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We congratulate the authors for the interesting and novel work on the evaluation of the
sensitivity of a set of stick-breaking priors via mean-field variational Bayes. The paper
focuses on Dirichlet process mixtures (DPM), a popular prior distribution in many
applications. The widespread use of DPMs makes it vital to be able to understand
their properties and the implications of their use. This method has the potential to
become part of the toolkit of statisticians who would like to pursue applications under
the Bayesian nonparametric (BNP) framework.

Our discussion focuses on possible extensions of the current work to non stick-
breaking priors. We motivate why these random probability measures deserve to be
considered for a similar sensitivity analysis and suggest a possible way to adapt the
framework of Giordano et al.’s using some recently developed finite approximations of
completely random measures.

The authors provide a computational tool to quickly and automatically assess the
sensitivity to prior specification of variational Bayes (VB) approximations in the par-
ticular case of some stick-breaking priors. They focus on the canonical Dirichlet pro-
cess mixture model, heavily used in topic modelling and clustering, and suggest that
the methods apply directly to any discrete BNP model that admits a truncated stick-
breaking construction with independent and identically distributed (iid) proportions
(νk)k. The Dirichlet process (DP) is arguably the most widely used discrete random
probability measure admitting a stick-breaking representation. It belongs to a wider
family of species sampling models known as Gibbs-type priors (see, for example, De Blasi
et al. (2013)), which are characterised by a particular form of the exchangeable partition
probability function. Other models within this family are the Pitman-Yor (PY) process,
the normalised σ-stable process, the normalised generalised gamma process (NGGP)
and the uniform process (Wallach et al. (2010)).

Gibbs-type priors do not necessarily admit a stick-breaking representation. As al-
ready mentioned in the Invited Discussion by J. Griffin and M. Kalli, an exciting result
would be to obtain an extension of the sensitivity analysis provided by Giordano et al.’s
to the broader family of Gibbs-type models. Expanding on this, we will highlight in
the following paragraphs the notable clustering properties of some random probability
measures other than the Dirichlet process, and suggest a possible way to address the
sensitivity analysis despite the lack of stick-breaking representations.

The generalised gamma process (GGP) (Hougaard, 1986; Brix, 1999), also known
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as (exponentially) tilted stable process, has mean measure

ρ(dw) =
1

Γ(1 − σ)
w−1−σe−τwdw, (1)

where σ ∈ (0, 1) and τ ≥ 0, or σ ≤ 0 and τ > 0.

Clustering models based on the DP or PY priors can only describe clusters whose
size grows linearly with the sample size n. Di Benedetto et al. (2021) propose a class
of random partition models based on the GGP which is able to generate partitions
whose cluster sizes grow sublinearly with n, a property known as microclustering. In
particular, their model offers a power-law growth of cluster sizes with exponent in
(0, 1). While Di Benedetto et al. (2021) employed an MCMC approach for inference,
a variational approach has computational and practical advantages. For a variational
framework one needs to consider approximations to these distributions. Lee et al. (2016,
2017) proceed in this direction by introducing and using finite dimensional approxima-
tions of the GGP (and other infinite measures). Precisely, they use the BFRY (De-
vroye and James, 2014) distributions to approximate the infinite measures for power-
law mixture models and graphs with power-law degree distribution within a mean-
field variational inference framework. For some context on BFRY distributions,1 recall
that a BFRY(τ), τ ∈ (0, 1) random variable X is characterised by a density function
fτ (x) = τ(1 − e−x)/(Γ(1 − τ)x1+τ ), x > 0. It is infinitely divisible and can be con-
veniently sampled as a ratio of gamma and uniform random variables. Heading a step
further, Lee et al. (2022) generalise the BFRY priors giving more generic series represen-
tations and iid approximations for both the GGP and stable beta process. This suggests
the following question: can we adapt the proposed sensitivity toolbox to the case of se-
ries representations and iid approximations proposed in Lee et al. (2017, 2022) to cover
these interesting applications? In this way one would obtain a sensitivity analysis for
microclustering or other applications of the GGP which have a power-law behaviour.

Recently, there was a lot of attention on graph modelling with power-law behaviour
as these can model real-world graphs with node heterogeneity. Sparse random graphs
with power-law degree distributions were originally introduced by Caron and Fox (2017)
who used a GGP process prior on the network node parameters. A series of papers
(Herlau et al. (2016); Miscouridou et al. (2018); Todeschini et al. (2020); Naik et al.
(2021, 2022)) followed, expanding the properties and types of graphs. In all of these
works, the parameter σ in Eq (1) is crucial as it tunes the sparsity of the graph and the
degree heterogeneity (power-law), therefore a desirable result would be to come up with
a similar computational toolbox to evaluate the sensitivity to the GGP process prior
focusing on σ for graph modelling.
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