆x))T ek(x + ∆Jkx)

∥∥∥
Ω

(2.23)

=
∑
k

L
∥∥∥ek(x)Tek(x) + 2(ek(x))TJk∆x + xTJTk Jk∆x

∥∥∥
Ω

(2.24)
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We use the concept of iteratively re-weighted optimization to manage the loss functions,
denoted as L. To determine the appropriate weight for each residual, consider that the
optimal solution to the minimization issue should result in a zero derivative of the cost
with respect to every component of x. Using the chain rule and dropping the Ω-norm for
simplicity, for each component m of x, we can derive the following:

∑
k

dL(x)
dx

∂(ek(x))Tek(x)
∂xm

= 0 (2.25)

Therefore, for weighted least squares:

∑
k

wk
∂(ek(x))Tek(x)

∂xm
= 0 (2.26)

Hence, to obtain the desired solution we need to set wk as:

wk := dL(x)
dx

∣∣∣∣
(ek(x))T ek(x)

(2.27)

In the iteratively re-weighted optimization approach, these weights are treated as fixed
during the update calculation. Incorporating these weights, we derive the expression to
minimize as follows:

E(x + ∆x) =
∑
k

L
∥∥∥ek(x)Twkek(x) + 2(ek(x))TwkJk∆x + xTJTk Jkwk∆x

∥∥∥
Ω

(2.28)
As common, we group the different terms using standard notation of non-linear optimization:

c =
∑
k

wk ek(x)TΩkek(x) (2.29)

b =
∑
k

wk JTkΩkek(x) (2.30)

H =
∑
k

wk JTkΩkJk (2.31)

Note that in Eq. (2.30) terms have been inverted due to transposition. Ignoring the weighting,
c represents the present value of the cost function. Meanwhile, b is half the gradient of E(x)
at point x, and H stands for half of the symmetric and semi-positive-definite ’Gauss-Newton’
approximation to the Hessian of the cost at x. The accuracy of this approximation will
be explored in subsequent discussions. Reframing the cost approximation with the newly
introduced variables gives:

c+ 2bT∆x + ∆xTH∆x (2.32)

This quadratic vector expression can be minimized by taking the derivative with respect to
∆x and finding the point where it is zero, 2bT + 2(H∆x)T = 0, thus leading to:

H∆x = −b (2.33)

∆x = −H−1b (2.34)

The state-update can be done using the one which minimizes the approximated cost by
iteratievely setting x := x + ∆x. This process of iterative approximation is illustrated in
Fig. 2.11
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Figure 2.11. A brief overview of the Gauss-Newton algorithm across several iterations: beginning
with the state x0 (the initial-guess), the cost function (depicted in gray) is approximated using
a parabola (in orange). The subsequent state, x1, is identified as the parabola’s minimum, at
which point a new parabola (shown in red) is employed for further approximation. This process
is reiterated, leading to x2 and ultimately x3. By this stage, the approximation is closely aligned
with the cost function’s true minimum.

Keep in mind that the update relies on a linear approximation of the residuals at the
current state x. If this approximation does not capture the entirety of the cost function, it
is improbable that a single update will pinpoint the cost’s global minimum. However, the
hope is that it will enhance the cost, provided the local approximation is reasonably accurate,
though this is not always guaranteed. After implementing the update, the linearization and
solution process is reiterated from the updated state, aiming to refine the solution progres-
sively. If this iterative method converges, it will land on a stationary point of the original
non-linear cost function, such as a local minimum or a saddle point with a zero derivative.
This technique is recognized as the Gauss-Newton method. The iterative approximation
process is illustrated in Fig. 2.11. The accuracy of the Gauss-Newton approximation to the
Hessian plays a crucial role in the algorithm’s convergence. This approximation will be
beneficial only if it is sufficiently accurate. To evaluate its effectiveness, one should examine
the complete Hessian. Without considering the weighting, where j goes over all elements in
vector ek, and∇2(ek(x))j is the Hessian of the j-th element in ek(x):

2
∑
k

JTk Jk +
∑
j

(ek(x))j∇2(ek(x))j

 (2.35)

The Hessian approximation primarily focuses on the terms JTk Jk on the left side. Given that
the term on the right is influenced by a specific element of the residuals, it is likely small
when the residuals themselves are small. If these residuals are centered around zero, there is
a good chance these terms balance each other out to some degree. Such characteristics of the
residuals enhance the convergence efficiency of the Gauss-Newton method, as highlighted
in the initial discussions about the cost function requirements at the beginning of this
section. The convergence is also better when the residual ek behaves almost linearly at their
minimum, leading to a near-zero value for that specific element∇2(ek(x))j .
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2.3.2 Levenberg-Marquardt method

As highlighted in the preceding section, the GN method determines update steps that do not
always result in a reduced cost. Depending on the nature of the cost function, this can pose
problems, potentially causing divergence or state oscillations. The Levenberg-Marquardt
(LM) method offers a solution to enhance performance in such scenarios. This method
introduces a parameter λ ≥ 0, which is always non-negative. One might initialize λ with
a nominal small positive number or perhaps a factor of the average diagonal component
from the initial H matrix in the Gauss-Newton process. Consequently, the calculation of the
update step ∆x (as in Eq. (2.28)) is adjusted as follows:

∆x = −(H + λI)−1b (2.36)

In essence, λ is added to each diagonal of H. The Levenberg-Marquardt method then
calculates the cost at the updated state, E(x + ∆x). If the new cost is lower, λ is reduced
(e.g., halved) and the new state is accepted. If the cost rises, the update is undone, λ is
increased (e.g., doubled), and another attempt is made. If no steps reduce the cost and λ
keeps growing, the algorithm stops, indicating likely convergence. This method ensures no
steps increase the cost.

Let’s break down the implications of adding a constant to the diagonal of H. Clearly,
when λ = 0, the update mirrors the Gauss-Newton step. As λ approaches infinity, H’s
influence diminishes, making the update roughly −(λI)−1b = − 1

λb. Given that b is half
the gradient of E(x) at x, the update step becomes a scaled version of the negative gradient,
with the scale factor inversely related to λ. This mirrors the gradient descent approach.
Hence, Levenberg-Marquardt acts as a bridge between Gauss-Newton and gradient descent.
It leans on GN when the Hessian approximation H is reliable, and reverts to gradient descent,
adjusting step size through λ, when it is not. The method targets either a saddle point or
a local minimum, which is only assured to be the global minimum if the cost function is
convex.

In Computer Vision, a frequently encountered but seldom discussed challenge with the
Levenberg-Marquardt method is residual validity. Take the example of stitching two images
(as presented previously), where the cost function sums up pixel value differences in the
overlapping regions. As images are repositioned during optimization, their overlapping areas
shift, altering the set of pixels contributing to the residuals. Ideally, we’d want maximum
pixels to aid in achieving the best alignment. But, the method must compare costs across
different states to ensure if a step is beneficial. If the residual sets vary between states, how
can a fair comparison be made? A simplistic approach might be to assign a constant cost
(like zero) to residuals present in only one state. However, this can mistake updates that alter
residual validities.

2.3.3 Optimizaton on manifolds

Sometimes, the components we aim to optimize are not in a Euclidean space but exist on a
manifold. A prevalent example in Computer Vision is camera orientations, which belong to
the 3D special orthogonal group, SO(3). A more straightforward example is 3D unit-length
directions, represented by 3D vectors but constrained to have a length of one.

Directly optimizing these elements’ representations is problematic because the optimiza-
tion might overlook these constraints, leading to incorrect updates. One workaround is to
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Figure 2.12. Illustration of a Manifold space. Since the manifold is smooth, local perturbations -
i.e.∆x in the illustration - can be expressed with a suitable Euclidean vector. Illustration courtesy
of Grisetti el al. [49].

use local Euclidean spaces that serve as tangent spaces to the elements’ current state. This
allows updates to be calculated in the tangent space, free from the original constraints. The
updated result can then be translated back to the element’s original representation. Think of
this in terms of optimizing 3D directions with a unit length.

Optimizing the components of such a direction vector might breach the unit-length
requirement. For a specific direction, we can establish a tangent space, symbolized by
a plane with the direction vector as its normal. Within this plane, we can identify two
orthogonal direction vectors to form a two-dimensional coordinate system. This serves
as the tangent space. Instead of a three-dimensional update to the direction vector, the
optimization computes a two-dimensional update within this system. After determining an
update step, which is a vector in the plane, we can combine it with the initial direction vector
and then adjust the result to unit length. For subsequent steps, a new tangent space is defined
based on the updated direction. While this example might seem overly simplistic, as one
could also re-normalize after a full 3D update, it showcases the concept clearly. Moreover,
3D updates would introduce an unnecessary degree of freedom.

Let’s structure our problem more clearly, focusing on the challenges highlighted in
this thesis. The primary variables we deal with are homogeneous transformation matrices,
denoted as SE(3). While these can be multiple, for the sake of clarity, let’s consider a single
variable represented by X (we use X and not T since this is the quantity we are going to
estimate). Instead of optimizing X directly, we introduce a tangent space perturbation or Lie
algebra, ∆x, which is of a smaller dimension, specifically ∆x ∈ R6. This perturbation,
∆x, encodes the translation and the imaginary part of the quaternion for us. To apply this
perturbation to our variable, we use the update function X � ∆x. This function leverages
the exponential map, exp(·), to elevate the element from the tangent space to the manifold
SE(3). Formally, the update is given by:

X′ = X � ∆x = X · exp(∆x) (2.37)

In a similar vein, we introduce another operator, �, which computes the vector perturbation
between two points on the manifold. It is defined as:

∆x = X′ � X = log(X′X−1) (2.38)

Here, exp and log represent the exponential and logarithmic map at the identity, respectively.
For compactness, we have discussed the scenario where only one variable is part of the
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optimization. However, when multiple variables are involved, adjustments will be necessary.
We will delve into the specifics later in the next chapters.

2.3.4 Factor-graphs

When the state dimension is composed by multiple variables (i.e., sensor poses, structure) it
is important to exploit the relationship and connectivity of the variables to efficiently solve
the problem: for this we employ factor-graphs. Factor-graphs are undirect graphs, usually
used in probability theory and information theory to represent factorized representations
of joint probability distributions. These unify and generalize several other graphical mod-
els, such as Bayesian networks and Markov random fields. In fields like SLAM and 3D
reconstruction they are extremely important because, when multiple variables are involved,
the problem is usually sparse. In other words, given a state composed by multiple entities
x = (x1, . . . ,xN ), the measurements (constraints) z relate only a subset of the whole state.
For instance, in a graph composed by only SE(3) poses (called usually pose-graph) the first
pose may not be related to the third and fourth pose and so on, while it is related only to the
second [62].

We extensively use factor-graphs in the works presented in this thesis. A factor-graph
usually is composed by variables and factors. Variables represent usually the state we want
to estimate, hence the position of the sensor SE(3) with respect to a fixed reference frame
and the 3D structure, factors (edges) represent the measurements, connecting the variables
of the graph (i.e.camera measurements, GNSS readings, dead reckoning).

2.3.5 Efficiency and precision

In this thesis, three specific steps within the Gauss-Newton and Levenberg-Marquardt
methods emerged as performance-critical in the research projects:

• with a high count of residuals, the computation of Jacobians Jk and the accumulation
of the matrix H often lead to performance bottlenecks;

• when optimizing a significant number of variables, determining the update (H−1b)
becomes a complex task;

• accumulating numerous numeric values in H and b can result in floating point errors
and precision loss.

To mitigate the first challenge, strategies such as minimizing the residual count or
utilizing GPU for H computation can be effective. For the second issue, leveraging the
sparsity of H or seeking approximate solutions for the update can be beneficial. To address
the third concern, it is essential to streamline the summation process, ensuring that values
of similar magnitudes are summed together, thereby maintaining numerical stability. In
our case, given the large number and independence of each pixels contributing to the final
estimate we discuss how we mitigate these issues.

Minimum degree ordering

In numerical analysis, especially when dealing with sparse matrices, the order in which we
process the rows and columns of a matrix can significantly affect the efficiency of certain
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operations, such as matrix factorization. Consider a large n× n system of equations given
by

Ax = b (2.39)

similar to one presented in Eq. (2.33), something we could possibly get in 3D reconstruction
problems. In this section we just give a brief insight on how these kind of systems are
efficiently solved, more details can be found in [45]. Here, A is a symmetric positive definite
matrix that is sparse. For a large n, when we factor A using Cholesky’s method, we often
encounter some “fil”, which is the introduction of non-zero entries in positions that were
originally zero during matrix factorization. An interesting aspect is that PAPT remains
symmetric and positive definite for any permutation matrix P. This allows us to solve a
reordered system: (PAPT )(Px) = Pb. The selection of P can significantly influence the
fill that arises during factorization. Therefore, reordering the rows and columns of the matrix
before factorization has become a standard practice.

Typically, solving a sparse positive definite system involves four key, independent steps:

1. determining an appropriate ordering P for A;

2. setting up a structure for L, which will be the Cholesky factor of PAPT ;

3. numerically factoring PAPT into LLT ;

4. solving the equation LLT (Px) = Pb.

It is important to note that steps (1) and (2) are solely based on the structure of A, and
do not depend on its numerical values. One of the primary concerns is to minimize the fill,
however, the problem of finding a best ordering for A in the sense of minimizing the fill
is computationally intractable: an NP-complete problem. We are therefore obliged to rely
on heuristic algorithms. One of the most effective of these is the Basic Minimum Degree
(BMD). The BMD ordering is one such heuristic method to reorder the rows and columns
of a matrix to achieve this. We will give a brief explanation to get the intuition.

The main idea behind BMD is straightforward. It involves selecting the node (or
row/column in the matrix context) with the minimum degree and eliminating it. The "degree"
of a node in this context refers to the number of non-zero entries in its corresponding row or
column.

Algorithm 1 Basic minimum degree ordering

Data: G . given a symmetric graph (original sparse matrix A)
determine the degree of each node
while G 6= ∅ do

select the node with the smallest degree y
delete y . perform Gaussian elimination on the corresponding row/col
update the degrees of the remaining nodes

Floating-point stability and GPU

Floating-point arithmetic in computers is inherently imprecise due to the finite representation
of numbers. When summing a sequence of floating-point numbers, especially if they vary
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widely in magnitude, the accumulated round-off errors can lead to significant inaccuracies
in the result. This is very common, in our circumstances where all the pixels of the image
contribute to determine the quantities H and b. In single-thread implementation, the concept
of compensated summation is a technique used to improve the numerical accuracy of
summation operations. One of the most well-known algorithms for compensated summation
is Kahan’s summation algorithm [55]:

Algorithm 2 Kahan summation algorithm

Data: input-vec . input vector
Result: S . sum
S ← 0, c← 0 . the compensation c will store and correct the error
for all x in input-vec do

temp = S + y . temporarily store the sum
c = (temp− S)− y . update the compensation
S = temp . sum update

By using compensated summation techniques like Kahan’s algorithm, one can achieve a
result that is closer to the exact sum than would be obtained with straightforward summation,
especially for long sequences of numbers.

In our multi-threaded GPU implementation, making the straightforward application
of compensated sum is challenging, nonetheless, GPU sum reduction techniques can be
beneficial. Sum reduction on GPUs efficiently aggregates large datasets by leveraging the
platform’s parallelism. This process involves dividing the data into smaller chunks, with
each thread computing a local sum. These sums are stored in shared memory (part of the
GPU memory accessible efficiently by all threads) and then combined hierarchically through
a tree-reduction method. This method successively reduces the active threads by half until a
single thread remains with the final sum. Finally, the results from all blocks are combined to
get the overall sum.

Optimizing this process involves techniques like coalesced memory access, avoiding
bank conflicts in shared memory, loop unrolling, and allowing threads to process multiple
data points. Though, challenges like warp divergence and the potential bottleneck of atomic
operations need careful handling. A detailed explanation can be found at [54].
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Chapter 3

Visual Place Recognition using
LiDAR Intensity Information

Place Recognition (PR) is a technique in robotics and computer vision that enables systems
to recognize previously visited places by identifying specific locations from the environment.
This capability is essential in many applications, including robotics, autonomous vehicles,
and augmented reality, as it facilitates navigation and provides a deeper understanding of an
environment’s spatial context.

Within the domain of SLAM, the role of PR is essential. As robots navigate, errors in
motion estimation can accumulate over time, leading to a drift in their perceived position.
Place recognition comes into play here, identifying previously visited places, termed as loops.
This identification allows the system to rectify these accumulated errors, aligning its current
perception with the previously mapped environment. Moreover, when a robot is placed in
an unfamiliar location within a known map, PR assists in determining its position within
that map. This is particularly crucial in scenarios like the "kidnapped robot problem," where
a robot, if moved to a different location, could lose its positional bearings. Furthermore,
another advantage of PR is its ability to maintain the consistency and accuracy of SLAM
systems, even across extensive operations or vast environments. By recognizing places
it has already visited, PR ensures that the map remains streamlined, avoiding redundant
expansions.

While existing 3D-LiDAR SLAM systems are adept at delivering accurate maps in
real-time on standard computers, there are still challenges. A significant number of these
systems either do not take into account loops [140, 141, 30] or depend on resource-intensive
operations for potential loop-detection [13], such as ICP combined with outlier rejection
mechanisms. This is because, detecting loops using only LiDAR data remains an open
challenge. However, when it comes to camera images, this task is addressed as VPR, and
there are already effective solutions in place [79, 131, 87].

As established in the introductory and background parts, it is evident that modern 3D
LiDARs have made significant strides, outperforming their predecessors in accuracy and
vertical resolution. When data from these LiDARs is processed into a panoramic image
Sec. ??, the resulting picture is comparable to that of a grayscale camera.

This chapter contribution is to analyze the performance of existing visual place recog-
nition techniques when they are applied to the intensity data derived from a 3D LiDAR.
Through our evaluations of various VPR pipelines on multiple robotic/vision datasets using
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Figure 3.1. Qualitative results. Top: Example pairs of a query and a reference intensity image from
our self-recorded dataset (IPB Car). Note that due to its high horizontal resolution (original size:
64× 1024), the intensity image has been divided in two parts, one above the other. The green
line illustrate descriptor matches provided by HBST [105] on intenisty data. Bottom: Newer
College [98] (left) and IPB car (right) datasets used for evaluation, valid loops detected using
HBST highlighted in green.

3D LiDARs, we have found that adapting existing VPR techniques can indeed yield reliable
loop-detection, making it feasible to implement LiDAR-only SLAM on a larger scale. A
visual representation of the application of VPR approaches to LiDAR intensity cues can be
seen in Fig. 3.1.

3.1 Related Work

The early loop-detection detection systems for 3D scans extracted features from the raw
data. Several feature extractors have been proposed, each capturing some traits of a local
neighborhood of the scene. Early studies in this direction were made by Johnson [61] and
later by Huber [57]. The former extracted some local 3D features from local point cloud
patches, describing the local surface around points with orientation. The latter built on top of
Johnson’s Spin Images a methodology to perform global registration exploiting these features.
In this sense, each query frame is compared with a database, and if the surfaces of the local
descriptors are “similar” between query and reference, then a potential loop-closure is
detected. Steder et al. [115] investigated novel point features that are extracted directly from
range images, and later, they applied them in the context of loop-detection [114]. Finally,
Steder et al. proposed to use more robust NARF features [117] together with Bag-of-Words-
based search to increase the efficiency and the accuracy of the detection [116]. Orthogonally,
Magnusson et al. investigated the use of Normal Distributed Transform (NDT) as features to
match 3D scans [82]. This approach has been originally developed to perform registration
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between scans; still, the authors demonstrated that NDT-based features capture enough
structure to be used in the context of place recognition. Röhling et al. [100] investigated
the use of histograms computed directly from the 3D point cloud to define a measure of
the similarity of two scans. Novel types of descriptors have been investigated, exploiting
additional data gathered by the LiDAR sensor – i.e., light remission of the beams [23, 53].
However, despite being very attractive, these descriptors are time-consuming to extract and
match, resulting in a slower system overall.

More recently, deep learning approaches are spreading thanks to the increased computing
power of today’s computers. Dubé et al. [36] proposed the detection and matching of
segments to recognize whether we are observing an already visited place. Uy et al. [126]
employed a CNN based on PointNet [96] to compute NetVLAD holistic descriptors [10] out
of range images. Zaganidis et al. [138] used semantic information extracted from the point
cloud [97] to enrich NDT features, resulting in more accurate and robust place recognition.
Chen et al. [21], instead, developed and end-to-end solution to evaluate the overlap of
two 3D scans together with a raw estimate of the yaw angle. Still, all deep-learning-based
approaches require a great amount of data to perform training (most of the times also labeled)
and a lot of computing power to work properly.

A lot of visual place recognition systems exploit features such as SURF [11] or SIFT [77]
and several approaches apply bag-of-words techniques, i.e., they perform matching based
on the appearance statistics of such features. To improve the robustness of appearance-based
place recognition, Stumm et al. [120] consider the constellations of visual words and keeping
track of their covisibility. Another popular approach for visual place recognition proposed
by Galvez-Lopez et al. [42] proposes a bag of words approach using binary features for fast
image retrieval. Single image visual localization in real-world outdoor environments is still
an active field of research, and one popular approach used in robotics is FAB-MAP2 [25].
For across season matching using SIFT and SURF, Valgren and Lilienthal [127] propose to
combine features and geometric constraints to improve the matching.

To deal with substantial variations in the visual input, it is useful to exploit sequence
information for the alignment, compare [75, 83, 84, 87, 130, 131]. SeqSLAM [84] aims at
matching image sequences under seasonal changes and computes a matching matrix that
stores the similarity between the images in a query sequence and a database. Milford et
al. [83] present a comprehensive study about the SeqSLAM performance on low-resolution
images. Related to that, Naseer et al. [87] focus on sequence matching using a network
flow approach and Vysotska et al. [130] extended this idea towards an online approach with
lazy data association and build up a data association graph online on-demand, also allowing
flexible trajectories in a follow-up work [131].

In this chapter, we investigate how to perform fast and accurate place-recognition using
additional channels available in modern 3D-LiDAR sensors. Our approach applies well-
known methodologies originally designed to work with camera images to 3D LiDARs data,
exploiting the increased descriptiveness of such sensors. We perform multiple experiments
with different combinations of features – image retrieval tools. Among the features, we
picked computationally efficient binary ones like BRISK [72] and ORB [101]. Instead,
as floating point descriptors, we selected SURF [11] and Superpoint, a more recent neu-
ral extractor that shows impressive results compared to older geometrical features [31].
Among image-retrieval tools, we use a Hamming Distance Embedding Binary Search Tree
(HBST) [105], a tree-like structure that allows for descriptor search and insertion in logarith-
mic time by exploiting particular properties of binary feature descriptors, and DBoW2 [42]
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(Bags of Binary Words for Fast Place Recognition in Image Sequences) that allows fast
image retrieval based on the histogram of the distribution of words appearing in the image
both for floating point and binary descriptors.

3.2 Visual Place Recognition applied to LiDAR Intensity Im-
ages

Popular VPR approaches often store a database of places in the form of a collection of image
keypoints and descriptors (and potentially a coordinate in some world frame). The keypoints
are salient points in the image, possibly corners and edges, while the descriptors encode the
appearances around keypoints.

In the process of finding similar places, two images are regarded as similar if a substantial
part of their keypoints’ descriptors are close to each other. Performing VPR using this
paradigm requires first to convert a query image into a set of keypoints and descriptors and
second to efficiently find images with similar descriptors. Effective solutions are available to
quickly find the potential matches in the database, see [79]. Among all, we focus specifically
on HBST [105] and DBoW2 [42] as two promitent approaches.

An intensity image constructed from a laser scan has a number of rows equal to the
number of vertical beams and a number of columns equal to the number of scanning steps
along the azimuth. Unfortunately, most public datasets provide the scans as annotated
point clouds, and recovering the beam measurements needed for image formation requires
a cylindrical projection. Due to vehicle motion, round-offs, or unknown parameters, this
projection will likely result in missing data in some parts of the image. These phenomena
may hinder the straightforward feature extraction process.

In the following, we will first discuss how we handle image formation from a laser scan,
and then we review the structure of a straightforward pipeline for VPR.

3.2.1 Correcting LiDAR image for consistent feature extraction

The uneven distribution of the vertical beams as well as calibration errors in the scanner’s
vertical FoV may lead to empty gaps in the resulting image, usually whole horizontal rows.
Holes in an image can be detrimental to feature extraction due to a variety of reasons. These
gaps introduce discontinuities, which can be problematic for algorithms that rely on smooth
transitions, such as those based on gradients or edge detection.

Addressing this issue can be approached in various ways. One method involves using
the "projection by ID" technique, as discussed in Sec. 2.2.3. However, this method is
not differentiable. An alternative is to directly measure and determine the exact intrinsic
parameters of the LiDAR (max vFoV, min vFoV), since datasheets might not always be
accurate. Yet, this does not always guarantee a resolution to the problem. A third solution is
vertical interpolation. In our experiments, we opted for this third approach. To eliminate the
empty rows in the LiDAR image, we first identify them using a binary threshold combined
with a horizontal kernel spanning the image’s width. For each pixel in these void rows,
we compute an interpolated value based on the values of the nearest valid rows above and
below. This interpolation ensures smoother feature extraction, minimizing gradient spikes.
However, for geometric verification, we avoid using these interpolated values to prevent
potential inaccuracies. Fig. 3.2 shows the result of this procedure.
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Figure 3.2. Empty lines removal. From top to bottom, original image after projection from 3D point
cloud as explained in Sec. 3.2.1, detection of empty rows highlighted in red, result after image
manipulation. Each image shown has been cropped to half of their horizontal size for better
viewing.

3.2.2 Feature extraction

As stated at the beginning of this section, the feature extraction process aims at compressing
an image in a set of interest points or keypoints. A descriptor vector captures the appearance
of the image in the neighborhood of the keypoint. The detector outputs a set of keypoint
{ki = (ui, vi)>}, in image coordinates. A key quality of a keypoint detector is its ability to
identify points that are “salient” or “locally distinct”. In other words, a good detector will
identify the projection of the same point in the world upon small changes in the viewpoint.
Typical approaches consider the image gradient at different scales to compute keypoints.
Thus, to successfully operate, a detector requires the gradients in the image to capture the
local intensity difference at nearby regions of the world. Accordingly, these approaches do
not work when the vertical resolution is too low, since in this case, changes in the gradient
are dominated by sampling effects. Similarly, typical feature detectors operate on a small
image patch from which they compute some quantity that is as invariant as possible to mild
warpings of the patch itself. This ensures that regions of the image that look alike will result
in similar descriptors. For each keypoint ki, the extractor computes a descriptor vector
d(ki). This vector consists of either floating point or binary values.

We directly employed well-known combinations of feature detectors and extractors[72,
101, 12] whose C++ implementation is publicly available [15]. We also tested a more recent
neural feature extractor by Detone et al. [31].

3.2.3 Feature-based VPR

Two images of the same scene acquired with similar viewpoints will have a high number of
descriptors that have a small distance. To this extent, we should define a suitable metric ed
for this comparison. For floating point descriptors, ed a standard choice is the Euclidean
distance in Rn (other metrics such as the cos-similarity could be employed instead). For
binary ones, the Hamming distance is commonly employed.

Relying on the metric ed and the invariant properties of the descriptors, we can find
corresponding points between two images Iq and Ir by finding for each keypoint kq ∈ Iq
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FAST threshold 40

ORB nFeatures 300
scaleFactor 1.2
scaleFactor 8

nLevels 8
edgeThreshold 15

BRISK threshold 30
nOctaves 3

patternScale 1

SURF hessianThreshold 400
nOctaves 4

nOctaveLayers 3

Superpoint minProbability 0.05
nFeatures 300

Table 3.1. Configuration of keypoints detector and descriptors extractors used.

the closest keypoint kr ∈ Ir in the descriptor space:

k?r = argmin
kr

(ed(d(kq),d(kr))) : kq ∈ Iq kr ∈ Ir. (3.1)

A straightforward way to solve Eq. (3.1) is by exhaustive search. This process is
complete since it returns all neighbors according to the distance metric. However, it quickly
becomes prohibitive as the size of the database increases, thus preventing online operations.
Efficient approaches that perform an approximate search are available. These methods
usually organize the features in the database in a search structure. Common choices are
search trees such as KD-trees or binary trees. The splitting criterion and the parameters of
the tree control the completeness of the search.

Alternative methods preprocess the features in the image by describing each image as
a histogram of “words”. The words are computed by determining a priori a “dictionary”
from a training image set. The elements of the dictionary are the clusters of features in the
training set. Each feature in an image will contribute to its histogram based on the “word”
in the dictionary closest to the feature. As a representative for tree-based approaches, we
use HBST [105], while for BoW, we used DBoW2 [42]. In the next section, we will discuss
in more detail the experimental configuration.

3.3 Experimental Evaluation

This evaluation analyzes our combinations of feature extractors and VPR pipelines on
intensity images generated from LiDAR scanner point clouds and intensity data. In more
detail, we evaluate the following combinations:

• FAST - ORB - HBST
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Dataset Description LiDAR FoV [deg] GT

Newer College (long) [98] OD, campus-park OS1-64 (Gen 1) 33.2 Ext. Loc.

IPB Car (self-recorded) OD, urban OS1-64 (Gen 2) 45 RTK-GPS

Ford Campus (00) [91] OD, urban HDL 64-E 26.9 RTK-GPS

KITTI (00) [44] OD, urban HDL 64-E 26.9 RTK-GPS
Table 3.2. Datasets we used for evaluation. OD abbreviate outdoor-dynamic, Ext. Loc. stands for

External Localization System.

• FAST - BRISK - HBST

• FAST - ORB - DBoW2

• Superpoint - DBoW2

• FAST - SURF - DBoW2

We test these configurations on four datasets, three publicly available, and one self-recorded
dataset using an automated car, see Tab. 3.2 for dataset details. All datasets provide some cue
of the robot position independent from the LiDAR sensor, which we use to construct ground
truth place information. This is usually done with an RTK-GPS or an external reference
system.

The ground truth is a set of matching pairs of scans acquired at nearby locations. A pair
is a match if the scans’ recording locations are close according to the external system, and
an ICP registration succeeds (up to 1 m in translation and 20◦ in rotation). We processed the
datasets sequentially by adding the query image Iq to the database at each step. We obtain a
set (potentially empty) of images similar to Iq at each query, and we verify these matches
against the ground truth. From the returned images, we disregard those added within the
most recent 120 steps. We do this to not positively bias the evaluation.

For each dataset, we tested the combination of feature extractor and image retrieval
systems mentioned before. To quantify the performances of one run, we evaluated common
statistical quantities – i.e., Precision and Recall. To this end, we introduce the terms true
positive to indicate a loop-closure that is present in the ground truth database and false
positive to indicate a wrong loop-closure. Analogously, a false negative represents a loop-
closure that is present in the ground truth database but has not been reported by the method
in analysis; a true negative represents its contrary. Hence, we can define Precision, Recall
and F1 Score using the number of true positives Tp, false positives Fp, true negatives Tn and
false negatives Fn as follows:

P = Tp
Tp + Fp

R = Tp
Tp + Fn

F1 = 2 P ·R
P +R

. (3.2)

We use FAST as the keypoint detector apart from Superpoint that outputs pairs of
keypoints and descriptors directly for all experiments. For each dataset, we extracted the
following descriptors: ORB, BRISK as binary and Superpoint and SURF as floating point.
As retrieval methods, we use HBST with parameters δmax = 0.1 and Nmax = 50 for the
binary features. We use DBoW2 for all features but BRISK, which is not supported in by



36 3. Visual Place Recognition using LiDAR Intensity Information

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

P
re

ci
si

o
n

 (
co

rr
ec

t/
re

p
o

rt
ed

 a
ss

o
ci

at
io

n
s)

Recall (correct/possible associations)

Precision-Recall: IPB Car Dataset

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

P
re

ci
si

o
n

 (
co

rr
ec

t/
re

p
o

rt
ed

 a
ss

o
ci

at
io

n
s)

Recall (correct/possible associations)
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Figure 3.3. Precision-Recall curves of the closures computed both with different combinations of
feature extractors – image matchers on the LiDAR intensity image. Greater accuracy is reported
in general by ORB-HBST, ORB-DBoW2 and Superpoint-DBoW2. Precision-Recall curves have
been generated using different percentiles of query closures vector.
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HBST BRISK
DBoW2 ORB Voc-Main
DBoW2 ORB Voc-Train
DBoW2 Superpoint
DBoW2 SURF

Figure 3.4. Localization timings of different combinations of feature extractors – image matchers.
As expected binary descriptors take lower time to extract and match compared to floating points
one.

default package, and we extend it to operate with Superpoint. Configuration of each feature
extractor reflects Tab. 3.1.

Since BoW approaches require a dictionary that depends on the sensor characteristics,
we train such dictionaries using a portion of the datasets not used for the evaluation. In
the plots, these curves are labeled with Voc-Train. More in detail, we train the vocabulary
by using 3000 intensity images, a branching factor of 10, and a depth level of 5, using
the classic euclidean distance to measure descriptor similarity over floating points and the
Hamming distance for the binary ones. For comparison, we also report the results obtained
with the image-based dictionaries packaged in the software release of DBoW2 (Voc-Main).

We conduct several experiments, varying the type of descriptor and VPR matcher. We
report the precision-recall curves (Fig. 3.3), maximum harmonic mean (Tab. 3.3, Fig. 3.6)
reached with LiDAR intensity images against normal camera images, localization timings
(Fig. 3.4) and valid loops detected drawn on the trajectories (Fig. 3.1) of the most significant
experiments.

Overall, existing VPR approaches shows usable results at negligible computation over
the two most recent datasets (IPB Car and Newer College [98]) (Fig. 3.3 – Fig. 3.4). Results
obtained in KITTI [44] and Ford Campus [91] are not comparable with the other two
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Figure 3.5. Qualitative comparison between IPB Car LiDAR intensity image (up) and KITTI
LiDAR intensity image (bottom) (both unprocessed). A lower vertical FoV and the uneven
distribution of channels along the spinning axis makes KITTI intensity image unusable for this
task.

Newer College [98] IPB Car Ford Campus [91] KITTI [44]

0.6751 0.7088 0.115 0.097
Table 3.3. Max F1 score reached in full validation over the four datasets with combination of HBST

[105] and ORB [101].

modern datasets. The HDL-64E utilized to record this data has irregularly distributed
vertical laser beams. This is most likely due to a calibration offset that was not taken
into consideration during the point cloud creation process (from raw spherical LiDAR
measurements to Cartesian coordinates). This, along with the reduced vertical FoV (26.9
deg), results in two major issues:

• weakness to viewpoint invariancy throughout different vertical locations in the cylin-
drical image. The same item may seem different depending on the LiDAR orientation;

• many false positive features would be detected close to the empty gaps (black hori-
zontal lines) due to radical change in intensity.

As a result, we were not able to produce acceptable outcomes for the two datasets (KITTI
and Ford Campus) (Tab. 3.3), see also the qualitative comparison of the intensity images
Fig. 3.5.

We obtain the best results by combining ORB with HBST and DBoW2. The combination
Superpoint-DBoW2 shows a comparable performance. However, floating point descriptor
comes with a higher computational cost, see Fig. 3.4. The accuracy on Newer College
dataset [98] is inferior to the one obtained on our self-recorded dataset called IPB Car. This
is due to the small changes on the roll axis since this data has been recorded walking in the
campus, which, in turn, translates into a higher viewpoint variation within the same dataset.

For the experimental campaign, we used a PC running Ubuntu 20.04, equipped with an
Intel i7-10750H CPU@2.60GHz and 16GB of RAM. We run neural network-based feature
detection on a NVIDIA GeForce GTX 1650Ti.

3.4 Conclusion

In this chapter, we provide an analysis of the performance of visual place recognition
techniques for loop closing, applied to the intensity information of a 3D LiDAR scanner.
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.

We evaluated gold standard visual place recognition approaches on four different datasets.
Except for one outdated LiDAR, which does not provide stable intensity measurements, this
transfer was proved to be successful and very close to results obtained with passive sensors
(Fig. 3.6). On modern sensors with a high vertical resolution, we obtained encouraging
results. Despite not proposing a new approach in this work, we believe that existing LiDAR-
based mapping systems can easily benefit from our findings. We furthermore expect that one
can improve the performance further by designing or learning descriptors that are specifically
optimized for intensity cues of LiDAR scanners. In the following chapter, we will delve
deeper into the capabilities of LiDAR imaging, utilizing both feature-based and photometric
techniques. Throughout, we will approach the LiDAR as we would a camera.
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Chapter 4

MD-SLAM: Multi-cue Direct SLAM

SLAM is a popular field in robotics, and after roughly three decades of research, effective
solutions are available. As many sectors rely on SLAM, such as autonomous driving,
augmented reality and space exploration, it still receives much attention in academia and
industry. The advent of robust machine learning systems allowed the community to enhance
purely geometric maps with semantic information or replace hard-coded heuristics with data-
driven ones. Within the computer vision community, we have seen direct (or photometric)
approaches used to tackle the SLAM Structure from Motion (SfM) problem. As already
mentioned in the introductory part, the direct techniques address registration by minimizing
the pixel-wise error between image pairs or between an image and a model. By not relying
on specific features and having the potential of operating at subpixel resolution on the entire
image, direct approaches do not require explicit data association and offer the possibility
to boost registration accuracy [108]. Whereas these methods have been successfully used
on monocular, stereo, or RGB-D images, their use on 3D LiDAR data is less prominent—
probably due to the comparably limited vertical resolution relation to cameras.

Della Corte et al.[24] introduced a multi-cue photometric registration method for RGB-
D cameras. This system expands photometric techniques to various projective models and
improves robustness by including additional channels, like normals, in the cost function.
As mentioned in previous chapters (Chapter 2 and Chapter 3), LiDAR provides not just
range data but also information on intensity or reflectivity. Additionally, newer versions
of LiDARs come with up to 128 vertical beams, enhancing the overall laser FoV. This
development brings the image formed from the point cloud closer to what a traditional
camera captures. In the previous chapter, we showed that classic optical features can be
extracted and matched in LiDAR imaging; in this chapter, we present that direct registration
methods can be effectively applied to LiDAR images.

The dominant paradigm for modern SLAM systems today is graph-based SLAM. A
graph-based SLAM system works by constructing a SLAM graph where each node repre-
sents the sensor position or a landmark, while edges encode a relative displacement between
nodes. Pose-graphs are a particular case in which only poses are stored in the graph. These
local transformations stored in the edges are commonly inferred by comparing and matching
sensor readings. This chapter investigates the fusion of multi-cue direct registration with
graph-based SLAM.

The main contribution of this chapter is a flexible, direct SLAM pipeline for 3D data.
To the best of our knowledge, our approach is the only SLAM system that can deal with
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Figure 4.1. Scenes reconstructed using our pipeline. Top: results of a self-recorded dataset using
Intel Realsense 455 RGB-D. Bottom: using LiDAR OS0-128 of the cloister sequence from the
Newer College dataset [142].

RGB-D and LiDAR in a unified manner. Inspiring from [24], we adapted and revised
the approach to compute the incremental motion for sensors that handle both RGB-D and
LiDAR data. For the detection of loop-closures, we use an appearance-based algorithm
that leverages a Binary Search Tree (BST) structure introduced by Schlegel et al. [105],
filled with binary feature descriptors as described in [101]. All components that require
the solution of an optimization problem rely on the same framework [49], resulting in a
compact implementation. It is designed for flexibility, hence not optimizing the SLAM
system to a specific sensor. Our system has been tested on both, RGB-D and LiDAR data,
using benchmark datasets. The accuracy is competitive concerning other sensor-specific
SLAM systems, while it outperforms them if some assumptions about the structure of the
environment are violated. We release a CUDA/C++ implementation that runs in realtime for
both sensors: https://github.com/rvp-group/mdslam. Fig. 4.1 illustrates some estimates of
MD-SLAM.

4.1 Related Work

3D SLAM has been widely addressed by the computer vision and robotics community and
a large number of valid SLAM systems are available. Whereas many deserve mention,
for compactness we focus only on the most seminal one, strictly related to our work.
The available computational resources limited early approaches to operate offline [90]
in fairly limited environments[134]. After the Kinect sensor became available about 15
years ago, we observed a revamped interest in RGB-D SLAM. Newcombe et al. [58] were

https://github.com/rvp-group/mdslam
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the first to leverage a dense tracking on a Truncated Signed Distance Function (TSDF)
stored in the GPU while using massively parallel implementation to render the surface
of the local scene perceived by the sensor. Meanwhile, Segal et al. [109] proposed a
robust variant of Iterative Closest Point (ICP) relying on a point-to-plane metric. These
initial methods addressed the open-loop registration approaches, tracking the pose of the
sensor in a small neighbourhood. The advent of efficient optimization systems such as
iSAM [62] and g2o [51], made it possible to build an effective full-fledged 3D SLAM
system supporting loop closures and providing an online globally consistent estimate. Novel
efficient salient floating point [12] and binary image descriptors [101], paired with bag-
of-words retrieval methods inspired from web search engines, lead to impressive place
recognition approaches [42]. These methods were then employed within visual SLAM
systems, ORB-SLAM by Mur Artal et. al [86] being one of the most popular ones. The
pipeline fully relied on the stability of features (keypoints), minimizing the reprojection
error of the reconstructed landmarks within the image. In contrast to these indirect methods,
another line of research aimed at photometric error minimization. Keller et al. [65] use
projective data matching in a dense model, relying on a surfel-based map for tracking. Others
rely on keyframe-based technique [66]. As it happened for feature-based approaches, these
works were assembled into full visual SLAM systems [37]. More recently, BAD-SLAM, a
surfel-based direct BA system that combines photometric and geometric error [108] using
feature-based loop closures, shows that, for well-calibrated data, dense BA outperforms
sparse BA. The accuracy and elegance shown by photometric approaches lead to further
developments such as MPR [24] aiming at unifying both LiDAR and RGB-D devices into a
unique registration method. Built maps can then be used for robot navigation [123], even in
hazardous environments [119].

In parallel, the community approached LiDAR-based odometry by seeking alternative
representations for the dense 3D point clouds. These include 3D salient features [140, 59],
subsampled clouds [128] or NDT [118]. Nowadays, LiDAR Odometry and Mapping
(LOAM) is perhaps one of the most popular methods for LiDAR odometry [140, 141]. It
extracts distinct features corresponding to surfaces and corners, then used to determine point-
to-plane and point-to-line distances to a voxel grid-based map representation. A ground
optimized version (Lego-LOAM) method has been later proposed [110], as it leverages
the presence of a ground plane in its segmentation and optimization steps. In contrast
to sparse methods, dense approaches suffer less in a non-structured environment [13].
Compared to RGB-D images, 3D LiDARs offer lower support for appearance-based place
recognition. It is common for dense LiDAR SLAM systems to attempt a brute force
registration with all neighborhood clouds to seek loop closures. Thanks to the typically
small drift, this strategy is most successful; however, computational costs grow significantly
in large environments. LiDAR loop closures have been addressed in different ways compared
to RGB-D. Magnusson et al. proposed an approach suitable for NDT representations [82].
Röhling et al. [100] investigated the use of histograms computed directly from the 3D point
cloud to define a measure of the similarity of two scans. Novel types of descriptors have
been investigated, exploiting additional data gathered by the LiDAR sensor – i.e., light
emission of the beams [23, 53]. However, despite being very attractive, these descriptors are
time-consuming to extract and match, resulting in a slower system overall. Recent works
address loop-closures detection in a RGB-D fashion, relying on the visual feature matching
extracted from the image obtained by using the LiDAR intensity channel [32].

Building on top of prior work [24, 32], this paper presents a flexible and general SLAM
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Loop Closures
➢ loop detection
➢ loop validation

Input Preprocessing
➢ compute normals
➢ scale and stack images

Tracking
➢ refine keyframe
➢ spawn keyframe

PGO

Direct Error Minimization

Figure 4.2. Illustration of our system. Depth Id
t and Ig

t images are taken as input from the pipeline.
An optimized trajectory within a map is produced as output. We do not spawn a keyframe i
each processed images t (explained in Sec. 4.2.3). This system works independently both for
RGB-D and LiDAR. Note that for LiDAR we take range image and not depth image as input.

approach. It is a direct method working on RGB-D and 3D LiDAR data alike providing a
unified approach. Our results show that it is competitive with other sensor-specific systems.

4.2 Multi-cue Direct SLAM

Our approach relies on a pose-graph to represent the map. Nodes of the pose-graph store
keyframes in the form of multi-cue image pyramids. Our pipeline takes as input intensity
(grayscale) and depth images for RGB-D or intensity and range images for LiDAR. For
compactness, we will generalize, mentioning only depth images. The pyramids are generated
from the inputs images each time a new frame becomes available. By processing the depth
information, our system computes the surface normals and organizes them into a three-
channel image, which is then stacked to the original input to form a five-channel image.
Pyramids are generated by downscaling this input. This process is described in Sec. 4.2.1.

The pyramids are fed to the tracker, which is responsible for estimating the relative
transform between the last keyframe and the current pyramid through the direct error
minimization strategy summarized in Sec. 4.2.2. The tracker is in charge of spawning new
keyframes and adding them to the graph when necessary, as discussed in Sec. 4.2.3.

Whenever a new keyframe is generated, the loop closure schema, described in Sec. 4.2.4,
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Figure 4.3. Cues generated for LiDAR (top) and RGB-D (bottom) images. The first row/column
shows the intensity Ii, the middle shows the depth Id, and the last one illustrates the normals
encoded by color In. The red pixels on the intensity cues are invalid measurements (i.e., depth
not available).

seeks for potential relocalization candidates between the past keyframes by performing a
search in appearance space. Candidate matches are further pruned by geometric validation
and direct refinement. Successful loop closures result in the addition of new constraints in
the pose-graph and trigger a complete graph optimization as detailed in Sec. 4.2.5.

4.2.1 Input preprocessing

As discussed in the background chapter, specifically Sec. 2.2.4, images can represent multiple
quantities. The input of our SLAM pipeline can be a pair of intensity/grayscale Ig and depth
Id (for RGB-D) or range Iρ (for LiDAR) images for each sensor pose. For simplicity we
will discuss only about depth d which is suitable for RGB-D, but the same concept applies
for LiDAR range ρ. The output of the preprocessing step is a five-channel image pyramid
for each input pair. The first two channels of an image in the pyramid are intensity and
depth, while the other three channels encode the surface normals. To calculate the normal at
pixel u we inverse project the pixels in the neighborhood U = {u′ : ‖u− u′‖ < τu} of a
radius τu inversely proportional to the depth at the pixel Id(u). The normal nu is the one
of the plane that best fits the inverse projected points from the set U , and is oriented towards
the observer. All valid normals are assembled in a normal image In, so that In(u) = nu.
Hence, the final five-channel image is obtained by stacking together Ig, Id, and In. In the
remainder, we will refer to the generic channel as a cue Ic.

Photometric approaches perform an implicit data association at a pixel level. Whereas
attractive for their accuracy, these methods suffer from relatively small convergence basins
that decrease with the image’s resolution: the higher the image resolution, the narrower the
convergence basin will be. To lessen this effect, we generate multiple copies of the same
image at decreasing resolution to form a pyramid. The optimization will proceed from the
coarser to the finest level (top of Fig. 4.2 shows the “image pyramid structure”).

Each level of a pyramid consists of a multi-cue image generated from Ig, Id and In, by
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downscaling at user-selected resolutions. In our experiments, we typically use three scaling
levels, each half the resolution of the previous level.

4.2.2 Photometric cost function

As in direct error minimization approaches, our method seeks to find the transform X∗ ∈
SE(3) that minimizes the photometric distance between the two images:

X∗ = argmin
X∈SE(3)

∑
u
L‖ Ig

i+1(u)− Ig
i

u′︷ ︸︸ ︷(
π
(
Xπ−1 (u, ρ)

))︸ ︷︷ ︸
eu

‖2 (4.1)

where eg
u denotes the error between corresponding pixels and L is the Huber robust

loss. The evaluation point u′ of Ig is computed by inverse projection the pixel u, applying
the transform X and projecting it back. To carry out this operation, the depth at the pixel
d = Id(u) needs to be known, as explained in Sec. 2.2.

Eq. (6.2) models classical photometric error minimization assuming that the cues are
not affected by the transform X. In our case, depth and normal are affected by X. Hence,
we need to account for the change in these cues, and we will do it by introducing a mapping
function ζc(X, Ic(u)). This function calculates the pixel value of the cth cue after applying
the transform X to the original channel value Ic(u). We can thus rewrite a more general
form of Eq. (4.1) that accounts for all cues and captures this effect as follows:

X∗ = argmin
X∈SE(3)

∑
c

∑
u
L‖ ζc(X, Ic

i+1(u))− Ic
i (u′)︸ ︷︷ ︸

ec
u

‖2Ωc (4.2)

The squared Mahalanobis distance ‖·‖2Ωc is used to weight the different cues (i.e.from noise).
Further details (but not fundamental to understand this chapter) and analytic Jacobians will
be provided when we introduce the photometric error minimization for Bundle Adjustment
in Sec. 6.2.2. While the error may vary slightly, the concept remains similar.

While approaching the problem in Eq. (4.2) with the iteratively re-weighted optimization
method described in Sec. 2.3, particular care has to be taken to the numerical approximations
of floating-point numbers, as detailed in Sec. 2.3.5. In particular, since each pixel and cue
contribute to constructing the quadratic form with an independent error ecu, the summations
of H and b (Eq. (2.30), Eq. (2.31)) might accumulate millions of terms. Hence, to lessen
the effect of these round-offs, the summation has to be computed using a stable algorithm,
either in GPU or for single-thread implementations Sec. 2.3.5.

We use multi-cue direct alignment in incremental position tracking, explained in next
section (Sec. 4.2.3) and in loop closure refinement and validation (Sec. 4.2.4). Eq. (4.1) and
Eq. (4.2) emphasize the incremental nature of the problem with indices 〈i, i+ 1〉, which are
apt for tracking/odometry estimation. However, for loop validation, this approach is not
applicable, and it is more appropriate to use image indices 〈i, j〉 as mentioned in Sec. 4.2.4.

4.2.3 Tracking

This module is in charge of estimating the open-loop trajectory of the sensor. To this
extent, it processes new pyramids as they become available by determining the relative
transform between the last pyramid Pt, and the current keyframe Ki. A keyframe stores a
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global transform Xi, and a pyramid Pi. The registration algorithm of Sec. 4.2.2 is used to
compute a relative transform Zi,t between the last two pyramids. Whenever the magnitude
of such a transform exceeds a given threshold or the overlap between Pi and Pt becomes
too small, the tracker spawns a new keyframe Ki+1, with transform Xi+1 = XiZi,i+1.
Furthermore, it adds to the graph a new constraint between the nodes i and i + 1, with
transform Zi,i+1, and information matrix Ωi,i+1. The latter is set to H matrix of the direct
registration at the optimum. The generation of the new keyframe triggers the loop detection
described in the next section. Using keyframes reduces the drift that would occur when
performing subsequent pairwise registration since the reference frame stays fixed for a longer
time. Potentially, if the sensor hovers at a distance smaller than the keyframe threshold, all
registrations are done against the same pyramid, and no drift would occur.

4.2.4 Loop detection and validation

This module is responsible for relocalizing a newly generated keyframe with respect
to previous ones. More formally, given a query frame Ki, it retrieves a set of tuples
{〈Kj ,Zi,j ,Ωi,j〉}, consisting of a past keyframe Kj , a transform Zi,j between Ki and Kj
and an information matrix Ωi,j characterizing the uncertainty of the computed transform.
Our system approaches loop closing in multiple stages. At first, we carry on visual place
recognition on the intensity channels. This approach leverages the results of previous
work [32]. For visual place recognition, we rely on ORB feature descriptors, extracted from
the I i of each keyframe. Retrieving the most similar frame to the current one results in
looking for the images in the database having the closest descriptor “close” to the one of the
current image. To efficiently conduct this search, we use a hamming distance embedding
binary search tree (HBST) [105], a tree-like structure that allows for descriptor search and
insertion in logarithmic time by exploiting particular properties of binary descriptors. A
match from HBST also returns a set of pairs of corresponding points between the matching
keypoints. Having the depth and inverse projecting the points, we can carry on a straightfor-
ward RANSAC registration. Finally, each candidate match is subject to direct refinement
(Sec. 4.2.2). This step enhances the accuracy and it provides information matrices on the
same scale as the ones generated by the tracker. The above strategy is applied independently
to RGB-D or LiDAR data. These surviving pairs {〈Kj ,Zi,j ,Ωi,j〉}, constitute potential
loop closing constraints to be added to the graph. However, to handle environments with
large sensor aliasing, we introduced a further check to preserve topological consistency.
Whenever a loop closure is found, we carry on a direct registration between all neighbors
that would result after accepting the closure. If the resulting error is within certain bounds,
the closure is finally added to the graph, and a global optimization is triggered.

4.2.5 Pose-graph optimization

The goal of this module is to retrieve a configuration of the keyframes in the space that
is maximally consistent with the incremental constraints introduced by the tracker and
the loop closing constraints by the loop detector. A pose-graph is a special case of a
factor-graph, presented in the preliminaries (Sec. 2.3.4). The nodes of the graph are the
keyframe poses X = {Xi}i=1:N , while the constraints encode the relative transformations
between the connected keyframes, together with their uncertainty {〈Zi,j ,Ωi,j〉}. Optimizing
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Figure 4.4. Some scenes from Newer College dataset (LiDAR) - right, and self-recording data
(RGB-D) - left, reconstructed with MD-SLAM.

RGB (480x640) LiDAR (128x1024)
CPU GPU CPU GPU

8 30 15 60
Table 4.1. MD-SLAM runtimes expressed in Hz.

a factor-graph consists in solving the following optimization problem:

X∗ = argmin
X∈SE(3)N

∑
i,j

‖X−1
i Xj � Zi,j︸ ︷︷ ︸

ei,j

‖2Ωi,j
(4.3)

Here, the error ei,j is the difference between predicted displacement X−1
i Xj and result of

the direct alignment Zi,j . The total perturbation vector ∆x ∈ R6N results from stacking
all variable perturbations {∆xi}. For the reasons illustred in Sec. 2.3.1, for pose-graph
optimazion we employ Gauss-Newton.

4.3 Experimental Evaluation

In this section, we report the results of our pipeline on different public benchmark datasets.
To the best of our knowledge, our approach is the only open-source SLAM system that
can deal with RGB-D and LiDAR in a unified manner. Therefore, to evaluate our system,
we compare with state-of-the-art SLAM packages developed specifically for each of these
sensor types. For RGB-D we consider DVO-SLAM [66] and ElasticFusion [133] as direct
approaches and ORB-SLAM2 [86] as indirect representative. For LiDAR we compare
against LeGO-LOAM [110] as feature-based and SuMA [13] representing the dense category.
We specify that our pipeline is purely photometric namely, not IMU or odometry source
have been used as assistance. To run the experiments, we used a PC with an Intel Core
i9-10900KF CPU @ 5.30GHz with 64GB of RAM and a RTX 3070. Since this work is
focused on SLAM, we perform our quantitative evaluation using the RMSE on the absolute
trajectory error (ATE) with SE(3) alignment. The alignment for the metric is computed
by using the Horn method [56], and the timestamps are used to determine the associations.
Then, we calculate the RMSE of the translational differences between all matched poses.
The tracking module dominates the runtime of our approach since loop closures are detected
and validated asynchronously within another thread. Hence, we report the average frequency
at which the tracker runs for each sensor. At the core of the tracker, we have the photometric
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Figure 4.5. MD-SLAM map on long sequence from Newer College [98] aligned with Google Earth.

registration algorithm, whose computation is proportional to the size of the images. Runtimes
summarized in Tab. 4.1.

4.3.1 RGB-D

We conducted several experiments with RGB-D sensor. Qualitative analysis have been done
using self-recorded data and are shown in Fig. 4.4. As public benchmarks we used the
TUM-RGB-D [121] and the ETH3D [108]. The TUM RGB-D dataset contains multiple
real datasets captured with handheld Xbox Kinect. A rolling shutter camera provides RGB
data. Further, the camera’s depth and color streams are not synchronized. Every sequence
accompanies an accurate ground truth trajectory obtained with an external motion capture
system. ETH3D benchmark is acquired with global shutter cameras and accurate active
stereo depth. Color and depth images are synchronized. We select several indoor sequences
for which ground truth, computed by external motion capture, is available.

On these datasets, we compare with DVO-SLAM, ElasticFusion and ORB-SLAM2.
These three approaches are representative of different classes of SLAM algorithms. Tab. 4.2
shows the results on the TUM RGB-D datasets, while Tab. 4.3 presents the outcome on the
ETH3D datasets. DVO SLAM implements a mixed geometry-based and direct registration.
Internally the alignment between pairs of keyframes is obtained by jointly minimizing
point-to-plane and photometric residuals. This is similar to ElasticFusion, whose estimate
consists of a mesh model of the environment and the current sensor location instead of the
trajectory. In contrast to these two approaches, ORB-SLAM2 implements a traditional visual
SLAM pipeline, where a local map of landmarks around the RGB-D sensor is constructed
from ORB features. This map is constantly optimized as the camera moves by performing
local BA. Loop closures are detected through DBoW2 [42] and a global optimization on a
Sim(3) pose-graph to enforce global consistency is used.

The TUM dataset provides images 640× 480 pixels, while ETH3D 740× 460 pixels.
From these images, we compute a 3 level pyramid with scales 1/2, 1/4, and 1/8. Our
system runs respectively at 8 and 7.5 Hz at these resolutions on CPU. On GPU, differently,
operates at 30 Hz and 28.5 Hz, making the graphic-card implementation suitable for online
estimation.
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fr1/desk fr1/desk2 fr2/desk

DVO-SLAM [66] 0.021 0.046 0.017
ElasticFusion [133] 0.020 0.048 0.071
ORB-SLAM2 [86] 0.016 0.022 0.009
Ours 0.041 0.064 0.057

Table 4.2. ATE RMSE [m] results on TUM RGB-D [121] datasets. This was recorded with
non-synchronous depth using a rolling shutter camera.

table3 table4 table7 cables1 plant2 planar2

DVO-SLAM [66] 0.008 0.018 0.007 0.004 0.002 0.002
ElasticFusion [133] − 0.012 − 0.018 0.017 0.011
ORB-SLAM2 [86] 0.007 0.008 0.010 0.007 0.003 0.005
Ours 0.021 0.022 0.036 0.015 0.001 0.001

Table 4.3. ATE RMSE [m] on ETH3D [108]. This was recorded with global shutter camera and
synchronous streams. ElasticFusion fails in table3 and table7.

In Tab. 4.2 we can see that ORB-SLAM2 clearly outperforms all other pipelines. DVO-
SLAM and ElasticFusion provide comparable results, and our approach is the worst in terms
of accuracy. Yet, the largest error is 6.4 cm, which results in a usable map. As stated before,
this dataset is subject to rolling shutter and asynchronous depth effects. ORB-SLAM2,
being feature-based, is less sensitive to these phenomena. DVO-SLAM and ElasticFusion
explicitly model these effects. Our approach does not attempt to address these issues since it
would render the whole pipeline less consistent between different sensing modalities.

Tab. 4.3 presents the results on the ETH3D benchmark. In this case, our performances
are on par with other methods, since intensity and depth are synchronous, and the camera is
global shutter.

These results highlight the strength and weaknesses of a purely direct approach not
supported by any geometric association. While being compact, it suffers from unmodeled
effects and requires a considerable overlap between subsequent frames.

4.3.2 3D LiDAR

We conducted different experiments on public LiDAR benchmarks to show the performances
of our SLAM implementation. For the LiDAR we use the Newer College Dataset [98, 142]
recorded at 10 Hz with two models of Ouster LiDARs: OS1 and OS0. We conducted our
evaluation on the long, cloister, quad-easy and stairs sequences. The OS1 has 64 vertical
beams. We selected the long sequence that lasts approximately 45 minutes. It consists of
multiple loops with viewpoint changes between buildings and a park.

The other three shorter sequences are recorded with the OS0, which has 128 vertical
beams. The LiDAR quad-easy sequence contains four loops that explore quad, cloister
mixes outdoor and indoor scenes while stairs is purely indoor and based on vertical motion
through different floors.

Qualitative analysis have been performed to show the results obtained by our pipeline.
Fig. 4.4 illustrates some reconstructions obtained with MD-SLAM from Newer College
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Figure 4.6. Alignment of our estimate with the ground truth in long sequence of Newer College.
The color bar on the right shows the translational error [m] over the whole trajectory.

OS0-128 OS1-64

cloister quad stairs long

LeGO-LOAM [110] 0.20 0.09 3.20 1.30
SuMA [13] 3.34 1.74 0.67 -
Ours 0.36 0.25 0.34 1.74

Table 4.4. ATE RMSE [m] results of all benchmarked approaches on the Newer College datasets
[98, 142]. SuMA fails on long sequence.

sequences. Fig. 4.5 and Fig. 4.6 show the global consistency of our estimate on long
sequence.

Quantitatively, we compare against LeGO-LOAM and SuMA. These represent two
different classes of LiDAR algorithms, respectively sparse and dense. Tab. 4.4 summarizes
the results of the comparison. LeGO-LOAM is currently one of the most accurate Li-
DAR SLAM pipelines and represents a sparse class of LiDAR algorithms. In contrast to our
approach, LeGO-LOAM is a pure geometric feature-based frame-to-model LiDAR SLAM
work, where the optimization on roll, yaw and z-axis (pointing up) is decoupled from the
planar parameters. SuMa constructs a surfel-based map and estimates the changes in the
sensor’s pose by exploiting the projective data association in a frame-to-model or in a
frame-to-frame fashion. For both the pipelines loop closures are handled through ICP. Being
ground optimized, LeGO-LOAM shows impressive results mainly in chunks where ground
occupies most of the scene, yet our approach provides competitive accuracy. The situation
becomes challenging for LeGO-LOAM when its assumptions are violated, such as in the
stairs sequence. In this case, our pipeline is the most accurate since it does not impose any
particular structure on the environment being mapped. SuMA performances are the worst in
terms of accuracy. We tried this pipeline both in a frame-to-frame and frame-to-model mode.
The one reported in Tab. 4.4 represents SuMA frame-to-frame that always outperforms the
frame-to-model on these datasets.

We use the OS1 to produce images of 64×1024 pixels while the OS0 to produce images
of 128× 1024 pixels. Since the horizontal resolution is much larger than the vertical one,
to balance the aspect ratio for direct registration, initially, we downscale the horizontal
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resolution by 1/2 for OS0 and by 1/4 for OS1. Our approach generates a pyramid with the
following scales: 1, 1/2 and 1/4. With these settings, our system operates in CPU at around
15 Hz on the OS0 and at approximately 24 Hz on the OS1. In GPU respectively at 60 Hz
and 120 Hz. This makes both implementation suitable for online estimation.

4.4 Conclusion

In this chapter, we presented a direct SLAM system that operates both with RGB-D and
LiDAR sensors. These two heterogeneous sensor modalities are addressed exclusively by
changing the projection models. To the best of our knowledge, our approach is the only
SLAM system that can deal with RGB-D and LiDAR in a unified manner. Furthermore,
thanks to the data independence given by photometric nature, our implementation runs in
realtime in commercial GPUs. Comparative experiments show that our generic method can
compete with sensor-specific state-of-the-art approaches. Being purely photometric and
without making any assumption of the environment, our pipeline shows consistent results on
different types of datasets. The independence of the internal representation from the sensor
source paves the way to SLAM systems that operate jointly on both RGB-D and LiDAR,
within the same algorithm. In Chapter 6, we’ll explore a universal BA approach that remains
consistent regardless of the sensor type, functioning uniformly for both LiDAR and camera,
whether used separately or together. Such integration hinges on the precise and versatile
calibration framework presented in Chapter 5.
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Chapter 5

Ca2Lib: Simple and Accurate
LiDAR-RGB Calibration using a
Small Common Marker

As established in previous chapters, the ability to fuse readings from heterogeneous sensors
is often beneficial in many robotics and perception applications. In particular, LiDAR and
RGB sensors exhibit a strong compatibility: the former being able to capture high precision
sparse range readings while the latter measure dense color intensity measurements. Recent
advancements in sensor technology have enabled the fusion of LiDAR and RGB data for
enhanced 3D reconstruction. Several researchers have proposed pipelines that leverage the
depth information from LiDAR and the rich color details from RGB cameras to produce high-
fidelity 3D models. In the work of Smith et al. [113], a novel approach was introduced that
seamlessly integrates depth maps from LiDAR with RGB images. Their method employs
a deep learning framework to refine the depth maps, ensuring consistency with the RGB
data. Another contribution by Johnson et al. [60] presents a hybrid pipeline that uses both
LiDAR point clouds and RGB images for dense 3D reconstruction. Their method focuses
on aligning the LiDAR and RGB data in a common reference frame and then fusing them
using a voxel-based approach. Others, simply limit fusing sensors for depth estimation tasks,
taking advantage of a more accurate and robust LiDAR depth (see Sec. 2.2.2). However,
to accomplish any of these tasks, and merge the strenghts from both sensors, one would
require to accurately know the relative offset between them.

In this chapter, we introduce a straightforward calibration schema designed to pre-
cisely estimate the relative displacement between two sensors. Central to this multimodal
calibration is the identification of spatial correspondences between the heterogeneous mea-
surements. Most approaches rely on one or more calibration patterns to establish common
features between the sensors. The main problem is that these patterns are often complex or
expensive to produce [14].

Our primary contribution is the development of a flexible calibration toolbox. This
toolbox facilitates the estimation of the extrinsic parameters between LiDAR and RGB using
a basic commercial calibration target (e.g. Checkerboard, ChAruCO [43]), requiring minimal
user intervention. We leverage a joint non-linear formulation of the problem to achieve high
accuracy results even with a minimum of three measurements. The only requirement for
our method is that measurements must be observed by both sensors during the acquisition.
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Figure 5.1. Camera/LiDAR qualitative calibration results. The image shows the reprojection of a
LiDAR point cloud on a image captured by a fisheye RGB camera rigidly attached to the former.
The offset between the sensors leads to shadows on parts of the image.

We exploit the planarity of the target to find a common observation used to estimate the
extrinsic parameters. Moreover, we release an open-source implementation of our toolbox
at https://github.com/rvp-group/ca2lib.

5.1 Related Work

This section delves into LiDAR-RGB calibration and explores the two main classes of
approaches: target-based and target-less. As the name suggests, target-based approaches
require the user to place artificial markers that both the camera and LiDAR can easily
detect. This contrasts with target-less methods that free the use from this task. The core idea
of calibration is common in the two classes of approaches: computing common features
between heterogeneous measurements and estimating the transformation that minimizes the
distance between corresponding features.

First, an overview of target-less approaches is presented: Pandey et al. presents an
automatic data-driven approach based upon the maximization of mutual information between
the sensor-measured surface intensities [92]. The authors exploits the correlation coefficient
for the reflectivity and intensity values of many scan-image pairs using different calibration
parameters. However, shadows of objects or colored surfaces that completely absorb infrared
lights might result in weaker correlation between scan-image pairs. Yoon et al. proposes a
calibration method using region-based object pose estimation. Objects are segmented in both
measurements, then a 3D mesh is generated from the LiDAR measurements, while images
are used to reconstruct the scene using SfM. The two models are then registered together
to acquire an initial guess on the relative pose. The final solution is obtained iteratively
by finding correspondences between the reconstructed objects from both measurements
[137]. In recent years, the development of learning based methods have also spanned in
this field: Lv et al. proposes a real-time self-calibration network that predict the extrinsic
parameters by constructing a cost volume between RGB and LiDAR features [80], while
Sun et al. first estimates an initial guess by solving an hand-eye calibration method [122].

https://github.com/rvp-group/ca2lib
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Moreover, the guess is fine-tuned by segmenting the image-cloud pair and by aligning the
distances between centroids. The advantage of target-less method is that they can be used
without preparing the environment. This comes at a cost of a lower accuracy and robustness
when compared to their target-based counterpart.

Target-based methods estimate the relative pose using an observed known structure.
Given the difference of resolution for the two sensors, it is high unlikely that correspondences
within the measurements can be established directly. For this reason, point-to-point methods
tends to process LiDAR measurements to implicitly obtain virtual points1 easily detectable
from an RGB sensor. For instance, Park et al. utilizes a specially designed polygonal
planar calibration board with known lengths of adjacent sides [93]. By estimating the 3D
corresponding points from the LiDAR, vertices of the board can be determined as the meeting
points of two projected sides. The vertices, along with the corresponding points detected
from the color image, are used for calibration. Pusztai et al. introduces a methodology that
utilizes cubic objects with predetermined side lengths [95, 94]. The corners of the cubes
are estimated by initially detecting each side of the box and subsequently determining their
intersection points. Furthermore, the corners along with their corresponding RGB image
are employed to calibrate the system by solving ICP. Zhou et al. proposes a single-shot
calibration method requiring a checkerboard [144]. The target is detected both in the RGB
image, and LiDAR measurement, using RANSAC [40] for the latter. Furthermore, the four
edges of the checkerboard are estimated and aligned to compute the relative offset between
the two sensors. Tóth et al. introduces a fully automatic calibration technique that leverages
the utilization of spheres, enabling accurate detection in both point clouds and camera
images [125]. Upon successful detection, the algorithm aligns the set of sphere centers
using SVD. Beltrán et al. presents a methodology that utilizes a custom calibration target
equipped with 4 holes and AruCO markers specifically designed for monocular detection
[14]. The methodology employs a set of techniques for each sensor to estimate the center
points of the holes. Subsequently, the relative offset between sensors are determined by
aligning the set of centers obtained from each sensor, Li et al. adopt a similar approach
while using a checkerboard with 4 holes [73]. Fan et al. propose a two-stage calibration
method using an auxiliary device with distinctive geometric features [39]. The method
extracts lines from images and LiDAR point clouds, providing an initial estimation of the
external parameters. Nonlinear optimization is then applied to refine these parameters. In
the work of Singandhupe et al., the authors first extract planar information from RGB and
LiDAR measurements, then, two grid of points are extracted from the computed planar
patches and aligned using a customized ICP algorithm [111].

Albeit these approaches provides relatively accurate results with few measurements,
care should be taken during the estimation of virtual correspondences, as they can cause
significant errors in the estimation step. Moreover these custom targets often requires precise
construction or expensive manufacturing.

Another group of approaches does not directly solve the calibration problem using
point-to-point correspondences, but rather exploit the planarity of the target to reduce the
feasible set of solutions using plane-to-plane constraints. Mirzaei et al. addresses the
challenge of accurate initial estimates by dividing the problem into two sub-problems
and analytically solving each to obtain precise initial estimates [85]. The authors then
refine these estimates through iterative minimization. They also discuss the identifiability

1Points that are not explicitly detected, but estimated from the LiDAR measurement.
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(a)

(b)

Figure 5.2. LiDAR image generation for calibration. (a) shows a comparison between the spherical
projection (top) used for LiDAR images and the projection by ID (bottom) used for this work
(as already shown in Fig. 2.8). (b) shows the ring information before (left) and after (right) the
projection.

conditions for accurate parameter estimation. Finally, a method similar to our proposal, Kim
et al. combine observed normals to first estimate the relative orientation with SVD and then
iteratively estimates an initial guess of the relative translation by minimizing the pairwise
planar distances between measurements [67]. Finally, the translation is refined using a
non-linear optimization problem using LM. Despite its simplicity, this method decouples the
estimation of orientation and translation, thus leading to potential losses in accuracy while
also increasing the number of required measurements.

Compared with the state-of-the-art, we propose:

• a formulation for joint nonlinear optimization that couples relative rotation and trans-
lation using a plane-to-plane metric;

• an extensible framework that decouples the optimization from target detection. Cur-
rently supports Checkerboard and ChARuCO patterns of typical A3-A4 sizes, easily
obtainable from commercial printers;

• the possibility to handle different camera models and distortion;

• an open-source C++ implementation.

5.2 LiDAR-RGB Calibration

In this section, we will provide a detailed and comprehensive description of our method. First
we describe the preliminaries required to understand our approach, then every component of
the pipeline is described, following the procedure from the acquisition of the measurements
up to the computation of the relative poses between the two sensors (extrinsic parameter).
Note that the background to understand this sections has been presented in Chapter 2, here
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Figure 5.3. Qualitative samples showing LiDAR cloud projection on RGB image.

we briefly re-adapt some of the notation to this specific problem. Plane Representation:
Let γ = (n̂, d) be a 3D plane, where n̂ ∈ S2 represents the unit vector orthogonal to the
plane and d ∈ R is the shortest distance of the plane respect to the origin. Applying a
transform X ∈ SE(3) to a plane γ yields new coefficients γ′:

Xγ =
{

n̂′ = Rn
d′ = d+ (Rn)T t (5.1)

Since the transformation is modified by a local perturbation in the tangent space ∆x ∈ R6,
we can rewrite:

(X � ∆X)γ =
{

ñ = ∆RRn
d̃ = d′ + nTRT∆RT∆t (5.2)

Deriving the result with respect to ∆x leads to the following Jacobian:

∂(X � ∆x)γ
∂∆x =

[
03×3 −bRnc×

nTRT 01×3

]
4×6

(5.3)

The distance between two planes depends both on the difference between their normals
and the signed distance of the planes from the origin. These quantities can be captured by a
4D error vector ep expressing the plane-to-plane error metric:

p(γk) = −nkdk (5.4)

ep(γi, γj) =
[
nTi (p(γi)− p(γj))

nj − ni

]
(5.5)

Here p(γk) is the point on the plane closest to the origin of the reference system, and it is
obtained by taking a point along the normal direction n at distance d. In all the works
presented in this thesis, we mostly used spherical projection (Sec. 2.2.3), however, during
the calibration process, our primary concern in representing the LiDAR image is to allow
the user to precisely select the checkerboard plane. Thus we generate the LiDAR image
through projection by ID, more details in Sec. 2.2.3
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We now explain the steps done in order to achieve a reliable calibration. First, we process
the incoming raw LiDAR and RGB measurements to acquire planar information. Assuming
the scene to remain static throughout the acquisition of a single joint measurement, the
LiDAR cloud is embedded in an image using the projection by ID. Moreover, the system
awaits the user interaction to guess the position of the calibration target on the LiDAR image.

A parametric circular patch around the user’s selection is used to estimate a plane using
RANSAC and, concurrently, the calibration target detection is attempted on the RGB image.
Once the target is detected, the RGB plane is computed by solving the ICP. If the user is
satisfied with both LiDAR and RGB planes, they are stored for processing.

Whereas a straightforward rank analysis of the Jacobians reveals that just 3 measure-
ments are sufficient to constrain a solution, it is well known from the estimation theory that
the accuracy grows with “good” number of measurements.

Once the set of measurements are acquired, we jointly estimate the relative orientation
and translation of the LiDAR with respect to the RGB sensor X ∈ SE(3) by solving the
following nonlinear minimization problem:

X = argmin
X∈SE(3)

∑
i

‖Xγl
i − γc

i︸ ︷︷ ︸
ep

‖2 (5.6)

where ep represent the plane-to-plane error.
During acquisition, it may happen that the user accepts one or more wrongly estimated

measurements. Due to the quadratic nature of the error terms, these outliers are often
over-accounted, resulting in wrong estimations. To account for this factor, as described in
[50], we employ an Huber robust estimator L that treats differently measurements based on
their error. We rewrite Eq. (5.6) as follows:

X = argmin
X∈SE(3)

∑
i

L(‖Xγl
i − γc

i ‖). (5.7)

To resolve Eq. (5.7) we employ the GN algorithm implemented in the srrg2_solver
[50].

Figure 5.4. Diagram of our calibration pipeline. Measurements are acquired, and calibration target
detection is performed (LiDAR planar detection is performed via human intervention). The set
of planes is used to solve the non-linear optimization problem, leading to the optimal relative
pose between the sensors.
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σl = 0
σc = 0

σl = 8e−3

σc = 7e−3
σl = 16e−3

σc = 14e−3

N mean stdev mean stdev mean stdev

3 41.761 104.362 20.790 25.124 57.849 112.365
4 10.872 17.941 12.206 12.363 14.940 11.681
5 6.492 7.997 8.350 9.076 9.115 5.675
10 4.591 3.458 5.759 4.974 5.849 1.989
20 2.575 1.981 3.646 2.564 4.123 1.139
30 2.673 1.263 2.867 1.659 3.735 0.878
39 2.091 0.883 2.666 1.206 3.261 0.413

Table 5.1. Average translation error in millimeters with different noise levels and number of
measurements (N).

5.3 Experimental Evaluation

In this section, we describe the experiments we conducted to establish the quality of our
calibration toolbox. We perform quantitative experiments in the simulated environment
provided by [14] to compare our estimates with ground truth while we also conduct qual-
itative and quantitative experiments on real scenarios using our acquisition system. We
directly compare our results with [67], as it is the work which is closest to ours. In addition,
we compare to [14] that produce accurate results relying on a very complex target (CNC
printed).

5.3.1 Synthetic case

We conducted experiments on Gazebo simulator [70] to evaluate the accuracy and robustness
of our approach, injecting different noise figures to the sensor measurements. We also experi-
ment how the number of observations affect the final results. The setup of the scene includes
a Velodyne HDL-64 LiDAR, a BlackFly-S RGB sensor and a 6 × 8 checkerboard target
with corner size of 0.2 meters. We randomly generate and acquire 53 valid2 measurements.

To quantify the impact of the number of measurements on the accuracy of our approach,
we run the calibration procedure with an increasing number of measurementsws = [3 . . . 39]
and at three different LiDAR noise levels σL (0 mm, 7 mm and 14 mm). For every ws, we
sample 40 sets of measurements.

From Tab. 5.1, we observe a steady decrease of error for every noise level, reaching an
average of 2.6mm translation error in the intermediate noise case. In case of 3 measurements
the high uncertainty is due to the potentially poorly conditioned system when using planes
that have similar normals. Nonetheless, we compare our best result with 3 measurements
against the best results of the methods presented in [14] and [67]. Tab. 5.2 shows the results.

5.3.2 Real case

In this section, we describe the experiments conducted on real measurements. We perform a
quantitative test on our acquisition system shown in Fig. 5.5 that is equipped with a Ouster

2A valid measurement is one for which both LiDAR and RGB sensor are able to detect the target
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Method et (cm) er (10−2 rad)

Beltrán et al.[14] 0.82 0.24
Kim et al.[67] 10.2 129.56
Ours 0.11 0.25

Table 5.2. Quantitative results on synthetic data achieved through calibration using N = 3 mea-
surements. We choose this measurement count for parity with the methodology proposed in
[14]. In [14], a single measurement is deemed sufficient for calibration determination, with
3 measurements considered the optimal scenario. Beyond 3 measurements accuracy does not
improve. Both for our study and in alignment with the findings in [67], 3 measurements rep-
resent the minimum requirement for solution determination, and an increase in this count is
expected to result in more precise outcomes. Our results show that with our minimum number
of measurements we perform on pair with [14] in rotation, while outperforming all methods on
translation, using small commercial tags.

5
3
 c

m
5
3
 c

m

50 cm

Figure 5.5. Acquisition system used for the real case experiments.

OS0-128 LiDAR with a resolution of 128 × 1024, a RealSense T-265 stereo camera and
two Manta-G145 RGB cameras arranged in a wide horizontal stereo configuration.

Since no ground truth information is available, we take advantage of the stereo extrinsics
to provide an estimate of the calibration error. The offset between multiple camera is
measured using optical calibration procedures which typically reach subpixel precision.

In the first experiment, we consider the LiDAR and the Realsense T-265 sensor which
provides factory calibrated intrinsic/extrinsic parameters for both cameras. The task of the
experiment is to demonstrate the accuracy of the calibrator in real case scenarios and to
understand how the number of measurements considered affects the quality of the solution.

As for the synthetic case, we first acquire a set of 17 cloud-image LiDAR RGB measure-
ments for both cameras. Moreover we perform 40 calibrations with ws randomly selected
measurements withws ∈ {3, 15}. Finally, for everyws, we combine the computed extrinsics
for both cameras to obtain an estimate stereo transform. Assuming approximately symmetri-
cal errors in the two cameras, Fig. 5.6a shows the results of this experiment. We were able
to obtain at best an average error of 7.1 mm in translation and 0.01 rads in orientation.

The second experiment is conducted using the wide stereo setup for which we also
calibrate the intrinsics and extrinsics of the cameras, providing expected results in a typical
scenario. The acquisition procedure is the same as in the first experiment and Fig. 5.6b
shows the experimental result, where we obtain the best solution with 4.6 mm and 0.002
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(a) Average camera-wise calibration error in the
LiDAR-T265 case.
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(b) Average camera-wise calibration error in the
LiDAR-Manta case.

Figure 5.6. Average calibration errors evaluated on separate profiles using real-data. The plots shows
how increasing the number of measurements lead to an enhancement in accuracy within our
calibration approach.

rads in orientation.
Moreover, Fig. 5.1 and Fig. 5.3 show the reprojection onto the right camera respectively

of the fisheye and wide baseline RGB sensor. In the latter, the large parallax between the
sensors leads to strong occlusions effects, that have been mitigated with an hidden point
removal algorithm [64].

Our evaluation indicates that our method is capable of generating extrinsic estimates
that are comparable or superior to those obtained using other state-of-the-art approaches. It
is important to note that careful consideration is required when selecting a minimal number
of measurements. However, our experiments, consinstely with the theory, show that the
accuracy of these estimates improves as the number of measurements increases.

5.4 Conclusion

The experiments in this chapter, show that planar features are a valid alternative to existing
solutions for LiDAR-RGB calibrations due to resiliency to LiDAR inherent noise. In
particular, Tab. 5.1 shows that similar translation error occurs across different noise levels of
the sensors. Moreover, real-case experiments support our claim concerning the dimensions
of the calibration target, brought down to A3/A4 dimensions, along with the seamless
integration of different camera distortion models (Kannala-Brandt [63] for T-265 and Radial-
Tangential [17] for Manta G-145). We suggest using our methodology in situations where
calibration should be performed on-site, where the ad-hoc environment for calibration is
not guaranteed, or where bringing more specialized calibration targets is not feasible. An
important note regards the sensors’ configuration and shared field of view. Ensuring a correct
result requires multiple views of the calibration target from both perspectives. In those cases
where the shared field of view is small, a single-shot calibration approach might produce
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better results in terms of accuracy. Finally, concerning situations where the calibration target
is not static during the acquisition, caution should be taken on temporal synchronization of
the measurements. Our system assumes input measurements to be synchronized; moreover,
even small time offsets worsen the calibration accuracy. We remark on the difficulty of
synchronizing these two sensors due to their different nature. In particular, the revolution
period for typical LiDARs is higher compared to the exposure time of a RGB sensors. We
suggest acquiring RGB images when the LiDAR scan overlaps the camera field of view.

One possible addition that would benefit this work is an automatic detection system for
calibration targets on LiDAR measurements. This problem may be tackled from a spatial
perspective on the raw point cloud or visually by projecting the cloud on a 2D embedding.
This feature would either fully or partially replace the current human-aided LiDAR plane
detection by providing a good initial guess on the calibration target position.

In summary, this chapter introduces a simple and effective method for accurately esti-
mating extrinsic parameters between LiDARs and RGB sensors. By leveraging the inherent
planarity of standard calibration patterns, we establish common observations between these
sensors, greatly simplifying the calibration procedure. Our experiments show that planar
features mitigate the LiDAR noise, leading to accurate results even with common A3/A4
calibration patterns. Finally, we also release an open source C++ implementation to benefit
the community. This versatile calibration paves the way to systems that operate jointly with
measurements from both the sensors, as the one proposed in next chapters: Chapter 6 and
Chapter 8.
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Chapter 6

Photometric LiDAR and RGB-D
Bundle Adjustment

In the introductory parts and mainly in Chapter 4, we discussed the popularity and importance
of SLAM in robotics and computer vision. Modern SLAM systems typically comprise two
key components: a front-end that estimates sensor odometry in real-time and a back-end
that optimizes previous sensor poses and, eventually, the 3D map. The gold standard for the
back-end optimization is Bundle Adjustment [124].

In line with our previous works, the main contribution of this chapter is a unified
photometric BA strategy that works for both RGB-D and LiDAR. Our method aims to
refine the trajectory coming from a SLAM/GNSS system to maximize its photometric
consistency among the whole set of sensor poses. Our approach implicitly addresses the
data association while straightforwardly supporting both RGB-D and LiDAR. We performed
a comparative evaluation of benchmark data concerning state-of-the-art sensor-specific
refinement strategies and SLAM algorithms. Results show that our simple optimization
schema is very effective, performing on par or better than methods specialized for RGB-D
and LiDAR data. Given a good calibration between the two sensors, as the one proposed in
Chapter 5, we also demonstrate how our photometric BA strategy can be improved by fusing
3D LiDAR and RGB-D. We release an open-source CUDA/C++ implementation of this
work available at https://github.com/rvp-group/ba-mdslam. Fig. 6.1 shows a reconstruction
of the Viterbo city-center (Italy) using our self-recorded data. From the detailed views, it is
possible to appreciate the fine map resolution after performing our BA strategy.

6.1 Related Work

Approaches for global refinement such as BA are widely used in Visual SLAM and SfM
systems but are less common for LiDAR. In this work, we provide a unified photometric
global registration method for both RGB-D and LiDAR that can improve the accuracy
of the trajectory - and hence the map - obtained by standard SLAM systems that rely on
Pose-Graph Optimization (PGO). PGO formulation reduces the optimization problem’s size
but approximates the original problem by marginalizing the projective observations.

In the RGB-D SLAM field, BA can be classified into two categories: direct and indirect.
In the following, we will explain the difference between these two paradigms and review the
state-of-the-art of both approaches. We finally discuss BA applications in LiDAR SLAM.

https://github.com/rvp-group/ba-mdslam
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Figure 6.1. Reconstruction of Viterbo city-center (Italy) using our data recorded with an OS0-128.
The trajectory, which is about 2 km long, has been estimated first with MD-SLAM [33] and
then refined with our photometric BA strategy. This image highlights both the global and local
consistencies. We show reconstruction details with multiple scans of the same places acquired
over time.

Indirect SLAM methods estimate camera poses and 3D structure by minimizing re-
projection error of feature points, making them faster and less sensitive to calibration and
synchronization issues. However, they are not operating at sub-pixel resolution, these meth-
ods are usually less accurate [108]. State-of-the-art implementations perform windowed
BA to refine the map in a neighborhood of the sensor location, and global BA is invoked
upon loop closures on the entire trajectory. To keep the problem tractable, the trajectory is
subsampled in a set of keyframes, and only some salient feature points are considered in the
optimization [86, 69].

Direct methods directly minimize the photometric error between overlapping images
without relying on feature detection and matching. The photometric error is calculated as
the difference between the measured and predicted pixel intensities based on an estimate
of the 3D structure and camera parameters. Delaunoy and Pollefeys propose an offline
dense 3D reconstruction methodology that refines the scene and camera parameters to
minimize photometric error. The scene is represented by triangular meshes, which require
frequent remeshing, making the approach computationally demanding [27]. Goldlüche et al.
present a variational framework that estimates a super-resolution curved surface to precisely
represent the 3D scene, leading to improved estimates and high-quality texture output [47].
Slavcheva et al. perform pairwise alignment by registering two consecutive signed distance
functions (SDFs) generated from the depth images, which is used as global refinement [112].
The direct methods presented are computationally heavy, being mainly used for offline 3D
reconstructions.

To enhance the computation, some researchers exploited the decomposability of the
problem and investigated data reduction strategies to reduce the computation of BA in SfM



6.1 Related Work 63

applications. Hatem Alismail et al. consider only pixels with reasonable gradient in the
error function to reduce the problem’s size [8]. Eriksson et al. propose a consensus-based
optimization to parallelize BA for large-scale problems [38]. Demmel et al. propose a novel
solution in Distributed BA by breaking down the problem into smaller subparts using the
k-means clustering method, and structuring the resulting subgraphs into well-constrained
connected segments for more efficient processing [29].

In between the class of direct and indirect methods, we find the work of Forster et
al. [41], which proposes a hybrid method to estimate the camera’s motion. First, an initial
guess of the sensor location is computed by minimizing the reprojection error of the world
points. Then the estimate is refined by minimizing the photometric error of the patches
around the feature points. The final map refinement step is done by performing direct BA.

Recently, the community has focused on embedding BA refinement in SLAM applica-
tions. Hybrid approaches have gained traction to combine the accuracy of direct methods
with the robustness of feature-based ones by mixing direct and indirect error terms in opti-
mization strategies. One example is Bundle Fusion [26], which interleaves feature-based
and photometric BA to refine the global estimate. The photometric refinement considers
only camera poses and not the structure. Similarly, BAD-SLAM [108] minimizes a cost
function that accounts for geometric and photometric errors in motion estimation and global
refinement processes, with three main steps: refining the 3D scene modeled by surfel,
optimizing camera poses with a fixed model, and refining the camera’s intrinsics.

In parallel, the community approached LiDAR-based SLAM by seeking alternative
representations for the dense 3D point clouds. Given the accuracy of these measurements,
the robotics community addressed the problem of building a map incrementally registering
new scans.

Many registration techniques have been exploited using LiDAR data. These include
3D salient features [140], subsampled clouds [128] or NDT [118]. Nowadays, LiDAR
Odometry and Mapping (LOAM) is perhaps one of the most popular methods for LiDAR
odometry [140, 141]. It extracts distinct features corresponding to surfaces and corners,
then used to determine point-to-plane and point-to-line distances to a voxel grid-based
map representation. A revised approach (Lego-LOAM) has been suggested [110], which
takes advantage of a ground surface in its segmentation and optimization steps. Odometry
estimation techniques, or more generally 3D point clouds registration routines, coupled
with place recognition and PGO show satisfying results within LiDAR SLAM [110, 33].
This makes PGO the gold standard optimization method in LiDAR community. A pose-
graph represents the trajectory, and observations between pairs of poses along the path are
computed by registering the two overlapping clouds. Hence, an observation is a relative
transform and potentially a covariance matrix. With this approximation, the constraints
between the poses can be represented in a relatively compact manner. The optimum of a
PGO is the configuration of poses that is maximally consistent with the transforms in the
measurements. Albeit efficient, PGO approaches operate on approximating the original
problem since pairwise measurements are computed once during the SLAM phase and never
revised. Unavoidable drifts will accumulate, and wrong behavior of the place recognition
might lead to inconsistent graphs as shown in [139].

In order to remove these inconsistencies, recently Liu and Zhang presented a pose-only
global geometrical optimization methodology that considers cloud measurements [76]. In
particular, it formulates a cost function based on LOAM features (i.e., edges and planes) and
globally optimizes the trajectory to maximize the features’ overlap. This approach performs
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Figure 6.2. The flow of our approach. The input of our system contains the initial guess of the
sensor pose, the intensity image Ig and the depth image Id. MD-SLAM already provides the
input in the correct format since the preprocessing step is embedded in the SLAM system. The
core of our refinement strategy, highlighted in red in this graph, consists in creating a graph
with photometric observations (Sec. 6.2.1) and running a global optimization on the set of poses
X1:N , as detailed in Sec. 6.2.2.

a static data association based on the co-visibility of landmarks; thus, it requires a good
initial guess to operate.

In recent years, the vertical resolution of modern 3D LiDARs increased, and these
devices provide scans that resemble more and more dense panoramic images. This allows
us to transfer results about direct global refinement from vision to LiDAR. In this work, we
present a unified BA strategy that works independently for LiDAR and RGB-D in the same
way. By operating directly on images, our method constantly refines the data association
during the optimization; consistently moving towards the optimum. Our algorithm’s capabil-
ities are demonstrated through quantitative and qualitative analyses, consistently improving
the initial estimates provided by any SLAM systems.

6.2 Photometric Bundle Adjustment

The goal of our approach is to compute the set of sensor poses X1:N whose photometric
error between overlapping frames is minimized. The input of our system is a set of triplets〈
Xi, Ig, Id

〉
, containing the initial guess of the sensor pose, the grayscale/intensity image

Ig and the depth image Id. The workflow of our method is illustrated in Fig. 6.2. The first
step, equally to our previous work MD-SLAM, is to generate an augmented image pyramid
from each pair of images in a triplet Sec. 4.2.1. The second step is determining which pairs
of images observe a common structure, which is discussed in Sec. 6.2.1. Finally, these
pairs will be used to instantiate a photometric optimization problem presented in Sec. 6.2.2.
Without using geometrical error functions or structure optimization, our approach is entirely
free from any feature association. This makes our method simple, compatible with multiple
depth sensors, and competitive with ad-hoc state-of-the-art approaches.

6.2.1 Graph construction

Our system takes as input a collection of triplets
〈
Xi, Ig, Id

〉
, that consist of the initial

estimate of the sensor’s pose and pairs of images for both intensity and depth. To instantiate
Eq. (6.3) we need to determine the matching pairs 〈i, j〉. The problem can be visualized as
an undirected graph, where each node is a triplet, and an edge between two nodes encodes a
potential match.
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Figure 6.3. An example of pose-pairs associated, our BA strategy relies on the association of Xi

and Xj if they share observations. In the picture above, the input images with depth and normals
are on the left, and on the right is the reconstructed model using our methodology. Note that
in reality, inputs of our BA are pyramids (as discussed in Sec. 4.2.1, i.e., images of different
resolutions). Here, we show just one level for simplicity. The data used is from ETH3D.

To compute the matches, we start from the initial assignment of poses {Xn} and add
edges to the graph based on the input data. To this extent, we use a straightforward criterion
that generates a matching pair if two poses Xi, Xj are close in space, and their orientations
are similar. More specifically, we create a pair between Xi, Xj if all these conditions are
satisfied:

1. the angle between the poses is below a threshold (typically 30 deg);

2. the translation between the poses is below a threshold (typically below 1 meter);

3. the ratio of reprojected valid points from Xi onto Xj is sufficiently high (typically
1/3).

In addition to these criteria, if the data come from a sequential acquisition, we add matches
between subsequent triplets to model odometry-like constraints. An example of pose-pair
associated is shown in Fig. 6.3.

6.2.2 Photometric cost function

Our method seeks to find the set of transformations X∗1:N ∈ SE(3)N that minimizes the
photometric error between each candidate pair of sensor poses that observe a common
portion of the environment. Note that the formulation is very similar to the one explained in
Sec. 4.2.2, however this involves multiple variables rather the one. For clarity, we provide
full details of this methodology below. In addition, for completeness, we provide full
derivation of the analytic Jacobians.

Let Ii and Ij be two images acquired from poses Xi and Xj that form a matching pair,
and let I(u) be the value of the pixel u in the image I.

The photometric error at image coordinates u in the matching pair is the difference
between Ig

i (u) and the pixel Ig
j (u′) of the second image. The evaluation point u′ is
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computed by inverse projecting the pixel u from Ig
i onto the image plane of Ig

j . This
accounts for the relative transform Xj,i = X−1

j Xi between the two frames, as follows:

u′ = π
(
RT
j

(
Riπ

−1 (u, d) + ti − tj
))

(6.1)

To carry out this operation, the depth at the pixel d = Id(u) needs to be known (see Sec. 2.2).
Standard photometric optimization seeks to find the following minimum:

X∗1:N = argmin
X1:N

∑
〈i,j〉

∑
u
‖Ig

i (u)− Ig
j (u′)‖2 (6.2)

Here the inner summation computes the photometric error of a matching pair 〈i, j〉 as the
squared norm of the error of all pixels u while the outer summation spans over all matching
image pairs.

Eq. (6.2) models classical photometric error minimization assuming that the cues are
unaffected by Xj,i. Whereas this is true when operating with pure intensity/grayscale values,
normals, and depths change when mapped from the frame Xi to the frame Xj . As in in [24]
these mappings can be encapsulated by the function ζc(Xj,i, Ic

i (u)) that calculates the pixel
value of the cth cue after applying the transform Xj,i to the original channel value Ic

i (u).
We use the term cue indicated with superscript c, to refer to a generic channel, since this
method holds for normals, depth and grayscale images. We can thus rewrite a more general
form of Eq. (6.2) that accounts for all cues and captures this effect as follows:

E(X1:N ) =
∑
i,j

∑
u
L

∥∥∥∥∥∑c

(
ζc(Xj,i, Ic

i )− Ic
j (u′)

)∥∥∥∥∥
2

Ωc

(6.3)

X∗1:N = argmin
X1:N

E(X1:N ) (6.4)

where L is a Huber robust loss. The squared Mahalanobis distance ‖ · ‖2Ωc is used to weight
the different cues. In our experiment we typically set Ωg = 0.6, Ωn = 0.8 and Ωd = 1,
giving more importance to depth and surface normals compared to grayscale channel. For
the reasons illustrated in Sec. 2.3.2, to carry on the minimization in Eq. (6.4) we employ the
Levenberg-Marquardt algorithm implemented in the srrg2_solver [49].

At each iteration, we suppress the occluded portions of the images before evaluating
Eq. (6.3). The optimization proceeds by seeking the optimum of all poses, starting from
the coarser level. Once convergence is reached at one level, our system switches to the next
finer one, and the optimization proceeds by choosing the solution computed so far as an
initial guess. Fig. 6.4 shows the effect of this hierarchical approach applied to a BA problem.
Generally, the worse the initial guess, the more the required levels.

6.3 Experimental Evaluation

In this section, we report the results of our method on different public benchmark datasets.
To the best of our knowledge, our approach is the only open-source photometric BA strategy
that can deal with RGB-D and LiDAR in a unified manner. Therefore, to evaluate our
system, we compare it with state-of-the-art SLAM and BA packages developed specifically
for each of these sensor types.
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0.05 0

initial guess hierarchical optimization

Figure 6.4. The effect of hierarchical optimization when performing BA. From left to right, we
show how the quality of the estimate improves, starting from a bad initial guess. The heatmap is
normalized between 0 and 0.005 [m] for better visualization. The data is self-recorded using an
Intel D455.

To run the experiments, we used a PC with an Intel Core i7-7700K CPU @ 4.20GHz,
32GB of RAM and a Zotac Geforce GTX 1070 X 8G. Our BA schema is implemented on
the GPU using CUDA 11. Since this work is focused on global consistency, we perform
our quantitative evaluation using the RMSE on the absolute trajectory error (ATE) with
SE(3) alignment. The metric’s alignment is computed using the Horn method [56], and the
timestamps are used to determine the associations. Then, we calculate the RMSE of the
translational differences between all matched poses. In Sec. 6.3.1, we discuss the approaches
and the datasets used for comparison with RGB-D sensors, while in Sec. 6.3.2 we present
the results for LiDAR data. Since our implementation can run both on GPU and CPU,
we report the runtimes of our algorithm for various pyramid resolutions using different
commercial GPUs and our processor (Fig. 6.6). The image reports timings for each complete
optimization iteration at different resolutions.

In our experiments, to switch from one level to the other, we use a simple termination
criterion involving the variation of the error in Eq. (6.3) over the iterations. The number of
iterations for each level differs from the quality of the initial guess. In our experiments, we
tend to achieve success after 10 iterations on coarser levels, 5 iterations on middle levels,
and merely a few iterations on the finest level.

In Sec. 6.3.3, we present a demonstration illustrating the impact of employing RGB-
D and LiDAR simultaneously on the final estimate. Our findings clearly indicate that
the use of these two sensors in conjunction, as part of our unified approach, consistently
outperforms the single sensor modality.

In Fig. 6.5, we show the contribution of different cues (depth, grayscale, and surface
normals) on the estimation results for both RGB-D and LiDAR. Our findings reveal that
leveraging all available information enhances the performance of both sensors, with a more
pronounced effect observed for LiDAR. The inclusion of surface normals plays a vital
role in accurately determining the orientation of the estimate, thereby influencing the ATE.
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Figure 6.5. The contribution of each cue in our BA strategy. Our strategy uses three types of
information (grayscale/intensity g, depth d, and surface normals n), the histogram shows the
contribution of pairing each of them for RGB-D and LiDAR with respect to the initial guess in
terms of ATE. Overall, using the three information together perform always better compared to
coupling only few of them, for both the sensors.

Additionally, we observe that the improvement in LiDAR performance diminishes when
intensity values are combined with depth values. This can be attributed to the active nature
of the LiDAR sensor, which yields contrasting results compared to RGB-D, where relying
solely on noisy depth data is insufficient for achieving significant improvements.

6.3.1 RGB-D

As a public benchmark for RGB-D we used several sequences of ETH3D [108]. This dataset
is acquired with global shutter cameras and accurate active stereo depth. Modeling rolling
shutter effects and light changes cannot be encapsulated in the projection function π(·), our
only pipeline component that differs between the RGB-D and LiDAR. For this reason, we
restrict our comparison to the setting mentioned above.

The work proposed in this chapter refines the map from a reasonable initial guess.
We compute such initial configurations employing an improved online CUDA version of
MD-SLAM [33], our previous SLAM system that unifies depth sensors through hierarchical
photometric odometry estimation and feature-based loop-closures.

We compare different approaches representative of different classes of SLAM and BA al-
gorithms specific for RGB-D sensors: DVO-SLAM[66], ElasticFusion [133], BundleFusion[26]
BAD-SLAM[108], ORB-SLAM2 [86]. DVO SLAM implements a mixed geometry-based
and direct registration. Internally the alignment between pairs of keyframes is obtained by
jointly minimizing point-to-plane and photometric residuals. This is similar to ElasticFusion,
whose estimate consists of a mesh model of the environment and the current sensor location
instead of the trajectory. BundleFusion refines the global estimate by interleaving feature-
based and photometric BA. Similar to us, their photometric refinement does not consider
the structure, but only the sensor poses. This method highly depends on data association,
employing correspondences based on sparse features and dense geometric/photometric
matching. BAD-SLAM is a surfel-based direct Bundle Adjusted SLAM system that com-
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Figure 6.6. Runtimes of our BA strategy evaluated on multiple commercial GPUs and our Intel Core
i7-7700K CPU. Cumulative time and standard deviation spent on an iteration of optimization.
In this experiment, the finest level includes around 86M pixels, the middle level includes 22M
pixels, and the coarser level has around 5M pixels. Time is expressed in seconds.

bines photometric and geometric errors alternating optimization of motion and structure. In
contrast to these approaches, ORB-SLAM2 implements a traditional visual SLAM pipeline,
where a local map of landmarks around the RGB-D sensor is constructed from ORB features
[101]. The map is constantly optimized as the camera moves by performing local and global
BA.

Most of the compared approaches run global refinement on a separate thread in an
anytime fashion. The work presented in this chapter addresses only this global aspect.
Reporting the timings of this experiment would be unfair since our method addresses only a
part of the problem.

ETH3D provides images of 740×460 pixels. We compute a 3-level pyramid from these
images with scales 1/2, 1/4, and 1/8. In Tab. 6.1, we can see that our photometric refinement
performs on par (second after BAD-SLAM) with other state-of-the-art ad-hoc RGB-D
SLAM and BA systems. Our method reduces the trajectory error to a few millimeters. More
importantly, it improves by 60% the accuracy of the initial guess provided by MD-SLAM.
Fig. 6.4 and Fig. 6.3 illustrate the effect of the hierarchical optimization on self-recorded
data.

Summarizing, using our general pipeline of MD-SLAM and photometric BA presented
In this chapter provides results comparable with other RGB-D specific approaches, being
second only to BAD-SLAM.

6.3.2 3D LiDAR

To validate our approach on LiDAR measurements we used both our data and public
benchmarks. We used the Newer College dataset [142] as a public benchmark. The dataset
is recorded at 10 Hz with Ouster OS0-128. More specifically, we used the cloister, quad
(easy), and stairs sequences. The quad sequence contains two loops that explore the Oxford
campus courtyard, cloister mixes outdoor and indoor scenes while stairs captures an indoor
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table3 − 0.007 0.008 0.017 0.002 0.016 0.009
table4 0.012 0.008 0.018 − 0.002 0.023 0.008
table7 − 0.010 0.007 0.010 0.003 0.018 0.009
cables1 0.018 0.007 0.004 0.022 0.007 0.021 0.006
plant2 0.017 0.003 0.003 0.004 0.001 0.005 0.001
planar2 0.011 0.005 0.002 0.003 0.003 0.009 0.004

mean 0.014 0.007 0.007 0.011 0.003 0.015 0.006
std 0.003 0.002 0.005 0.008 0.002 0.007 0.003

Table 6.1. ATE RMSE [m] on ETH3D benchmark [108], recorded with global shutter camera and
synchronous streams. ElasticFusion fails in table3 and table7, BundleFusion fails in table4.

scenario with multiple floors. Being based on image comparison, our approach operates
well on LiDAR data having a good vertical resolution. LiDARs with fewer beams (i.e., 64,
32, 16) would produce an unbalanced horizontal image, reducing the converge basin of the
algorithm.

We compare our method with BALM2 [76], which, to the best of our knowledge, is the
only publicly available LiDAR global refinement approach. BALM2 is based on the overall
consistency of points, lines, and planes. This system requires the same input as our method,
namely an initial guess trajectory and the point clouds.

To compute the initial guess, we used several SLAM algorithms specific for LiDAR:
LeGO-LOAM [110], SuMA [13] and our unified MD-SLAM. LeGO-LOAM is a pure
geometric feature-based frame-to-model LiDAR SLAM system, where the optimization
on roll, yaw, and z-axis (pointing up) is decoupled from the planar parameters. SuMa
constructs a surfel-based map and estimates the changes in the sensor’s pose by exploiting
the projective data association in a frame-to-model or frame-to-frame fashion.

Tab. 6.2 reports the accuracy of our method and BALM2, for each dataset, and each
initial guess. The ATE of the SLAM solution measures the quality of an initial guess. We
observe that LeGO-LOAM provides a good guess on all planar data but fails on the stairs
dataset resulting in an ATE of more than 3 meters. MD-SLAM performs reasonably well
with a maximum ATE of 0.36 meters, while SuMA yields an acceptable initial guess only in
the stairs dataset. If the initial guess is good, both BALM2 and our method perform well,
improving the initial estimate. However, as the initial guess degrades, our unified global
refinement’s accuracy remains stable by systematically improving the trajectory estimate.
On these data, we observed BALM2 to be particularly sensible to rotations and less dense
trajectories (i.e., trajectories sampled with fewer keyframe poses). Quantitative results
show that our strategy is successful within LiDAR data, raising the initial estimate close to
60% improvement when a good initial guess is provided (i.e., stairs with MD-SLAM). The
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cloister 0.20 0.25 0.16 0.36 0.37 0.32 3.34 2.67 2.53
quad 0.09 0.09 0.09 0.25 1.98 0.17 1.74 1.72 1.68
stairs 3.20 5.13 3.48 0.23 0.38 0.10 0.67 0.86 0.60

Table 6.2. ATE RMSE [m] on Newer College dataset [142], recorded with OS0-128. We always
improve the SLAM baseline, a part for stairs starting from LeGO-LOAM estimate.

convergence basin of these global refinement strategies are bounded by inconsistency in the
laser measurements (i.e., skewed point clouds); this is why none of the systems can further
enhance the trajectory in the LeGO-LOAM quad experiment.

Fig. 6.1 shows our large-scale reconstruction of the historical part of Viterbo (Italy)
from self-recorded data using a hand-held Ouster OS0-128 LiDAR. The trajectory is about
2 km long, and the dataset is available from our repository. In addition, we illustrate some
additional trajectory plots related to the LiDAR experiments (Fig. 6.8). We did not provide
the figures for RGB-D estimate since errors are always close to millimeters.

6.3.3 Photometric multimodal: RGB-D + 3D LiDAR

Thanks to the unified nature of our pipeline, it allows the straightforward integration of
multiple heterogeneous sensors. In Sec. 6.2.2, we formulated an optimization problem that
estimates the sensor’s trajectory X1:N .

In a multiple sensors configuration, we can express the optimization problem as a
function of the trajectory of a multi-device platform, to which all sensors are rigidly attached.
The multiple sensors setting slightly modify the cost function presented in Eq. (6.3) to
include the constant sensor offsets. Our Appendix (Chapter A) reports this extended
formulation. The cost function for multi-sensor photometric refinement is just the sum of
the cost functions of each device. In this section, we report an analysis of our optimization
strategy with both RGB-D and LiDAR. For these experiments, we mounted an Intel D455
on the top of an OS0-128 and accurately calibrate the offset between the two sensors using a
robust point-to-plane alignment [22]. We recorded some static indoor sequences, each of
them containing synchronized grayscale and depth images from D455 and its corresponding
intensity and range images from the OS0-128.

We carried out an experiment to evaluate the accuracy and converge basin of our approach
in this configuration. To this extent, we perform our photometric alignment strategy using
a single sensor frame consisting of a RGB-D and a LiDAR measurement pair. Since we
align a sensor frame with respect to itself, we expect the computed estimate to be as close
as possible to the identity. The optimization is carried on starting from increasingly wrong
initial guesses. In Fig. 6.7, we show the result of this experiment, starting from single sensor
optimization as a baseline. Due to their different characteristics, the two sensors behave very
differently during photometric alignment. The 3D LiDAR has an inferior resolution but a

https://github.com/digiamm/ba_md_slam
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Figure 6.7. Results of fusion experiments. Plots show how the initial perturbation affects the
convergence basin and the algorithm’s accuracy. On the x-y axis, respectively, translation [m]
and rotation [rad] perturbations, the value is denoted by the mean between rotation and translation
error in log scale. Fusing the two sensors with our straightforward approach always shows better
results compared to single sensors.

very large 360 deg horizontal FoV. This results in a relatively large convergence basin, but
the limited resolution affects the minimum. Conversely, RGB-D, provides a high-resolution
image with a much smaller FoV of around 70 deg. This results in better minima at the
expense of a smaller converge basin.

We can refine the data in two ways that we name coupled and consecutive. The coupled
approach aims to simultaneously finding the minimum of both photometric errors of RGB-
D Ec(X1:N ) and LiDAR El(X1:N ), as follows

Xcoupled
1:N = argmin

X1:N

Ec(X1:N ) + El(X1:N ) (6.5)

The consecutive optimization combines the strengths of the two sensors, and operates by
first carrying on an optimization where only the LiDAR is used. Subsequently, it uses the
solution of this first run to find a minimum for the RGB-D problem.

The results suggest that fusing the two sensors always performs better than single sensors
(Fig. 6.7). Specifically, coupled is generally more accurate compared to RGB-D only, having
the converge basin incremented by the LiDAR. Similarly, consecutive seems to be the best
since it takes full advantage of the large convergence basin of the LiDAR and benefits
from the resolution of RGB-D. We believe that this proof of concept opens ways for 3D
reconstruction algorithms that symmetrically fuse the two sensors, taking benefits from both.
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6.4 Conclusion

In this chapter, we presented a photometric BA methodology that operates both with RGB-
D and LiDAR in a unified manner. To the best of our knowledge, our approach is the only
open-source BA system that works independently for depth sensors and specifically exploits
the photometric capabilities of the LiDAR image. Comparative experiments show that our
simple schema performs on par or better compared to existing sensor-specific state-of-the-art
approaches without making any assumption about the environment and free from data asso-
ciation. Thanks to our photometric registration methodology’s inherent data separation, we
develop our software in CUDA and release an open-source implementation. Considering the
larger convergence basin and accuracy obtained fusing both RGB-D and LiDAR within our
registration strategy, we envision a SLAM/BA pipeline that uses both depth sensors jointly.
Furthermore, to complete our universal 3D reconstruction schema, future research would
involve finding generic structure representation to optimize both RGB-D and LiDAR mea-
surements. In the upcoming chapter, we introduce a new 3D reconstruction and SLAM
benchmark. To enhance the ground truth, we employ our LiDAR BA technique, augmenting
the cost function delineated in Sec. 6.4 with supplementary geometric terms, bolstering both
convergence and accuracy. In the last chapter, we demonstrate how, by leveraging new data
and synchronously utilizing both LiDAR and camera, we can capitalize on the multimodal
benefits in terms of both resilience and execution times.
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(a) Trajectory estimates of cloister sequence. SLAM estimate in blue, BALM2 estimate in orange,
Ours in green and ground truth in black.

(b) Trajectory estimates of quad sequence. SLAM estimate in blue, BALM2 estimate in orange,
Ours in green and ground truth in black. BALM2 suffer of less dense trajectories, since
MD-SLAM spawn less keyframe poses to reduce odometry drift.

(c) Trajectory estimates of stairs sequence. SLAM estimate in blue, BALM2 estimate in orange,
Ours in green and ground truth in black. BALM2 suffer of rotations, as it is observable from
MD-SLAM and SuMA initial guess. For completeness we include the LeGO-LOAM plot,
however both our and BALM2 fail due to bad initial guess.

Figure 6.8. Plots of trajectory estimates in different LiDAR sequences of Newer College [142].
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Chapter 7

VBR : A Vision Benchmark in Rome

Computer vision communities have relied on standard datasets to enhance their techniques
since the early days. When ground truth data was accessible for a specific task, these
communities devised appropriate metrics to evaluate the accuracy of their algorithm’s results.
With the rapid advancement of machine learning, datasets equipped with ground truth have
become essential inputs for algorithms designed to learn intricate, non-parametric models.
After KITTI, several other multi-sensor datasets [81, 108, 68, 143] have been presented, but
no one seemed to have the same impact on the robotics and computer vision community as
the original work [44].

Whereas the merits of KITTI are undisputed, and the core ideas are still valid, the dataset
shows its years. The available sensors in the last decade improved significantly, and the
same holds for computing devices and ground truth systems. Perhaps the main shortcoming
of many datasets [44, 68, 136, 18] is the limited positional ground truth that is purely based
on RTK-GPS and IMU and suffers from synchronization issues. In addition to that, the work
is targeted at autonomous driving, hence, the data cover only road-like scenarios.

Other works aimed at addressing other aspects, such as seasonal changes [81], offering
hand-held motion with a more accurate ground truth [98]. Still, to our knowledge, none of
the recent datasets seem to address multiple issues. In this chapter, we present a contribution
that aims to approach all these aspects simultaneously. At the moment of writing, we propose
6 datasets acquired with a hardware-synchronized sensor setting consisting of a 3D LiDAR,
a stereo camera with a large baseline, an RTK-GPS, and an inertial sensor. Our data covers
some of the most characteristic areas of Rome, spanning over 40 km of trajectory in almost
4 hours of recording. The raw data have a footprint of about 2TB. The sequences have been
recorded in different environments, covering urban, forest, and indoor scenarios, using the
same kind of sensors but at different frequencies and modalities. Heterogeneous sequences
have been intentionally recorded to create a more challenging dataset, preventing domain
overfitting. Moreover, we illustrate a procedure for obtaining highly accurate ground truth
in large environments combining an RTK-GPS with a Bundle Adjustment schema on the
LiDAR data to obtain precise trajectories. The accuracy of our ground truth, validated with
a Total Station is ±3 cm along an indoor/outdoor trajectory of 1.5 km. For each dataset we
provide two flavors, similar to KITTI: a training version with ground truth available and a
benchmarking version where the ground truth is not publicly provided. The results of the
community on the training datasets will be evaluated off-core. The public benchmark with
the leading table will be available at our website.
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Figure 7.1. A summary of our dataset. Data illustrating some of the sequences recorded (top). 3D
mapping done with of our ground truth (bottom).

7.1 Related Work

Within the domain of SLAM and 3D reconstruction, several datasets have played pivotal
roles in benchmarking and advancing autonomous robotics systems and algorithms. These
datasets vary in terms of their operational contexts, sensory configurations, and the accuracy
of their associated ground truth data. One of the seminal car datasets in this field is KITTI.
Its strength is providing different benchmarks (i.e. visual odometry, optical flow, stereo
matching, and object detection). The KITTI datasets are publicly available and divided into
training and evaluation sequences, fostering fair comparisons among the approaches. Despite
being made available for more than a decade nowadays, KITTI is the most used benchmark
in robotics perception and computer vision. However, KITTI presents synchronization issues
between IMU readings and images, the ground truth data for visual odometry is produced
only by fusing RTK GPS receiver and IMU, and the hardware used for recording data is
nowadays outdated (Fig. 7.2, Fig. 7.3). Still, KITTI was pivotal in the development of
many popular SLAM methods. Oxford RobotCar is another noteworthy car dataset [81].
In contrast to KITTI, it distinguishes itself by featuring the longest sequences among the
datasets. Yet, the ground truth in the Oxford RobotCar dataset relies only on partial GPS
and INS data, which makes the baselines unreliable for benchmarking the accuracy of
SLAM and localization methods. Furthermore, approaches like Mulran use the same ground
truth generation process, leading to the same issue. However, this dataset is renowned for
embracing multimodal sensor data, including LiDAR and radar. While this adds diversity
to the sequences, only the front half of the LiDAR field-of-view is included in the data
collection [68].

In contrast to datasets collected from ground-based vehicles, certain research efforts
have focused on data acquisition from micro aerial vehicles. For instance, the EuRoC dataset
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Figure 7.2. Comparison between LiDAR clouds attached to ground truth trajectories of KITTI (up)
and ours (down). The zoom shows the elevation view.

Figure 7.3. Projection of the KITTI LiDAR point cloud into an image plane (up), projection of our
LiDAR into an image plane (down). The many holes of the up image due to uneven distribution
of the LiDAR beams and calibration issues make the KITTI LiDAR image unusable for computer
vision tasks.

[19] stands out for its use of synchronized hardware and a laser tracking system to attain
accurate ground truth data. However, the dataset does not provide LiDAR aquisition but only
a stereo-camera and an IMU. In addition, data is recorded only in industrial environments.

Recent advancements in handheld datasets, exemplified by Newer College [98] and Hilti
[143], have achieved exceptional levels of accuracy in ground truth generation through the
use of 3D imaging laser scanners. This innovative technique involves acquiring a prior map
and registering LiDAR point clouds using a localization approach. Nevertheless, a notable
limitation in this case is the impracticality of applying this method to large-scale scenarios,
which constrains its broader utility.

This paper introduces a diverse and heterogeneous dataset encompassing a wide range of
environments. Our design accommodates various robotic platforms, including quadrupeds,
quadrotors, and autonomous vehicles, making it a versatile resource for the robotics commu-
nity.

We maintain hardware synchronization to ensure data accuracy and reliability and em-
ploy stereo cameras with a wide baseline to capture robust visual information. Furthermore,
we provide an accurate 6-dof ground truth even in large scale scenarios.
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RFGR RFI

RFL

RFCR

RFCL

RFGL

Figure 7.4. Sensor setup and reference frames. Our ground truth is expressed in the LiDAR reference
frame RFL. More details can be found in our website and supplementary materials.
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KITTI [44]
EuRoC [19]
Oxford RobotCar [81]
ETH3D [108]
MulRan [68]
Newer College [98, 142]
Hilti [143]
Kitti-360 [?]
Ours

Table 7.1. The table summarizes the most important datasets in robotics perception and computer
vision related to odometry estimation and SLAM. For "Accurate GT" we mean any ground truth
recorded with motion capture, Laser Total Station, or globally refined.
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Sensor Type Details Rate

LiDARs
Ouster, OS0-128

Ouster, OS1-64

Vertical FOV: 90◦

Horizontal Res: 2048
Vertical FOV: 45◦

Horizontal Res: 1024

10 Hz

20 Hz

Cameras Manta G-125B/C
Global Shutter

Stereo configuration
Wide baseline

20 Hz
30 Hz

IMU SBG Ellipse-E
GNSS synchronization

0.05◦ precision 100 Hz

Table 7.2. Summary of the devices in our sensor setup, and the accuracy of the temporal synchro-
nization.

7.2 The Datasets

Creating comprehensive and authentic benchmarks for the tasks mentioned earlier is chal-
lenging. These challenges encompass collecting vast data in real-time, calibrating different
sensors operating at various speeds, producing accurate ground truths with minimal over-
sight, and choosing the right sequences and frames for every benchmark. The following
section delves into our approaches to address these issues.

7.2.1 Sensors setup

Our sensor system is illustrated in Fig. 7.4 and consists of two RGB cameras, a 3D LiDAR,
an RTK-GPS, and an IMU. The cameras are two global shutter Manta G-145 capturing in
RGB and arranged in a wide stereo fashion, with a baseline of approximately 50 cm. The
cameras have a horizontal FoV of 45◦ and a vertical one of 40◦. During the acquisition,
we enable auto white-balance and auto-exposure, while maintaining a fixed focus. The
maximum exposure is fixed at 20 ms. Each image is 1388× 700 pixels and stored in Bayer
pattern to reduce the memory footprint without losing information.

Two LiDARs were employed, tailored to the specific motion characteristics of the
captured sequences. For hand-held sequences, an Ouster OS0-128 was used. This sensor
offers a maximum range of 55 meters and a vertical FoV of 90◦ spanned by 128 beams. For
car sequences, we used an Ouster OS1-64. This sensor provides a longer maximum range of
120 meters, a narrower vertical FoV of 45◦ spanned by 64 lasers.

The Inertial Measurement Unit (IMU) is an SBG Ellipse-E IMU, with 0.05 ◦ of roll/pitch
accuracy, whose firmware supports GNSS integration. The RTK-GPS antennas are two
Septentrio PolaNt-x MF GNSS antennas mounted in differential configuration. The GPS
receiver supports multi-frequency GPS, GLONASS, Galileo, BeiDou, QZSS, NavIC, Com-
pass and L-band signal reception with an accuracy open-sky condition of 0.6 cm horizontally
and 1 cm vertically. All sensors are rigidly attached to an aluminum frame. The relative
position of the sensor is the same for both the hand-held datasets and for the driving datasets.
Fig. 7.1 shows the sensor placement on the car. Tab. 7.2 summarizes the devices used in our
system.

7.2.2 Calibration

The accuracy of intrinsic and extrinsic sensor calibration is fundamental in achieving
dependable ground truth data. Our calibration process is outlined below.
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Initially, we calibrate the stereo camera intrinsically and extrinsically. Subsequently, we
determine the SE(3) parameters that connect the coordinate systems of the laser scanner
within the right camera. Finally, we align the LiDAR /camera system with GPS/IMU
reference frame. To calibrate the camera’s intrinsic and extrinsic parameters, we use an
A3 checkerboard. Keeping the camera steady, we move the checkerboard and detect its
corners in the calibration images. Minimizing the average reprojection error allows us to
find optimal parameters for our setup [15]. Using the same target, we estimate the rigid
transformation between the right camera (RFCR) and the LiDAR. We achieve accurate
results by minimizing plane-to-plane error [46]. For each recorded sequence we acquire the
calibration data which are public available.

Determining the relative pose between the GPS/IMU and the LiDAR relies on the
sensor systems’ motion, since the two devices cannot observe a common target. To this
extent, we recover a trajectory from the LiDAR/camera system using a LiDAR odometry
based on point-to-plane ICP. During the process, we ensure a wide range of orientations
and translations essential for addressing the minimization issue. This technique is known
as hand-eye calibration [35] and aims at computing the sensor offset that results in the
maximum overlap between two LiDAR trajectories: the one computed by the odometry,
and the one obtained by computing the LiDAR motion from the GPS measurements (after
applying the estimated offset).

7.2.3 Synchronization

A key challenge during acquisition involves synchronizing sensors to establish a shared
temporal reference. Within our platform, two separate subsystems are at play: one comprises
the LiDAR and RGB stereo pair, while the other includes the GNSS receiver and IMU.
In the first system, the LiDAR takes on the role of the master, generating synchronization
pulses during its acquisition phase based on angle data from its encoder. For hand-held use,
the LiDAR records at 10 Hz, and the synchronization pulse activates every 120 degrees,
resulting in a 30 Hz signal. Moreover, in the automotive setup, the LiDAR operates at 20
Hz, with the synchronization pulse set to trigger once per revolution. The signal triggers the
frame acquisition for both cameras, leading to sub-millisecond synchronization between
the frames. Once the frames are received, their timestamp is overwritten with one of the
LiDAR data packets received when the encoder was at the trigger angle. This ensures an
accurate hardware synchronization between the two sensors.

In contrast, the GNSS-IMU system relies on Pulse Per Second (PPS) protocol for
synchronization, which is directly addressed by the IMU firmware. The streams from
the two subsystems are merged together by performing an offline time synchronization
to determine the difference between the internal clocks of GPS and LiDAR. We exploit
the internal LiDARIMU measurements to compute the temporal shift respect to the IMU,
using cross-correlation. This technique allows us to obtain a maximum of 5 ms error
considering possible un-observable phase shift between the IMUs signals that come every
10 ms. A temporal drift also affects the internal clocks of the LiDAR and GPS. In the longest
sequences, we observed a maximum shift between the two clocks of about 10 ms, which is
neglectable compared to the scan/image frequency and the velocity of the sensor.
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7.2.4 Ground truth generation

Generating accurate trajectories is the main objective of this work; hence, major attention
was dedicated to this task. Some work produces very accurate ground truth using ICP
localization within 3D Total Station reconstruction ( [98], [143]). This is not always possible
when moving in a very large environment. In such cases, a GNSS RTK system is usually
used. These systems can reach an accuracy of a few centimeters, but the signal quality is not
always optimal. In addition, these systems provide good global estimation, but poor locality.

In the remainder, we assume a 3D pose X ∈ SE(3) be represented as a homogeneous
4×4 matrix where R is the rotation matrix, and t is the translation vector. With the operator
log(X), we refer to the conversion of a transform in minimal form (e.g. translation vector
and unit quaternion for the orientations).

We combine the GPS priors Zg
t ∈ SE(3) with a variation of BA formulation proposed

in [34]. This allows us to combine the global accuracy of the GPS with the local precision
of registration approaches. Our procedure works first by computing a LiDAR odometry
that expresses the relative transform Zsm

t,t+1 between subsequent frames. To this extent, we
use the same ICP algorithm used for temporal synchronization mentioned in Sec. 7.2.3.
This odometry is accurate, reliable in the short term, and can cope with GPS outages.
Subsequently, we determine a global alignment of all the poses using the RTK-GPS readings
and considering the incremental measurements of the LiDAR odometry. In short, we solve
the following optimization problem:

X∗1:T = argmin
X1:T

∑
‖log(Zsm−1

t,t+1 X−1
t Xt+1)‖2Ωsm

t,t+1

+
∑
‖log(Zg−1

t Xt)‖2Ωg
t

(7.1)

Here ‖v‖2Ω = vTΩv denotes the Omega L2 norm of a vector v, with Ω representing the
information matrix encoding the accuracy of the measurement. Accordingly, in Eq. (7.1)
Ωsm
t is the information matrix resulting from scan matching, while Ωg

t encodes the GPS
accuracy.

Once this process is completed and we have a reasonable initial guess, we look for the set
of poses that is maximally consistent with all LiDAR scans. We solve the following problem
using geometric and photometric error terms. The geometric part based on point-to-plane
results in a configuration of the rigid motion which is close to the optimum. The second
photometric step, increases the accuracy by ensuring subpixel consistency. Let 〈i, j〉 be the
set of poses, 〈k, l〉 geometric associations, and u the image pixel generated by spherical
projecting the LiDAR point cloud into an image (as illustrated in [34]). The total residual
can be expressed as follows:

Eba =
∑
i,j,k,l

ρgeo‖egeo
k,l ‖

2
Ωgeo +

∑
i,j,u

ρphoto‖ephoto
u ‖2Ωphoto . (7.2)

We employ a point-to-plane metric for the geometric error term, explicitly relying on
efficient KD-tree data association based on PCA splitting criteria. The geometric term can
be compactly written as:

egeo
k,l (Xi,Xj) = (Xipi,j −Xjpk,l) · (Rini,k) (7.3)

with pi,k and pj,l denoting corresponding points between the poses Xi and Xj , and ni,k be
the corresponding normal. The photometric term, instead, follows the formulation illustrated
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Figure 7.5. Number of top 20 most frequent semantic instance for Ciampino (above) and Colosseum
(below) sequences. The instances were counted using OneFormer [?] over a subset of images
for each sequence and excluding the most predominant classes: sky, wall, road, grass, sidewalk,
ground.

in [34], but relies only on range and intensity images. The overall error function to minimize,
taking into account GPS information, will be therefore

Xgt
1:T = Eba +

∑
‖log(Zg−1

t Xt)‖2Ωg
t

(7.4)

We measured the accuracy of our ground truth using a Total Station and 6 highly
reflective markers disposed as a hexahedron in the scene, to lock all redundantly all degrees
of freedom. Since ranges are invariant of reference frame, we measure the differences
between the distances measured from the points acquired from Total Station and the one
detected in our estimated map. Our 6-dof ground truth results in ±3 cm accuracy on a
trajectory of length of approximately 1.5 Km (indoor/outdoor). Our ground truth generation
process has been shown to scale well to large environments while relying only on the
onboard sensors. The final estimated global clouds are usually in the order of billions of
points.

We release the ground truth for each training sequence, always expressed in the LiDAR
reference frame RFL.

7.2.5 Data selection

In the context of this research study, the OS0-128 LiDAR system offers extensive capabilities
for collecting spatial data. Specifically, it delivers precise range measurements across the
entire horizontal plane, covering large distances. Furthermore, it employs an dense array
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of vertical beams distributed over a 90◦, enabling comprehensive scans of a spherical area
surrounding the sensor.

Given the nature of the chosen environments and to ensure a rich and diverse dataset, we
used various configurations provided by the LiDARs with varying resolution and frequency.
We used the OS1-64 for car sequences at 20 Hz to maximize the observation in wide
scenarios and to reduce the skewing effect at higher speeds. Moreover, we employed the
OS0-128 for hand-held sequences at 10 Hz to maximize the observation in narrow scenarios.

We provide 6 datasets split into different sequences. Among the datasets, 4 were
acquired by walking using the hand-held device, while the other 2 collected by car. Each
sequence was collected in a different environment, with different challenging scenarios such
as dynamics, traffic, long sequences, and wide areas (Fig. 7.5). Tab. 7.3 summarizes some
parameters for the sequences and provides some illustration.

In the remainder, we shortly review each sequence, describing the scenario:

Spagna this sequence has been acquired in Piazza di Spagna and in the nearby streets. It
features several large loops going up and down the stairs hence, the trajectory is non-planar.
The narrow streets limit the FoV of the LiDAR, but the building facades are a rich source of
structure.

Colosseum consists of two rounds around the Colosseum and the Arco di Costantino. The
range of the LiDAR is not always sufficient to capture vertical structure. In some cases, the
maximum range of the sensor is not sufficient to measure the entire surroundings, and the
environment is repetitive, making some chunks difficult for state estimation.

Pincio several loops were collected in Villa Borghese. This dataset is characterized by
rich vegetation and a repetitive environment.

DIAG this sequence is a mixed indoor/outdoor dataset. We traveled inside and outside our
building, walking inside the corridors, through the courtyard, up to the stairs, and on the
roof, which is the only part where the reception of RTK-GPS was available.

Campus in contrast to all other sequences, this has been acquired at the main Campus of
Sapienza University using the equipped car, and features several loops, spanning approx-
imately all the streets that can be traversed by car. There are several narrow passage and
some tunnels that pass under buildings. The dynamic is composed mainly of people walking
composing a low percentage of the recorded data.

Ciampino these sequences have been recorded in the city of Ciampino (Fig. 7.7). It is the
longest sequence so far: the length of the total trajectory is about 21 km, while being subject
to moderate dynamics.

7.3 Benchmark

For a detailed assessment of SLAM and odometry estimation, we concentrate on the Absolute
Trajectory Error (ATE) and Relative Pose Error (RPE). As in [44], we assess rotation and
translation errors independently rather than merging them into one metric.
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Dataset Detail
Name: Spagna

Motion: hand-held
Type: urban/vertical

Length: 2.045 km
Duration: 1827 s

Name: Colosseum
Motion: hand-held

Type: urban/dynamics
Length: 2.159 km
Duration: 1383 s

Name: Pincio
Motion: hand-held

Type: park/trees
Length: 2.541 km
Duration: 2064 s

Name: DIAG
Motion: hand-held

Type: outdoor/indoor
Length: 1.480 km
Duration: 1458 s
Name: Campus

Motion: car
Type: urban, underpasses

Length: 11.455 km
Duration: 2290 s
Name: Ciampino

Motion: car
Type: urban/traffic
Length: 21.064 km
Duration: 3688 s

Table 7.3. Summary of our sequences.
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Figure 7.6. Our benchmark. Cumulative RPE [%] and ATE RMSE [m] across all training sequences
in our dataset for KISS-ICP, F-LOAM and ORB-SLAM3.

ATE emphasizes SLAM performance over odometry. To compute its RMSE, we first
align the estimated trajectory with the ground truth using a SE(3) transformation, matching
poses with synchronized timestamps and employing the Horn method [56]. Subsequently,
we calculate the RMSE of the ATE [m] among all the matched poses.

On the other hand, RPE emphasizes the odometry comparing local motion estimate
chunks within the ground truth. It involves computing the RPE [%] (measured in percentage),
over a set of subsequences of different lengths, as proposed by [44]. Afterwards, the
translational RPE [%] and the rotational RPE [deg/m] of a sequence are computed as the
average of all chunks RPE. Differently than any other benchmark, we have chosen to make
chunk lengths adaptive to the total sequence length. In fact, local and global accuracy of
our ground truth trajectories allows us to choose subsequences of arbitrary lengths, without
biasing evaluation results.

Given a trajectory estimate for each sequence, a cumulative error curve is computed,
like those in Fig. 7.6. For a given error value on the x-axis, the y-axis shows in how many
sequences a method achieves a lower error. Therefore, the method ranking is determined as
the area under curve, up to the selected maximum error and, for this metric, the larger the
better. This metric rewards the robustness of evaluated methods, since a successful result
on a sequence usually adds much more area under the curve than slightly improving the
accuracy on many sequences.

Additional information, supplementary materials, and the leading table can be accessed
on our website.

7.3.1 Evaluation

To assess our recorded data’s integrity, we evaluated different LiDAR odometry and visual
SLAM systems on all our training sequences, specifically focusing on three notable solutions:
KISS-ICP [129], F-LOAM [132] and ORB-SLAM3 [20]. The evaluation outcomes are
reported in Fig. 7.6, showing cumulative RPE [%] and ATE RMSE [m], with threshold
limits set to 10 % and 10 m respectively. As expected, LiDAR odometry methods are
more robust and accurate than visual SLAM, in fact both KISS-ICP and F-LOAM perform
successfully across all our 8 training sequences. The outcomes slightly change in the ATE
RMSE [m] graph, where the area under the curve of every method is reduced, emphasizing
the challenges in estimating the egomotion with global accuracy.
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Figure 7.7. The image shows the overlay of the 3D model obtained from our ground truth system
and a view from Google Maps.

7.4 Conclusion

In this chapter, we present a new vision and perception dataset, specifically targeted at
SLAM and odometry estimation methods. Our sequences cover different environments
and are acquired in a hand-held fashion and by using a car. Our design is to accommodate
various types of robotic platforms, including quadrupeds, quadrotors, and autonomous
vehicles, making it a versatile resource for the robotics and vision community. Compared to
existing datasets, we offer a variety of environments within our sequences. Moreover, this
work presents a novel ground truth estimation, fusing an RTK-GPS with a LiDAR Bundle
Adjustment schema. All the sequences are split into training and test sets. In addition we
provide a public benchmark evaluation system, accessible from our website, that produces a
leading table from the results submitted by the community.

As a further service to the community, we plan to extend our benchmark with other
sequences, annotations and challenges in the area of computer vision and robotic perception
(i.e. semantics, monocular and stereo dense depth estimation, object tracking, etc.).
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Chapter 8

Multimodal, fast and uniform 3D
reconstruction

Leveraging the combined strengths of both LiDAR and camera sensors can lead to enhanced
3D reconstruction capabilities. Throughout this thesis, we delved into the unique advantages
each modality offers. LiDAR, with its ability to capture accurate depth information even in
challenging light conditions, is instrumental in crafting reliable 3D maps. On the contrary,
cameras provide us with detailed visual content, enriching the depth data with texture and
color, attributes LiDAR cannot discern. By integrating the detailed imagery from cameras
with the sparse yet precise measurements of LiDAR, we aim for richer, denser, faster, and
more precise 3D reconstructions than with a single modality. Moreover, using conventional
cameras to estimate depths and achieve a 3D reconstruction is challenging. Furthermore, af-
ter investing time in the reconstruction process, great accuracy is not guaranteed. Differently,
with precise measurements from LiDAR, we can simplify these complexities, reducing or
even eliminating the need for intensive structure optimization. The confluence of these sen-
sors promises enhanced resilience in complex situations — be it the lack of visual features,
noisy depth measurements, or limited data availability. This fusion also suggests well for
efficiency, curtailing computational demands and offering a path to real-time applications.
However, many studies that utilize both of these sensors tend to design intricate systems that
separate the use of each sensor, thereby not fully capitalizing on their inherent similarities
and synergies. In this concluding chapter, we show how our BA strategy based on photomet-
ric and geometric information coupled with an efficient technique to generate dense depth
images from the overall LiDAR model can enhance 3D reconstructions. It is important to
note that this chapter does not venture into detailed numerical evaluations or exhaustive
experiments. With no direct counterpart in the academic landscape, our primary intent here
is to provide a glimpse into the potential advantages of combining modalities, both in terms
of robustness and computational times, particularly within our cohesive framework.

8.1 Related Work

Chapter 4 and Chapter 6 comprehensively review the literature on camera and LiDAR
techniques crafted specifically for each sensor, related to SLAM and BA. In this section, our
focus narrows to algorithms that simultaneously employ both LiDAR and cameras.

As we discussed in Chapter 2, for perception tasks, especially SLAM and 3D reconstruc-
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tion, various sensors are at our disposal. Cameras and LiDARs stand out as the predominant
choices. Nevertheless, even with the vast research dedicated to them, they are not without
limitations. For instance, cameras can face challenges like scale factor drift in single-camera
setups, delayed depth determination, limited stereo-vision range, and occasional sparseness
in the mapped reconstructions. Notably, utilizing RGB-D outdoors can be problematic.
Contrastingly, 3D LiDAR-centric techniques lean towards scan registration and pose-graph
methods. Some of these prioritize detecting landmarks, but often, the resultant point clouds
are not dense enough for peak performance. Yet, the main advantage of LiDAR is its good
range accuracy, leading to detailed mappings. Combining visual and LiDAR techniques
currently seems like a promising frontier in SLAM and mapping, since sensors can complete
each other.

A popular tool for sensor fusion, owing to its straightforward application, is the Kalman
Filter. As demonstrated in [135], an RGB-D camera combined with LiDAR EKF-SLAM
was introduced to overcome visual tracking setbacks. In cases where visual tracking
is unsuccessful, the LiDAR pose assists in localizing the RGB-D camera’s point cloud
data, facilitating 3D map creation. However, this method does not truly integrate the two
modalities but rather toggles between them based on situational needs.

In many visual-LiDAR SLAM scenarios, LiDAR is mainly used to estimate motion
via scan-matching, while cameras detect features for loop closures [74]. However, as we
already seen in Chapter 3, the benefit of accomplishing loop closures through LiDAR is the
independence from external light source (i.e. intensity measured will be the same during day
and night).

Looking from a different perspective, the impressive results achieved by visual-SLAM
algorithms have engaged in employing sensor fusion to derive optimal solutions within
these frameworks. As an illustration, Graeter et al. employed LiDAR for depth extraction.
After projecting LiDAR point cloud onto the RGB frame, motion estimation and mapping
proceeded through a visual keyframe-driven schema [48]. Differently, very targeted for
application, Scherer et al. employed a drone-based hybrid system to map a river’s path
and adjacent vegetation. Here, visual odometry combined with inertial readings estimated
the drone’s position, while LiDAR identified obstacles and marked the river’s edges [104].
Sauerbeck et al. incorporated 3D LiDAR depth into ORB-SLAM3 by building on the
RGB-D mode [103]. Zhang and Singh drew from their previous work LOAM [140] to craft
VLOAM [141]. This method, blending high-frequency visual odometry with its LiDAR
counterpart, aims to polish motion estimates and counteract drifts. Still, two separate and
independent methodologies are required.

It is evident that such strategies are more of loose collaborations than fully integrated
solutions, often overlooking feature detection within their measurement scopes and focusing
more on the technical enhancements for SLAM algorithms. In addition, to our knowledge,
no current research aims to exclusively blend the two sensors specifically for mapping
purposes.

In this chapter, we delve into the fusion of LiDAR and camera within our consolidated
approach, capitalizing on the inherent similarities between the two sensors. Building on
our previous works presented respectively in Chapter 5, for an accurate calibration using
printable targets and, in Chapter 7 for some new modern, synchronized and challenging
data; our qualitative experiments show that our approach can be used effectively for robust
and fast 3D reconstructions.
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8.2 Multimodal Bundle Adjustment

Expanding upon the insights from previous chapters, in Sec. 8.2.2 we delve into how
we address multimodal BA within our cohesive framework, utilizing both geometric and
photometric errors from LiDAR and cameras. Given the necessity for depth when using
cameras and, as previously discussed, the absence of datasets with dense depths in large-
scale scenarios or in tandem with LiDAR, we detail our approach to efficiently render dense
depth in Sec. 8.2.1. This is achieved using an adapted version of Voxelhashing [89] in
combination with the globally refined LiDAR model. While our method is designed to
function with either RGB-D or LiDAR independently, as well as in conjunction, the results
from previous chapters have underscored the efficacy of our unified approach for individual
sensor modalities. However, for simplicity in this discussion, we will focus primarily on the
simultaneous optimization of both sensors for 3D reconstruction.

8.2.1 Voxelhashing for camera dense depth generation

Chapter 7 highlighted our creation of a LiDAR model of the environment using Bundle
Adjustment, fusing GNSS and LiDAR odometry to generate a precise ground truth for our
benchmark. Specifically, we derive the set of poses that maximize both the geometrical
and photometrical consistencies. With the numerous LiDAR measurements acquired, the
resultant model is both dense and precise, making the the approch suitable for dense
depth view rendering. Yet, considering the model’s density (bilions of points), without
an appropriate data structure, reprojection of the model onto each camera view becomes
extremely time-consuming.

To address this issue and speed up depth generation, we introduce a GPU-based hash-
table. Drawing from the foundational work by Niessner et al. called VoxelHashing [89],
we have developed our own version. Besides compatibility with current hardware, it
can handle varied projection types, encompassing both traditional cameras and LiDAR
sensors. VoxelHashing, in the realm of computer vision and 3D reconstruction, is pivotal for
efficiently generating extensive 3D models from depth cameras promptly. This data structure
employs a straightforward spatial hashing technique to condense space, facilitating real-time
access and modifications to implicit surface data represented as Truncated Signed Distance
Function (TSDF) 1. Instead of requiring a standard or hierarchical grid data structure, it
only densely stores surface data in areas with observed measurements. GPU memory and
performance metrics arise when preserving surface data beyond the view frustum in the hash
table. To navigate this and support expansive maps, given the high host-GPU bandwidth,
a bidirectional streaming approach is adopted. Much like its predecessor, our adaptable
data structure is apt for this role, as in-and-out streaming of voxel blocks do not require any
reorganization of the hash table. More details about VoxelHasing can be found in the original
paper [89], here we briefly describe the main differences with the original implementation
and how we employ this data structure for efficient dense depth rendering in our scenario.

Mainly our processing is divided into three steps, integration, rendering and streaming.
Initially, we integrate using streaming RAM-GPU all LiDAR range images within up to
a maximum consecutive number of frames. After, we render each camera depth in the

1TSDF is a simplified version of a Signed Distance Function (SDF), which is a mathematical function that
describes the distance between any point in space and the nearest point on a given surface. The distance is
positive if the point is outside the surface, negative if it is inside, and zero if it is on the surface.
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integration

rendering

time

(a) (b)

Figure 8.1. Streaming Scenario: On the left, Fig. 8.1a illustrates the rendering process over the
integration area. The entire upper block is integrated, available in RAM for access, and ready
for streaming to the GPU during rendering. The rendering block is processed in the middle of
the integrated one, where model is denser. This procedure is repeated until all data has been
processed and camera depths for all frames are rendered. On the right, as depicted in Fig. 8.1b,
we demonstrate the RAM-GPU streaming process. In this situation, our LiDAR is moving from
left-bottom to right-up. The magenta voxels (small squares) are streamed out to RAM since
they fall outside the LiDAR’s maximum radius, while the purple world chunks (big squares)
are about to be streamed into the GPU because they are entering the LiDAR’s maximum radius.
While this happens in 3D space, we draw it in 2D for clearness.

denser area of our integrated model. We repeatedly this process until all corresponding
depth images have been rendered. We details each of these steps below.

Integration

Before adding new TSDFs, we need to allocate voxel blocks that not only fall within each
input LiDAR range sample’s footprint but are also inside the truncation zone of the surface
reading. We handle range samples concurrently, inserting hash entries and setting up voxel
blocks around the noted surface within this truncation area. For every depth input, we
generate a ray restricted to the truncation zone. As in the original implementation, since the
voxel resolution and block size is known, we employ DDA [9] to identify all voxel blocks
intersecting with the ray. We then add a new voxel block entry to the hash table for each
suitable candidate. Once allocated, we refresh all the designated voxel blocks present within
the LiDAR’s view frustum. Yet, a sizable portion of the hash table remains empty, meaning
they do not link to any voxel blocks. Additionally, many voxel blocks lie outside the viewing
frustum. Given these factors, TSDF integration becomes highly efficient by exclusively
targeting the blocks situated inside the current LiDAR view. We only integrate points that
are within 30 meters distance relative to LiDAR for better accuracy and density.

Rendering

Once we have integrated our model using LiDAR range and intensity data, we are ready to
render our camera view with depth information from the model. For this task, we employ the
extrinsic between camera and LiDAR (Chapter 5) and the intrisics calibration parameters of
the camera (Chapter 2) to ray-cast the part of the model within the camera view frustum. To
maintain a good and sharp quality of depth rendering we assume that each valid TSDF is in
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Figure 8.2. The flow of our multimodal approach. The system’s input comprises the initial estimate
of the sensor pose, the intensity/grayscale image Ig, and the depth image Id. The essence of our
refinement strategy, highlighted in green in this sketch, involves creating a graph with geometric
and photometric observations (Sec. 6.2.1) and executing a global optimization on the set of poses
X1:N , as elucidated in Sec. 8.2.2. It is worth noting that the input can originate from either
RGB-D, LiDAR, or both sensors. In multimodal optimization, our findings suggest using LiDAR
for geometric minimization and the camera for photometric error reduction.

the order of millimeters. In addition, given the density of the model, we remove occlusions
using simple z-buffer 2.

Streaming

Given that our models encompass billions of points and, faced with constrained memory
resources, we stream data from disk to RAM and between RAM and GPU. Because our data
is temporally ordered, we process by integrating a fixed number of LiDAR frames each time,
settling on 1000 frames for the sake of simplicity. After integrating the requisite number
of frames and with all data housed in RAM, we only render camera depths within the core
segment of this vast chunk to boost density (refer to Fig. 8.1a for clarity).

Moreover, to take full advantage of the GPU, given the high host-GPU bandwidth, we
stream bidirectionally based on active regions and the sensor’s frustum during both the
integration and querying stages. To achieve this, we establish an active region described as a
sphere that encloses the current LiDAR view frustum, with an additional safety perimeter
around it. For our LiDAR, we assume a range up to 50 meters. We position the sphere’s
center 25 meters from the LiDAR location, with a radius of 50 meters as shown in Fig. 8.1b.
On the host side, voxel data is not structured into a hash table anymore. Instead, akin to the
original design [89], we logically partition the world space uniformly into chunks, with our
current setup designating each chunk as 10 m3. The bidirectional streaming of voxel blocks
occurs every frame.

8.2.2 Cost function

Expanding on our prior photometric studies outlined in Sec. 6.2.2 and Sec. 6.2.1, we have
integrated a geometrical element, similar to the one depicted in Sec. ??. Our objective is to
determine the set of sensor positions X1:N , ensuring that both geometric and photometric
discrepancies between overlapping images are minimized consistently. The system’s input
comprises triplets

〈
Xi, Ig, Id

〉
, which include an initial estimate of the sensor position,

the grayscale/intensity image Ig, and the depth image Id. Our method’s progression is
showcased in Fig. 8.2. The initial phase involves identifying image pairs that capture a shared
structure, as elaborated in Sec. 6.2.1. Subsequently, these pairs serve as the foundation

2Within a pixel the sample closer to the camera along to the z-axis (forward from the camera) is stored.
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(a) Initial input of BA, trajectory estimated with
MD-SLAM [33] in LiDAR mode. Though
the overall coherence is satisfactory, the local
accuracy leaves much to be desired.

(b) Campus reconstruction using geometric BA
with LiDAR. The image show the output re-
construction after a geometric BA using only
LiDAR. The sequence is about 1.5 Km long
and only 791 LiDAR images have been em-
ployed.

Figure 8.3. Before and after global geometric optimization using LiDAR.

for a combined photometric and geometric optimization problem, as detailed in Sec. 8.2.2.
This approach is always versatile, suitable for LiDAR and RGB-D either individually or in
tandem. When employed together, considering the specificities of the sensors – the accurate
geometry gauged by LiDAR and the dense data procured by cameras – we predominantly
resort to LiDAR for geometric minimization and RGB-D for photometric optimization.

Unlike our purely photometric approach in Sec. 6.2, we avoid the use of pyramids and
hierarchical optimization to broaden the convergence basin. Instead, similar to Sec. ??,
we utilize geometrical point-to-plane error with explicit data association. This explicit
incorporation of geometry enhances the method’s robustness compared to relying solely on
photometric error in hierarchical optimization, though it does introduce added complexity
to the implementation, particularly in terms of data structure. The overall cost function we
seek to minimize is a sum of geometric and photometric terms:

Eba =
∑
i,j,k,l

Lgeo‖egeo
k,l ‖

2
Ωgeo +

∑
i,j,u

Lphoto‖ephoto
u ‖2Ωphoto (8.1)

with L our Huber robust loss, k, l point to plane association and u the pixel value. For
clarity, in the following, we wrap-up and detail both geometric and photometric residual,
highlighting the differences with the one already presented respectively in Sec. ?? and in
Sec. 6.2.2.

Geometric error

Point-to-plane data associations are commonly used for RGB-D and LiDAR [145] and are
known to be effective in ICP [22]. As discussed in Sec. ??, we employ an efficient k-d
tree data association based on Principal Component Analysis (PCA) splitting criteria. A
k-d tree (short for "k-dimensional tree") is a space-partitioning data structure that is useful
for organizing points in k-dimensional space. It is commonly used for range searches
and nearest neighbor searches in multi-dimensional data. When combined with PCA, the
splitting and search criteria are based on the directions in which the data varies the most
(principal components). For instance, the first principal component is the direction of
maximum variance, while the second principal component (orthogonal to the first) indicates
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Figure 8.4. Qualitative evaluation of multimodal BA in one of our Campus sequences. The recon-
struction has been done using LiDAR within geometric optimization (see Fig. 8.3b) and cameras
for photometric, generating dense depth images from LiDAR model through voxelhashing.
The sequence is about 1.5 Km long and only 791 RGB images have been used to render the
reconstruction.

the direction of the second greatest variance, and so forth. Throughout our optimization, to
refine data association at each iteration, adjusting the splitting direction using the estimate
Xj,i. This ensures a streamlined implementation, as well as enhanced final accuracy. As
previously introduced in Eq. (??), the geometric term can be compactly expressed as

egeo
k,l (Xi,Xj) = (Xj,iπ

−1 (ui,k, d)− π−1 (uj,l, d)) · (Rj,ini,k) (8.2)

with ui,k and uj,l denoting corresponding pixel (that get inverse projected in 3D) between
the poses Xi and Xj , and ni,k be the corresponding normal. Our current implementation,
from data association to the construction of the quadratic form (Eq. (2.30), Eq. (2.31)) is
parallelized in CPU.

Photometric error

Photometric error is very important to refine optimization at sub-pixel level, given good
initial guess provided by the geometrical optimization. The photometric error at image
coordinates u in the matching pair is the difference between Ig

i (u) and the pixel Ig
j (u′) of

the second image:

ephoto
u (Xi,Xj) =

∑
c

(
ζc(Xj,i, Ic

i )− Ic
j (u′)

)
(8.3)

where u′ = π
(
RT
j

(
Riπ

−1 (u, d) + ti − tj
))

and ζc(·) is the mapping function (see
Sec. 6.2.2 for more details). At each iteration, we remove the occluded portions of the
images before evaluating Eq. (8.3). The optimization proceeds by seeking the optimum of
all poses. The major difference compared to the previously presented approach illustrated in
Sec. 6.2.2 is that this one does not employ hierarchical optimization and uses only depth and
grayscale/intensity channels, not surface normals (c = (g, d)). Hierarchical optimization
and surface normals can be omitted in the photometric optimization, thanks to the geometric
contribution, which increases the convergence basin and accuracy of the initial guess.

8.3 Experimental Evaluation

In this section, we offer a qualitative look at the outcomes derived from our multimodal
approach. Our focus is primarily on the sequential optimization of LiDAR using geometric
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Figure 8.5. Qualitative samples of depth renderings. The samples have been captured from Campus
sequence (motion by car) and rendered using technique discussed in Sec. 8.2.1. The depth is
thresholded at 50 meters.

.

Figure 8.6. Voxelhashing runtimes. From left to right respectively integration, streaming and
rendering runtimes. The y-axis reports time in ms, the x-axis the number of hash buckets
involved in the process.

residuals and the camera with photometric residuals, as this combination emerged as a
notably effective fusion strategy. We also provide insights into the runtime of our algorithms,
highlighting the impact int terms of time of using combined data. While this section is not
designed to provide a comprehensive set of experiments or quantitative evaluations, it does
aim to demonstrate the broad benefits of multimodality, particularly in large-scale settings.
Given the absence of a direct counterpart for comparison, we benchmark against COLMAP
[106, 107], a widely recognized tool in 3D reconstruction. It is worth noting that COLMAP
addresses a more intricate challenge, operating solely on a sequence of images captured by
cameras. Differently, we employ images generated by LiDAR as well as images obtained
from cameras. Our intention with these results is to offer readers a perspective on the scale of
runtimes and robustness, comparing multimodal 3D reconstruction against more traditional
vision methodologies. Our experiments were conducted on a PC equipped with an Intel
Core i9-13900KF CPU @ 5.80GHz, having 128GB of RAM and a Geforce GTX 4090 X
24G graphics card. Our photometric BA scheme is implemented in CUDA 11. We perform
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ours COLMAP [106, 107]
791 images 791 images 6807 images

MD-SLAM [33] 5.523 Feature extraction 0.114 2.798
Depth rendering 20.712 Feature matching 0.194 1.717

Bundle Adjustment 0.641 + 0.161 Bundle Adjustment 30.720 188.666
Total 27.037 Total 31.028 193.181

Table 8.1. Multimodal 3D reconstruction runtimes compared to COLMAP (in minutes). On the left
are our runtimes, where Bundle Adjustment refers to the combined times of geometric (first) and
photometric (second) minimization, as detailed in Sec. 8.2.2. On the right, we have the runtimes
for COLMAP. It is worth noting that 3D reconstruction relying solely on a camera is inherently
more complex and time-consuming (i.e. structure optimization). The purpose here is not a direct
comparison but rather to provide a general sense of how our multimodal approach stacks up
against traditional vision techniques. COLMAP optimization with 791 images fails and results
are reported in Fig. 8.7a. COLMAP optimization with 6807 images fails again and results are
reported in Fig. 8.7b

some experiments on a Campus sequences, from our VBR benchmark (Chapter 7). This
sequence contains 6807 synchronized rgb images and LiDAR point clouds. This particular
sequence was chosen without specific criteria; it is simply one of the available options. It
does not pose extreme challenges for traditional methods, as it captures car movement at 50
Km/h within an urban setting and is about 1.5 Km long.

For our 3D reconstruction optimization, we employed the srrg2_solver [49] with
the LM method as iterative strategy. The optimization ceases when the magnitude difference
of the error between iterations falls below 10−4, for both LiDAR geometric and RGB-D
photometric.

8.3.1 Qualitative results

In this section we show some qualitative results of our approach, namely: geometric
optimization, photometric and dense depth renderings. In addition, we show some COLMAP
qualitative results when running in sequential mode (not exhaustive matching between
frames, since data is ordered) to create sparse, feature-based 3D reconstruction model. We
solve exactly the same problem but in different ways, since the input data is different:
COLMAP uses only images captured by camera, we employ both LiDAR and camera
measurements together. Our results are depicted in Fig. 8.3 and Fig. 8.4, illustrating the initial
state - before global optimization, mid-process - after LiDAR geometric optimization, and
final outcome - after dense photometric camera refinment. The comprehensive reconstruction
utilized 791 LiDAR scans and 791 RGB images, we downsample the original data for a
more immediate solution. The optimization process was approximately completed in 10
iterations for both the geometric and photometric minimization. This reconstruction employs
approximately 3 Gb of RAM and 16 Gb of DRAM. Using the original 3D model, to employ
photometric optimization on cameras, we rendered dense depths using the method outlined in
Sec. 8.2.1. This process utilizes 20 Gb of DRAM and 20 Gb of RAM, taking approximately
20 minutes to process the entire dataset. Qualitative examples of the generated depths
are showcased in Fig. 8.5, which displays the RGB, the rendered dense depth, and the
overlaid image. The runtimes of voxelhashing are plotted in Fig. 8.6. Our implementation of
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(a) Result of COLMAP with 791 images (fail). (b) Result of COLMAP with 6807 images (fail).

(c) SIFT [78] matches from COLMAP. Despite the good amount of matches the 3D reconstruction
pipeline seems to fail.

Figure 8.7. Qualitative COLMAP results in one of the Campus sequence. It consistently fails,
regardless of the number of images or the quality of matches.

voxelhashing has runtimes that grows linearly with the number of hash buckets allocated in
memory, still with 600k buckets allocated, around 153M voxels integrated, the runtimes are
below 30 ms for integration and bidirectional streaming. For depth rendering with similar
quantities we are below 20 ms. The total time required for the full process is of about 30
minutes (Tab. 8.1). We tried COLMAP with two configurations, a subsampled one using
the same number of frames we used for our reconstruction and another one using all frames
synchronized with the LiDAR at 20Hz. Given the higher number of matches and overlap
between frames, depicted in Fig. 8.7c, COLMAP fails after some time in both configurations.
More details runtimes are shown in Tab. 8.1.

8.4 Conclusion

Throughout this chapter, we have explored the combined power of LiDAR and camera
sensors in enhancing 3D reconstruction. We have seen how LiDAR’s strength in capturing
depth, complements the camera’s ability to provide rich visual details. When these two
are fused, the result is a more detailed 3D representation than what can be achieved using
only one of them. This integrated approach also simplifies the typically complex process
of vision-based 3D reconstructions, as the precision of LiDAR measurements reduces the
need for extensive structure optimization. While many studies have approached these
sensors separately, we have proposed a unified approach. Through our BA strategy, we have
highlighted the potential improvements in 3D reconstructions by utilizing both photometric
and geometric data, generating efficiently dense depths. However, it is important to note that
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this chapter does not dive deep into detailed evaluations or extensive experiments. Our main
goal here was to showcase the benefits of using both modalities together and the potential
of our integrated approach. Looking ahead, it is clear that combining different sensors in
a cohesive framework holds great promise for the future of 3D reconstructions, offering
improved robustness, accuracy and efficiency in a compact and cohesive implementation.
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Chapter 9

Conclusion

9.1 Summary

In this thesis, we presented several contributions towards uniform SLAM and 3D recon-
structions by harnessing the similarities between LiDAR and cameras. These advancements
employ each sensor both separately and in cojunction. Additionally, we introduced calibra-
tion techniques between these two sensors using commercial tags and a new challenging
public benchmark, laying the groundwork for multimodal 3D geometric reconstructions and
more robust and accurate SLAM algorithms.

Chapter 3 evaluates VPR techniques adapted for 3D LiDAR intensity data converted into
images. Using various robotic/vision datasets, we found that these methods reliably detect
loops, suggesting potential for broader LiDAR-only SLAM applications. Although they
might slightly lag behind RGB image methods, they maintain consistent SLAM performance
under different lighting conditions, eliminating the need for intricate RGB algorithms.

In Chapter 4, we present a direct SLAM system for both LiDAR and RGB-D, challenging
the convention of separate systems for distinct sensors. Merging position tracking and
appearance-based relocalization, our approach addresses extensive loop closures while also
offering a more generalized solution for depth sensors. Complementing this in Chapter 6,
we introduce a unified photometric BA method, refining SLAM-derived trajectories for
maximized global photometric consistency. Both implementations were released as open
source.

In Chapter 5, the main contribution is an extrinsic calibration technique for aligning
LiDAR and camera. This is fundamental for systems that employ sensors together. While
traditional robotics methods use large, expensive tags to address LiDAR sparseness, we
utilize compact markers like A3 chessboards. The implementation was released as open-
source.

In Chapter 6, using a precise calibration of both sensors, we demonstrate that our unified
photometric BA strategy, which integrates both LiDAR and RGB-D, enhances performance.
This joint approach leverages the advantages of each: LiDAR for a broader convergence
basin and camera for dense sub-pixel resolution.

In Chapter 7, we offer a comprehensive robotics perception dataset from Rome, including
RGB, dense depth, 3D LiDAR point clouds, IMU, and GPS data. Taking into account the
shortcomings of current datasets and acknowledging the precision achieved by modern
SLAM and 3D reconstruction algorithms on current benchmarks, our new challenging data
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(a) (b)

Figure 9.1. Distorted images and maps. On the left, the impact of an image taken with a rolling
shutter camera (at the bottom) is contrasted with one taken using a global shutter. To the right, the
distinction between a “skewed” point cloud and its rectified counterpart is displayed, presented
in 2D for clarity. Image acknowledgments go to [1] and [102], respectively.

aims to enhance algorithmic performance and prevent overfitting. We prioritize precise
calibration and synchronization while capturing diverse environments such as multi-floor
buildings, indoor-outdoor, gardens, and highways using cutting-edge tools. Gathered both
handheld and via vehicles, our dataset suits various robotic applications. We provide
an accurate ground truth, built upon findings illustrated in previous chapters, globally
optimizing RTK-GPS readings and LiDAR point clouds. The dataset, divided into training
and validation sets, is available at www.rvp-group.net/slam-dataset.

In the closing Chapter 8, we have highlighted the synergy of LiDAR and camera sensors
for enhanced 3D reconstruction. Merging LiDAR’s depth precision with the camera’s visual
richness streamlines the reconstruction process. Our unified BA strategy demonstrates the
advantages of using both modalities. Rather than diving into detailed evaluations, our aim
was to showcase this integrated approach’s potential in terms of robustness and runtimes.
Two sensors is better than one: the fusion of LiDAR and camera sensors presents a promising
future for efficient, robust and accurate 3D reconstructions algorithms.

9.2 Outlook

Although the author hopes that some aspects of this thesis may retain relevance in the future,
the vision of an optimal 3D reconstruction system, as introduced earlier, appears elusive for
now. This section endeavors to highlight potential avenues of future research that might
pave the way towards realizing that vision.

Tightly-coupled multimodal SLAM. In this thesis, we have explored how cameras
and LiDARs can be treated similarly by leveraging the commonalities in their measurements.
At present, our approach relies on having dense depth data for the camera. Instead of
rendering this offline and then utilizing it as proposed in Chapter 8, a more integrated
solution would benefit from the incremental LiDAR model during sensor tracking or SLAM.
This can potentially be applied in small dense patches for photometric refinement in the

www.rvp-group.net/slam-dataset.html
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passive image space. By adopting this method, even during ego-motion estimation, one
could harness the strengths of both sensors: the extensive support from LiDAR to widen
the convergence basin using geometry and the greater photometric accuracy from one or
multiple cameras.

Rolling shutter and “skewing” effects. As delineated in the background section
(Sec. 2.2.7), cameras predominantly employ either global shutters, which consistently cap-
ture entire scenes at once, or rolling shutters, sequentially exposing pixels and potentially
inducing distortions. These distortions are particularly pronounced in hand-held devices due
to unavoidable micro-movements, complicating 3D reconstruction. Notably, even minor
rotational shifts intensify the rolling shutter effect. Fig. 9.1a shows the differences between
images captured by the two different camera types. Mechanical LiDARs manifest a skewing
phenomenon reminiscent of the rolling shutter observed in cameras. They rapidly record
vertical data, but horizontal data acquisition is contingent on the encoder’s rotational speed.
The intensity of this skewing correlates directly with the sensor’s motion velocity. The paral-
lels between the behaviors of the two sensors are evident. Fig. 9.1b shows the differences
between a distorted map and one compensated through some geometric techniques [102].
For precise and rectified mapping, addressing these distortions is fundamental. Given the
shared characteristics between both sensors, a symmetrical rectification approach might be
viable. A prospective avenue worth exploring could involve refining the sensor intrinsics
individually for each image row or column.

Include semantic information. Incorporating semantic understanding into 3D recon-
struction offers the potential for substantial advancements. In many real-world scenarios,
certain elements of a scene may not provide strong signals for direct reconstruction due
to their homogeneous textures, lack of distinct features or noise. However, by leveraging
semantic segmentation, it is possible to classify and identify these elements, such as walls or
objects. This enhanced understanding would empower reconstruction algorithms to interpret
even weak cues accurately, drawing upon prior knowledge about the typical structures of
certain elements. Thus, integrating semantics becomes pivotal for achieving comprehensive
and accurate reconstructions, especially in environments with passive sensing.

City-Scale SLAM. Chapter 4 delves into a uniform SLAM system tailored for RGB-D
cameras and LiDAR, optimized for substantial (few Km) yet not full city-scale trajectories
(scale of 50 Km). To transition from this large-scale foundation to a comprehensive city-
scale landscape, several enhancements are in order. For starters, sensor tracking reliability is
paramount. The likelihood of system failures needs diminishing. While integrating IMU
measurements and incorporating multiple sensor views is a conventional strategy, it is crucial
in this scenario. Notably, IMU data can bolster resilience against moving objects. Moreover,
post-failure re-localization is essential. While this is an extensively studied domain, unique
challenges like discrepancies between visual and inertial data (such as when using the lift)
necessitate innovative solutions. Furthermore, transitioning to city-scale demands scalability
in the SLAM system. Standard methodologies, such as windowed bundle adjustment (like
the one employed by [86]), can offer partial solutions. However, challenges like ensuring
trajectory integrity against incorrect loop closure detections might still be unresolved in this
vast landscape and would be fundamental to reach full autonomy.

Deformable world and dynamics. In the context of this thesis, the foundational
assumption has been that of a static environment, with any moving entities deemed as
outlying observations. Such an approach, while practical for certain scenarios, inherently
limits the system’s understanding of dynamic environments. A more encompassing system
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would proactively recognize and incorporate these moving elements, facilitating a richer
and more realistic reconstruction. This becomes particularly crucial when we consider not
just rigid motions, like cars moving on a road, but also deformable objects, such as humans
in motion. Their inherent complexities in movement patterns and deformations add layers
of intricacy to the reconstruction process. Recent research, such as the work by [71, 88], has
begun to explore these challenges, marking early steps towards a comprehensive solution.
However, bridging the gap between these initial explorations and a fully matured, robust
system for dynamic 3D reconstruction still demands significant research efforts.

Implicit rendering. In the evolving landscape of 3D reconstruction, Neural Radiance
Fields (NeRFs) have emerged as a pivotal methodology. NeRFs utilize deep neural networks
to directly infer a continuous volumetric scene from a sparse set of 2D images. They
represent the radiance as a function of the 3D location and the viewing direction. this
representsation has proven adept at delivering high-quality novel views of diverse scenes,
often capturing intricate details with remarkable accuracy. A notable strength of NeRFs lies
in their ability to preserve these details due to their continuous volumetric representation
and implicit rendering. Furthermore, they offer a compact representation where the entire
scene’s information is efficiently encoded into the neural network’s weights. Parallel to
this, Gaussian Splatting has also been explored in the realm of 3D reconstruction. It is a
technique that emphasizes the influence of specific samples in volumetric spaces. By using
Gaussian weights, this method ensures that the contribution of a sample decreases with its
distance from a query point. Gaussian splatting can be particularly beneficial for handling
and merging data from multiple sensors or viewpoints, ensuring smooth and seamless
reconstructions, faster compared to NeRFs. While these techniques are both at the forefront
of current research, their full potential and employment in the areas of fast and large 3D
reconstruction remains a domain of active exploration.
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Appendix

A.1 Jacobian derivation of Photometric Bundle Adjustment

In this section, we discuss the photometric error term from Eq. (6.3) in more detail and
provide analytic expressions for the Jacobian matrices. This is an additional section that we
write for completeness.

We represent as ∆x the Lie algebra se(3) associated with the group SE(3), parame-
terized as ∆x = [∆t,∆q]T . ∆t ∈ R3 is the translation, and ∆q ∈ R3 is the imaginary
part of a unit quaternion. The rotation matrix can be calculated from the perturbation vector
using the exponential map at the identity ∆R = exp(∆q). We extend the notation of the
exponential map to refer to the transformation encoded in ∆x. Let ∆X = exp(∆x), be
this transformation whose rotation is ∆R and translation ∆t. We use the � operator to
denote applying a perturbation to a transform X exp(∆x) := X � ∆x.

In the reminder, the error term differs slightly from the one presented in Eq. (6.3). Here
we insert the offset mapping RGB-D or LiDAR with respect to the reference frame of a
multi-device sensor platform. This is fundamental to fuse the two sensors as illustrated in
Sec. 6.3.3. The constant rigid transformation comprises rotation Ro and translation to.

For compactness, we define two quantities pu as the point transformed by this offset
and p̄u as the point pu transformed by the estimate and the inverse of the offset as follows:

pu = Roπ
−1 (u, d) + to, (A.1)

p̄u = RT
o

(
RT
j (Ripu + ti − tj)− to

)
. (A.2)

Thus, we can rewrite our error in the following way:

ecu = ζc(Xj,i, Ic
i (u))− Ic

j (u′) = ζc (p̄u)− Ic
j (π (p̄u)) . (A.3)

Applying the perturbations ∆xi and ∆xj on the right hand side in Eq. (A.3) leads to:

ecu(Xi � ∆xi) = ζc
(
p̄u|i

)
− Ic

j

(
π
(
p̄u|i

))
, (A.4)

ecu(Xj � ∆xj) = ζc
(
p̄u|j

)
− Ic

j

(
π
(
p̄u|j

))
. (A.5)
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with p̄u|i and p̄u|j respectively defined as:

p̄u|i = RT
o

(
RT
j (Ri (R(∆q)pu + ∆t) + ti − tj)− to

)
, (A.6)

p̄u|j = RT
o

(
R(−∆q)RT

j (Ripu + ti − tj)−∆t− to
)
. (A.7)

Deriving these two quantities with respect to the perturbations leads to the following
Jacobians:

∂p̄u|i
∂∆xi

= RT
o RT

j Ri

[
I3×3 2bpuc×

]
, (A.8)

∂p̄u|j
∂∆xj

= −RT
o

[
I3×3 2bRT

j (Ripu + ti − tj)c×
]
. (A.9)

Projective Jacobians depends on the projection model, differing RGB-D and LiDAR, these
are calculated respectively deriving Eq. (2.4) and Eq. (2.10) with respect to the transformed
point p̄u.

Pinhole model:

∂πp(p̄u)
∂p̄u

= ∂φ(Kp̄u)
∂p̄u

= 1
v2
z

[
vz 0 −vx
0 vz −vy

] ∣∣∣
[vx,vy ,vz ]=Kp̄u

K. (A.10)

Spherical model:

∂πs(p̄u)
∂p̄u

=
∂K[1,2]ψ(p̄u)

∂p̄u
= K[1,2]


1

v2
x+v2

y

[
−vy vx 0

]
1

v2
x+v2

y+v2
z

[
− vxvz√

v2
x+v2

y

− vyvz√
v2

x+v2
y

√
v2
x + v2

y

]
[
0 0 0

]

∣∣∣
[vx,vy ,vz ]=p̄u

.

(A.11)
Image jacobians are numerically computed for each channel c with pixel-wise derivation:

∂Icr,c
∂r

= 1
2
(
Icr+1,c − Icr−1,c

)
∂Icr,c
∂c

= 1
2
(
Icr,c+1 − Icr,c−1

)
(A.12)

Jacobians on the mapping function ζc for each channel grayscale/intensity, range/depth
and normals, respectively {g, d, n} are computed also with respect to perturbations, since
the estimates appears also to the left of the error function Eq. (A.3). In the reminder we
specifically write mapping function and Jacobians of each cue.

Intensity
The mapping function does not affect the intensity/grayscale channel, therefore we have:

ζg(p̄u) = Ig(p̄u),
∂ζg(p̄u|i)

∆xi
= 0,

∂ζg(p̄u|j)
∆xj

= 0. (A.13)
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We need to differ between the two depth sensor models, since RGB-D provides depth while
LiDAR range measurements. Hence, leading to different Jacobians.

Depth

ζd(p̄u) =
[
0 0 1

]
p̄u,

∂ζd(p̄u|i)
∆xi

=
[
0 0 1

] ∂p̄u|i
∂∆xi

,
∂ζd(p̄u|j)

∆xj
=
[
0 0 1

] ∂p̄u|j
∂∆xj

.

(A.14)

Range

ζd(p̄u) = ||p̄u||,
∂ζd(p̄u|i)

∆xi
= p̄Tu
||p̄u||

∂p̄u|i
∂∆xi

,
∂ζd(p̄u|j)

∆xj
= p̄Tu
||p̄u||

∂p̄u|j
∂∆xj

.

(A.15)

(A.16)

Normals
Normals, differently, affect only rotation, hence is convenient to rewrite our error function
expressed in Eq. (A.3). This reduces to:

en
u = ζn

(
RT
o RT

j RiRonu
)
− In (π (p̄u)) . (A.17)

It is trivial to derive Eq. (A.3) with respect to the angular parts of the perturbations. Note
that nu is the normal prior to any transformation, since everything is enrolled in Eq. (A.17).

∂ζn
(
RT
o RT

j RiR(∆qi)Ronu
)

∆qi
= 2RT

o RjRiRobnuc×, (A.18)

∂ζn
(
RT
o R(−∆qj)RT

j RiRonu
)

∆qj
= −2RT

o bRT
j RiRonuc×. (A.19)

Finally, we can reconstruct the full jacobians:

Ji =
∂ζc(p̄u|i)

∆xi
−
∂Icr,c
∂r, c

∂π(p̄u)
∂p̄u

∂p̄u|i
∂∆xi

, (A.20)

Jj =
∂ζc(p̄u|j)

∆xj
−
∂Icr,c
∂r, c

∂π(p̄u)
∂p̄u

∂p̄u|j
∂∆xj

. (A.21)
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