
Satellite On–Board Solutions for Precise Orbit
Determination on Earth and Moon Orbit

Sapienza University of Rome
PhD in Automatic Control, Bioengineering
and Operations Research (XXXVI cycle)

Andrea Tantucci
ID number 1694755

Advisors
Prof. Antonio Pietrabissa
Prof. Francesco Delli Priscoli

Academic Year 2023/2024

Satellite On–Board Solutions for Precise Orbit Determination on Earth and
Moon Orbit
Sapienza University of Rome
ISBN: 000000000-0
© 2024 Andrea Tantucci. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Version: February 3, 2024

Author’s email: tantucci@diag.uniroma1.it

mailto:tantucci@diag.uniroma1.it

To my parents

v

Abstract

Precise Orbit Determination, which is the problem of finding the satellite
ephemeris by estimating the satellite position and velocity based on Earth ob-
servations data, has always been one of the most important aspects of satellite
navigation. Satellite positioning is used daily by smartphones to provide several
features and also by military personnel. Both of these users require different levels
of accuracy. In the last decades the increasing interest in space exploration has
brought forward the necessity to provide the satellites with on–board estimation
algorithms. The ability to self–estimate their position and velocity is of utmost
importance in scenarios in which data from Earth are not available, like in Moon
or Mars orbiting. Artificial Intelligence has proven to be one of the best solutions,
able to provide the satellite with non–standard measurements. The abstraction and
generalization capability of neural networks allow to perform complex tasks while
satisfying real–time constraints. In this context Crater Matching is one of the most
promising solutions for orbit determination.

In this thesis two different approaches for on–board Precise Orbit Determination
will be proposed: one making use of standard GNSS measurements coming from Earth
and the other one making use of non–standard ones provided by neural networks.
In the former case an end–to–end analysis, going from satellite propagation to
satellite visibility has been performed. In the latter case a first step toward the
development of a full Terrain Relative Navigation system has been carried out: a
benchmarking of different neural networks architectures has been performed, by
using a space–qualified processor, in order to identify the best on–board solution to
deal with the crater detection problem.

Two additional research projects tackling important aspects of the space domain,
satellite communication and Earth observation respectively, will also be detailed. A
mixed Artificial Intelligence and Reinforcement Learning solution has been proposed
for the first topic with extensive simulations and comparisons to validate the approach.
A full Artificial Intelligence approach has instead been taken to tackle the second
project, in which a Convolutional Neural Network has been trained to detect wildfires
in real–time and has been tested over a space–qualified processor to verify its
feasibility to be deployed on–board.

vii

Acknowledgments

Here i would like to thank all the people which have made possible for me to reach
this goal which is the most important one in my student career.

First of all i would like to thank my professors, in particular Prof. Francesco Delli
Priscoli and my supervisor Prof. Antonio Pietrabissa, which have been supporting me
from the bachelor degree until now. They have always encouraged me to go forward
and to give my best in everything i had to do.

I would like to thank also all the colleagues and friends i met during my study
careers. In particular i would like to mention Andrea with whom i have shared all
these years of study. He has been a source of inspiration and a good friend to rely
on.

I would also like to mention all the people from Thales Alenia Space who helped
me to develop the research projects presented in this thesis: Edoardo, Federica,
Oreste, Tommaso, Mattia, Cristian, Salvatore and many more. They have supported
me in these three years and given me the opportunity to know how does it feel to
work and research in such a big company. It has been a really good learning experience.

Last but not the least i would like to thank my parents, which were the ones who
made all of this possible. They were always there in the good and bad moments of
my life and have always been supporting my decisions.
To them i dedicate this important step in my life and all the future ones.

ix

Contents

Abstract v

List of Figures xiii

List of Tables xvii

List of Algorithms xix

List of Acronyms xxi

1 Introduction 1

I On–Board Precise Orbit Determination on Earth and Moon
Orbit 5

2 Precise Orbit Determination on LEO Satellite using Pseudorange
and Pseudorange-Rate Measurements 7
2.1 State of the art . 7
2.2 Original Contribution . 8
2.3 Implementation . 9

2.3.1 Mathematical Model of the Satellite Motion 9
2.3.2 On–Board Navigation Algorithm 11

2.4 Simulations and Results . 16
2.4.1 Simulation environment . 16
2.4.2 Simulation Results . 30

2.5 Future Works . 35

3 Space Qualified VPU Benchmarking of Crater Matching ODTS
Solutions based on Convolutional Neural Networks 37
3.1 Introduction . 37

3.1.1 Neural Networks . 37

x Contents

3.1.2 Lunar Environment and Crater Featuring 39
3.1.3 Crater Matching Techniques 40
3.1.4 Optical Flow . 42
3.1.5 On–Board Data Processing and Neural Networks 46

3.2 State of the Art and Original Contribution 48
3.3 Theory and calculations . 49

3.3.1 Methods . 49
3.3.2 Hardware Specifications . 53
3.3.3 Algorithm Implementation . 54

3.4 Results and Discussion . 57
3.5 Future Works . 61

II Other Works 63

4 Artificial Intelligence–Based Data Path Control in LEO Satellites–
Driven Optical Communications 65
4.1 Introduction . 65
4.2 State of the Art and Original Contribution 68
4.3 Preliminaries . 70

4.3.1 LSTM Neural Networks . 70
4.3.2 Markov Decision Process and Reinforcement Learning 72

4.4 Modelling . 74
4.4.1 Satellite Equations of Motion 75
4.4.2 Visibility Analysis . 77
4.4.3 Ground to Satellite Visibility 77
4.4.4 Satellite to Satellite Visibility 79
4.4.5 Markov Decision Process Formulation 79

4.5 Simulations and results . 81
4.5.1 Iridium Constellation . 86
4.5.2 Starlink Constellation . 87
4.5.3 Mixed Constellation . 88

4.6 Conclusions and Future Works . 89

5 PhiFireAI 91
5.1 Introduction . 91

5.1.1 Φsat–2 Mission Overview . 92
5.1.2 Φsat–2 Payload . 95
5.1.3 CogniSat AI processor . 97
5.1.4 Nanosat MO Framework . 97

Contents xi

5.2 Solution and Contribution to the Community 99
5.3 Methods . 100

5.3.1 Data Preparation . 100
5.3.2 Neural Network Architecture 102
5.3.3 Training and Validation Strategy 103

5.4 Results and Discussion . 104
5.4.1 Training and Validation Results 104
5.4.2 Inference Pipeline . 108
5.4.3 Test Set Validation . 109
5.4.4 Space–Qualified Test . 110

5.5 Conclusions and Future Works . 112

6 Conclusions 113

Appendix 115
A Perturbation Models . 115

A.1 Gravity Model . 115
A.2 Magnetic Field Model . 118
A.3 Third Boby Model . 121
A.4 Atmospheric Drag Model . 121
A.5 Solar Radiation Pressure Model 124

B Algorithms . 127
B.1 GDOP Computation . 127
B.2 UDU Covariance Factorization 128
B.3 UDU Covariance Propagation 129
B.4 UDU Measurement Update 130

Bibliography 133

xiii

List of Figures

1.1 Orbit Determination Problem and Topics. 1

2.1 Extended Kalman Filter Implementation Flow Chart. 14
2.2 Example of a Two Line Element set of data for a GPS satellite. . . . 17
2.3 Geometric visibility between two satellites. r1 and r2 are the position

vectors of the satellite with respect to the center of the Earth. ρ is the
position vector between the two satellites, h is the minimum distance
vector between ρ and the center of the Earth. Re is the Earth radius. 18

2.4 Electronic Visibility between two satellites. In red are shown the
antenna boresights of the satellites, α and β are the angles between
the position vector ρ and the antenna boresights, eAB is the elevation
angle of satellite A w.r.t. satellite B, viceversa eBA is the elevation
angle of satellite B w.r.t. satellite A. Re is the Earth radius. 19

2.5 Antenna Directivity for GPS Block IIA and Block IIR. 20
2.6 3D–Plot of the visibility analysis in the case of multiple antennas on

the LEO satellite. 21
2.7 Satellite geometry representations for two satellites. 22
2.8 Number of visible satellites with associated GDOP value. 23
2.9 Visibility comparison for satellite 13. 24
2.10 Visibility comparison for satellite 16. 25
2.11 Elevation error for satellite 13. 26
2.12 Elevation error for satellite 16. 26
2.13 C/N0 comparison for satellite 13. 27
2.14 C/N0 comparison for satellite 16. 27
2.15 GDOP comparison with telemetry data. 28
2.16 Section of Figure 2.15. 29
2.17 Position estimation error with pseudorange measurements and 3σ

bounds. 31
2.18 Position estimation error with both pseudorange and pseudorange–

rate measurements and 3σ bounds. 32

xiv List of Figures

2.19 Velocity estimation error with only pseudorange measurements and
3σ bounds. 32

2.20 Velocity estimation error with both pseudorange and pseudorange–
rate measurements and 3σ bounds. 33

2.21 Position estimation error with pseudorange measurements and 3σ
bounds considering relativistic clock errors and Shapiro Effect. . . . 34

2.22 Position estimation error with both pseudorange and pseudorange–
rate measurements and 3σ bounds considering relativistic clock errors
and Shapiro Effect. 34

2.23 Velocity estimation error with pseudorange measurements and 3σ
bounds considering relativistic clock errors and Shapiro Effect. . . . 35

2.24 Velocity estimation error with both pseudorange and pseudorange–
rate measurements and 3σ bounds considering relativistic clock errors
and Shapiro Effect. 35

3.1 Example of an artificial neural network. 38
3.2 Terrain–Relative Navigation Algorithm Pipeline. 41
3.3 The optical flow vector of a moving object in a video sequence. . . . 44
3.4 Myriad Compute Stick. 47
3.5 Jetson TX2 board. 48
3.6 U–Net architecture. 51
3.7 SDD network architecture. The original feature extractor is based on

VGG-16. 53
3.8 Unibap iX5–100 Board. 53
3.9 Unibap’s iX5–100 Hardware Specifications. 54
3.10 Inference Workflow. 56

4.1 System Scenario. 74
4.2 Earth Centered Inertial reference frame. 75
4.3 Reinforcement Learning algorithm workflow. 80
4.4 Map of the transmitting OGSs in the east coast of North–America. . 81
4.5 Map of the receiving OGSs in Israel. 82
4.6 LSTM Neural Network Architecture. The network is made by two

LSTM layers and two Dense layers, each one followed by a Dropout
layer, with the final output layer having one neuron representing bad
weather probability. 83

4.7 Season–related reward trend of the RL controller for the Iridium case
study. 86

4.8 Season–related link availability comparison for the Iridium case study. 86

List of Figures xv

4.9 Season–related reward trend of the RL controller for the Starlink case
study. 87

4.10 Season–related link availability comparison for the Starlink case study. 88
4.11 Season–related reward trend of the RL controller for the mixed case

study. 88
4.12 Season–related link availability comparison for the mixed case study. 89

5.1 Φsat–2 deployed configuration. 94
5.2 Φsat–2 stowed configuration. 94
5.3 Φsat–2 Mission Timeline. 94
5.4 Φsat–2 Imager Ground Projection. 96
5.5 Ubotica’s CogniSatTM Platform. 98
5.6 PhiFireAI solution scheme. 99
5.7 Example of input images with the corresponding labels. 101
5.8 ROC curve for model–1 in One–vs–Rest scheme. 106
5.9 ROC curve for model–2 in One–vs–Rest scheme. 106
5.10 ROC curve for model–3 in One–vs–Rest scheme. 107
5.11 PhiFireAI Inference Pipeline. 108
5.12 Inference Result for the first test image. In green is shown the safe

area; in red the wildfire area is represented; in orange the burnt area
is highlighted; in blue is shown the water area. 109

5.13 Inference result for the second test image. In green is shown the safe
area; in red the wildfire area is represented; in orange the burnt area
is highlighted; in blue is shown the water area. 110

A.1 Force due to solar radiation pressure for absorbing (ϵ = 0) and
reflecting (ϵ = 1) surface elements. 125

A.2 Simple cilinder model for shadow of Earth. 126

xvii

List of Tables

2.1 Geometric Diluition Of Precision possible values. 23
2.2 Filter Parameters. 30

3.1 Benchmarking Performance Parameters. 50
3.2 Hyperparameters Specifications. 56
3.3 U–Net Performance Parameters. 58
3.4 MobileNetV2 Performance Parameters. 58
3.5 MobileNetV3 Performance Parameters. 59
3.6 Summary of Performance Results. 60

4.1 LSTM accuracies per season. 84

5.1 Φsat–2 Orbital Parameters. 93
5.2 Summary of Φsat–2 Mission Phases. 95
5.3 Φsat–2 spectral bands. 96
5.4 Neural Network Specifications . 102
5.5 Training Hyperparameters. 103
5.6 Metrics classification report for model–1. 105
5.7 Metrics classification report for model–2. 105
5.8 Metrics classification report for model–3. 105
5.9 False Negatives and False Positives values of the three models for the

Fire class. 107
5.10 Metrics classification report for model–1 after quantization and scaling.108
5.11 Average inference time and throughput of the three models. 111

xix

List of Algorithms

1 Q-Learning. 73
2 Orbital Parameters to ECI coordinates. 76
3 ECI to ECEF coordinates transformation. 78
4 ECEF to ENU coordinates transformation. 78
5 ENU to Azimuth, Elevation, Range parameters. 79
6 Geometric Visibility Check between satellite A and B. 79

xxi

List of Acronyms

ADCS Attitude Determination and Control System.

AI Artificial Intelligence.

CCSDS Consultative Committee for Space Data Systems.

CNN Convolutional Neural Network.

COTS Commercial Off–The–Shelf.

CPU Central Processing Unit.

CV Computer Vision.

CVAI Computer Vision and Artificial Intelligence.

DoD Department of Defence.

DOP Diluition Of Precision.

ECEF Earth Centered Earth Fixed.

ECI Earth Centered Inertial.

EO Earth Observation.

ESA European Space Agency.

FPGA Field Programmable Gate Array.

FWHM Full Width at Half Maximum.

GCRF Geocentric Celestial Reference Frame.

GDOP Geometric Diluition of Precision.

GEO Geostationary Earth Orbit.

xxii List of Acronyms

GNSS Global Navigation Satellite System.

GPS Global Positioning System.

GPU Graphics Processing Unit.

ISP Image Signal Processing.

LEO Low Earth Orbit.

LSTM Lon Short Term Memory.

LTDN Local Time at the Descending Node.

LVDS Low Voltage Differential Signaling.

MEO Medium Earth Orbit.

NASA National Aeronautic and Space Administration.

NCS Neural Compute Stick.

NN Neural Network.

ODTS Orbit Determination and Time Synchronization.

PAN Panchromatic.

PCIe Peripheral Component Interconnect Express.

PDOP Position (3D) Diluition of Precision.

POD Precise Orbit Determination.

PRN PseudoRandom Noise.

RAAN Right Ascension of the Ascending Node.

SAR Synthetic Aperture Radar.

SC SpaceCraft.

SDK Software Development Toolkits.

SNR Signal to Noise Ratio.

SSO Sun Synchronous Orbit.

List of Acronyms xxiii

TASI Thales Alenia Space Italy.

TDOP Time Diluition of Precision.

TRAN Terrain–Relative Absolute Navigation.

TRN Terrain–Relative Navigation.

TRRN Terrain–Relative Realative Navigation.

UERE User Equivalent Range Error.

UERRE User Equivalent Range Rate Error.

VPU Visual Processing Unit.

WGS World Geodetic System.

1

Chapter 1

Introduction

Orbit Determination (OD) is the problem of finding the satellite ephemeris by
estimating the satellite position and velocity based on observations data (Figure
1.1). These observations are fed into the orbit determination algorithm and can be
of different natures: ground–based observations such as azimuth, elevation, range
and/or range–rate values or sensor–based observation such as altitude, orientation
of the body and angular rate of the satellite, distance from other “bodies” (Moon or
Sun). The former are provided by Earth ground tracking stations while the latter
are provided by the satellite on–board sensors like altimeters, Inertial Measurement
Unit (IMU) devices and star trackers.

Figure 1.1. Orbit Determination Problem and Topics.

The increase in exploration and scientific space missions has brought up the need
to develop algorithms which are able to estimate the satellite pose with high preci-
sion, in particular for LEO satellites. These are named Precise Orbit Determination
(POD) algorithms. They make use of nonlinear estimation algorithms to estimate

2 1. Introduction

the state of the satellite non–linear propagation model. Until recent times, most
of the processing was performed on ground due to the low computational power of
satellite on–board processors.

The improvement of on–board technology has opened up another possibility in
satellite navigation that is, trying to execute the processing which was performed on
ground, on–board the satellite. This problem is named the Orbit Navigation (ON)
problem. It relies on the direct on–board processing of avionic sensors and auxiliary
observables to obtain real–time high–accuracy satellite positioning. The primary
aim is to support platform autonomous operations as trajectory and attitude control
tasks, even though payload and data handling can benefit of a precise position tag.
This is very important for deep space exploration missions in which the ability of
the satellite of auto–determine its position is of utmost importance.

Modern OD systems, which are the result of methodologies developed over the
past 50 years [1], have demonstrated, in the framework of many research programs
carried out by DoD, NASA and ESA, the advantage of a generalized Earth orbit de-
termination scheme dealing with a large variety of space missions and orbital regimes
(LEO, MEO, GEO, etc.). Their propagation and estimation open architectures
allow suitable orbit models to be selected and target state vector rearrangement:
it is possible in this way to properly calibrate the model with respect to the orbit
regime peculiarities by manipulating a list of operating parameters. The capability
of handling different kinds as well as different combinations of observables completes
the generalized OD paradigm: measurement reconstruction patterns modelling allows
the optimization of the performance with respect to both random and systematic
errors.

The possibility to have an OD–based scheme is becoming of high interest also for
on–board ON systems. With the recent interest of space companies in the Moon and
Mars exploration and exploitation, the need to find auxiliary observables in order
to improve the satellite pose estimation has become an important aspect for the
development of new navigation algorithms. In this framework the use of machine
learning approaches, in particular NNs and CNNs, is of great interest since they are
able to perform on–board computations satisfying the real–time constraints imposed
by ON systems thanks to the use of ad–hoc processing units (GPUs or VPUs)
mounted on the on–board processors. The use of NN for on–board tasks allows to
obtain non–standard measurements, like for example Moon or Mars craters’ position
by performing image segmentation or object detection on the Moon’s surface. This

3

feature can be used to boost the ON algorithms by improving the position and
velocity estimation of the satellite which, in case of a lack of Earth measurement
data, would be performed only by means of the on–board sensors like altimeters or
star trackers.

In this work two novel approaches related to the POD problem are proposed:

• the first is an on–board POD algorithm for a LEO satellite based on multiple
GNSS observables. In this project an ODTS algorithm based on multiple GNSS
measurements will be presented. An Extended Kalman Filter (EKF) will be
used for state estimation. Moreover a detailed mathematical description of the
POD algorithm, i.e. satellite equations of motions, visibility analysis and EKF
formulation, will be given along with some simulations on the filter accuracy
and its robustness in the presence of error contributions in the measurement
equations;

• the second is an on–board POD algorithm in a Moon–based scenario which
relies on auxiliary observables obtained by exploiting AI algorithms. In this
thesis a first step towards a full TRN pipeline is presented, in particular the
crater detection processing block of the TRN pipeline has been analyzed.
Several neural networks have been tested, spanning from image segmentation
to object detection NNs and their performances in terms of computational
complexity have been compared. The results are shown in this thesis along
with a discussion on their capability to handle on–board constraints. All the
tests have been performed over a space–qualified processor.

In addition two more research projects will be presented:

• the first one deals with the problem of free–space optical satellite commu-
nications. The proposed approach makes use of artificial intelligence and
reinforcement learning in order to develop an optimal data–path control law
which allows the correct exchange of signals between two distant areas of
the globe. The communication link is established by means of LEO satellite
constellations. Several case studies will be presented and the solution will be
compared with other standard benchmark approaches;

• the second one focuses on the Earth observation domain. The solution was
developed as an answer to an ESA challenge looking for innovative AI–based on–
board applications for the Phisat–2 mission. The challenge is called OrbitalAI.
The idea was to develop a neural network able to identify the presence of
wildfires in an area. This application will be useful to the relevent authorities

4 1. Introduction

in order to act in time and prevent further disasters in the nearby areas.
A detailed description of the training and validation process of the chosen
model is presented. This solution has also been tested over a space–qualified
processor.

The results presented in Chapters 3 and 5 have been developed in collaboration
with Thales Alenia Space which allowed to perform tests on space–qualified hardware;
the work detailed in Chapter 2 has resulted in a publication at the Mediterranean
Control Conference 2023, while the research detailed in Chapter 4 has been submitted
to the International Journal of Satellite Communications and Networking.

The thesis is organized in the following way: in Part I the two on–board solutions
for satellite POD problem are presented; Part II instead details the two additional
research projects presented above; in Chapter 6 the final summary and considerations
related to this thesis are presented.

5

Part I

On–Board Precise Orbit
Determination on Earth and

Moon Orbit

7

Chapter 2

Precise Orbit Determination on
LEO Satellite using Pseudorange
and Pseudorange-Rate
Measurements

2.1 State of the art

The POD problem is one of the most important aspects characterizing satellite
mission operations. It consists in the accurate prediction of the satellite ephemeris
by estimating the satellite position and velocity based on a sequence of GNSS
observations.

GPS receivers are widely used on LEO satellites due to the global coverage
offered by the GPS constellation which allows a wide number of observations to be
processed at the same time, differently from the MEO and GEO orbits, in which
a reduced number of usable satellites, high values of GDOP and significant GNSS
outage periods do not allow a precise estimation of the satellite position and velocity.

A 10 m and 0.1 m/s navigation accuracy for position and velocity, respectively,
is generally considered adequate for Attitude and Orbit Control Systems (AOCS).
Following the deactivation of selective availability, this accuracy can readily be
provided by the kinematic navigation solution using a single–frequency GPS receiver.
However, much higher accuracy is required in many on–board navigation tasks,
such as SAR interferometry or atmospheric sounding. These cases call for a sub–
decimeter position accuracy and a sub–mm/s velocity knowledge. In the past, this
accuracy could be obtained in a ground–based reduced dynamic orbit determination
using dual–frequency carrier phase measurements along with precise GPS ephemeris

8
2. Precise Orbit Determination on LEO Satellite using Pseudorange and

Pseudorange-Rate Measurements

products and auxiliary environmental information. To improve the accuracy of
the on–board navigation solutions, Kalman filtering techniques have been broadly
used, finding applications in both attitude [2, 3] and orbit propagation control
schemes [4,5]. In [6] the author compares the use of the Unscented Kalman Filter
(UKF) approach with the EKF one with different types of measurements: GPS
navigation solutions (position and velocity of the satellite obtained by least squares
of the GNSS measurements) and pseudorange measurements. It is shown that the
latter method improves the accuracy: in particular, a maximum accuracy of about
12 m for the position and 0.0159 m/s for the velocity at convergence is obtained. [7]
proposes a novel approach using the Schmidt Consider Kalman Filter (CKF). This
approach is able to obtain a high level of accuracy also in the presence of an high
number of uncertainties in the equations of motion, which need to be estimated by
the Kalman Filter, by partitioning the filter state into actual estimation variables
and uncertain parameters. The latter ones are maintained constant during the
propagation and are not corrected by the measurements.

2.2 Original Contribution

In this work, an EKF estimation algorithm has been considered. The measurements
which have been used are the pseudorange and the pseudorange–rate. On the one
hand, it will be shown that the use of multiple GNSS measurements increases the
accuracy by a huge margin with respect to using only one of them as in [6], which uses
the pseudorange measurements only. On the other hand, [8, 9] use the carrier–phase
instead of the pseudorange–rate since it allows to mitigate some of the measurement
errors. However, the use of carrier–phase measures introduces new state variables
to be estimated in the form of ambiguity biases, whose number varies at every
observation instant since it corresponds to the number of tracked satellites. The
dynamic augmentation of the filter state increases the storage and computational
load of the satellite hardware, which might be significant in small LEO satellites.
The use of the pseudorange–rate instead, allows to obtain an accuracy below the
1 m threshold for the position and below the 0.001 m/s threshold for the velocity,
without increasing the filter state dimension as in the previous approaches, therefore
reducing the storage and computational load for the on–board processor. This is
also an improvement with respect to [5], where an accuracy of 10 meters (1 σ) for
the position and of 0.01 m/s (1 σ) threshold for the velocity has been obtained by
using, as measurements, the pseudorange and the Doppler.

Two different sets of simulations have been performed in order to verify the
robustness of the filter to the presence of different error contributions in the mea-

2.3 Implementation 9

surements:

• in the first case the error contributions correspond to the receiver clock bias
and drift errors ∆tR and ∆ṫR, the receiver measurement errors ϵρ and ϵρ̇, the
ionospheric and multipath errors;

• in the second case, in addition to the previous contributions, the receiver
relativistic error and the Shapiro effect have been added.

Since the focus of this research is to validate the use of the GNSS measurements,
the presence of uncertainties in the equations of motion has been limited in order
to keep the filter state at a reasonable dimension. Nevertheless, if one wants to
introduce additional uncertainties, a more robust filter might be used, as for example
the CKF.

This work has been published in the proceedings of the Mediterranean Control
Conference (MED) 2023 [10].

2.3 Implementation

In this section a detailed description of the implementation of the ODTS algorithm
will be presented. First the satellite equations of motion will be detailed followed by
a dissertation over the EKF formulation which has been used as state estimator.

2.3.1 Mathematical Model of the Satellite Motion

The equation of motion of a satellite has the following closed form:

ẋ = f(x, t) (2.1)

with x = (r, v) and ẋ = (ṙ, v̇) = (v, a) being the state and its derivative respectively.
In particular r, v and a represent the position, velocity and acceleration of the
satellite.

Newton’s law of motion states that the force on a body equals the product of
that body’s mass multiplied by its acceleration. When the position is measured in
an ECI reference frame, such as J2000 or GCRF, this law can be written as follows:

mr̈ = m
d2r
dt

= F (2.2)

where m is the mass of the body, F is the total force acting on the body and r, r̈ are
the position and the acceleration vectors of the satellite. Both r and F are expressed
in ECI. In the case of an Earth orbiting satellite, there are several contributors

10
2. Precise Orbit Determination on LEO Satellite using Pseudorange and

Pseudorange-Rate Measurements

to the total force F. These include the gravitational attraction of the Earth, Sun,
Moon and other celestial bodies, the atmospheric drag and solar radiation pressure
and any thrust produced by the satellite while performing maneuvers or adjusting
its attitude. Assuming that only the Earth’s gravitational attraction acts on the
satellite and that the Earth is spherically symmetric, Newton’s law of gravity gives
the force between Earth and satellite:

F = −GMm

∥r∥3 r (2.3)

where M is the mass of the Earth, G is the gravitational constant, r is the position
of the satellite in ECI and ∥r∥ is the distance of the satellite from the center of the
Earth. Defining the Earth’s gravitational parameter as µ = GM and using Newton’s
law of motion, the acceleration of the satellite is:

r̈ = −µ r
∥r∥3 . (2.4)

This acceleration would result in Keplerian orbital motion, which has an easy
analytical solution. If perturbations are considered, (2.4) becomes:

r̈ = −µ r
∥r∥3 + P(r,v,∆Cd,∆Csp, t) (2.5)

where P(r,v,∆Cd,∆Csp, t) is the total perturbing acceleration due to all effects
other than the spherical mass distribution of the Earth. ∆Cd and ∆Csp are the
drag and solar pressure coefficients respectively and t is the time. Because of the
presence of these additional accelerations, the resulting orbital motion deviates from
Keplerian orbits. The solution of the equation of motion is not analytical anymore
but, provided that the total perturbing accelerations are known exactly, this equation
provides an exact description of the satellite motion.

The perturbations modeled in this work are the following ones:

1. aGRAV-NS(r, t) → Non–spherical Earth gravitational potential. The Earth
gravitational potential can be written as a series of harmonics in order to take
into account the actual mass distribution of the Earth. This term depends
only on the ECEF position of the satellite (so it depends on the ECI position
and on time for the ECI to ECEF transformation). The EGM2008 model is
used [11];

2. aDRAG(r,v,∆Cd, t)→ Atmospheric drag on the satellite. The modified Harris–
Priester model is used for evaluation of the atmosphere density [12]. Drag

2.3 Implementation 11

depends on the satellite position (for calculating the atmospheric density), on
the satellite velocity (for calculating the relative velocity between the satellite
and atmosphere) and on time (for calculating the position of the Sun which is
needed for evaluating the atmospheric density). The drag coefficient ∆Cd is
estimated by the EKF in order to account for all the uncertainties linked to
the drag coefficient itself and drag equivalent surface;

3. aTB(r, t) → Third body attraction. The gravitational attraction of the Sun and
the Moon are considered. Attraction from other celestial bodies (like Jupiter)
are neglected since they have no effect on the POD solution. The perturbation
depends only on the satellite position and time (for Sun and Moon position
estimation);

4. aSP(r,∆Csp, t)→ Solar radiation pressure. It depends only on satellite position
and time (for Sun position estimation). The solar pressure coefficient ∆Csp is
estimated by the EKF in order to account for all the uncertainties linked to
the thermo–optical properties of the surfaces and the solar pressure equivalent
surface.

More details on the modeling of these perturbations are presented in Appendix
A.

The total perturbing acceleration is then:

P(r,v,∆Cd,∆Csp, t) = aGRAV-NS(r, t) + aDRAG(r,v,∆Cd, t)+

aTB(r, t) + aSP(r,∆Csp, t)
. (2.6)

In the following analysis the spherical and non–spherical parts of the Earth gravita-
tional acceleration are calculated together by the same algorithm:

aGRAV(r, t) = −µ r
∥r∥3 + aGRAV-NS(r, t). (2.7)

So (2.5) can be rewritten as:

r̈ = aGRAV(r, t) + aDRAG(r,v,∆Cd, t) + aTB(r, t) + aSP(r,∆Csp, t). (2.8)

2.3.2 On–Board Navigation Algorithm

In this section an overview of the EKF formulation will be presented along with its
implementation: the state of the filter will be defined along with the measurement
equations used as inputs to the filter itself.

12
2. Precise Orbit Determination on LEO Satellite using Pseudorange and

Pseudorange-Rate Measurements

Extended Kalman Filter Implementation

Necessarily, due to the large nonlinearities in the GNSS observation equations and in
the dynamical model of the satellite motion, a nonlinear filter has to be adopted. The
EKF is a dynamical filter which is sub–optimal, since it relies on the linearization
applied to the nonlinear discrete filter dynamics [13–15]:

xk = f(xk−1,uk) + wk (2.9)

yk = h(xk) + vk (2.10)

where f and h are the differentiable state transition and observation functions,
respectively, wk and vk are process and measurement noises at time k which are
assumed to be zero–mean and gaussian with covariances Qk and Rk respectively,
and xk, yk and uk are the state, output and control vectors of the filter at time k.

The EKF algorithm consists of two main steps: prediction and correction.

Prediction Step

The prediction step consists of the propagation of the nonlinear dynamics and of
the state–error covariance matrix, computed by the following discrete equations:

x̂f (k + 1) = f(x̂f (k),u(k)) (2.11)

P (k + 1) = ΦP (k)ΦT +Q (2.12)

given some initial conditions x̂f (0), P (0). x̂f is the estimated filter state, P is
the state–error covariance matrix, Φ is the state transition matrix and Q is the
state–noise covariance matrix. In practice, both P and Q are usually considered
as diagonal or block diagonal matrices. The propagation of the filter dynamics
(2.11) is performed by numerical integration of the equations of motion (2.8). The
integration is performed by using a Runge–Kutta method of order four. The state
transition matrix in Equation (2.12) is obtained by numerically integrating the
following differential equation:

d

dt
Φ(t, t0) = ∂f(x̂k,uk)

∂x̂k−1
Φ(t, t0) (2.13)

with initial condition Φ(t0, t0) = I, where I denotes the identity matrix of appropriate
dimensions.

2.3 Implementation 13

Correction Step

The correction step is performed when a set of measures with an associated Time
Tag (time at which the measurements have been taken) are sent to the filter by the
receiver, and consists of the following equations:

z = y− h(x̂k) (2.14)

K = PHT (R+HPHT)−1 (2.15)

x̂+
k = x̂−

k +Kz (2.16)

P+ = (I −KH)P− (2.17)

where z is the measurement residual, y is the actual measurement vector, H =
∂h(x̂k)
∂x̂k−1

is the measurement jacobian w.r.t. the state, R is the measurement error

covariance matrix, K is the Kalman gain, x̂−
k and x̂+

k are the states before and
after the correction, respectively. Since, in a real time environment, the time of
arrival of the measures is not known apriori, there is an unknown delay in the
measurements which has to be taken into account. To overcome this problem the
following three–steps correction has been implemented (see Figure 2.1):

1. The first step is a backward propagation of the filter state from the current
time to the Time Tag of the measurements;

2. The correction step is performed on the state obtained on the previous step;

3. The corrected state is propagated forward from the measurement Time Tag to
the current time.

After the correction steps have been performed the state is propagated as in the
previous section until a new set of measurements is detected by the receiver. This
method allows to always have a corrected estimate at the current time.

UDU Covariance Factorization

An alternative approach widely used in aerospace engineering applications is the
so called UDU formulation of the Kalman filter [16–18]. The idea is to replace the
covariance matrix P by two factors: a diagonal matrix D and an upper triangular
matrix U with ones on the main diagonal, such that:

P = UDUT . (2.18)

Whereas the UDU factorization improves the computational stability and efficiency
of large navigation filters, it was originally used in a batch formulation [19]. However,

14
2. Precise Orbit Determination on LEO Satellite using Pseudorange and

Pseudorange-Rate Measurements

T
TT TT

(different for every measure or set
of measures)

Yes

No
Prediction

T
T

T

Backward
Prediction from

T to TT

Correction

T

Forward
Prediction from

TT to T

Figure 2.1. Extended Kalman Filter Implementation Flow Chart.

this formulation lent itself to sequential implementations, well–suited for platforms
where both computational stability and numerical efficiency are at a premium.

The UDU formulation of the Kalman filter has great numerical stability proper-
ties [17]: it insures symmetry of the covariance by construction, and it requires a
trivial check and correction to ensure semi–positive definiteness (it suffices to enforce
that the diagonal elements of D remain non–negative). The UDU formulation is
free from square root operations, making it computationally cheaper than other
formulations like the Cholesky approach [20, 21]. For these reasons the UDU has en-
dured as one of the preferred practical implementation of Kalman filters in aerospace
applications.

The UDU approach to propagate U and D forward in time makes use of the
Modified Weighted Gram–Schmidt (MWGS) orthogonalization algorithm, avoiding

2.3 Implementation 15

loss of orthogonality due to round–off errors [22]. Measurements are processed one
at the time as scalars by noting that when R is diagonal the update is obtained
by recursively processing one element of y at a time, using the corresponding row
of H and diagonal element of R. The measurement residual covariance matrix
W = R + HPHT thus becomes a scalar, and the quantity PHT = w becomes a
vector; thus each of the scalar updates takes the form:

P+ = P− − 1
W

wwT . (2.19)

Since P− is updated with a rank one matrix 1
W

wwT , this is called rank one update.
In Appendix B a detailed description of the factorization, prediction and update
algorithms is presented.

Filter State and State Propagation

In the orbit navigation scenario, there are a lot of parameters which need to be
taken into account for a good estimation of the satellite position and velocity. Since
GNSS measurement equations are considered in the navigation algorithm, the time
synchronization biases have to be considered as well. A standard solution consists
in including both the GPS clock bias ∆tR and clock drift ∆ṫR in the estimation
state [5, 8, 23]. The estimation of these two parameters allows a more precise replica
of the pseudorange and pseudorange–rate measurements for the filter algorithm.
By adding the drag and solar coefficients Cd and Csp, respectively, the filter state
consists of 10 scalar variables:

x = [r, ṙ, Cd, Csp,∆tR,∆ṫR]T . (2.20)

where r =
(
rx ry rz

)T
and ṙ =

(
ṙx ṙy ṙz

)T
. The state of the filter is propa-

gated by numerically integrating the following differential equations:

dr
dt

= ṙ (2.21)

dṙ
dt

= aGRAV + aS + aM + aDRAG + aSP (2.22)

dCd
dt

= 0 (2.23)

dCsp
dt

= 0 (2.24)

d∆tR
dt

= ∆ṫR (2.25)

d∆ṫR
dt

= ḋ (2.26)

16
2. Precise Orbit Determination on LEO Satellite using Pseudorange and

Pseudorange-Rate Measurements

where aS and aM are the third body accelerations due to Sun and Moon gravity
respectively (together they form the term aTB), ḋ is the clock frequency aging, which
is a commendable parameter and varies from receiver to receiver.

Measurement Equations

The filter measurement equations account for GNSS observed variables which are
collected by the GNSS receiver, namely, the pseudorange ρi and the pseudorange–rate
ρ̇i. From now on, to differentiate the GNSS quantities from the LEO satellite ones,
the former will be identified by a subscript SV (Space–Vehicle). By denoting with
N the number of tracked satellites, the observation vector h(x̂k) has the following
form:

h(x̂k) = [ρ̂1(x̂k) . . . ρ̂N (x̂k) ˆ̇ρ1(x̂k) . . . ˆ̇ρN (x̂k)]T , (2.27)

where the nonlinear observation equations have the following form:

ρ̂i(x̂k) =∥rSV − r̂∥+ c∆̂tR (2.28)
ˆ̇ρi(x̂k) = ê(ṙSV − ˆ̇r) + c∆̂ṫR (2.29)

where rSV and r̂ are the position vectors of the GNSS satellite and the satellite
respectively, ṙSV and ˆ̇r are the velocity vectors of the GNSS satellite and the satellite,
respectively, ê is the estimated unit line–of–sight vector from the user satellite to
the GNSS satellite, ∆̂tR and ∆̂ṫR are the estimated satellite clock bias and clock
drift respectively, c is the speed of light.

2.4 Simulations and Results

In this section the simulation environment is presented and the simulation results
are shown along with a discussion on the obtained results.

2.4.1 Simulation environment

The performance assessment of the filter is performed in a simulated environment.
A Matlab framework is used to simulate orbital propagation, visibility analysis and
GNSS measurement equations computation. For the GNSS simulation, 30 GPS
satellites have been considered.

Orbital Propagation

The orbital propagation of the satellite is performed starting from the associated
Two–Line Elements (TLE) file data (see Figure 2.2).

2.4 Simulations and Results 17

Figure 2.2. Example of a Two Line Element set of data for a GPS satellite.

A two–line element set is a data format encoding a list of orbital elements of
an Earth–orbiting object for a given point in time, the epoch. Using a suitable
prediction formula, the state (position and velocity) at any point in the past or
future can be estimated to some accuracy. TLEs can describe the trajectories only
of Earth–orbiting objects. They are widely used as input for projecting the future
orbital tracks of space debris for purposes of characterizing "future debris events to
support risk analysis, close approach analysis, collision avoidance maneuvering" and
forensic analysis [24]. A TLE set may include a title line preceding the element data,
so each listing may take up three lines in the file. In particular the data are fit into
69 columns. In the following a brief description of each line is presented:

• the first line contains the satellite name;

• the second line contains data regarding the satellite launch epoch, the current
epoch (year and day of the year) and other parameters like the derivatives of
the mean motion;

• the third line contains the data needed to compute the orbital parameters of
the satellite.

The TLE files for the GPS satellites have been obtained by [25].
A keplerian propagation has been performed to align the TLE epoch with the

simulation initial epoch which is a commendable parameter: in particular only the
mean motion and the RAAN have been propagated considering only the J2 effect
following the approach described in [26]. Since the keplerian propagation is not very
accurate, usually a TLE with an epoch as close as possible to the simulation initial
epoch has to be chosen. Then the actual propagation of the LEO and GNSS satellites
has been performed using ode45, which is faster and more efficient than Runge–
Kutta, to integrate the equations of motion. In the GNSS case, for computational
efficiency, the only perturbation considered is the gravity one; for the LEO satellite
propagation all the previously defined perturbations have been taken into account
into the equations of motion.

Visibility Analysis

A visibility analysis algorithm has also been implemented: it returns, at every time
instant, the GNSS satellites visible from the LEO satellite, i.e. the ones sending the

18
2. Precise Orbit Determination on LEO Satellite using Pseudorange and

Pseudorange-Rate Measurements

information needed for the estimation algorithm. In order for a signal to be sent
from the GPS satellite and received from the LEO receiver, two conditions must be
satisfied:

1. the GNSS–to–LEO satellite position vector must be inside both the transmitter
and receiver field of view of the antennas, i.e., in their visibility cones;

2. the Carrier to Noise ratio (C/N0) must be over a certain threshold.

To verify the first condition two additional checks have to be performed: the geo-
metric visibility test and the electronic visibility test.

The first one ensures that the two satellites are visible from a geometric point of
view, i.e. the line of sight vector connecting the two is not intersecting the Earth
(see Figure 2.3). In order check this condition, the minimum distance h between the

Figure 2.3. Geometric visibility between two satellites. r1 and r2 are the position vectors
of the satellite with respect to the center of the Earth. ρ is the position vector between
the two satellites, h is the minimum distance vector between ρ and the center of the
Earth. Re is the Earth radius.

line of sight vector ρ and the center of the Earth is computed. Since the Earth is a

2.4 Simulations and Results 19

sphere, its flattening f has to be taken into account along the z coordinate of the h
vector:

hz = (1 + f)hz. (2.30)

If the norm of the minimum distance is greater than Re, then the condition holds,
otherwise the two satellites are not visible between each other.

The second check instead, ensures that the line of sight vector is inside the
visibility cone of both satellites. To do this the elevation angle for both satellites
must be computed and it has to be inside the range of values defined by the satellites
antenna patterns (see Figure 2.4). First of all the angles α and β are computed as the

Figure 2.4. Electronic Visibility between two satellites. In red are shown the antenna
boresights of the satellites, α and β are the angles between the position vector ρ and the
antenna boresights, eAB is the elevation angle of satellite A w.r.t. satellite B, viceversa
eBA is the elevation angle of satellite B w.r.t. satellite A. Re is the Earth radius.

angles between the antenna boresights and the position vector between the satellites
ρ. The antenna boresights of the GNSS satellite is always pointing towards the
center of the Earth, while the one of the LEO satellite is a configurable parameter.
Then the elevation angles are computed as:

eAB = 90− α (2.31)

eBA = 90− β. (2.32)

If both angles are within the respective antenna patterns, then the first condition of

20
2. Precise Orbit Determination on LEO Satellite using Pseudorange and

Pseudorange-Rate Measurements

visibility is satisfied. In Figure 2.5 the GPS antenna gain patterns are shown, i.e.
the value of the antenna gain at different elevation values. Since the patterns are
symmetric, only half of the patterns are represented. GPS has two patterns: one is
called Legacy and is related to a particular block of satellites (IIA) while the other
one is called Improved and is related to another block of satellites (IIR) [27]. In the
implementation it has been assumed that the maximum gain is at 90 degrees.

0 10 20 30 40 50 60 70 80 90

Off-boresight angle (degrees)

-20

-15

-10

-5

0

5

10

15

20

G
a
in

 (
d
B

i)

Averaged GPS L1 antenna gain

Legacy (Block IIA)

Improved (Block IIR)

Figure 2.5. Antenna Directivity for GPS Block IIA and Block IIR.

The second condition is related to the Carrier to Noise density ratio (C/N0). In
satellite communications, the C/N0 is the ratio of the carrier power C to the noise
power density N0, expressed in dB–Hz. It determines whether a receiver can lock on
to the carrier and if the information encoded in the signal can be retrieved, given
the amount of noise present in the received signal.

In particular, the C/N0 is computed in dB–Hz using the following equation:

C/N0 = PTX +GTX − LTX +GRX − LRX (2.33)

− LFSL −N0,

where: PTX is the transmission power of the GPS satellites expressed in dBW
(dBWatt); GTX and GRX are the satellite and receiver antenna gains, respectively,

2.4 Simulations and Results 21

measured in dBi (gain w.r.t. an isotropic antenna); LTX and LRX are the transmission
and reception losses, respectively, measured in dB; N0 is the Thermal Noise Density,
expressed in Kelvin and computed as:

N0 = KB + Tsys (2.34)

where KB is the Boltzmann’s constant and Tsys is the system noise temperature;
LFSL accounts for the free–space losses, and is computed in dB as:

LFSL = 20 log10

(
4πd
λ

)
, (2.35)

with d being the distance between the GPS satellite and the user satellite and λ

being the wavelength of the GPS L1–band (1.58 GHz).

Figure 2.6. 3D–Plot of the visibility analysis in the case of multiple antennas on the LEO
satellite.

22
2. Precise Orbit Determination on LEO Satellite using Pseudorange and

Pseudorange-Rate Measurements

In Figure 2.6 is shown a 3D–plot of the visibility analysis output in an instant of
time in the case of multiple antennas mounted on the LEO satellite with different
orientations. The cones are a graphical representation of their field of view. In yellow
is shown the LEO satellite, in red are shown the visible satellites, i.e. the ones who
have satisfied both conditions, in blue–violet are shown the satellites which have
satisfied the first condition but not the second one and finally in cyan are shown the
satellite which are not geometrically visible.

Geometric Diluition of Precision

In addition to the visibility algorithm and the C/N0 computation, the GDOP
has been computed. This parameter is used in satellite navigation and geomatics
engineering to specify the error propagation as a mathematical effect of navigation
satellite geometry on positional measurement precision. Neglecting ionospheric
and tropospheric effects, the signal from navigation satellites has a fixed precision.
Therefore, the relative satellite–receiver geometry plays a major role in determining
the precision of estimated positions and times. Due to the relative geometry of
any given satellite to a receiver, the precision in the pseudorange of the satellite
translates to a corresponding component in each of the four dimensions of position
measured by the receiver (i.e., x, y, z and t). The precisions of multiple satellites

Satellites far apart in the sky.
Area of position uncertainty is lower.

Satellites not far apart in the sky.
Area of position uncertainty is greater.

Figure 2.7. Satellite geometry representations for two satellites.

in view of a receiver combine according to the relative position of the satellites
to determine the level of precision in each dimension of the receiver measurement.
When visible navigation satellites are close together in the sky, the geometry is said
to be weak and the DOP value is high; when far apart, the geometry is strong and

2.4 Simulations and Results 23

the DOP value is low (see Figure 2.7).

DOP value Rating Description

<1 Ideal Highest possible confidence level to be used for appli-
cations demanding the highest possible precision at all
times.

1–2 Eccellent At this confidence level, positional measurements are
considered accurate enough to meet all but the most
sensitive applications.

2–5 Good Represents a level that marks the minimum appropriate
for making accurate decisions. Positional measurements
could be used to make reliable in–route navigation
suggestions to the user.

5–10 Moderate Positional measurements could be used for calculations,
but the fix quality could still be improved. A more
open view of the sky is recommended.

10–20 Fair Represents a low confidence level. Positional measure-
ments should be discarded or used only to indicate a
very rough estimate of the current location.

>20 Poor At this level, measurements should be discarded.
Table 2.1. Geometric Diluition Of Precision possible values.

Thus a low DOP value represents a better positional precision due to the wider
angular separation between the satellites used to calculate a unit’s position. Other
factors that can increase the effective DOP are obstructions such as nearby mountains
or buildings. In Table 2.1 the possible values of GDOP are shown.

Figure 2.8. Number of visible satellites with associated GDOP value.

In Figure 2.8 the relation between number of visible satellites and GDOP can be

24
2. Precise Orbit Determination on LEO Satellite using Pseudorange and

Pseudorange-Rate Measurements

seen. It can be observed that the GDOP is lower when the number of visible satellites
is higher and is greater when the number of visible satellites is lower. Overall it can
be said that the GPS constellation is well disposed in space since the GDOP values
are always good.

For a detailed description of the GDOP computation see Appendix B.

Comparison with Telemetry Data

The visibility algorithm has also been tested by comparing the values obtained with
real telemetry data. In particular two GPS satellites are taken as a reference: the
one with PRN 13 and the one with PRN 16.

In Figures 2.9 and 2.10 are shown the visibility intervals (i.e. the intervals of
time in which the receiver manages to track the satellite) of the two GPS satellites
obtained by the simulated environment (in blue) and the real ones (in red). In the
plots a value 1 means that the satellite is visible in an time instant, a value of 0
means that the satellite is not visible.

Figure 2.9. Visibility comparison for satellite 13.

It can be seen how the red intervals are contained within the blue ones. This
means that, when the satellites result visible for the telemetry data, they also result
visible for the simulated environment. The simulated intervals are wider with respect

2.4 Simulations and Results 25

Figure 2.10. Visibility comparison for satellite 16.

to the real ones because, in a real case scenario, the receiver has a limited channel
slot for the measurements, i.e. it can’t receive more than a certain number of
measurements at the same time. Let’s call this number Nchannels. This translates to
the fact that no more than Nchannels satellites can be tracked at the same time, while
in the simulated environment this limit has not been imposed. In fact, in Figure
2.10 there are intervals of time in which the satellite is considered visible for the
algorithm but not for the real data.

In Figures 2.11 and 2.12 are shown the elevation errors of the two GPS satellites
with respect to telemetry data are shown. The values of the elevation error are
taken in the intervals in which the satellite is visible for both the algorithm and the
telemetry data. The errors are always in the interval (−0.5, 0.5) degrees.

26
2. Precise Orbit Determination on LEO Satellite using Pseudorange and

Pseudorange-Rate Measurements

Figure 2.11. Elevation error for satellite 13.

Figure 2.12. Elevation error for satellite 16.

2.4 Simulations and Results 27

Figure 2.13. C/N0 comparison for satellite 13.

Figure 2.14. C/N0 comparison for satellite 16.

28
2. Precise Orbit Determination on LEO Satellite using Pseudorange and

Pseudorange-Rate Measurements

In Figures 2.13 and 2.14 are shown the values of the C/N0 obtained by the
simulated environment with respect to the real ones obtained from telemetry data.
It can be noticed that the simulated ones have a smoother behaviour. This is an
expected result: in the real case the C/N0 values are measured using electronic
devices and its value oscillates in time. However it can be said that the overall
behaviour of the simulated results is in line with the real case.

As a last test, the GDOP values have been compared with real data (see Figure
2.15). The presence the peaks in the error plot (the blue one) is an expected
behaviour: they coincide with the instants in which the number of visible satellites
changes with respect to the previous time instants. The satellite receiver has a
particular procedure to handle these situations which was not implemented. So
they have not to be considered as errors. In Figure 2.16 is shown a section of the
previous figure in which it can be easily seen the behaviour described above. It
can be seen how in the real scenario (the red one) the change in the GDOP value
happens slightly after the simulated case (the orange one). This can be explained
by the fact that, in the simulated case, the algorithm reacts instantly to the change
in the number of visible satellites, while in the real case this in not true and there is
a slight delay.

Figure 2.15. GDOP comparison with telemetry data.

2.4 Simulations and Results 29

Figure 2.16. Section of Figure 2.15.

Measurement Equations

For the GNSS measurement computation, the standard formulation [28,29] has been
used for pseudorange and pseudorange–rate:

ρ = ∥rSV(tTX)− r(tRX)∥+ c∆tR + c∆tSV + ∆I (2.36)

+ ∆MP + ϵρ,

ρ̇ = e · (ṙSV(tTX)− ṙ(tRX)) + c∆ṫR + ϵρ̇, (2.37)

where ∆tSV is the GPS clock bias, ∆I is the ionospheric error, ∆MP is the Multipath
error, tTX and tRX are the transmission and reception epoch, respectively, c is the
speed of light. The contributions of these errors have been modeled as gaussian
random noises. The clock bias ∆tR and clock drift ∆ṫR are modeled as a two–state
stochastic dynamic model [30, 31]. ϵρ and ϵρ̇ are the receiver measurement errors
which represent the errors of the receiver lock loops, i.e., the Delay Lock Loop (DLL)
for the code pseudorange and Frequency Lock Loop (FLL) for the pseudorange–rate.
They are modeled as white gaussian noises with standard deviations computed in

30
2. Precise Orbit Determination on LEO Satellite using Pseudorange and

Pseudorange-Rate Measurements

the following way [32]:

σDLL =
[

Bn
2C/N0

(
1

BfeTc
+ BfeTc
π − 1

(
D − 1

BfeTc

)2)
(2.38)

(
1 + 2

T (C/N0)(2−D)

)]1
2

[chips],

σFLL = λ

2πT

√√√√4FBn
C/N0

[
1 + 1

TC/N0

]
[m/s], (2.39)

where Bn is the closed loop bandwidth of the loops, C/N0 computed in Hz as:

C/N0 = 10 exp
((C/N0)dB

10

)
[Hz], (2.40)

Bfe is the front–end bandwidth of the receiver, Tc is the chip period, T is the
integration time of the correlation process, D is the correlator spacing, λ is the
wavelength of the receiver frequency, F is 1 for large C/N0 values and 2 for C/N0

values close to the threshold value. Note that the DLL standard deviation is expressed
in chips: to convert it in meters, it has to be multiplied by the chip length which is
equal to 293.05 m/chip for C/A (Coarse Acquisition) code and to 29.305 m/chip for
P(Y) (Encrypted signal) code.

2.4.2 Simulation Results

State Initial
Covariance P0

Process Noise
Covariance Q0

Measurement Noise
Covariance R0

σr = 10m σr = [1 · 10−6 1 · 10−6 5 · 10−6]m σUERE = (5.2 +
σDLL)m

σṙ = 0.5m/s σṙ = [1 · 10−7 1 · 10−7 5 · 10−7]m/s σUERRE = (0.33 +
σFLL)m/s

σ∆Cd = 301/2 σ∆Cd = 0.005 · 10−3

σ∆Csp = 301/2 σ∆Csp = 0.005 · 10−3

σ∆tR = 100m Q∆tR,∆ṫR =[
1.2565 · 10−5

m 5 · 10−8

5 · 10−8 1.2565 · 10−7
m/s

]
σ∆ṫR = 100m/s

Table 2.2. Filter Parameters.

The achieved filter performances are presented in terms of position and velocity

2.4 Simulations and Results 31

estimation accuracy with respect to the simulated trajectories. The initial conditions
have been set starting from the simulated satellite initial conditions, perturbed using
gaussian random errors with standard deviations in accordance to the ones collected
in Table 2.2. The other states have been initialized to zero. The filter propagation
time–step ∆T has been set to 0.125 seconds in order to reduce the delay between
the detection of the measurement signals and the filter correction implementation.

The accuracy of the estimation is further analyzed by introducing 3σ bounds
which have to be satisfied during the whole simulation. The introduction of these
bounds allows to understand what is the estimation error with a confidence value of
around 99.7%.

The process noise covariance of the clock bias and clock drift has been defined
as a full matrix denoted by Q∆tR,∆ṫR , with cross–covariance different from zero
according to [30,31,33].

To validate the introduction of the pseudorange–rate measurements, the algorithm
is compared with the approach used in [6], where only pseudorange measurements
are used for POD. The same filter parameters (the ones in Table 2.2) are used for
both the algorithms. The simulation time is 1 hour.

In order to obtain the simulations below, the measurement equations have been
modeled by considering several error contributions: the receiver clock bias and drift
errors ∆tR and ∆ṫR, the receiver measurement errors ϵρ and ϵρ̇, the ionospheric and
multipath errors.

Figures 2.17 and 2.18 show the position errors with the corresponding 3σ bounds
which are obtained by using only pseudorange and both pseudorange and pseudorange–
rate, respectively.

Figure 2.17. Position estimation error with pseudorange measurements and 3σ bounds.

32
2. Precise Orbit Determination on LEO Satellite using Pseudorange and

Pseudorange-Rate Measurements

Figure 2.18. Position estimation error with both pseudorange and pseudorange–rate
measurements and 3σ bounds.

It can be seen how the convergence of the algorithm is faster in the second case:
there is a huge improvement for the x axis, whose error oscillations are minimal after
15000 iterations (about 31 minutes) while in the first case after 1 hour the error still
has some peaks. The y component is quite similar while for the z component the
second algorithm has a better transient in particular in the early stages of the filter.

Figure 2.19. Velocity estimation error with only pseudorange measurements and 3σ
bounds.

Figures 2.19 and 2.20 show the velocity estimation errors in the two cases. The
difference in the convergence time is improved by the proposed algorithm: the
error oscillations tend to stabilize after 5000 iterations (about 10 minutes) when
both measurements are used, while in the case of a single measurement after 15000
iterations (about 31 minutes). In both cases the error stabilizes around a very
small value near zero. It is important to notice that in the first case there are some

2.4 Simulations and Results 33

Figure 2.20. Velocity estimation error with both pseudorange and pseudorange–rate
measurements and 3σ bounds.

intervals in which the error curve is out of the covariance bounds, while in the second
case the error remains inside the 3σ bounds.

The same simulations have been performed by adding additional error contribu-
tions to the measurement equations, in order to verify the robustness of the filter,
while maintaining the same parameters as in Table 2.2. In particular the relativistic
error on the receiver clock and Shapiro effect have been added [28,34]. The former
is caused by the motion of the satellite as well as the change in the gravitational
potential. These effects, caused by special and general relativity, lead to a frequency
offset of the on–board clock with respect to a ground–based clock. To mitigate this
effect, the satellite’s clock frequencies are actually offset from their nominal values.
However, non–circular satellite orbits cause deviations from the mean frequency offset
which need to be considered in the on–board algorithm. The Shapiro effect instead,
is a delay of the satellite signal due to the presence of the Earth’s gravitational field,
which causes a propagation delay due to space–time curvature.

In Figures 2.21 and 2.22 are shown the position estimation errors in the case of
pseudorange and both pseudorange and pseudorange–rate measurements respectively.
It can be seen how in this case the use of two measurements improves the behaviour
by a great margin in particular during the transient.

34
2. Precise Orbit Determination on LEO Satellite using Pseudorange and

Pseudorange-Rate Measurements

Figure 2.21. Position estimation error with pseudorange measurements and 3σ bounds
considering relativistic clock errors and Shapiro Effect.

Figure 2.22. Position estimation error with both pseudorange and pseudorange–rate
measurements and 3σ bounds considering relativistic clock errors and Shapiro Effect.

In Figures 2.23 and 2.24 are shown the velocity estimation errors in the case of
pseudorange and both pseudorange and pseudorange–rate measurements respectively.
Even in this case the use of pseudorange–rate results in an improvement of the
estimation error. It can be noted how the convergence to zero is faster in the
second case with less oscillations. Moreover in the first case the y coordinate slightly
overcome the 3σ bounds while this behaviour is not present in the second case.

2.5 Future Works 35

Figure 2.23. Velocity estimation error with pseudorange measurements and 3σ bounds
considering relativistic clock errors and Shapiro Effect.

Figure 2.24. Velocity estimation error with both pseudorange and pseudorange–rate
measurements and 3σ bounds considering relativistic clock errors and Shapiro Effect.

These simulations show that the proposed algorithm is able to cope with the
presence of relativistic effects on the on–board clock and the presence of the Shapiro
effect. The use of both observables is proven to be necessary to achieve better
performances also in the presence of additional error contributions.

2.5 Future Works

The approach presented in this thesis is a simplification of the real case scenario in
the fact that some quantities in the measurement equations (multipath, ionospheric
delay,..) have been modeled as gaussian noises. Moreover it is not able to cope with
the presence of uncertain parameters in the model as well as the CKF. A possible

36
2. Precise Orbit Determination on LEO Satellite using Pseudorange and

Pseudorange-Rate Measurements

future scenario may consist into the implementation of actual models for these
error contributions, analyzing if the EKF with pseudorange and pseudorange–rate
measurements is able to maintain an acceptable level of accuracy and under which
conditions.

37

Chapter 3

Space Qualified VPU
Benchmarking of Crater
Matching ODTS Solutions based
on Convolutional Neural
Networks

3.1 Introduction

In this section the main features characterizing the crater matching approach will
be presented: an overview of different types of neural networks will be provided
along with a description of the lunar environment, the different crater–based TRN
approaches with an overview of the optical flow technique, which is an essential part
of the TRN pipeline, will be detailed, and a description of the main state–of–the–art
on–board hardwares for data processing will be given.

3.1.1 Neural Networks

Neural networks, also known as artificial neural networks (ANNs) or simulated neural
networks, are a subset of machine learning and are at the heart of deep learning
algorithms. Their name and structure are inspired by the human brain, mimicking
the way that biological neurons signal to one another.

ANNs are comprised of node layers, containing an input layer, one or more hidden
layers, and an output layer. Each node, or artificial neuron, connects to another and
has an associated weight and threshold. If the output of any individual node is above
the specified threshold value, that node is activated, sending data to the next layer of

38
3. Space Qualified VPU Benchmarking of Crater Matching ODTS Solutions

based on Convolutional Neural Networks

Figure 3.1. Example of an artificial neural network.

the network. Otherwise, no data is passed along to the next layer of the network. In
Figure 3.1, taken from https://www.ibm.com/it-it/topics/neural-networks,
an example of an artificial neural network architecture is shown.

Neural networks rely on training data to learn and improve their accuracy over
time. However, once these learning algorithms are fine–tuned for accuracy, they are
powerful tools in computer science and artificial intelligence, allowing us to classify
and cluster data at a high velocity. Tasks in speech recognition or image recognition
can take minutes versus hours when compared to the manual identification by human
experts. One of the most well–known neural networks is Google’s search algorithm.

Neural networks can be classified into different types, which are used for different
purposes. Below are listed the most common types of neural networks, from which
several different architectures can be derived:

• the perceptron is the oldest neural network, created by Frank Rosenblatt
in 1958 [35]. It is an algorithm for supervised learning of binary classifiers.
A binary classifier is a function which can decide whether or not an input,
represented by a vector of numbers, belongs to some specific class. It is a type
of linear classifier, i.e. a classification algorithm that makes its predictions
based on a linear predictor function combining a set of weights with the feature

https://www.ibm.com/it-it/topics/neural-networks

3.1 Introduction 39

vector;

• feedforward neural networks, or multi–layer perceptrons (MLPs). They are
comprised of an input layer, a hidden layer or layers, and an output layer and
are characterized by direction of the flow of information between its layers. Its
flow is uni–directional, meaning that the information in the model flows in
only one direction–forward–from the input nodes, through the hidden nodes
(if any) and to the output nodes, without any cycles or loops [36]. While these
neural networks are also commonly referred to as MLPs, it’s important to note
that they are actually comprised of sigmoid neurons, not perceptrons, as most
real–world problems are nonlinear. Data usually is fed into these models to
train them, and they are the foundation for computer vision, natural language
processing, and other neural networks. Modern feedforward neural networks
are trained using backpropagation method [37,38];

• convolutional neural networks (CNNs) are a regularized type of feedforward
neural network that learns feature engineering by itself via filters (or kernel)
optimization [39]. Vanishing gradients and exploding gradients, seen during
backpropagation in earlier neural networks, are prevented by using regularized
weights over fewer connections. For example, for each neuron in the fully–
connected layer 10.000 weights would be required for processing an image
sized 100 × 100 pixels. However, applying cascaded convolution (or cross–
correlation) kernels, only 25 neurons are required to process 5× 5–sized tiles.
Higher–layer features are extracted from wider context windows, compared to
lower–layer features. They have applications in image and video recognition,
image classification, natural language processing and in many other;

• recurrent neural networks (RNNs) are characterized by direction of the flow of
information between its layers [40]. In contrast to uni–directional feedforward
neural network, it is a bi–directional artificial neural network, meaning that it
allows the output from some nodes to affect subsequent input to the same nodes.
Their ability to use internal state (memory) to process arbitrary sequences
of inputs makes them applicable to tasks such as unsegmented, connected
handwriting recognition or speech recognition.

3.1.2 Lunar Environment and Crater Featuring

Moon is a challenging environment for both human survival and equipment operation.
The absence of an atmosphere, the high pressures of a hard vacuum and the seismic
activities are some of the factors which make the Moon a hostile environment to live
and work. Moreover, the presence of craters, mountains, ridges and plains define

40
3. Space Qualified VPU Benchmarking of Crater Matching ODTS Solutions

based on Convolutional Neural Networks

a complex terrain that clearly complicates the correct deployment of equipment
on the moon [41]. Specifically, the Moon’s surface is mainly divided into large
dark flat plains, craters and bright mountainous highlands. This morphology is
the result of the enormous impact of asteroids and comets on the surface of the
Moon that occurs with tremendous force. In particular, when large asteroids strike
the surface, not only a crater is created, but also compression in and around the
impact point that causes a melting of the crust. When the melted crust can no
longer be compressed, it bounces back and forms a central mountain after cooling.
All these peculiarities result in specific featuring of the surface, in which each area
can be uniquely characterized by the high number of elements characterizing each
crater. Several missions have been deployed in order to characterize the Moon
surface with a high level of precision. Nowadays more than 300.000 craters have
been measured and classified in several studies [42,43] and have been used to compile
different databases which are becoming more and more accurate. The most used
are the Head and Povilaitis database which is obtained by combining two human–
generated lunar crater databases: the 5–20 km database from [44] and the > 20 km
database from [45]; and the Robbins database [46] which contains approximately
1.3 billion craters with a diameter greater than about 1–2 km. The capturing
is still progressing with instruments still in lunar orbit (i.e. LOLA of the Lunar
Reconnaissance Orbiter [47,48]).

3.1.3 Crater Matching Techniques

The peculiarities of the lunar surface can be exploited in navigation systems which
are based on feature detection over the lunar surface, namely TRN systems. These
systems can be identified by using two macro criteria.

The first of them partitions the TRN systems into coordinate–relative and
absolute ones, namely:

• Terrain–Relative Relative Navigation (TRRN) system, where standard optical
flow and Harris corner detection algorithmic approach is adopted to evaluate
tracked objects (craters/mountains) against successive acquired frames [49].
These data, together with the information about the camera specification
(frame rate, spatial resolution, distance) are then used to match the features
and the relative movements of the observer (the satellite platform). TRRN
techniques are much easier in terms of computational complexity, being based
on relatively easy–to–implement algorithms, already integrated into many
frameworks and libraries with high efficiency and performance;

• Terrain–Relative Absolute Navigation (TRAN) system, differently to TRRN,

3.1 Introduction 41

applies in addition to the listed steps, a coordinate–conversion to transform
relative variation of position, in absolute coordinates. This is made using
a Geo–referenced feature database that has to be available as input. This
database is used to perform a pattern matching between the relative sizes
and distances among the tracked features, against the craters recorded on
the dataset. The database includes, for each registered crater, its description,
size, and depth, together with its absolute positioning. This system is indeed
autonomous in the determination of absolute positions for the satellite platform.
TRAN relies on more complex algorithmic systems in addition to the TRRN
ones that are even more hardly compatible with most of the actual on–board
flying computers.

The main algorithmic steps to implement any of TRRN and TRAN navigation
systems are shown in the diagram below [50].

Figure 3.2. Terrain–Relative Navigation Algorithm Pipeline.

The choice between these two systems is obviously a trade–off between system
complexity and required/desirable performances. The latter is strictly dependent
on the user’s requirements. The TRAN approach requires the handling of a huge

42
3. Space Qualified VPU Benchmarking of Crater Matching ODTS Solutions

based on Convolutional Neural Networks

database which needs to be available on–board and its performances are related to
the accuracy and completeness of the database itself, indeed:

• missing objects in the database that are identified by the Sensor could mislead
the crater matching, introducing the chance of false matching, and so additional
positioning errors;

• database’s record accuracy bounds the final performances of the position
determination system, relaxing the constraint on the accuracy of the sensing
hardware available.

The second criterion to identify TRN systems depends on the amount of prior
information available on the asset to localize:

• "lost in space", so–called to represent the context in which no information at
all is available on the asset’s position;

• prior knowledge of the orbital position, where it’s assumed that the asset
already knows its position with a certain accuracy that has to be improved
with crater detection and matching.

Due to the maturity and miniaturization of altimeters, star trackers and IMU,
we always assume to have some of those always installed, and crater matching is to
be used as a position improvement tool.

3.1.4 Optical Flow

Optical flow or optic flow is the pattern of apparent motion of objects, surfaces, and
edges in a visual scene caused by the relative motion between an observer and a
scene. Optical flow can also be defined as the distribution of apparent velocities of
movement of brightness pattern in an image.

The concept of optical flow was introduced by the American psychologist James
J. Gibson in the 1940s to describe the visual stimulus provided to animals moving
through the world [51]. Gibson stressed the importance of optic flow for affordance
perception, the ability to discern possibilities for action within the environment.
Followers of Gibson and his ecological approach to psychology have further demon-
strated the role of the optical flow stimulus for the perception of movement by the
observer in the world, perception of the shape, distance and movement of objects in
the world and the control of locomotion [52].

The term optical flow is also used by roboticists, encompassing related tech-
niques from image processing and control of navigation including motion detection,

3.1 Introduction 43

object segmentation, time–to–contact information, focus of expansion calculations,
luminance, motion compensated encoding, and stereo disparity measurement.

Motion estimation and video compression have developed as a major aspect of
optical flow research. While the optical flow field is superficially similar to a dense
motion field derived from the techniques of motion estimation, optical flow is the
study of not only the determination of the optical flow field itself, but also of its use
in estimating the three–dimensional nature and structure of the scene, as well as the
3D motion of objects and the observer relative to the scene, most of them using the
image jacobian.

Optical flow was used by robotics researchers in many areas such as: object
detection and tracking, image dominant plane extraction, movement detection, robot
navigation and visual odometry [53]. Optical flow information has been recognized
as being useful for controlling micro air vehicles [54].

The application of optical flow includes the problem of inferring not only the
motion of the observer and objects in the scene, but also the structure of objects
and the environment. Since awareness of motion and the generation of mental maps
of the structure of our environment are critical components of animal (and human)
vision, the conversion of this innate ability to a computer capability is similarly
crucial in the field of machine vision [55].

Consider a five–frame clip of a ball moving from the bottom left of a field
of vision, to the top right as the one in Figure 3.3 (https://en.wikipedia.org/

wiki/Optical_flow). Motion estimation techniques can determine that on a two
dimensional plane the ball is moving up and to the right and vectors describing
this motion can be extracted from the sequence of frames. For the purposes of
video compression (e.g., MPEG), the sequence is now described as well as it needs
to be. However, in the field of machine vision, the question of whether the ball is
moving to the right or if the observer is moving to the left is unknowable yet critical
information. Not even if a static, patterned background were present in the five
frames, could we confidently state that the ball was moving to the right, because
the pattern might have an infinite distance to the observer.

Estimation

Sequences of ordered images allow the estimation of motion as either instantaneous
image velocities or discrete image displacements. Fleet and Weiss provide a tutorial
introduction to gradient based optical flow [56]. John L. Barron, David J. Fleet,
and Steven Beauchemin provide a performance analysis of a number of optical flow
techniques. It emphasizes the accuracy and density of measurements [57].

The optical flow methods try to calculate the motion between two image frames

https://en.wikipedia.org/wiki/Optical_flow
https://en.wikipedia.org/wiki/Optical_flow

44
3. Space Qualified VPU Benchmarking of Crater Matching ODTS Solutions

based on Convolutional Neural Networks

Figure 3.3. The optical flow vector of a moving object in a video sequence.

which are taken at times t and t+ ∆T at every voxel∗ position. These methods are
called differential since they are based on local Taylor series approximations of the
image signal; that is, they use partial derivatives with respect to the spatial and
temporal coordinates.

For a (2D + t)–dimensional case (3D or n–D cases are similar) a voxel at location
(x, y, t) with intesity I(x, y, t) will have moved by ∆x, ∆y and ∆t between the two
image frames, and the following brightness constancy constraint can be given:

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t). (3.1)

Assuming the movement to be small, the image constraint at I(x, y, t) with Taylor
series can be developed to get:

I(x+ ∆x, y + ∆y, t+ ∆t) = I(x, y, t) + ∂I

∂x
∆x+ ∂I

∂y
∆y + ∂I

∂z
∆z + h.o.t. (3.2)

By truncating the higher order terms (which performs a linearization) it follows
that:

∂I

∂x
∆x+ ∂I

∂y
∆y + ∂I

∂t
∆t = 0 (3.3)

or, dividing by ∆t:
∂I

∂x

∆x
∆t + ∂I

∂y

∆y
∆t + ∂I

∂z

∆t
∆t = 0 (3.4)

∗In 3D computer graphics, a voxel represents a value on a regular grid in three-dimensional
space. As with pixels in a 2D bitmap, voxels themselves do not typically have their position (i.e.
coordinates) explicitly encoded with their values. Instead, rendering systems infer the position of a
voxel based upon its position relative to other voxels (i.e., its position in the data structure that
makes up a single volumetric image).

3.1 Introduction 45

which results in:
∂I

∂x
Vx + ∂I

∂y
Vy + ∂I

∂z
= 0 (3.5)

where Vx and Vy are the x and y components of the velocity or optical flow of

I(x, y, t) and ∂I

∂x
, ∂I
∂y

and ∂I

∂t
are the derivatives of the images at (x, y, t) in the

corresponding directions. Ix, Iy and It can be written for the derivatives in the
following. Thus:

IxVx + IyVy = −It (3.6)

or:
∇IV = −It (3.7)

where V = (Vx, Vy, 0)T . This is an equation in two unknowns and cannot be solved
as such. This is known as the aperture problem of the optical flow algorithms. To
find the optical flow another set of equations is needed, given by some additional
constraint. All optical flow methods introduce additional conditions for estimating
the actual flow.

Methods for determination

There are several methods which can be used to solve the previous problems. Below
some of the most used are presented. Many of these, in addition to the current state–
of–the–art algorithms are evaluated on the Middlebury Benchmark Dataset [58].

• Phase correlation – inverse of normalized cross-power spectrum [59];

• Block-based methods – minimizing sum of squared differences or sum of absolute
differences, or maximizing normalized cross–correlation [60];

• Differential methods of estimating optical flow, based on partial derivatives
of the image signal and/or the sought flow field and higher–order partial
derivatives, such as:

– Lucas–Kanade method – regarding image patches and an affine model for
the flow field [61];

– Horn–Schunck method – optimizing a functional based on residuals from
the brightness constancy constraint, and a particular regularization term
expressing the expected smoothness of the flow field [62];

– Buxton–Buxton method – based on a model of the motion of edges in
image sequences [63];

– Black–Jepson method – coarse optical flow via correlation [64];

46
3. Space Qualified VPU Benchmarking of Crater Matching ODTS Solutions

based on Convolutional Neural Networks

– General variational methods – a range of modifications/extensions of
Horn–Schunck, using other data terms and other smoothness terms [65].

• Discrete optimization methods – the search space is quantized, and then image
matching is addressed through label assignment at every pixel, such that
the corresponding deformation minimizes the distance between the source
and the target image. The optimal solution is often recovered through Max–
flow min–cut theorem algorithms, linear programming or belief propagation
methods [66,67].

3.1.5 On–Board Data Processing and Neural Networks

Satellite on–board data processing requires a balance between low power consumption
and high performance in terms of robustness and re–configurability. The challenge
associated with TRRN and TRAN pertains to the considerable computational
complexity that must be managed directly on the on–board system.

The field of on–board computing is experiencing rapid growth, with several
processors that meet the standards for use in space becoming increasingly accessible
in the commercial market. In particular, novel parallel computing structures, rooted
in GPU and VPU principles, are emerging as viable options for on–board processing.
Additionally, a specialized class of AI accelerator microprocessors is being developed
to enhance the efficiency of machine vision operations in energy–efficient settings.
These microprocessors excel in executing image processing tasks while in orbit
and are currently undergoing thorough environmental testing conducted by ESA.
Laboratory experiments have extensively tested AI techniques and neural networks
to tackle the demanding crater identification task, which remains the most critical
challenge among TRN algorithms.

Given its foundation in computer vision, on–board spacecraft, efficient image
processing can be achieved by employing an appropriate CNNs. The strength and
popularity of CNNs lie in their capacity to automatically extract features through
training, enabling effective differentiation between various classes. When properly
trained on a relevant dataset, these types of neural networks excel in capturing
significant contextual features from images [68]. This proficiency ensures system
robustness against variations in acquisition angles, lighting conditions, and camera–
induced distortions, thereby addressing some of the limitations seen in classical
crater detection algorithms.

Leading the charge in the AI industry, influential names like Intel, Google, and
Nvidia are driving the advancement of edge AI. They are achieving this by offering
hardware platforms and accelerators that come in compact forms. Among these, one
of the most notable is the Intel Movidius Myriad, which has garnered attention for its

3.1 Introduction 47

integration and successful testing within ESA’s Phisat-1 satellite. Another standout
player is the Nvidia Jetson Nano. Below a brief description of these hardware
accelerators:

• "Movidius Stick" (see Figure 3.4, taken from https://www.intel.com/content/

www/us/en/developer/articles/tool/neural-compute-stick.html) – The
Intel Movidius NCS stands as a compact, fanless USB drive designed for in-
structive AI programming exploration. Empowered by the Movidius Visual
Processing Unit, a paragon of power efficiency and high performance, this
device fuels its capabilities. Its core is embedded with an Intel Movidius Myriad
X VPU. Within its architecture lies the capability to seamlessly transform
foundational CNN architecture from its original format (such as TensorFlow
or Torch models) into the OpenVINO framework. This conversion prowess
is harnessed through the utilization of the OpenVINO library. Moreover, the
Movidius Stick expedites the inference process for deep learning co- processors
integrated into USB sockets. Notably, the toolkit supports diverse execution
across computer vision accelerators, encompassing GPU, CPU, and FPGA,
via a standardized API. Additionally, it enables on–the–edge deep learning
inference, contributing to a comprehensive AI programming experience [69];

Figure 3.4. Myriad Compute Stick.

• "Jetson TX2" (see Figure 3.5, taken from https://developer.nvidia.com/

embedded/jetson-tx2) – In the realm of deep learning inference, the Jetson
TX2 model boasts twice the energy efficiency of its predecessor, the Jetson
TX1, and outperforms Intel’s Xenon server CPU. This heightened level of
efficiency fundamentally shifts the landscape, making it feasible to transition
advanced AI processing from centralized cloud setups to the edge. Facilitated
by resources such as LSTMs, RNNs, the TensorRT library, and Nvidia’s CUDA
Deep Neural Network library (cuDNN), the Jetson TX2 significantly expedites
the advancement of cutting–edge Deep Neural Network designs.

https://www.intel.com/content/www/us/en/developer/articles/tool/neural-compute-stick.html
https://www.intel.com/content/www/us/en/developer/articles/tool/neural-compute-stick.html
https://developer.nvidia.com/embedded/jetson-tx2
https://developer.nvidia.com/embedded/jetson-tx2

48
3. Space Qualified VPU Benchmarking of Crater Matching ODTS Solutions

based on Convolutional Neural Networks

Figure 3.5. Jetson TX2 board.

3.2 State of the Art and Original Contribution

In recent years, the moon is gaining back attractiveness in terms of human explo-
ration for scientific purposes, for resources exploitation and as a baseline for Mars
exploration. A lot of research has been focused on developing OD–based navigation
algorithms able to cope with real-time and local constraints with lack or limited
access to standard measurements, e.g. ground tracking station measurements from
Earth. The ability of the satellite to self-estimate its position, aided by on–board
sensor measurements and auxiliary observables, is a core feature to achieve in an
environment like the Moon, where ground-control monitoring is not yet available.

In this context crater matching, that is matching features over impact crater
images, represents an interesting technique for boosting ODTS algorithms. This
approach requires intense computational resources and on-board storage, which
would require the direct acquisition, data processing and position determination
performed on–board, together with the storage of both the available crater databases
and of the continuously acquired images.

In [70] the authors develop a Crater Matching and Detection Algorithm (CDMA)
which makes use of a combination of TRRN and TRAN features. The crater
detection is achieved by pairing shadowed and illuminated objects of the image
having a similar size and a relative orientation consistent with the direction of the
light, while crater matching uses the parameters of the detected craters to locate
them into a Geo–referenced database. Moreover common features are tracked over
successive frames by using Harris Corner tracking [49].

In recent years, AI has come out as one of the most attractive solutions to
the crater matching problem. [71] proposed the use of an U–Net style CNN to
detect the crater features in the moon images which allows segmentation at pixel–
level resolution [72]; [73,74] proposed an improvement of the previous approach by

3.3 Theory and calculations 49

training the network to detect craters also under different illumination conditions. [75]
proposed the same methodology to tackle the problem of crater matching on Mars’
craters.

In [76] the authors proposed the use of mixed unsupervised and supervised
learning to detect craters by using multiscale Hypothesis Generation (HG) step
[77,78], followed by Hypothesis Verification (HV) step.

The use of AI allows to decrease the computational load of the CDMA and
can be effectively employed in an end–to–end ODTS pipeline. In [50] the authors
proposed an ODTS scheme based on TRAN approach to track a satellite position in
a Elliptical Lunar Frozen Orbit (ELFO). In this work, the crater matching task has
been performed by using the U–Net architecture. [79] proposed an TRAN scheme
for navigation called FederNet in which a Mask R–CNN architecture is used as a
feature extractor [80].

Crater matching algorithms have also been applied to the Moon landing problem.
In [81] the authors proposed the use of an object detection network in order to
detect directly the crater coordinates in the image frame, without the need for
further processing. This approach was able to speed–up considerably the whole
TRN pipeline.

In this work a detailed analysis of several AI–based crater detection approaches
have been carried out. In particular a benchmarking of different crater matching
techniques has been performed in order to verify their performances and applicability
in the field of real–time orbit determination. To do so, we started by performing a
trade–off to select the most promising neural network architecture for the purpose
of crater matching OD technique. The benchmarking is performed by using a space–
qualified processor which is characterized, in addition to a CPU and an FPGA, by a
VPU built for running AI applications.

3.3 Theory and calculations

In this section the benchmarked neural network architectures are presented along
with the training procedure and the key performance indicators considered in the
analysis. The benchmark platform and its specifications will also be described in
detail.

3.3.1 Methods

In this work, the focus of the benchmarking is on the crater detection part of the
TRN pipeline. This is one of the most computationally involved part of the overall
TRN system; indeed, neural networks are used to take over the overly complex

50
3. Space Qualified VPU Benchmarking of Crater Matching ODTS Solutions

based on Convolutional Neural Networks

algorithms for feature detection and extraction. The choice of the neural network is
of utmost importance for determining the performances and the constraints of the
on–board navigation algorithm. The former relates to the estimation rate, i.e. the
time between one position estimate and the next one, and also to the precision in
the estimate itself; the latter are usually related to the instruments equipped on the
satellite (sensors, processor capabilities, ...). Choosing a heavy network may result
in a better feature extraction process but it usually takes a long time to perform the
inference and this can lead to accumulated delays in the overall process; choosing a
smaller network allows to avoid long time delays due its faster inference time but
can also result in slightly worse features.

Benchmarking will be based on several performance parameters described in
Table 3.1:

Parameter Description
Input Preci-
sion

Bit precision of the model input (float16,
float32, uint8).

Read model
time

Amount of time taken to read the model
files.

Reshape
model time

Amount of time to resize the model to
match the image size if needed.

Compile
model time

Amount of time needed to load the model
on the inference device (CPU, Myriad).

First infer-
ence time

Amount of time to perform the first infer-
ence.

Latency Amount of time it takes to process a single
inference request.

Throughput Number of inferences per second the device
can perform.

Table 3.1. Benchmarking Performance Parameters.

In addition to the performance parameters described above, in order to select the
most appropriate NN model architecture, it is useful to introduce other qualitative
parameters, which are useful in order to best perform a trade-off analysis. In
particular, the output feature is introduced as a parameter, i.e. what information is
output and how it is organized, and the tile dimension, which brings a more univocal
pattern of craters as the size increases, as more craters will be considered.

In this paper, three different neural networks are considered:

3.3 Theory and calculations 51

• the U–Net [71,74] is a deep convolutional neural network used for segmentation
tasks originally introduced to perform semantic segmentation of medical images
(e.g. brain images segmentation and liver images segmentation) [82]. Its archi-
tecture is shown in Figure 3.6. The network consists of a contracting path and
an expansive path, which gives it the u–shaped architecture. The contracting
path is a typical convolutional network that consists of repeated application of
convolutions, each followed by a rectified linear unit (ReLU) [83] and a max
pooling operation. During the contraction, the spatial information is reduced
while feature information is increased. The expansive pathway combines the
feature and spatial information through a sequence of up–convolutions and
concatenations with high–resolution features from the contracting path. The
main idea is to supplement a usual contracting network by successive layers,
where pooling operations are replaced by upsampling operators. Hence these
layers increase the resolution of the output. A successive convolutional layer
can then learn to assemble a precise output based on this information. One
important modification in U–Net is that there are a large number of feature
channels in the upsampling part, which allow the network to propagate context
information to higher resolution layers. As a consequence, the expansive path
is more or less symmetric to the contracting part, and yields a u–shaped archi-
tecture. The network only uses the valid part of each convolution without any
fully connected layers. To predict the pixels in the border region of the image,
the missing context is extrapolated by mirroring the input image. This tiling
strategy is important to apply the network to large images, since otherwise
the resolution would be limited by the GPU memory. This network takes as
input a crater image and performs edge detection on the craters. The output,
as shown in Figure 3.6, is an image in which the edges of the craters are
extrapolated from the rest of the background;

Figure 3.6. U–Net architecture.

52
3. Space Qualified VPU Benchmarking of Crater Matching ODTS Solutions

based on Convolutional Neural Networks

• MobileNetV2/MobileNetV3 with Single–Shot Detector (SSD). The architecture
is similar to the one in Figure 3.7 with the MobileNetV2 or MobileNetV3
as a backbone instead of the classical VGG16 [84]. MobileNet stands as
the predominant CNN–based model utilized in smartphone applications and
embedded devices thanks to its compact dimensions and efficient performance.
Its concept revolves around the employment of depthwise separable convolution
to construct a lightweight model that demands lower computational resources.
Traditional CNN architectures often involve convolution to be carried out point–
to–point between the image and filter, leading to heightened computational
demands. MobileNet’s innovation lies in its depthwise convolution, wherein
a single filter is used per input channel. Subsequently, pointwise convolution
employs a 1× 1 convolution to combine the output from the depthwise layer
linearly. This strategic separation of convolutions significantly reduces both
computation requirements and model size. This architecture serves as the
foundational "base network" within the broader model structure, recognized
as a standard framework esteemed for its excellence in high–quality image
classification.

The architectures used in this work are the evolutions of the MobileNet
architecture in terms of layer efficiency [85]. In particular the MobileNetv2 [86]
introduced the linear bottleneck and inverted residual structure in order to make
even more efficient layer structures by leveraging the low rank nature of the
problem. This structure is defined by a 1×1 expansion convolution followed by
depth–wise convolutions and a 1×1 projection layer. The input and output are
connected with a residual connection if and only if they have the same number
of channels. This structure maintains a compact representation at the input and
the output while expanding to a higher–dimensional feature space internally
to increase the expressiveness of nonlinear per-channel transformations.

The MobileNetv3 [87] further enhanced the previous version by adding the
Squeeze–and–Excite operation [88] in the residual layer. Moreover a new
activation function called swish [89–91] has been introduced as a drop–in
replacement for the ReLU that significantly improves the accuracy of neural
networks.

To culminate the model, the SSD architecture is incorporated in its latter
portion [84]. The SSD technique employs a feed-forward convolutional network,
generating a predetermined array of bounding boxes and associated scores
indicating the presence of object class instances within these boxes. This
output is then refined through a non-maximum suppression process, ultimately
yielding the conclusive detections.

3.3 Theory and calculations 53

Figure 3.7. SDD network architecture. The original feature extractor is based on VGG-16.

It is worth noticing how both these neural networks could achieve detection
performances compatible for the sake of achieving a robust observable as will be
described in Section 3.3.3; the considerations about the quality of such observable
and how these impact the overall OD system are not presented here, while we have
been focusing in this work on the compatibility of this networks to be executed
efficiently on dedicated HW platforms.

3.3.2 Hardware Specifications

Figure 3.8. Unibap iX5–100 Board.

The three models outlined in Section 3.3.1 serve as testing benchmarks for
evaluating the inference performance during the deployment of models onto edge
hardware. Conducting these benchmarks on an on–the–edge device introduces
added memory constraints, given that memory and processor capacities are notably
smaller than those found in standard workstations. The experiment is performed
by using Unibap’s iX5–100 (see Figure 3.8) [92], a SpaceCloud® computer solution

54
3. Space Qualified VPU Benchmarking of Crater Matching ODTS Solutions

based on Convolutional Neural Networks

for large and small spacecraft. The iX5–100 uses computer modules with support
for GPU and one or more neuron network accelerators. Moreover, the iX5–100 can
be customized in several steps since the standard I/O card contains in/outputs
for camera link, stepper motor control, LVDS for radio communication, AD590
temperature measurement, and a mini–PCIe slot for calculation expansion. All
hardware specifics are shown in Figure 3.9 [92]. The iX5–100 board features the Intel
Movidius Myriad X VPU capable of performing fast inferences and whose processor
speed up machine learning models by using the inference engine provided by the
Intel OpenVINO Toolkit.

Figure 3.9. Unibap’s iX5–100 Hardware Specifications.

3.3.3 Algorithm Implementation

In this section the training and validation procedure of the models will be defined
along with a brief description of the benchmarking algorithm implementation.

3.3 Theory and calculations 55

Training Procedure

The input data were generated by randomly cropping digital elevation map (DEM)
images from the Lunar Reconnaisance Orbiter (LRO) and Kaguya merged digital
elevation model, which spans ±60 degrees in latitude and the full range in longitude,
and has resolution of 512 pixels/degree (or 59 m/pixel) [93,94]. The global greyscale
map is a Plate Carree projection with a resolution of 184320× 61440 pixels and with
a bit depth of 16 bits/pixel. The map has been downsampled to 92160×30720 pixels
with a bit depth of 8 bits/pixel. The use of an elevation map, instead of an optical
one, makes it easier to train the neural network. The absence of effects related to
the sunlight direction, indeed, reduces possible variations in the appearance of the
craters.

Each input image has been generated by following a four–step procedure:

1. randomly cropping a square area of the global map. The position of this region
has been selected with a uniform distribution and its length has been derived
from a log–uniform distribution with minimum and maximum bounds of 500
and 6500 pixels (equivalent to 59 and 770 km respectively) in order to catch
both small and large craters;

2. downsampling the cropped image to 256× 256 pixels for the U–Net model and
to 320× 320 pixels for the MobileNet models;

3. transforming the image to an ortographic projection using the Cartopy Python
package in order to minimize image distortion. This transformation often
produces non–square images padded with zeros (see Figure 3.7);

4. rescaling image intensity to boost contrast.

Image normalization within the range of [0,1] has been applied. The ground–truth
data for the U–Net are generated for each input image by encoding craters as rings
with thicknesses of 1 pixel and with centers and radii derived from the combined
Head and Povilaitis dataset [44, 45]. While the ground–truths for the MobileNet
architectures are characterized by the craters’ bounding–boxes coordinates.

The input data have been divided into training and validation and test set. Each
of them sampled from equal–sized and mutually exclusive portions of the Moon,
spanning the full longitude range. Each dataset contains 15000 tiles of images. The
three different ANN structures explained in Section 3.3.1 are trained in order to
understand which is the best architecture that led to extracting crater coordinates.
The training hyperparameters are specified in Table 3.2. The U–Net model has been
trained for 4 epochs, while the other ones have been trained for 150 epochs.

56
3. Space Qualified VPU Benchmarking of Crater Matching ODTS Solutions

based on Convolutional Neural Networks

Hyperparameters U–Net MobileNetV2/V3 with SSD
Learning Rate 1e-4 5e-4

Batch Size 8 32

Optimizer Adam AdamW

Loss Function Binary Cross Entropy SmoothL1 + Cross Entropy
Table 3.2. Hyperparameters Specifications.

The accuracy of the models has been validated by using the Precision and Recall
metrics on the test set. The results show similar performances between the models
with respect to these two parameters: around 0.6 for the former and 0.9 for the latter.
These values of accuracy are sufficient in order to produce a robust observable. It is
not necessary to have a model able to detect all the possible craters in an image
since only a subset of them, possibly well distributed, should be sufficient in order to
determine the position of the satellite if paired with other sensors measurements like
IMU and altimeter data. Moreover, in the case of a TRAN approach, the higher the
number of craters, the higher is the computational effort due to the database search.

SpaceCloud Testing

Image Pre
Processing

Inference
Engine

Image Post
Processing

Model weights
and architecture

directory

Output DataInput Data

Docker Container

Figure 3.10. Inference Workflow.

To test the above models over the space–qualified hardware described in Section
3.3.2, model weights must be converted in a suitable format compatible with the
Intel Movidius Myriad X VPU. This procedure is characterized by several steps:

1. model conversion from PyTorch or TensorFlow to ONNX format;

3.4 Results and Discussion 57

2. model optimization by scaling the model weights to FP16;

3. model conversion to IR format;

4. final xml and bin files generation.

At this point, model inference is executed over the Unibap iX5–100 SpaceCloud
platform to conduct benchmarking and assess model performance, determining the
configuration that best aligns with the camera’s frame rate. The benchmarking
algorithm has been deployed on the platform by means of a Docker container
including the OpenVINO framework and all the necessary packages (see Figure 3.10).
This allows the algorithm to be portable over different platforms supporting the
framework. Final results will be presented in the next section.

3.4 Results and Discussion

This section presents some of the benchmarking results that have been ran over four
kinds of configurations, specifically:

• U–Net model tested on Unibap CPU;

• U–Net model tested on Unibap Myriad;

• MobileNet models tested on Unibap CPU;

• MobileNet models tested on Unibap Myriad.

The different results have been obtained by performing inferences over a 60
seconds time interval. Different input shapes and input precisions have also been
considered. In particular for the U–Net the input images are 256× 256 in grey scale;
for the MobileNetV2 and MobileNetV3 the input images are 320 × 320 in RGB
format. The results are presented in Tables 3.3–3.5.

58
3. Space Qualified VPU Benchmarking of Crater Matching ODTS Solutions

based on Convolutional Neural Networks

Inference Hardware CPU CPU Myriad Myriad
Input Precision FP16 FP32 FP16 FP32

Read model time (msec) 81.73 91.74 76.69 79.04

Reshape model time (msec) 0.27 0.32 0.27 0.27

Compile model time (msec) 574.81 611.12 12920.61 13018.27

First inference time (msec) 9344.02 9908.14 509.84 509.87

Avg latency (msec) 9319.93 9425.47 506.89 507.52

Min latency (msec) 9262.18 9258.31 505.63 506.54

Max latency (msec) 9436.71 9759.30 507.85 508.41

Throughput (frame/s) 0.11 0.11 1.97 1.97
Table 3.3. U–Net Performance Parameters.

Inference Hardware CPU CPU CPU Myriad
Input Precision uint8 FP16 FP32 uint8

Read model time (msec) 170.11 168.14 169.27 170.92

Compile model time (msec) 1118.31 1089.33 1083.36 12068.99

First inference time (msec) 140.39 141.00 135.78 50.37

Avg latency (msec) 107.06 111.50 107.85 48.45

Min latency (msec) 105.53 107.39 106.93 47.98

Max latency (msec) 138.96 310.05 143.24 49.15

Throughput (frame/s) 9.31 8.94 9.24 20.52
Table 3.4. MobileNetV2 Performance Parameters.

With the data presented in the tables, it is possible to compare the neural network
models examined based on the hardware; this information is considered relevant
(among many others) to analyze the compatibility in being used in a complete
software suite for orbit determination.

To facilitate comparison, a summary table is given, trying to highlight the most
important parameters identified in the Section 3.3.1 compared for each NN model
and with the same hardware (see Table 3.6).

The most important parameter for the application of crater matching techniques
is the number of analyzable crater images frames per second, namely the throughput.
High throughput is fundamental in real–time scenarios in which a large amount of
data needs to be inferenced simultaneously. This parameter is compared with the

3.4 Results and Discussion 59

Inference Hardware CPU CPU
Input Precision FP16 FP32

Read model time (msec) 575.98 576.29

Reshape model time (msec) 0.28 0.27

Compile model time (msec) 1933.23 1996.34

First inference time (msec) 101.83 123.47

Avg latency (msec) 72.72 75.72

Min latency (msec) 71.81 70.23

Max latency (msec) 101.74 194.25

Throughput (frame/s) 13.69 13.14
Table 3.5. MobileNetV3 Performance Parameters.

frame rate of the space–based camera taken as a reference. The camera taken as
reference for the purpose of this analysis achieves performances similar to the one
used in [95], with a frame rate of around 10 fps. Indeed, it’s possible to see how the
achieved performances actually meet and exceed this threshold value, allowing for
real–time processing and future OD measurements in reduced time windows.

Also relevant is latency which, as described in Section 3.3.1, quantifies the time
required to process the single inference request with data percolating from input to
output the processing pipeline.

60
3. Space Qualified VPU Benchmarking of Crater Matching ODTS Solutions

based on Convolutional Neural Networks

N
N

M
od

el
H

W
w

it
h

in
pu

t
pr

ec
is

io
n

A
vg

La
te

nc
y

(m
se

c)
T

hr
ou

gh
pu

t
(f

ra
m

e/
s)

O
ut

pu
t

Fe
at

ur
e

T
ile

D
im

en
si

on

U
–N

et

C
PU

(F
P1

6)
93

19
.9

3
0.

11
D

et
ec

te
d

m
at

rix
m

as
k

25
6
×

25
6

C
PU

(F
P3

2)
94

25
.4

7
0.

11
D

et
ec

te
d

m
at

rix
m

as
k

25
6
×

25
6

M
yr

ia
d(

FP
16

)
50

6.
89

1.
97

D
et

ec
te

d
m

at
rix

m
as

k
25

6
×

25
6

M
yr

ia
d(

FP
32

)
50

7.
52

1.
97

D
et

ec
te

d
m

at
rix

m
as

k
25

6
×

25
6

M
ob

ile
N

et
v2

w
ith

SS
D

C
PU

(u
in

t8
)

10
7.

06
9.

31
M

at
rix

C
ra

te
r

co
or

di
na

te
s

32
0
×

32
0

C
PU

(F
P1

6)
11

1.
50

8.
94

M
at

rix
C

ra
te

r
co

or
di

na
te

s
32

0
×

32
0

C
PU

(F
P3

2)
10

7.
85

9.
24

M
at

rix
C

ra
te

r
co

or
di

na
te

s
32

0
×

32
0

M
yr

ia
d(

ui
nt

8)
48

.4
5

20
.5

2
M

at
rix

C
ra

te
r

co
or

di
na

te
s

32
0
×

32
0

M
ob

ile
N

et
V

3
w

ith
SS

D
C

PU
(F

P1
6)

72
.7

2
13

.6
9

M
at

rix
C

ra
te

r
co

or
di

na
te

s
32

0
×

32
0

C
PU

(F
P1

6)
75

.7
2

13
.1

4
M

at
rix

C
ra

te
r

co
or

di
na

te
s

32
0
×

32
0

M
yr

ia
d

N
ot

Su
pp

or
te

d
N

ot
Su

pp
or

te
d

N
ot

Su
pp

or
te

d
N

ot
Su

pp
or

te
d

T
ab

le
3.

6.
Su

m
m

ar
y

of
Pe

rf
or

m
an

ce
R

es
ul

ts
.

3.5 Future Works 61

From these few shown results, already many are the considerations that could be
made. Indeed, for the performance found on all types of hardwares, it is evident that
U–Net is an NN model that could hardly be adopted for crater matching applications,
specifically in the field of Orbit determination; even if ran over an optimized hardware
platform, such as Myriad, the achievable frame rate is not sufficient to satisfy the
key requirement of frame rate alignment with the spatialized camera. Furthermore,
high average latency times occur. To these times it must also be added that the
output feature of the network, in order to obtain usable information, must be further
being processed, introducing additional delay components. The MobileNetV2 +
SSD model instead, exhibits an adequate frame rate for applications when combined
with the Myriad board. It should be noted that the use of the Myriad results in
approximately 100% better performances. Even when considering latency times and
output features organized and ready for subsequent processing steps, and tiles of an
interesting size for recognition applications, the MobileNet V2 + SSD appears to be
a good candidate model to be considered for crater matching applications, but only
considering the model/hardware combination. In fact, we would like to highlight the
performance achieved by the MobileNetV3 + SSD model: this architecture with the
same hardware (Unibap CPU) manages to decrease latency and obtain a frame rate
that exceeds the threshold of 10 frames per second. The model allows the latency to
be reduced by -48% and the frame rate to be increased by 53% (for the example case
of the FP16 CPU). However, this model is not actually supported by the Myriad
board, but considering future developments and projecting the performance boost
that the Myriad brings if only the NN model is evaluated, the best performing
appears to be the MobileNetV3.

3.5 Future Works

The work reviews and analyzes the importance of the navigation system for ODTS
purposes, describing the crater matching technique and its use for the upcoming
lunar missions. Specifically a comparison of different NN models and their execution
over a space qualified hardware was carried out.

The performances of the network architectures have been measured on two
performance parameters: throughput and latency. The results have shown that the
MobileNetV2 with SSD is the best solution that satisfies the camera frame rate
constraint. The analysis also highlighted that the MobileNetV3 with SSD could be
a promising solution in the future if its compatibility issue with the Myriad device
will be solved.

This work is seen as a small step in showing how in perspective the use of vision

62
3. Space Qualified VPU Benchmarking of Crater Matching ODTS Solutions

based on Convolutional Neural Networks

assisted approach can become an interesting hypothesis to reach an autonomous
OD system, with the possibility to overcome the still unrealistic (at today) goal
of a complete independence from Earth ground infrastructures. This will be a key
changing technology in breaking the boundary of the numbers of the nodes for a
dedicated navigation lunar infrastructure. Moreover another interesting research
field is the possibility to miniaturize the on–board image–based technology to open,
in a more realistic way, the use of Small Sat for navigation purpose, which use is
affected significantly from the uncertainty of the positioning technique.

Further studies envision the full simulation of the ODTS system, starting from
the simulation of the camera acquisition to the final orbit determination.

63

Part II

Other Works

65

Chapter 4

Artificial Intelligence–Based
Data Path Control in LEO
Satellites–Driven Optical
Communications

Free Space Optical communication has emerged as a promising technology for high–
speed and secure data transmission between ground stations on Earth and orbiting
satellites. However, this communication technology suffers from signal attenuation
due to atmospheric turbulence and beam alignment precision. Low Earth Orbit
satellites play a pivotal role in optical communication due to their low altitude over
the Earth surface, which mitigates the atmospheric precipitation effects.

This work introduces a novel data path control law for satellite optical commu-
nication exploiting AI–based predictive weather forecasting and a node selection
mechanism based on Reinforcement Learning. Extensive simulations on three case
studies demonstrate that the proposed control technique achieves remarkable gains
in terms of link availability with respect to other state–of–the–art solutions.

This work has been submitted to the International Journal of Satellite Commu-
nications and Networking and is available in a pre–print format [96].

4.1 Introduction

In today’s ever–connected world, the demand for high–speed, reliable, and secure
data transmission has never been greater. The proliferation of data-intensive applica-
tions, such as streaming video [97], cloud computing [98], and the Internet of Things
(IoT) [99], continues to place unprecedented strain on traditional communication

66
4. Artificial Intelligence–Based Data Path Control in LEO Satellites–Driven

Optical Communications

networks. To meet these growing demands, the development of innovative communi-
cation technologies has become imperative. Among them, Free Space Optics (FSO)
has emerged as a promising solution to address these challenges.

In the telecommunications domain, FSO indicates all those wireless commu-
nications which, instead of making use of radio carriers in the form of a radio
communication, make use of electromagnetic carriers belonging to the range of
optical or infrared frequencies or wavelengths, aimed at transporting information
between a transmitter and a receiver [100].

FSO offers several advantages over traditional radio frequency (RF) communica-
tion systems when used in space–based applications. In particular, the main benefit
of FSO communication relies on data transfer rates. Indeed, a FSO system based on
lasers can achieve much higher data transfer rates with respect to RF communica-
tions. This is due to the fact that laser light has a much shorter wavelength than
RF waves: the wavelength of laser light falls within the optical spectrum, typically
in the range of 400 to 700 nanometers (nm), while RF waves can have much longer
wavelengths, ranging from millimetres to meters [101]. The shorter wavelength of
laser light allows for higher frequency modulation, which means that data can be
encoded onto the carrier signal at much higher frequencies. This enables a more
significant number of data bits to be transmitted per unit of time.

Moreover, laser communication systems can exploit a larger portion of the
electromagnetic spectrum, including multiple wavelength channels, to transmit data
simultaneously. This multiplexing capability increases the total data capacity of the
communication link.

Other advantages of FSO systems over the RF counterpart rely on (i) the
smaller divergence of the laser beam, which enables a higher concentration of optical
power [102], (ii) lower interference thanks to a point–to–point communication with
a direct line of sight [103], (iii) lower latency over longer distances [104], and (iv)
more robust security due to the inherent difficulty to intercept FSO signals without
being located precisely in the path of the beam [105].

However, FSO communication systems come also with drawbacks and limita-
tions related to atmospheric turbulence. The latter can significantly impact the
performance of FSO system, causing most of the time (i) scintillation of the received
optical signal [106], (ii) beam wander [107], and (iii) beam divergence [108].

The FSO link is established by means of an optical ground station (OGS), a
facility designed for the reception and transmission of laser signals from and to space
assets. In general, the effects of adverse weather conditions on FSO systems become
more pronounced as the distance between the transmitter and the receiver increases.
This is why a FSO link between an OGS and a satellite is typically operated by

4.1 Introduction 67

means of LEO satellites.

LEO satellites play a pivotal role in the advancement of FSO communication.
Situated at altitudes between 180 and 2,000 km above the Earth’s surface [109],
LEO satellites have relatively short orbital periods, typically completing one orbit
around the Earth in 90–120 minutes [110]: this frequent orbiting allows for better
coverage and faster data transmission.

Due to their relatively low altitude, atmospheric effects, such as signal attenuation
due to rain fade and atmospheric turbulence, have a reduced impact on a FSO
system compared to GEO satellites. This results in more reliable and consistent
FSO communication links, characterised by low latency, high data throughput and
improved signal strength, making them a preferred choice for real–time, high–data–
rate FSO applications [111].

Moreover, this type of satellite can be deployed in large constellations [10,
112], which provide continuous global coverage and improve the overall reliability
of the FSO communication. This aspect is crucial for applications that require
uninterrupted connectivity, such as satellite–based internet services.

LEO satellites are commonly used in the space industry for scientific research and
Earth observation purposes and for military operations, as well as for communication,
navigation, and remote sensing applications [113].

On the other hand, LEO satellites present two main disadvantages compared
with the GEO ones. The first one deals with their shorter lifespan, requiring periodic
orbital adjustments to maintain their position in the orbit, or replacements of units
within the fleet [114, 115]. The second one is related with visibility issues: since
LEO satellites’ rotation speed is much higher than the Earth’s rotational speed,
FSO terrestrial signals have to be handed over to another satellite within the fleet.
A satellite handover is performed when the serving satellite is below a minimum
elevation angle relative to the corresponding OGS: this may have a significant impact
on the communication quality, because of communication loss during the handover
process [116].

Despite these downsides, LEO satellites represent the ideal technology for optical
satellite communications. However, problems related to laser signal attenuation in the
presence of adverse atmospheric conditions remain. To address these technological
difficulties, various methodologies have been proposed by the scientific community.

68
4. Artificial Intelligence–Based Data Path Control in LEO Satellites–Driven

Optical Communications

4.2 State of the Art and Original Contribution

Researchers and engineers have created a variety of strategies and technologies to
solve the problems of power attenuation in FSO systems due to atmospheric fading.
A standard procedure rely on adaptive optics [117,118]. Systems implementing this
technology correct for turbulence–induced distortions by changing the geometry of
optical components like mirrors or deformable lenses based on real–time observations
of air turbulence. This technique aids in optical beam stabilisation and minimises
scintillation effects.

Other techniques rely on filtering and error correction, in which proper filters
and modulation methods try to filter out noise coming from the interference of fog
or clouds [119]. Since in many situations it is not possible to filter out the noise, it
is possible to employ broader laser beams to reduce the effects of beam spreading
brought on by turbulence [108]. This strategy, nevertheless, could result in slower
data transfer rates [120]. Eventually, another common standard approach is to
implement redundant FSO lines, equipping satellites or OGSs with more than one
laser communication terminal (LCT) [121], or FSO/RF hybrid systems [122], in
order to enhance the communication system reliability.

The aforementioned fading mitigation techniques intervene at the hardware level
on the individual receiver or transmitter, but do not take into consideration any
changes to the architecture or topology of the communication system.

In order to limit bad weather effects, it is possible to intervene at architecture
level linking in a wired fashion two or more OGSs within a same network. In this
way, if the signal suffers some degradation in an area, the other OGSs, located
in areas where the weather is favourable, may compensate said attenuation. The
communication loss is mitigated by continuously forwarding the signal to the OGS(s)
under untoward weather conditions, at least until the latter improve. This technique
is called site diversity [123].

The site diversity has proven to be a disruptive approach for the reliability of FSO
communications, since it (i) enables geographical diversity to reduce the likelihood
of simultaneous signal degradation at all sites [123], (ii) realises spatial separation
to ensure that the OGSs locations are subject to different weather patterns and
atmospheric conditions [124], and (iii) involves using multiple antennas at each site,
pointing in different directions or at different elevation angles. This configuration
allows the system to quickly switch between antennas to find the clearest signal
path, thus improving the link availability and reducing the number of outages or
dead times [125].

Although the site diversity technique adds complexity and high cost to the
infrastructure, the benefits in terms of improved reliability and availability often

4.2 State of the Art and Original Contribution 69

justify its implementation, particularly for mission–critical applications.

Said technique employs sophisticated control and switching mechanisms to
monitor the quality of signals received at different sites in real–time. When one site
experiences signal degradation, the system automatically switches to an alternate
site with better signal quality. These switching mechanisms were initially manual
and human–driven, while nowadays are usually based on statistical analysis of
weather forecasts [126–129], with the switching system being controlled by intelligent
algorithms.

The choice of which OGS to point at or to transmit from is driven by a series
of Key Performance Indicators (KPIs) and follows an optimal routing/resource
allocation logic [130, 131]. The most important KPI for any satellite communication
system is the link availability, but other design drivers for the multi–station site
diversity algorithms may include (i) the energy consumption for the movement/re-
pointing of LCTs, which impacts on the total power budget for the on–board payload,
(ii) the topology of the OGSs network (i.e., specific OGSs network topologies may
prevent the possibility to re–route the user traffic from one OGS to the others), (iii)
user plane latency and jitter, and (iv) on-board switching capabilities.

Since the installation of redundant OGSs may represent a waste of investment
for the network operator, several works focused on the minimisation of the number
of required OGSs to guarantee a minimum given system performance [132–134]. A
different optimisation approach relies on the hypothesis that OGSs have been already
positioned and the problem focuses on how to choose the set of OGSs to connect
to in order to maximise the availability. In [135] authors calculate the correlated
and uncorrelated availability for OGS networks in the scenario of space–to–ground
optical communication links with GEO satellites. An efficient optimisation algorithm
is presented, in order to choose the best OGS starting from five years of cloud data.
It is shown how many OGSs deployed in a very wide area can guarantee a network
availability near to 100%. A complementary optimisation approach is proposed
in [136], with the selection of the minimum number of ground stations satisfying the
monthly availability requirements of the total network, so minimising service and
maintenance costs. Eventually, in the scenario presented in [137], the optimisation
process consists in selecting the best ground station among several candidates, trying
to provide a reliable connectivity through large–scale site diversity. Results show
that the optimal choice mostly depends on the altitude and the zenith angle of the
set of ground stations.

Recent advancements in AI, particularly in the field of RL, have opened up new
possibilities for optimising satellite communication strategies. Authors in [121] pro-
pose an AI–based predictive handover strategy for optical communications between a

70
4. Artificial Intelligence–Based Data Path Control in LEO Satellites–Driven

Optical Communications

GEO satellite equipped with two LCTs and an OGS network, making use of machine
learning–based weather forecasts. Other works making use of AI and RL focused on
the resource allocation and traffic splitting for RF satellite communications [138–141],
shifting attention from the OGS network level to the one of the LEO constellation.

However, none of the above–mentioned works have tackled the issue of defining
an intelligent handover and path planning procedure for a FSO–based point–to–point
communication system between terrestrial OGS networks and a LEO fleet.

In this work a mixed Deep Learning (DL) for weather forecasts and RL approach
for intelligent signal routing is proposed, in order to tackle the problem of minimising
the outage probability. The main innovations of the present work are:

• multi–hop data routing between two OGS networks that cannot communicate
directly, but only passing through a LEO satellite fleet;

• weather predictions over the OGSs areas via Supervised Learning exploiting
historical hourly weather data;

• a centralised control law realised through an intelligent agent exploiting the
RL framework with an intrinsic optimisation of the link availability.

The remainder of this chapter is organised as follows: Section 4.3 provides general
background on time series machine learning and the RL foundations. Section 4.4
presents the mathematical modelling of LEO satellites’ and Earth’s dynamical
motion. In Section 4.5 extensive simulations show the effectiveness of the proposed
approach with respect to other benchmark solutions, and, eventually, Section 4.6
sums up the carried out research, pointing out the achieved results, describing as
well its limitations and outlining future research directions.

4.3 Preliminaries

In this section the mathematical foundations of RNNs and RL control will be
presented.

4.3.1 LSTM Neural Networks

A RNN is a type of artificial neural network designed for processing time sequences
of data. Unlike traditional feedforward neural networks, which have a fixed architec-
ture, RNNs are equipped with loops or recurrent connections that allow them to
store memory about previous inputs [142]. This memory enables RNNs to process
sequences of data, such as time series, natural language, or any other data with a
temporal or sequential structure.

4.3 Preliminaries 71

The LSTM network was first suggested in [143] to address the well–known
problem of vanishing gradient that characterises RNNs. The LSTM structure is
therefore ideally adapted to handle time-series data, such as the one we are addressing
in our work. By specifying a certain time window Tp of length TW , the AI model
tries to predict weather at time k + 1 by looking at the actual weather encountered
in the TW previous time instants, i.e.:

Tp =
{
k, k − 1, . . . , k − TW − 1

}
. (4.1)

At their core, LSTMs are comprised of memory cells that enable them to store
and manipulate information over extended sequences. These memory cells have
three crucial components:

1. Cell State: it is like a conveyor belt that runs through the entire LSTM network.
It can transport information across time steps without much modification.
The cell state can be updated, allowing it to capture relevant information and
discard irrelevant details;

2. Hidden State: also known as the output state, carries information from previous
time steps to the current one. It acts as a working memory that helps LSTMs
remember past information that is crucial for making predictions or decisions;

3. Gates: LSTMs employ three types of gates to control the flow of information:

• Forget Gate: this gate decides what information from the cell state should
be discarded or kept. It takes as input the previous hidden state and the
current input and outputs a value between 0 and 1 for each component
of the cell state, where 0 means "forget" and 1 means "keep";

• Input Gate: this gate determines what new information should be added
to the cell state. It computes a candidate cell state and decides which
parts of it should be added to the current cell state;

• Output Gate: the output gate controls what information should be output
as the hidden state. It takes the current cell state and the input, and it
generates the new hidden state.

In this work, each LSTM network is trained on local OGS meteorological data,
because if not so it would be difficult for a single predictor to generalise across the
various climates of the OGSs’ geographic regions, which can actually be located at
very different latitudes.

72
4. Artificial Intelligence–Based Data Path Control in LEO Satellites–Driven

Optical Communications

4.3.2 Markov Decision Process and Reinforcement Learning

Reinforcement Learning is one of the branches of machine learning: it deals with
intelligent agents performing actions over an environment and then observing its
state and the reward function [144]. The agents’ goal is to find a policy which
maximizes the expected cumulative reward, without being aware of the dynamical
equations governing the environment (data–driven control). Usually, a RL problem
is formalized through a Markov Decision Process (MDP), defined through a tuple
(S,A, P,R, γ), where:

• S is the state space;

• A is the action space;

• P (s′|s, a) is the probability that the environment transitions from state s to
state s′ when the agent chooses the action a;

• R(s, a, s′) is the immediate reward the agent gets when transitioning from
state s to s′ after taking action a;

• γ ∈ [0, 1) is the discount factor, representing the agent’s preference for
immediate rewards (γ ≈ 0) over the future ones (γ ≈ 1).

The objective of the agent in an MDP is to find a policy π : S → A that maximizes
the cumulative function of the rewards over a (potentially) infinite horizon [144].
Usually, said function is defined as:

Gk =
∞∑

i=0
γkRk+i+1. (4.2)

When the transition probability P (·) is not known, it is possible to rely on RL
techniques, in which the agent learns the optimal policy through the experience.
All MDPs handled through RL require the estimation of a value function or an
action–value function Qπ(·) for a given policy π(·) [144]:

Qπ(s, a) = Eπ[Gk|sk = s, ak = a],∀s ∈ S,∀a ∈ A. (4.3)

Action–value functions satisfy recursive relationships through the Bellman Equa-
tion, which expresses a link between the action–value function of a state and the

4.3 Preliminaries 73

Algorithm 1 Q-Learning.
Inputs: learning rate α ∈ [0, 1); discount rate γ ∈ [0; 1]; small ε > 0
Output: Q(s, a)

1: Initialize Q(s, a), ∀s, ∀a
2: for all episodes do
3: reset s
4: for each step of the episode do
5: choose action a following ε–greedy policy
6: perform action a and observe s′, r′

7: perform Q–Learning update rule over Q(s, a)
8: s← s′

9: end for
10: end for

action–value function of the next state:

Qπ(s, a) = Eπ[Gk|sk = s, ak = a]

= Eπ[Rk+1 + γGk+1|sk = s, ak = a]

=
∑
s′

P (s′|s, a)(R+ γ
∑
a′

π(a′|s′)Qπ(s′, a′))
(4.4)

where (s′, a′) is the next state–action couple with respect to (s, a). Hence, solving
an MDP through RL means finding the optimal action–value function Q∗(s, a) =
maxπ Qπ(s, a) for which it holds the Bellman principle of optimality [144]:

Q∗(s, a) =
∑
s′

P (s′|s, a)(R+ γmax
a′

Q∗(s′, a′)). (4.5)

One of the most popular and used RL algorithm to estimate Q∗(s, a) is the
Q–Learning [145]; said algorithm updates the Q–values according to the following
law:

Q(sk, ak)← (1− α)Q(sk, ak) + α[Rk+1 + γmax
a

Q(sk+1, a)] (4.6)

where α is the so–called learning rate. A popular choice for the policy π(·) is the
ε–greedy policy through which the agent selects with probability ε a random action
and with probability 1 − ε the action associated to the maximum value in the Q
table. For finite MDPs, it has been proven that the Q–Learning algorithm is able to
converge to the optimal Q–function if the Q–Learning update rule given by (4.6) is
used and if the learning rate α satisfies the following conditions:

∑
k

αk =∞,
∑

k

α2
k <∞. (4.7)

This condition requires that α ∈ [0; 1) which translates in the fact that each state-

74
4. Artificial Intelligence–Based Data Path Control in LEO Satellites–Driven

Optical Communications

action pair is visited infinitely often. By adopting an ε–greedy policy, this condition
can be stochastically satisfied. The pseudocode of the algorithm has been reported
in Algorithm 1.

4.4 Modelling

Let us consider a FSO–like communication system made by two OGS networks, one
transmitting data from Ntr OGSs and the other one acting as receiver with Nre

stations. Each of the two zones can be subject to different atmospheric conditions,
going from sunny to cloudy to stormy, which affect the data delivery from the
transmitting to the receiving zone. The two sets of OGSs cannot communicate using
terrestrial wired or wireless technologies, but they must rely on a LEO constellation
composed of Nsat satellites. The communication is a point–to–point one realised
through laser beams. The system scenario is depicted in Figure 4.1.

Figure 4.1. System Scenario.

In what follows, a detailed mathematical modelling of the overall communication
system is presented, including the formulation of the orbiting LEO satellites equations
of motion, the ground–to–satellite and inter–satellite visibility assessment, and the
MDP characterisation.

4.4 Modelling 75

4.4.1 Satellite Equations of Motion

Low Earth Orbit satellites are considered one of the best options for satellite
communication due to their short orbital period, which provides wide coverage and
an high service availability.

In order to define a LEO constellation of satellites, the orbit itself must be
characterised. Given an inertial frame of reference and an arbitrary epoch (a
specified point in time), exactly six parameters are necessary to unambiguously
define an arbitrary and unperturbed orbit. These are the semi–major axis a, the
eccentricity e, the inclination i, the argument of perigee ω, the longitude of the
ascending node Ω, also denoted as RAAN for geocentric orbits, and the true anomaly
f [12, 29].

The orbital parameters can be used to compute, at every epoch, the position and
velocity of the satellite around that orbit. To describe the motion of satellites, it is
usually used a coordinate frame which is inertial and fixed with respect to the stars,
namely the ECI reference frame [146]. In particular the x–y plane coincides with the
equatorial plane of Earth. The x–axis is permanently fixed in a direction relative to
the celestial sphere, which does not rotate as Earth does. The z–axis lies at a 90◦

angle to the equatorial plane and extends through the North Pole (see Figure 4.2,
taken from https://en.wikipedia.org/wiki/Earth-centered_inertial).

Figure 4.2. Earth Centered Inertial reference frame.

https://en.wikipedia.org/wiki/Earth-centered_inertial

76
4. Artificial Intelligence–Based Data Path Control in LEO Satellites–Driven

Optical Communications

Let us define as Rx(ϕ), Ry(η) and Rz(ψ) the standard rotation matrices:

Rx(ϕ) =


1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 (4.8)

Ry(η) =


cos η 0 − sin η

0 1 0
sin η 0 cos η

 (4.9)

Rz(ψ) =


cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 . (4.10)

Algorithm 2 shows how to pass from the orbital parameters to the satellite position
and velocity in the ECI coordinates.

Algorithm 2 Orbital Parameters to ECI coordinates.
Inputs: a, e,Ω, i, ω, f
Parameters: µ = 3.986004418× 1014[m3/s2]
Outputs: r, v

p = a(1− e2) ▷ semilatus rectum
cf = cos f, sf = sin f
r = p/(1 + e(cf)) ▷ Safe Division
v =

√
mi/p ▷ Safe sqrt and safe division

Define a rotation matrix based on angles and axes
ang =

[
ω i Ω

]T
axes =

[
3 1 3

]T
M = ang2mat(ang, axes)

Compute position and velocity in ECI
Transpose M
r ← rM

[
cf sf 0

]T
v ← vM

[
−sf e+ cf 0

]T
At this point it is possible to define the satellite equations of motion as a

second–order differential equation which is dependent on the satellite position vector
r:

r̈ = −µ r

∥r∥3
(4.11)

where ∥r∥ is the euclidean norm of the position vector and µ = 3.986004418× 1014

4.4 Modelling 77

[m3/s2] is the geocentric gravitational constant.

4.4.2 Visibility Analysis

In order for the satellite to exchange information with an OGS or with another
satellite there is a condition which needs to be analysed, the visibility. The latter is
a very important concept since it can determine if a certain information exchange
can happen or not and how good is the communication channel in terms of noises.
Visibility can be of two kind: (i) geometric visibility, which is related to the fact
that the relative position vector between one satellite and the other does not have
to intersect the Earth, and (ii) electronic visibility, which deals with analysing the
elevation angle and Carrier to Noise ratio (C/N0). The angle of elevation is the
angle between the horizontal line and the line of sight which is usually above the
horizontal line. The C/N0 expresses how high is the noise component with respect
to the information carrier: the lower the ratio is, the more the noise is prevalent and
vice–versa.

Since this work does not focus on the quality of the communication link, some
assumptions have been made to simplify the analysis:

1. the information exchanged between the satellite and the OGS and between
one satellite and another one is always good with a negligible amount of noise;

2. the satellite is visible by the OGS if the elevation angle is greater than a
certain threshold, in order to exclude the case of interference of buildings in
the vicinity of the OGS;

3. the satellite is visible with respect to another one if the geometric visibility
condition is satisfied.

In the following, the implementation of the visibility algorithms related to
assumptions 2 and 3 will be detailed.

4.4.3 Ground to Satellite Visibility

As already explained, a satellite is considered visible from an OGS if the elevation
angle is above a certain threshold. The elevation angle is computed with respect to
the horizontal plane of the OGS, so the East–North–Up (ENU) coordinate frame has
been considered, which is the reference frame of the ground station’s antenna. This
implies a change of coordinates of the satellite position and velocity vectors from
the ECI reference frame to the ENU frame. This transformation can be performed
by applying two rotations starting from the original coordinates: the first one to

78
4. Artificial Intelligence–Based Data Path Control in LEO Satellites–Driven

Optical Communications

pass from the ECI to the ECEF coordinates, the second one to pass from the ECEF
to ENU coordinates.

Since the ECEF reference frame is non–inertial and is rotating along with the
Earth, a new dynamic equation must be introduced to take this rotation into account.
Defining θ as the angle of rotation of the Earth, the latter’s rotational dynamics can
be easily written as:

θ̇ = ωE (4.12)

where ωE = 2π/86400 ≈ 7.29 × 10−5 [rad/s] is the angular velocity of the Earth.
In Algorithms 3 and 4 the steps to compute the two rotations are detailed. In the
following, the notation xRF with RF ∈ {ECI, ECEF, ENU} denotes the reference
frame of the generic vector x, while the notation xRF,c with c ∈ {x, y, z} denotes the
three components of the generic vector x expressed in the RF coordinates.

Algorithm 3 ECI to ECEF coordinates transformation.
Inputs: rECI, vECI, θ
Parameters: ωE

Outputs: rECEF, vECEF

R = Rz(θ)
rECEF = RrECI
a = vECI,x + ωErECI,y
b = vECI,y − ωErECI,x
c = vECI,z

ṽ =
[
a b c

]T
vECEF = Rṽ

Algorithm 4 ECEF to ENU coordinates transformation.
Inputs: rECEF, ϕ, ν ▷ ϕ, ν: lat and long of the GS
Outputs: rENU

R =

 − sin ν cos ν 0
− cos ν sinϕ − sin ν sinϕ cosϕ
cos ν cosϕ sin ν cosϕ sinϕ


rENU = RrECEF

As a last step, from the ENU coordinates it is possible to compute the Azimuth
(A), Elevation (E) and Range (ρ) of the satellite with respect to the OGS’s antenna.
For our case only the elevation angle will be used in the visibility analysis. Algorithm
5 details the mathematical steps to compute these three parameters.

4.4 Modelling 79

Algorithm 5 ENU to Azimuth, Elevation, Range parameters.
Inputs: rENU
Outputs: A,E, ρ

ρ = ∥rENU∥
σ = rENU/ρ
E = arcsin σz [rad]
A = arctan (σx, σy) [rad]

4.4.4 Satellite to Satellite Visibility

Due to the short field of view of the LEO satellites, in order to exchange information
between two sites far away from each other, a constellation of satellites is needed.
This implies the creation of a communication link between two satellites of the same
constellation in order to reach the remote site efficiently. The concept of visibility
applies also in this case. To simplify the analysis only the geometric visibility is
considered. Algorithm 6 details the procedure for the geometric visibility check.

Algorithm 6 Geometric Visibility Check between satellite A and B.
Inputs: rA, rB

Parameters: REarth = 6378136.3 [m]
Outputs: isSatVis [bool]

Initialize output
isSatVis = False
norm = ∥rA∥

if rA == rB then ▷ Same point in space
isSatVis = True
return isSatVis

else
rC = rA − rB ▷ Relative position vector
min dist = Minimum distance between rC and the centre of the Earth
if min dist ≥ REarth then

isSatVis = True
end if
return isSatVis

end if

4.4.5 Markov Decision Process Formulation

The system dynamics described above has been translated to a MDP in order to
exploit the RL framework. In Figure 4.3 the proposed RL algorithm workflow is

80
4. Artificial Intelligence–Based Data Path Control in LEO Satellites–Driven

Optical Communications

detailed.
The state space is

S =< t >, t = 0, . . . , T (4.13)

where t is the generic time step and T is the final step within the transmission
window period.

The action space is

A =< OGST, SAT1,SAT2,OGSR > (4.14)

where OGST is the index of the transmitting OGS, SAT1 is the index of the first
satellite receving data from the transmitter, SAT2 is the index of the second satellite
receiving data from the first one, and OGSR is the index of the receiver.

Eventually, the reward function models the success rate of the end–to–end
handover and is defined in the following way:

R =

+1, if transmission is successful

−1, otherwise
. (4.15)

Satellites and
OGS Initialization

Environment
Initialization

Exploration/
Exploitation policy

Step Function

Q-Table
Initialization

Predicted Weather
Conditions

Next
State

Episode
Cumulative

RewardRepeat until

Repeat for
each episode

Weather check
transmitter and

receiver

Bad
weather?

Visibility

Is Visible?

Visibility

Is Visible?

Visibility

Is Visible?

No

Reward = 1

Yes

Next State

Reward

Q-Table
update

Q-Table
Update

Generated
Action

Initial
State

Reward = 1

Next State

Q-Table
Update

No

No

No

Yes

Yes

Yes

Figure 4.3. Reinforcement Learning algorithm workflow.

4.5 Simulations and results 81

4.5 Simulations and results

In order to simulate and validate our control approach, two geographical areas from
two different continents have been considered, namely:

1. the east coast of United States and Canada, with Ntr = 10 transmitting OGSs
located in the main cities, as in Figure 4.4;

2. the territory of Israel, with Nre = 6 receiving OGSs, shown in Figure 4.5.

Figure 4.4. Map of the transmitting OGSs in the east coast of North–America.

To perform the weather forecast for all the OGS zones, the LSTM deep neural
network was trained on a publicly available weather dataset [147] covering approxi-
mately 5 years of weather data (from October 1, 2012 to November 30, 2017), with
temporal resolution TR = 1 h.

The available features for training are the following:

• humidity;

• atmospheric pressure;

• wind direction;

• temperature;

• wind speed;

• month of the year;

82
4. Artificial Intelligence–Based Data Path Control in LEO Satellites–Driven

Optical Communications

Figure 4.5. Map of the receiving OGSs in Israel.

• weather conditions within the time window prediction Tp.

The missing data for each feature was filled in by taking up the numerical value
of the feature of the previous entry: this approach makes it possible not to break
the hourly time sequence of the meteorological data.

As per the weather, the dataset contains a very detailed description of the
weather conditions. The latter have been mapped into binary labels for training
the model: label 0 has been assigned to clear sky, few/scattered clouds and haze,
which correspond to mild weather conditions allowing satellite–OGS communication,
whereas the label 1 indicates inclement weather which does not allow a successful
data transmission.

For the training phase, the data from October 1, 2012 up to December 20,
2016 have been selected. The model accuracy has been evaluated by splitting the
remaining part of the dataset with respect to the four seasons, in accordance with
the 2016 and 2017 astronomical tables [148].

4.5 Simulations and results 83

Figure 4.6. LSTM Neural Network Architecture. The network is made by two LSTM
layers and two Dense layers, each one followed by a Dropout layer, with the final output
layer having one neuron representing bad weather probability.

The chosen LSTM model architecture is depicted in Figure 4.6 and the selected
hyperparameters are the following:

• number of epochs E = 5;

• Adam optimizer with constant learning rate η = 0.001;

• time window length TW = 24;

• dropout rate ζ = 0.2.

The LSTM model performance on unseen data (from December 21, 2016 to
November 30, 2017) against all seasons and per each city, in terms of test accuracy,
have been reported in Tab. 4.1. It is evident that the neural network model is
able to predict correctly almost all the weather conditions within the test set, thus
representing a powerful tool to estimate in advance the precipitation or thick clouds
probability over the zone in which the OGS is located.

84
4. Artificial Intelligence–Based Data Path Control in LEO Satellites–Driven

Optical Communications

Table 4.1. LSTM accuracies per season.

City Winter Spring Summer Autumn

New York 0.984 0.986 0.982 0.989
Montreal 0.988 0.981 0.963 0.974
Boston 0.993 0.989 0.987 0.989
Chicago 0.973 0.978 0.952 0.971

Charlotte 0.976 0.976 0.972 0.975
Pittsburgh 0.991 0.984 0.979 0.988

Detroit 0.997 1.000 0.996 0.998
Kansas City 0.992 0.990 0.983 0.990

Toronto 0.999 0.999 0.985 0.988
Indianapolis 0.992 0.986 0.981 0.992
Beersheba 0.944 0.956 0.966 0.998

Tel Aviv District 0.977 0.955 0.966 0.991
Eilat 0.932 0.923 0.968 0.999
Haifa 0.944 0.982 0.987 0.999

Nahariyya 0.989 0.985 0.945 0.997
Jerusalem 0.991 0.981 0.959 0.998

The RL–based controller hyperparameters for the training phase have been
selected as follows:

• γ = 0.9;

• ε0 = 1 with episodic decay law with respect to the generic episode η:

ε(η) = e
−

η

βNep

with β = 0.2 being the decay rate and Nep the number of episodes;

• α0 = 1 with episodic decay law with respect to the generic episode η:

α(η) = e
−

η

1000 .

As for the evaluation phase, the controller performance has been figured out over
a transmission period of T = 2 days.

The AI–based control law has been evaluated in terms of link availability, defined
as follows:

LA = NS

NT
(4.16)

where NS is the number of times a successful data transmission is achieved, and NT

is the total number of transmissions attempted.

4.5 Simulations and results 85

Results with respect to the above–defined KPI have been compared with other
benchmark routing approaches in the FSO domain, listed as follows:

• B1. Both transmitting and receiving OGSs and both LEO satellites are chosen
randomly;

• B2. Transmitting and receiving OGS are chosen with a reactive approach
based on the current weather condition, and the satellites are chosen with the
min range technique, following the reasoning and modelling provided in [149];

• B3. Transmitting and receiving OGS are chosen with a reactive approach
based on the current weather condition, and the satellites are chosen as those
with the maximum elevation angle;

• B4. Transmitting and receiving OGS are chosen with the LSTM–based weather
forecasts, and the satellites are chosen with the min range technique;

• B5. Transmitting and receiving OGS are chosen with the LSTM–based weather
forecasts, and the satellites are chosen as those with the maximum elevation.

The proposed control approach has been tested over three different case studies,
in which the communication between the two OGSs networks is realised with different
LEO constellations:

• Case study 1. Nsat = 15 satellites from the Iridium constellation;

• Case study 2. Nsat = 15 satellites from the Starlink constellation;

• Case study 3. Nsat = 30 satellites given by the combination of satellites from
case study 1 and case study 2.

The satellite orbital parameters and generic data have been gathered via Two–
Line Elements (TLEs) files from [25]. A Two–Line Element file is a data format
encoding a list of orbital elements of an Earth–orbiting object for a given point in
time.

The propagation of the satellites motion over time is performed by using the
4–th order Runge-Kutta algorithm as integrator with fixed time step dt = 1 minute.

All the simulations have been carried out using Tensorflow framework on
Python3.10 on a machine equipped with an Intel Core i5–10210U CPU and 16GB
RAM.

86
4. Artificial Intelligence–Based Data Path Control in LEO Satellites–Driven

Optical Communications

4.5.1 Iridium Constellation

In this case study the number of episodes for training the RL controller has been
set as Nep = 100. The season–related cumulative reward trend over the training
episodes is shown in Figure 4.7. In all the four cases, the reward converges to a

0 20 40 60 80 100

Episodes

0.1

0.2

0.3

0.4

0.5

S
u

cc
es

s
R

at
e

Cumulative Reward Trend

Summer

Autumn

Winter

Spring

Figure 4.7. Season–related reward trend of the RL controller for the Iridium case study.

Summer Autumn Winter Spring

Season

0.0

0.2

0.4

0.6

0.8

1.0

L
A

Link Availability with Iridium LEO Satellites

B1

B2

B3

B4

B5

LSTM+RL

Figure 4.8. Season–related link availability comparison for the Iridium case study.

steady–state value in terms of data transmission success rate, which is higher in the
autumn season due to the presence of a higher number of hours with favourable
weather conditions both at transmitting and receiving zone. The comparison of
the performance of the proposed approach with respect to the benchmark solutions

4.5 Simulations and results 87

is shown in Figure 4.8. It is worth noting that the RL controller together with a
LSTM–based weather prediction achieves higher link availability with respect to the
other standard techniques for FSO communication.

4.5.2 Starlink Constellation

In this case study the number of episodes for training the RL controller has been set
as Nep = 100. The cumulative reward trend is shown in Figure 4.9. For all seasons,
the reward converges to a steady–state value in terms of data transmission success
rate, as in the previous case study with the Iridium constellation.

0 20 40 60 80 100

Episodes

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

S
u

cc
es

s
R

at
e

Cumulative Reward Trend

Summer

Autumn

Winter

Spring

Figure 4.9. Season–related reward trend of the RL controller for the Starlink case study.

Figure 4.10 depicts the comparison of the performance of the RL controller
with respect to the benchmark solutions. The proposed control strategy achieves
the best performances in terms of link availability. However, it shall be noticed
that the overall performances are worse with respect to those achieved by means of
the Iridium constellation. As an example, in the autumn season the RL controller
guarantees LA = 0.401 using Starlink satellites and LA = 0.499 with Iridium
satellites: similar results hold for the other seasons. This is due to the fact that the
Starlink constellation orbits have been designed to cover mainly the North–American
continent, thus guaranteeing poor coverage within the Israel territory.

88
4. Artificial Intelligence–Based Data Path Control in LEO Satellites–Driven

Optical Communications

Summer Autumn Winter Spring

Season

0.0

0.2

0.4

0.6

0.8

1.0

L
A

Link Availability with Starlink LEO Satellites

B1

B2

B3

B4

B5

LSTM+RL

Figure 4.10. Season–related link availability comparison for the Starlink case study.

4.5.3 Mixed Constellation

In the last case study the number of episodes for training the RL controller has
been increased to Nep = 300, in order to allow a broader exploration due to the
availability of double the amount of LEO satellites with respect to the previous case
studies.

0 50 100 150 200 250 300

Episodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
u

cc
es

s
R

at
e

Cumulative Reward Trend

Summer

Autumn

Winter

Spring

Figure 4.11. Season–related reward trend of the RL controller for the mixed case study.

Figures 4.11 and 4.12 show training and evaluation performances against all
seasons. As expected, the increased number of satellites guarantees higher cumulative
reward trend and, hence, link availability for the FSO transmission. This is due to

4.6 Conclusions and Future Works 89

Summer Autumn Winter Spring

Season

0.0

0.2

0.4

0.6

0.8

1.0
L
A

Link Availability with mixed LEO fleet

B1

B2

B3

B4

B5

LSTM+RL

Figure 4.12. Season–related link availability comparison for the mixed case study.

the fact that increasing the number of satellites leads to a wider coverage over the
Earth surface: this allows to establish a successful communication with guaranteed
inter–satellite visibility for longer periods. Also in this case, the performances of the
proposed control algorithm are better than the benchmark ones.

4.6 Conclusions and Future Works

In this work a mixed AI and RL approach for FSO point–to–point communication has
been proposed. This technique exploits weather prediction algorithms to improve the
quality of the communication link, as well as a dynamical data–driven optimisation
for maximising the link–availability in a data transmission scenario between two
terrestrial OGS networks communicating through LEO satellites. The proposed
decision and control approach has been compared with several benchmark solutions,
achieving better performances in all seasons over the three analysed case studies in
which different LEO constellations have been exploited.

However, some limitations hold. The developed RL–based algorithm does not
take care about the frequent rotation of the LCT due to the OGS–satellite and inter–
satellite dynamical switching, and no physical considerations on signal attenuation
and beam spreading due to atmospheric condition and relative distance have been
made.

Future works could focus on the problems defined above, proposing control
algorithms that take signal attenuation into consideration, introducing link budget
and beam spreading modelling, also with strategies aimed at saving energy on the
various LEO devices.

91

Chapter 5

PhiFireAI

The PhiFireAI project has been developed in collaboration with the Advanced
Technologies research group of Thales Alenia Space Italy as an answer to an ESA
challenge on the development of an AI algorithm for Earth Observation. The name
of the challenge was “AI4EO – OrbitalAI Challenge”.

Our solution has been selected as part of the top 5 projects, from a pool of
over 70 participants, which will proceed to the second phase of the challenge, called
Incubation Phase. In this phase ESA experts will be supporting the teams in order
to finetune and improve the algorithm with a chance to be selected as one of the two
winners of the competition. The top two teams will have their application deployed
on the Φsat–2 satellite.

The rest of the chapter is organized in the following way: in Section 5.1 an
overview of the Φsat–2 mission is presented along with a description of the on–board
processor that will manage all the AI applications; in Section 5.2 the solution will be
presented and its usefulness to the wider community will be explained; in Section 5.3
the proposed solution will be detailed; Section 5.4 will present the obtained results:
the model performances on the validation metrics and the testing results on the
Unibap iX5–100 processor will be shown and discussed; at last in Section 5.5 the
carried out research, the achieved results and its limitations will be summed up,
outlining possible future research directions.

5.1 Introduction

The European Space Agency has an exciting vision: creating a thriving ecosystem
of EO applications using edge computing in space. This groundbreaking challenge
addresses the current obstacles in the flow of Earth observation data and paves the
way for the next generation of applications. By employing advanced AI techniques
to process data directly onboard spacecraft, we can unlock the immense potential

92 5. PhiFireAI

of onboard intelligence for EO. This approach promises enhanced efficiency, agility,
autonomy, and reconfigurability in EO. On–board processing in satellites is revolu-
tionising space data by enabling faster and more efficient data transmission, reducing
the dependence on ground–based processing, and enabling real–time decision–making.
In EO, end users require valuable insights and optimal decisions with minimal delay.
That’s why significant research efforts have been dedicated to exploring onboard
intelligence for EO applications, such as early detection of natural disasters, vessel
incidents, and gas leaks. On–board intelligence empowers us to identify low–quality
EO data, such as cloud–covered satellite images or remote sensing images with
limited relevant information and discard them. This not only saves costs but also
minimizes the need for data transmission to Earth.

5.1.1 Φsat–2 Mission Overview

As an initiative to promote the development and implementation of innovative
technologies on–board Earth Observation missions, in 2018 ESA kicked off the first
Φsat–related activities with the aim to enhance the already ongoing FSSCAT project
with AI. Thanks to the success of the Φsat–1 experiment, it was decided to promote
the Φsat line to full missions and this time under the name of Φsat–2. The call
has been issued at the end of 2019 seeking new ideas and innovative approaches to
on–board EO data processing and AI exploitation and after the evaluation phase,
the project implementation started at the end of 2020. The mission is now due for
launch in Q4 2023 / Q1 2024.

The selected Φsat–2 concept will provide a combination of on–board processing
capabilities (including AI) and a medium to high resolution Visible to Near Infra–Red
(VIS/NIR) multispectral instrument able to acquire 8 bands (7 + Panchromatic).
These resources will be made available to a series of dedicated applications (hereafter
called App) that will run on–board the spacecraft that have been partially pre–
selected during the initial phases of the mission design (4 out of 6 to be tested in the
operative phase). The remaining 2 Apps will be selected via a global competition
open to the AI and EO communities.

The Φsat–2 spacecraft is composed of:

• The payload chain, consisting of:

– Multiscape 100 Optical Imager supplied by Simera Innovate GmbH (CH),
that acquires images of the tasked area, performs radiometric correction
and first order, open–loop band co–alignment of the acquired images. It
offers 4.75m resolution, 19.4km swath width in 7 multispectral bands
(plus a panchromatic band) at the reference altitude of 500km;

5.1 Introduction 93

– Primary On–Board Computer (OBC), that combines functionalities of
the payload and platform computer. As part of the payload chain, the
primary on–board computer will host the SDK (so called NanoSat MO
Framework) with AI Apps;

– Secondary OBC, that is interfaces with the primary on–board computer
and runs the image pre–processing algorithms;

– CogniSat AI processor supplied by Ubotica Technologies Ltd (IE), that
hosts AI model and performs inference.

• Spacecraft platform responsible for providing all necessary services: host and
command the payload as required by the Mission Operations and the Payload
Operations Centres and download the payload and housekeeping data to the
ground stations.

According to the baseline launch service and to ensure the required Sun illumi-
nation conditions, the parameters of the reference orbit used for the Φsat–2 design
purposes are reported in Table 5.1.

Launch Date Q4 2023/Q1 2024
Baseline Orbit Altitude 500 km

LTDN 11:00 PM
Inclination 97.404 deg (SSO)
Eccentricity 0

RAAN -111.75 deg
Table 5.1. Φsat–2 Orbital Parameters.

The spacecraft is a 6U CubeSat based on the standard Open Cosmos OpenSat
6U platform. Φsat–2 spacecraft in deployed and stowed configurations are shown in
Figures 5.1 and 5.2, respectively.

Its reference frame is defined with respect to the orbit:

• +X: velocity vector;

• +Y: Orbital Angular Momentum;

• +Z: Zenith.

The Φsat–2 spacecraft is designed for a 14–month lifetime from launch with
potential extension up to 2 more years. Figure 5.3 shows the nominal top–level
timeline of the mission, and Table 5.2 Summary of Mission PhasesTable 4 provides
a description of the activities undertaken during each phase.

94 5. PhiFireAI

Figure 5.1. Φsat–2 deployed configuration.

Figure 5.2. Φsat–2 stowed configuration.

~2
weeks 1 month 3 months

LE
OP

Plat
for

m

Com
miss

ion
ing

Pha
se Pay

loa
d

Cali
bra

tio
n

Pha
se

2-6 months

AI A
pp

s

fin
e t

un
ing

4.5-8.5 months

AI A
pp

s

Nom
ina

l

Ope
rat

ion
s

3-8 months

Pote
nti

al

Exte
ns

ion
 of

Ope
rat

ion
al

Pha
se

1 week

Dec
om

misio
nin

g

Pha
se

Routine Phase

Figure 5.3. Φsat–2 Mission Timeline.

5.1 Introduction 95

Phase Duration Activities

Launch and Early Oper-
ation Phase (LEOP)

2 weeks
• Launch and separation;
• First acquisition signal;
• Satellite detumbled and sta-

bilised attitude achieved;
• Orbital knowledge and de-

termination;
• Initial health checks of the

platform.

Platform Commissioning
Phase

1 month
• Platform & Payload commis-

sioning.

Payload Calibration
Phase

3 months
• Payload Calibration;
• On–board L1B image pro-

cessing chain commission-
ing.

Routine Phase 10.5 months
• Fine tuning of AI apps;
• Uplink of two additional AI

apps;
• Nominal spacecraft opera-

tions;
• Spacecraft maintenance.

Potential Extension of
the Operational Phase

3–8 months
• Depending on the spacecraft

orbital decay and spacecraft
health status nominal oper-
ations can be extended for
another 3–8 months.

Decommissioning Phase 1 week
• Acquisition of end–of–life at-

titude;
• Spacecraft decommission-

ing.

Table 5.2. Summary of Φsat–2 Mission Phases.

5.1.2 Φsat–2 Payload

MultiScape100 instrument from Simera Innovate GmbH (CH) is a push–broom
imager. The imager provides continuous line–scan imaging in 8 spectral bands in

96 5. PhiFireAI

the visible and near–infrared (VNIR) spectral range. A push–broom instrument
obtains the images by scanning along the ground track as the spacecraft is orbiting
the Earth (see Figure 5.4 below). The scan is done for each spectral band separately.

Figure 5.4. Φsat–2 Imager Ground Projection.

In Table 5.3 below information on each spectral band including its line number
on detector plane is provided.

Band

Centre
Wavelength

(nm)

FWHM
Bandwith

(nm)
HPP Cut–On

(nm)
HPP Cut–Off

(nm)
#0: PAN 625 250 500.0 750.0
#1: MS 1 490 65 457.5 522.5
#2: MS 2 560 35 542.5 577.5
#3: MS 3 665 30 650.0 680.0
#4: MS 4 705 15 697.5 712.5
#5: MS 5 740 15 732.5 747.5
#6: MS 6 783 20 773.0 793.0
#7: MS 7 842 115 784.5 899.5

Table 5.3. Φsat–2 spectral bands.

The ground sampling distance (GSD) for each band from 500 km orbit is 4.75 m.
The modulation transfer function (MTF) for separate spectral bands is expected to
be between 3.9% and 7.2% at Nyquist Frequency. The SNR is expected to be between

5.1 Introduction 97

54 and 129 for the multispectral bands. The expected SNR for the PAN band is
256. The images of each spectral band are retrieved by the on–board computer
and stored in its internal memory. The images are then radiometrically corrected,
the spectral bands are co–registered, and pixels are Geo–located. The data is then
ready to be used by AI applications. By default, the roll angle will be set to 0. The
spacecraft is capable of capturing images with at least 15 degrees roll angle while
keeping pitch at 0 degrees. No pitch manoeuvres are planned to be used during
imaging. Unless specified by the end user, the spacecraft will only capture images
when the Solar Zenith Angle is between 0 and 90 degrees, i.e., when the Earth’s
surface is illuminated by the sun.

5.1.3 CogniSat AI processor

The Ubotica CogniSAT–XE1TM CubeSat Board (Figure 5.5) brings the power
of Edge CV and AI compute acceleration to a PC/104 form–factor for SmallSat
and CubeSat missions. It is built around the Intel® MovidiusTM MyriadTM 2
CV and AI COTS VPU whose 12 vector cores provide high–performance parallel
and hardware accelerated compute within a low power envelope. CogniSatTM
combines the power efficient compute of the Myriad 2 VPU with a wide range of
interfaces and peripherals, providing broad flexibility for integration into satellite
platforms. Either Gigabit Ethernet or USB2.0/3.0 can be used as the primary
control and data interface to the board, enabling data rates sufficient to handle many
CV and AI applications at near–streaming throughput. Common NN frameworks
(e.g., TensorFlow, PyTorch, Caffe) can be used for NN model development and
training, with the model subsequently imported into Intel’s OpenVINOTM toolkit
for targeting to the Myriad device. CogniSatTM leverages the broad range of pre–
qualified models and layers available within OpenVINOTM. Custom CV pipelines
can easily be deployed and executed on CogniSatTM using the CVAI ToolkitTM
software toolkit. The software supports application–specific CV and ISP pipelines
that utilise a combination of the power–efficient Myriad 2 streaming hardware blocks
and software filters implemented on the vector engines. Deployment to the hardware
platform involves the transfer of only a single configuration file, and runtime updates
enable the updating of pipelines without requiring application re–compile or system
reboot.

5.1.4 Nanosat MO Framework

The NanoSat MO Framework (NMF) is a software framework for CubeSats based
on CCSDS Mission Operations services. It facilitates not only the monitoring and
control of the nanosatellite software applications, but also the interaction with the

98 5. PhiFireAI

Figure 5.5. Ubotica’s CogniSatTM Platform.

nanosatellite platform. This is achieved by using the latest CCSDS standards for
monitoring and control, and by exposing services for common peripherals that are
available in nanosatellite platforms, such as, GPS, Camera, ADCS, and others.
Furthermore, it is capable of managing the software on–board by exposing a set of
services for software management. In simple terms, the NanoSat MO Framework
introduces the concept of apps in space that can be installed, and then simply started
and stopped from ground. Apps can retrieve data from the nanosatellite platform
through a set of well–defined Platform services. Additionally, the framework includes
CCSDS standardised services for monitoring and control of apps. An NMF App can
be easily developed, distributed, and deployed on a spacecraft. Just like Android and
iOS, ESA made a software framework for flight and ground software of CubeSats
which allows flight software to become Apps that run in space. The main objective
of the NanoSat MO Framework is to facilitate the development of software for small
satellites and to simplify its orchestration. For example, new software can be easily
deployed in a satellite just by starting and stopping Apps.

The core functionalities of the framework are:

• Monitoring and control of AI applications;

• Easy access to platform peripherals via services;

• Simple on–board software management: deploy and run AI applications;

• Updating AI applications and AI models;

• Deleting AI applications and AI models.

In the Φsat–2 Mission the NMF will provide the possibility to integrate models
developed by the AI experts, wrapping the AI models and enabling them to:

5.2 Solution and Contribution to the Community 99

• Deploy a model on the CogniSat AI processor;

• Retrieve image from the camera;

• Apply the model in prediction on the acquired image.

The NanoSat MO Framework allows the AI App developers to make their App
using well–defined interfaces and APIs that allow the App to reach the on–board
devices via a set of services. The framework by itself will also prevent conflict when
different Apps will compete to access a resource (e.g., imager) which in any case will
be scheduled via the Payload Orchestrator Center. NanoSat MO Framework and
AI applications will operate in a dedicated memory space allocated specifically for
them, which will not intersect with the rest of the software running on the OBC. In
case of NanoSat MO Framework and any of the AI apps malfunction, OBC flight
software will not be affected.

5.2 Solution and Contribution to the Community

The PhiFireAI solution aims to enhance the detection of wildfires using image–
based satellite data and to provide onboard early–warning information, suggesting
mitigation actions or targets that could be used to prevent the spread of the wildfire.
As Earth observation satellites could help firefighting efforts detect wildfires directly
from space, we would like to provide helpful information to intervene in case of
wildfire promptly, supplying intelligence for incident commanders, firefighters and
civil protection (see Figure 5.6).

Acquisition

Storage and
tiling On-board

inference

Safe
Fire Early

Warning

Water

Burnt

Figure 5.6. PhiFireAI solution scheme.

Due to the importance that detecting fire contributes to the ongoing study of
climate change and people’s safety, there have been several investments to obtain
fire maps worldwide. However, the most efficient models use disparate data sources,
such as image–capturing technology from satellites, aircraft, drones, artificial intelli-
gence and cloud computing, to predict how new fires will burn (based on drought
monitoring) and, therefore, prevent future mega–fires. These models are crucial for
prevention as the climate crisis worsens yearly. Therefore, this work aims not only

100 5. PhiFireAI

to ascertain the presence of wildfires but also to define their characteristics in terms
of dangerousness. Additionally, it seeks to apprise authorities of surrounding land
attributes and available water sources crucial for firefighting. The ultimate outcome
could involve seamless integration with other data sources, thereby enhancing the
quality of the end–user product.

The solution is able to tackle this problem by addressing a classification task
employing a model designed as a classifier, equipped with four outputs to predict
the ultimate class for each individual tile (Safe–0, Fire–1, Burnt–2, Water–3).
To explore the influence of various input band combinations on performance, we
maintain the same model structure while altering the input layer dimensions. After
executing inferences across all tiles comprising a complete acquisition, we generate a
comprehensive overview of the entire image.

The innovative aspect lies in the capacity of run the entire algorithm on a space
qualified hardware and the ability to give in real time important information to the
final user. Our solution can be used to add information to current fire monitoring
databases but also, autonomously, is able to detect an hazard directly onboard the
satellite. In the future, the count of final classes could also be expanded to provide
a greater volume of real–time information.

5.3 Methods

In this section a detailed description of the proposed solution is presented. A
comprehensive overview of the dataset preparation process, offering detailed insights
into the sequential steps involved is given. Following this, the neural network
architecture is presented, accompanied by a thorough discussion of the training and
validation strategies, with a specific emphasis on the adopted validation metrics.

All the solution–related code has been written in a Python environment. For the
training script, TensorFlow 1.15.5 library has been used due to a hard constraint
imposed by ESA for the OrbitalAI challenge.

5.3.1 Data Preparation

For the training, validation and testing of this work, a dataset comprising acquisitions
of several of Europe’s largest fires over the past five years was generated ad–hoc.

The public database of historical wildfires of European Forest Fire Information
System (EFFIS) was used to derive information on the Geo–reference shape, ap-
proximate date and size of the largest fires in Europe reported between 2018 and
2022. [150–154].

At first, Sentinel–2 L1C images were automatically downloaded using the Sentinel

5.3 Methods 101

Hub API using the centroid of the fire shape and taking all acquisitions 7 days before
and 7 days after the approximate date in the EFFIS database. A simulator, provided
in the frame of OrbitalAI challenge, was used to derive Φsat–2 bands starting from
Sentinel–2 L1C images. The simulated image, of dimension 4096 × 4096 × 8 was
divided into 256 × 256 × 8–pixel tiles and a simple graphical user interface was
implemented to simplify the task of manually labelling each tile into its respective
class: Safe, Fire, Burnt and Water. Figure 5.7 shows an example of the labelled
images.

0 50 100 150 200 250

0

50

100

150

200

250

(a) Input image for class 0–Safe.

0 50 100 150 200 250

0

50

100

150

200

250

(b) Input image for class 1–Fire.

0 50 100 150 200 250

0

50

100

150

200

250

(c) Input image for class 2–Burnt.

0 50 100 150 200 250

0

50

100

150

200

250

(d) Input image for class 3–Water.

Figure 5.7. Example of input images with the corresponding labels.

The dataset was then divided into train and validation with an 80/20 ratio,
and two new acquisitions were generated separately for the test set. The obtained
training set was unbalanced: the number of images related to the Safe class was way
higher than the other classes. In order to solve this problem, a data augmentation
procedure has been implemented, balancing the number of samples of the other
classes. In particular, horizontal and vertical flipping, along with a ninety–degree
rotation, were applied to augment the training set. Upon completion of the dataset
preparation, our training set comprised a total of more than twenty–five thousand

102 5. PhiFireAI

tiles, while the validation set consisted of over three thousand tiles. These statistics
highlight the comprehensiveness of our dataset, laying the foundation for robust
wildfire classification model training.

5.3.2 Neural Network Architecture

The main scope of the solution is to detect and classify correctly the wildfires given
a full image acquisition by the Φsat–2 satellite. Moreover, this process has to be
performed on–board the satellite, introducing a constraint on the size of the neural
network weights based on the satellite on–board storage capabilities.

To approach the classification problem, a classifier neural network architecture
has been developed from scratch. In order to give the relevant authorities (mainly
firefighters) more information on how to properly intervene in the presence of
wildfires, additional features have been introduced in the form of classification labels.
In particular, the characterization of burnt, safe and water areas has been considered
a useful input for the relevant authorities jointly with the detected wildfire areas.
This leads to a multi–class classification problem with four classes.

Table 5.4. Neural Network Specifications

Input Operator #out NL
2562 × C Conv2d 16 ReLU
2562 × 16 Conv2d 16 ReLU
2562 × 16 MaxPool 2× 2 - -
1282 × 32 Conv2d 32 ReLU
1282 × 32 Conv2d 32 ReLU
1282 × 32 MaxPool 2× 2 - -
642 × 64 Conv2d 64 ReLU
642 × 64 Conv2d 64 ReLU
642 × 64 MaxPool 2× 2 - -
322 × 128 Conv2d 128 ReLU
322 × 128 Conv2d 128 ReLU
322 × 128 MaxPool 2× 2 - -
162 × 128 Dropout - -
162 × 128 Flatten 32768 -

32768 Dense 784 ReLU
784 Dense 128 ReLU
128 Dense 64 ReLU
64 Dense 4 ReLU

At the same time, to cope with the on–board constraints, the neural network
architecture has been kept as simple as possible. It is composed by a set of eight
convolutional layers followed by a set of four fully connected layers, also called dense
layers. In addition, max pooling layers [155] are added every two convolutional

5.3 Methods 103

layers and a flattening layer is used to transition from the convolutional to the dense
layers. Dropout strategy has been used in order to avoid overfitting [156]. Softmax
has been chosen as the activation function [157]. The neural network architecture
specifications are shown in Table 5.4.

In the table C represents the number of channels of the input image. The size of
the model is 310 Mb.

5.3.3 Training and Validation Strategy

In order to find the best candidate models, several combinations of input chan-
nels/bands have been adopted. Since the only variable was the number of channels
of the input image, only the number of channels of the first layer of the network has
been changed over several training procedures. The structure of the model as well
as the hyperparameters have all been mantained. The training hyperparameters
used are reported in Table 5.5.

Hyperparameter Description
Train batch size 128

Validation batch size 32
Optimizer adam

Loss Function SparseCategoricalCrossEntropy
Epochs 40

Early Stopping Yes. Patience = 5
Table 5.5. Training Hyperparameters.

The validation of the model is a two–step process. The first validation has been
performed by cross–validation after every training epoch. The batch size for the
validation step is reported in Table 5.5 and the metric for this step was simply the
accuracy curve.

After training, another validation step has been performed on the models. In this
case several metrics have been used. Below a list of them with a brief description:

• Confusion Matrix : the confusion matrix provides a clear and detailed summary
of the model’s predictions and their accuracy by comparing them to the actual
ground truth. It consists of four essential components: True Positives (TP),
True Negatives (TN), False Positives (FP) and False Negatives (FN);

• Precision: precision is the number of true positives divided by the number of
total positive predictions. It is referred to the proportion of correct predictions
among all predictions for a particular class;

104 5. PhiFireAI

• Recall: true positive divided by the true positive and false negative. Recall
measures the model’s ability to predict the positives. It is referred to the
proportion of examples of a specific class that have been predicted by the
model as belonging to that class;

• F1–score: harmonic mean of precision and recall;

• Support: the number of samples of the true response that lie in that class;

• ROC and AUC : ROC is a probability curve and AUC represents the degree or
measure of separability. It tells how well the model is classifying each class.
Higher the AUC, the better the model is at predicting 0 classes as 0 and 1
classes as 1. The ROC curve is plotted with True Positive Rate (TPR) against
the False Positive Rate (FPR) where TPR is on the y–axis and FPR is on
the x–axis. In the case of multiclass classification, a notion of TPR or FPR
is obtained only after binarizing the output and exploiting the One–vs–Rest
scheme, which compares each class against all the others (assumed as one).

A comprehensive discussion on the obtained results is presented in the next
section.

5.4 Results and Discussion

In this section the training and validation results are detailed and discussed along
with the further steps adopted in order to choose the final model. In addition the
inference pipeline used to test the model is presented along with its performances
on the Unibap iX5-100 space–qualified processor.

5.4.1 Training and Validation Results

After multiple trainings, three combinations of bands (see Table 5.3 for the list of
spectral bands) resulted in having the best performances:

• The combination of bands B1, B2 and B3;

• The combination of bands B1, B2, B3 and B0;

• The combination of bands B3, B2, B1.

For simplicity they will be named model–1, model–2 and model–3 from now on,
respectively. This result is further confirmed during the post–training validation
phase. In Tables 5.6–5.8 the performance reports of the three models are reported.
It can be seen how all the performances are above 90% considering the single classes
and all the classes together (average values).

5.4 Results and Discussion 105

precision recall f1–score support
class 0 0.98 0.98 0.98 2291
class 1 0.93 0.97 0.95 397
class 2 0.94 0.93 0.94 421
class 3 0.97 0.97 0.97 217

accuracy 0.97 3326
macro avg 0.96 0.96 0.96 3326

weighted avg 0.97 0.97 0.97 3326
Table 5.6. Metrics classification report for model–1.

precision recall f1–score support
class 0 0.99 0.98 0.98 2291
class 1 0.92 0.96 0.94 397
class 2 0.93 0.96 0.95 421
class 3 1.00 0.98 0.99 217

accuracy 0.97 3326
macro avg 0.96 0.97 0.97 3326

weighted avg 0.98 0.97 0.97 3326
Table 5.7. Metrics classification report for model–2.

precision recall f1–score support
class 0 0.98 0.98 0.98 2291
class 1 0.96 0.94 0.95 397
class 2 0.91 0.96 0.93 421
class 3 0.96 0.99 0.97 217

accuracy 0.97 3326
macro avg 0.95 0.97 0.96 3326

weighted avg 0.97 0.97 0.97 3326
Table 5.8. Metrics classification report for model–3.

In Figures 5.8–5.10 are shown the plots of the ROC curves and the associated
AUC values in the One–vs–Rest scheme. It can be noticed how the value of AUC is
always greater than 95% for all classes. This means that the models have at least a
95% probability of classifying correctly an input image.

106 5. PhiFireAI

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

micro-average ROC curve (area = 0.98)
macro-average ROC curve (area = 0.97)
ROC curve of class 0 (area = 0.97)
ROC curve of class 1 (area = 0.98)
ROC curve of class 2 (area = 0.96)
ROC curve of class 3 (area = 0.98)

Figure 5.8. ROC curve for model–1 in One–vs–Rest scheme.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
iti
ve
 R
at
e

micro-average ROC curve (area = 0.98)
macro-average ROC curve (area = 0.98)
ROC curve of class 0 (area = 0.98)
ROC curve of class 1 (area = 0.98)
ROC curve of class 2 (area = 0.98)
ROC curve of class 3 (area = 0.99)

Figure 5.9. ROC curve for model–2 in One–vs–Rest scheme.

This validation analysis has shown that all the selected models are valid candidates
to be used for the classification task. In order to choose the best one among them,
a different criterion has been adopted. This criterion is linked to the analysis of
the confusion matrices of the models with respect to the Fire class. Of the four
parameters characterizing them, the ones which have been taken into consideration
are the FP and FN. In particular, the best model has been chosen by emphasizing a
low number of FN related to the Fire–1 class. Since the aim of this project was to be
as accurate as possible in the detection of wildfires, an high value of FN means that

5.4 Results and Discussion 107

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

micro-average ROC curve (area = 0.98)
macro-average ROC curve (area = 0.98)
ROC curve of class 0 (area = 0.97)
ROC curve of class 1 (area = 0.97)
ROC curve of class 2 (area = 0.97)
ROC curve of class 3 (area = 0.99)

Figure 5.10. ROC curve for model–3 in One–vs–Rest scheme.

the model has high probability of classifying a wildfire area as one of the other three
classes. So this parameter should be as low as possible. In Table 5.9 are reported
the values of FN and FP of the three models.

Model False Negatives False Positives
model–1 2.77% 7.43%
model–2 3.78% 7.73%
model–3 5.79% 4.10%

Table 5.9. False Negatives and False Positives values of the three models for the Fire class.

The values are expressed as percentage of the total number of Fire–1 class labels.
As it can be seen, the first model is the one which is considered the best based on
the previous assumption. With this choice we accepted the fact of having an higher
False Positives rate (w.r.t. to the third model for example).

The chosen model has been quantized in order to reduce the computational
load and it has been scaled to uint8 bit precision. The obtained model size is 24.4
Mb. This conversion may lead to a loss of performances. In order to check if this
is the case, the quantized model has been subject to another round of validation
by using the same metrics as before. In Table 5.10 are shown the performance
of the quantized model over the same validation dataset. It can be seen how the
performances are almost the same as the original model, which means that we have
almost no loss of performances.

This means that, with a reduction of more than 90% of computational power, the

108 5. PhiFireAI

precision recall f1–score support
class 0 0.99 0.98 0.98 2291
class 1 0.91 0.97 0.94 397
class 2 0.94 0.94 0.94 421
class 3 0.98 0.95 0.97 217

accuracy 0.97 3326
macro avg 0.95 0.96 0.96 3326

weighted avg 0.97 0.97 0.97 3326
Table 5.10. Metrics classification report for model–1 after quantization and scaling.

quantized model offers very similar performances of the original one. Considering
the processing capabilities of modern EO satellites, this solution can be effectively
deployed and executed on–board in parallel to other applications (AI–based or not)
without impacting the overall system in terms of computational resources.

5.4.2 Inference Pipeline

In order to test the chosen model performance, an inference pipeline has been
developed. The model takes as input 256× 256× 3 GeoTIFF images and outputs
a classification report in the form of a pie graph and a post–processed image. In
Figure 5.11 is shown the pipeline of the algorithm.

Bands
Selection Inference Output Label Final Report

Generation

Using Tiffile

No preprocessing
applied

Inference run
using OpenVINO
framework

4 possible labels:
SAFE, FIRE,
BURNT, WATER

Full labeled
image
acquisition
Statistical pie
graph

Load Tile

Bands selection
in accordance to
the selected
model

Figure 5.11. PhiFireAI Inference Pipeline.

Below the main processing steps are detailed:

• the first step is to load the input tile. Since the tile has a tiff extension, the
Python library tiffile is used to read the image correctly. The image has
dimension 256× 256× 8;

• the next step is to select the correct sequence of bands in order to be consistent
with the trained model. In this case three bands are selected: B1, B2 and B3;

• the processed image, which is now of dimension 256 × 256 × 3, is passed as
input to the model in order to perform the inference. The model returns as

5.4 Results and Discussion 109

output the predicted label. There are four possible output values: 0 for Safe, 1
for Fire, 2 for Burnt and 3 for Water;

• after the inference is performed, all the predicted labels are used to obtain a
full labeled acquisition image as the one in Fig. 5.12b and a pie graph. The
latter shows the percentage of each class in the image. These two elements
form the report which will be downlinked to the intervention centers.

This pipeline is used both for the test set validation and for the test over the
space–qualified hardware.

5.4.3 Test Set Validation

The test set is composed of 512 tiles, which correspond to two full acquisitions. The
test set has been chosen in such a way to test the capability of the trained model to
correctly detect and classify wildfire areas and, more in general, all the other class
features. To do this, two images which include all the possible detectable areas (safe,
fire, burnt and water areas) have been considered. In the test set definition phase,
particular attention has been put in looking for images with the presence of large
active wildfires.

0 500 1000 1500 2000 2500 3000 3500 4000

0

500

1000

1500

2000

2500

3000

3500

4000

(a) Original Test Image.

0 500 1000 1500 2000 2500 3000 3500 4000

0

500

1000

1500

2000

2500

3000

3500

4000

(b) Predicted Test Image.

Figure 5.12. Inference Result for the first test image. In green is shown the safe area; in
red the wildfire area is represented; in orange the burnt area is highlighted; in blue is
shown the water area.

In Figures 5.12 and 5.13 are shown the results on the two test images. From
these plots it can be seen how the model is able to correctly identify the wildfire area
in both cases. In the second test image a large burnt area is also detected correctly.
Water areas have also been detected correctly. Note also the presence of a some

110 5. PhiFireAI

0 500 1000 1500 2000 2500 3000 3500 4000

0

500

1000

1500

2000

2500

3000

3500

4000

(a) Original Test Image.

0 500 1000 1500 2000 2500 3000 3500 4000

0

500

1000

1500

2000

2500

3000

3500

4000

(b) Predicted Test Image.

Figure 5.13. Inference result for the second test image. In green is shown the safe area; in
red the wildfire area is represented; in orange the burnt area is highlighted; in blue is
shown the water area.

outliers, i.e. wrongly classified tiles, in both cases. This is expected since, from the
confusion matrix analysis, the percentage of FP and FN was not zero. However, the
overall analysis of the full predicted image is able to give a clear overview of the
situation in those areas. This would not be possible with an analysis performed tile
by tile.

Along these data, a classification report is provided in order to give more
information on the area occupied by the wildfire. It shows the percentage of each
class with respect to the full acquisition image dimension. This report can be used
to have a more clear idea of the extension of the wildfire areas.

5.4.4 Space–Qualified Test

The aim of this solution was to develop an algorithm to perform classification
of wildfires areas on–board a satellite. This implies the model has to satisfy the
constraints imposed by the satellite processing characteristics. In order to have a
preliminary idea of the on–board performance of the solution, the inference pipeline
has been executed on a space–qualified board, namely the Unibap’s ix5–100 board.

This device’s specifications have already been described in Section 3.3.2. This
on–board processor is equipped, along with a CPU, a GPU and an FPGA, with a
VPU which is exclusively dedicated to execute AI applications. The latter is based
on Intel Movidius Myriad X AI accelerator.

To be compatible with the Myriad device, the model must be converted into a
specific format, namely an xml file showing all the layers characteristics and a bin

5.4 Results and Discussion 111

file which includes the model weights. This conversion has to be performed by using
the Intel OpenVINO framework. In particular, the challenge’s rules imposed the
use of OpenVINO 2020.3 version, which was the one compatible with the Φsat–2
on–board processor.

The main steps for the conversion are detailed below:

1. model conversion from TensorFlow to ONNX format;

2. model optimization by scaling the model weights to FP16;

3. model conversion to IR format;

4. final xml and bin files generation.

The performance parameters considered in this test are:

• latency, which represents the time it takes to perform an inference request;

• throughput, which represents the number of frames processed per second. In
this case each frame is represented by a single tile.

In the executed test, the processing of the images has been performed in a
sequential way, which means that only one tile at a time is handled by the algorithm.

In Table 5.11 are shown the results of the test on the iX5–100 board. The
test has been performed on the three candidate models. The inference time in the
table is computed as the average time over all the processed tiles. Looking at the
throughput it can be said that the time it takes to process a full acquisition is around
10 seconds. In the calculation of this parameter, the labelling of the tiles has also
been taken into account along with other operations. In the real case, these could
be handled by sending the data on Earth (i.e. all the processed tiles along with their
predicted labels) in the case of wildfires detection (e.g. when multiple Fire–1 labels
are predicted), performing the report generation offline. This will allow to further
increase the throughput and, as consequence, the performances of the on–board
algorithm.

model input size
avg inference

time (seconds) throughput (FPS)
model–1 256× 256× 3 0.0260 24.4
model–2 256× 256× 4 0.0268 23.6
model–3 256× 256× 3 0.0260 24.5
Table 5.11. Average inference time and throughput of the three models.

112 5. PhiFireAI

5.5 Conclusions and Future Works

The proposed algorithm is able to detect correctly the presence of wildfires in a
particular region and can be very useful to alert the authorities allowing them to
intervene in time. It has also been tested over a space–qualified hardware, in order
to analyze its performances for satellite on–board applications.

This idea can be further enhanced in terms of accuracy and generalization by
increasing the number of data over which to train the model. An higher number
of data allows to perform a more detailed analysis of the acquisition: indeed, a
larger dataset may allow the model to be enriched by adding new classes, taking
into account several environmental characteristics. Some useful features may be
detecting the presence of towns or agricultural areas near the wildfires in order to
notify the citizens of the danger and evacuate them in time. Another useful addition
could be the classification of forests or other green areas. This allows the authorities
to perform preventive measures to avoid possible danger to the environment.

The obtained results have been obtained by performing inferences in a sequential
pattern. The OpenVINO framework offers the possibility of parallelizing the inference
requests, feature which could be exploited in further studies to improve the on–board
processing speed.

113

Chapter 6

Conclusions

In this work several space–based applications have been analyzed. The main focus
was on on–board satellite navigation algorithms, with two different approaches which
have been proposed.

The first one related to Earth navigation in which the ODTS estimation algorithm
is aided by multiple GNSS measurements which offer great precision in position and
velocity determination. A detailed analysis of satellite visibility was also performed
in order to develop the EKF. The visibility algorithm has also been tested with real
telemetry data and its outputs resulted very similar to the real data. The results
have shown how the use of multiple GNSS measurements allows to obtain better
performances also in the case of multiple error contributions in the measurement
equations.

In the second approach, a first step over a Moon–based satellite on–board
TRN system has been performed. Different from the previous case, non–standard
measurements are needed due to the lack of data from Earth. AI comes in as a
very good solution to this problem in the form of crater detection and matching
algorithms. A benchmark of several NN architectures has been performed over
a space–qualified hardware to check which solution would be able to satisfy on–
board real–time constraints. The tests have been performed over a space–qualified
processor. The results have shown that object detection architectures perform much
better than image segmentation ones both in terms of latency and throughput.

Two additional satellite–based solutions have been studied and presented related
to Free–space Satellite Optical communication and Earth Observation respectively.
In the first one a mixed AI and RL approach has been proposed in order to generate
an optimal data–path control law for point–to–point data exchange between two
areas of Earth very far from each other. Its performances resulted to be the best
among other standard benchmark solutions.

The second solution has been developed as an answer to an ESA challenge. In

114 6. Conclusions

particular an AI algorithm for on–board wildfire detection in real–time by using
CNNs has been proposed. The data were obtained by using the Φsat–2 satellite
image simulator made available by ESA, starting from analyzing spatial and temporal
wildfires data from a public database. The proposed solution ended up being selected
as one of the top 5 applications and is now under a fine tuning process with the help
of ESA experts.

Future works will be focused on mitigating and hopefully solving the limitations
of all the proposed approaches.

115

Appendix

A Perturbation Models

A.1 Gravity Model

The total acceleration acting on the satellite due to the Earth’s gravity is given by:

aGRAV(X) = −µX
r3 + aGRAV-NS(X). (A.1)

This is simply the acceleration due to the spherically symmetric mass of the
Earth plus the non–spherical perturbation aGRAV-NS. µ is Earth’s gravitational
parameter. X =

(
X1 X2 X3

)T
is the position vector given in ECEF reference

frame and r = ∥X∥ is the position magnitude.
The total gravitational acceleration vector is calculated as the first partial

derivative of the potential function U w.r.t. X:

aGRAV(X) = ∂U

∂X . (A.2)

The Earth gravity potential U is written as a series of harmonics in order to
take into account the actual mass distribution of the Earth:

U = µ

r
+

∞∑
n=2

n∑
m=0

µ

r

(
R

r

)n

Pn,m(ϵ)[Cn,mcos(mλ) + Sn,msin(mλ)] (A.3)

where

• n is the degree of each term: 2 < n <∞;

• m is the order of each term: 0 < m < n;

• R is the Earth radius;

• Pn,m are the associated Legendre functions;

• ϵ = X3/r is the sine of latitude;

116 6. Conclusions

• Cn,m and Sn,m are the unnormalized cosine and sine gravity coefficients that
result from the mass distribution of the planet (hey depend on the chosen
model);

• λ is the longitude.

The sine of latitude ϵ and the longitude λ are given by:

ϵ = X3
r

(A.4)

tanλ = X2
X3

. (A.5)

The term µ

r
represents the spherical part of the potential: this would be Earth’s

gravitational potential if it was a perfect sphere. The C2,0 coefficient corresponds to
the J2 perturbation.

The Cn,mand Sn,m coefficients depend on the chosen model and are usually
published in normalized form (C̄n,m and S̄n,m). The unnormalized coefficients are
used because the derivation of the gravity acceleration is somewhat simpler. The
relationship between the normalized and the unnormalized form is given by:

Cn,m = Nn,mC̄n,m (A.6)

Sn,m = Nn,mS̄n,m (A.7)

where

Nn,m =
√

(n−m)!(2n+ 1)(2− σ0m)
(n+m)! , δ =

1 m = 0

0 m ̸= 0
. (A.8)

It is also important to point out that the coefficients Cn,m and Sn,m are given in
ECEF reference frame, so they need to be converted in ECI reference frame before
being used in the equation of motion for orbital propagation.

In the following, some definitions and simplifications will be given in order to
rewrite the Earth potential U in a more useful form. Defining ρ as:

ρ = X2
1 +X2

2 (A.9)

the trigonometric functions cm and sm are defined in the following way:

cm =
(
ρ

r

)m

cos(mλ) sm =
(
ρ

r

)m

sin(mλ). (A.10)

A Perturbation Models 117

The associated Legendre functions are given by:

Pn,m(ϵ) = (1− ϵ2)
m

2
(∂mPn

∂ϵm

)
=
(r2 −X2

3
r2

)m
2
(∂mPn

∂ϵm

)
= ρm

rm
Pm

n (A.11)

where Pm are the Legendre polynomials, ϵ = X3/r and Pm
n are knokn as the

unnormalized derived Legendre functions. The Earth gravitational potential can
now be rewritten as

U = µ

r
+

∞∑
n=2

n∑
m=0

µ

r

(
R

r

)n

Pm
n (Cn,mcm + Sn,msm). (A.12)

This form is especially useful since Pm
n , cm and sm can be calculated recursively.

EGM2008 Model

The above spherical harmonic representation of the Geopotential model can use one
of several different sets of coefficients Sn,m and Cn,m. These sets of coefficients are
matched to a given value of µ and R.

This model is complete to spherical harmonic degree and order 2159, contains
additional coefficients extending to degree 2190 and order 2159 and is referenced to
the WGS84 reference Ellipsoid. The data for the EGM2008 model were obtained
with altimetry, with terrestrial data and with satellite data. The values of R and µ

using the WGS84 ellipsoid are:

R = 6378136.3 [m] µ = 3.986004418e14 [m3/s2]. (A.13)

The EGM2008 model can be used up to order and degree 120. This choice has
been made because:

• In LEO, 120 is high enough to have precise estimation of the gravity ac-
celeration. The accuracy on gravity acceleration obtained with degree and
order 120 is significantly higher than the absolute value and accuracy of other
perturbation models (especially the drag model because of the uncertainties
on the atmosphere density);

• In higher orbits, like GEO, the gravity acceleration is smaller w.r.t. lower
orbits because of the dependence on 1/r2. As a consequence, the absolute
error made using less harmonics is lower on higher orbits;

• The use of unnormalized coefficients is limited to low degrees and orders:
because of the (n+m)! term at the denominator of (A.8), at a certain point
(around degree 150) the unnormalized coefficients become equal to zero for the

118 6. Conclusions

current computer precisions. A lower number simply cannot be represented by
the computer.

A.2 Magnetic Field Model

The Earth’s magnetic field crudely resembles that of a central dipole. On the Earth’s
surface the field varies from being horizontal and of magnitude about 30000 nT
near the equator to vertical and about 60000 nT near the poles; the root mean
square (rms) magnitude of the vector over the surface is about 45 000 nT. The
geomagnetic field also varies in time, on a time–scale of months and longer, in an as
yet unpredictable manner. This so–called secular variation (SV) has a complicated
spatial pattern, with a global rms magnitude of about 80 nT/year. Consequently,
any numerical model of the geomagnetic field has to have coefficients which vary
with time.

The total magnetic field vector in ECEF reference frame is calculated as the
first partial derivative of the potential function V w.r.t. the ECEF position X =(
X1 X2 X3

)T
:

B = −∂V
∂X . (A.14)

The potential V for the Earth magnetic field is written as a series of harmonics:

V = R
N∑

n=1

n∑
m=0

(
R

r

)n+1

Pm
n,SCHMIDT(cosθ)[gm

n cos(mλ) + hm
n sin(mλ)] (A.15)

where

• n is the degree of each term: 1 < n < N . The maximum degree N depends on
the chosen model;

• m is the order of each term: 0 < m < n;

• R is the Earth radius. It depends on the chosen model;

• Pm
n,SCHMIDT are the Schmidt normalized associated Legendre functions;

• θ is the geodetic colatitude;

• gm
n and hm

n are the spherical harmonics coefficients. They depend on the chosen
model;

• λ is the longitude.

The cosine of the colatitude cos θ is equal to the sine of the latitude ϵ

cosθ = X3
r

= ϵ. (A.16)

A Perturbation Models 119

The longitude λ is given by:

tanλ = X3
X2

. (A.17)

The Schmidt normalized associated Legendre functions Pm
n,SCHMIDT are related

to the associated Legendre functions Pn,m by:

Pm
n,SCHMIDT(ϵ) = Nn,mPn,m (A.18)

where:

Nn,m =
√

2(n−m)!
(n+m)! − δ0m δ =

1 m = 0

0 m ̸= 0
(A.19)

is the Schmidt normalization factor.
Defining:

Cn,m = Nn,mg
m
n (A.20)

Sn,m = Nn,mh
m
n (A.21)

the magnetic field potential V becomes:

V =
N∑

n=1

n∑
m=0

R2

r

(
R

r

)n

Pm
n (ϵ)[Cn,mcos(mλ) + Sn,msin(mλ)]. (A.22)

In the following, some definitions and simplifications will be given in order to
rewrite the Earth potential U in a more useful form [158]. Defining ρ as:

ρ = X2
1 +X2

2 . (A.23)

The trigonometric functions cm and sm are defined:

cm =
(
ρ

r

)m

cos(mλ) (A.24)

sm =
(
ρ

r

)m

sin(mλ). (A.25)

The associated Legendre functions are given by:

Pn,m(ϵ) = (1− ϵ2)
m

2
(∂mPn

∂ϵm

)
(A.26)

where Pm are the Legendre polynomials. Using (A.16) for the definition of ϵ, the

120 6. Conclusions

previous equation can be rewritten as:

Pn,m(ϵ) =
(r2 −X2

3
r2

)m
2
(∂mPn

∂ϵm

)
= ρm

rm
Pm

n (A.27)

where Pm
n are known as the unnormalized derived Legendre functions:

Pm
n = ∂mPn

∂ϵm
. (A.28)

Separating the n = 1 term from (A.25) and (A.27), the magnetic field potential
V can be rewritten as:

V = R3

r2

[
P 0

1C1,0+
(
C1,1

X1
r

+S1,1
X2
r

)
P 1

1
]
+

N∑
n=2

n∑
m=0

R2

r

(
R

r

)n

Pm
n (Cn,mcm+Sn,msm).

(A.29)
This form is especially useful since Pm

n , cm and sm can be calculated recursively.

IGRF Model

The International Geomagnetic Reference Field (IGRF) model is released by the
International Association of Geomagnetism and Aeronomy (IAGA). The model is
updated at 5 years intervals. The IGRF is an attempt by IAGA to provide an
easily–usable model acceptable to a variety of users. It is meant to give a reasonable
approximation, near and above the Earth’s surface, to that part of the Earth’s
magnetic field which has its origin inside the surface. At any one epoch, the IGRF
specifies the numerical coefficients of a truncated spherical harmonic series: for
dates until 2000 the truncation is at N=10, with 120 coefficients, but from 2000 the
truncation is at N=13, with 195 coefficients. Such a model is specified every 5 years,
for epochs 1900.0, 1905.0 etc. For dates between the model epochs, coefficient values
are given by linear interpolation.

WMM Model

The World Magnetic Model (WMM) is the standard model used by the U.S. De-
partment of Defense, the U.K. Ministry of Defence, the North Atlantic Treaty
Organization (NATO) and the International Hydrographic Organization (IHO), for
navigation, attitude and heading referencing systems using the geomagnetic field. It
is also used widely in civilian navigation and heading systems. The model is produced
at 5–year intervals, with the current model (as of 2020) expiring on December 31,
2024. The WMM consists of a degree and order 12 spherical–harmonic main (i.e.,
core–generated) field model comprised of 168 spherical–harmonic Gauss coefficients
and degree and order 12 spherical–harmonic Secular–Variation (SV) (core–generated,

A Perturbation Models 121

slow temporal variation) field model. Provided that suitable satellite magnetic
observations are available, the prediction of the WMM is highly accurate on its
release date and then subsequently deteriorates towards the end of the 5–year epoch,
when it has to be updated with revised values of the model coefficients.

The value for the reference Earth radius R for both models is R = 6372.2 km.
The WMM and the IGRF are estimated from the most recent data and are of

comparable quality. The differences between IGRF and WMM are within expected
model inaccuracy. The WMM is a predictive–only model and is valid for the current
five–year time span. The IGRF, on the other hand, is also retrospectively updated.

A.3 Third Boby Model

According to Newton’s law of gravity, the acceleration of a satellite by a point mass
M is given by:

aM→SC = GM
d− r
∥d− r∥3 (A.30)

where r and d are the respectively geocentric coordinates of the satellite and of
M , and G is the gravitational constant.

Some care is required, however, before this expression can be used for describing
the satellite’s motion with respect to the center of the Earth. The value of aM→SC

in the equation refers to an inertial or Newtonian coordinate system in which the
Earth is not at rest, but is itself subject to the following acceleration due to M :

aM→EARTH = d
∥d∥3 . (A.31)

Both these values have to be subtracted to obtain the third body acceleration [12]:

aTB = r̈ = GM

(
d− r
∥d− r∥3 −

d
∥d∥3

)
. (A.32)

A.4 Atmospheric Drag Model

The acceleration of the satellite aDRAG due to atmospheric drag expressed in ECI
reference frame is modeled using the following equation:

aDRAG = −1
2ρCd

A

m
VrVr (A.33)

where

• Cd is the drag coefficient which is expected to have a value in the range of
about 2 to 3 with 2 being a typical reference value for a spherical spacecraft;

122 6. Conclusions

• ρ is the atmospheric density whose expression depends on the chosen model;

• A is the SC equivalent drag surface;

• m is the SC mass;

• Vr is the velocity of the spacecraft relative to Earth’s atmosphere and Vr is
its norm.

Vr is computed in the ECI frame under the assumption that the atmosphere
rotates with the Earth. It is given by the difference between the spacecraft velocity
V EL_ECI and the atmosphere velocity W_ECI × POS_ECI:

Vr = V EL_ECI −W_ECI × POS_ECI (A.34)

where POS_ECI is the SC position in ECI reference frame and W_ECI is the
Earth angular velocity vector expressed in ECI reference frame.

For the density ρ several models are available. It usually is function of the ECEF
position of the spacecraft, the date and the Sun position. The most used in literature
is the Modified Harris–Priester model.

Modified Harris–Priester Model

The atmospheric density ρ is calculated using an analytic approximation to the
Harris–Priester atmospheric model, as described in [12]. The Harris–Priester model
is based on the properties of the upper atmosphere as determined from the solution
of the heat conduction equation under quasi–hydrostatic conditions. A modified
version of the Harris–Priester model is used: this modification attempts to account
for the diurnal bulge by including a cosine variation between a maximum density
profile at the apex of the diurnal bulge and a minimum profile at the antapex of
the diurnal bulge. As the atmospheric heating due to the solar radiation leads to
a gradual increase of the atmospheric density, the apex of this bulge is delayed by
approximately 2 hours, equivalent to a location 30 deg to the east of the subsolar
point.

In this model, the density is function of the altitude h above the reference ellipsoid
WGS84 and the Sun coordinates which are needed to calculate the diurnal bulge
direction uB_ECEF . The altitude h depends on the ECEF position POS_ECEF
of the spacecraft and is given in [159]:

h = r − a(1− f)√
1− f(2− f)(1− s2)

(A.35)

where:

A Perturbation Models 123

• r is the norm of the vector POS_ECEF of the SC;

• a is the reference radius of the WGS84 Ellipsoid;

• f is the flattening of the WGS84 Ellipsoid;

• s is the z–coordinate of the normalized POS_ECEF , so that
√

1− s2 is the
cosine of the declination of the satellite.

The antapex and apex density ρmin(h) and ρmax(h) at the altitude h are computed
through the exponential interpolation between tabulated minimum and maximum
density values ρmin(hi) and ρmax(hi). The Harris–Priester model gives a table of
50 altitudes hi between 100 km and 1000 km with the values of the maximum and
minimum densities at those altitudes. For the altitude hi ≤ h ≤ hi+1 the exponential
interpolation is given by:

ρmin(h) = ρmin(hi) ∗ exp
(hi − h
Hm

)
(A.36)

ρmax(h) = ρmax(hi) ∗ exp
(hi − h
HM

)
(A.37)

with:

Hm(h) = hi − hi+1
ln[ρmin(hi+1)/ρmin(hi)]

(A.38)

HM (h) = hi − hi+1
ln[ρmax(hi+1)/ρmax(hi)]

. (A.39)

The direction of the diurnal bulge uB_ECEF is obtained from the direction
of the Sun in ECEF frame SUN_DIR = SUN_ECEF/norm(SUN_ECEF) as
follows:

uB_ECEF (1) = cos(δ)cos(α+ λ) = SUN_DIR(1)cos(λ)− SUN_DIR(2)sin(λ)
(A.40)

uB_ECEF (2) = cos(δ)sin(α+ λ) = SUN_DIR(1)sin(λ)− SUN_DIR(2)cos(λ)
(A.41)

uB_ECEF (3) = sin(δ) = SUN_DIR(3) (A.42)

where α and δ are respectively the right ascension and the declination of the
Sun in ECEF reference frame and λ is the lag angle in longitude which is equal to
30 deg.

124 6. Conclusions

Finally the density ρ is given by:

ρ = ρmin + (ρmax − ρmin)
[1
2 + 1

2uB_ECEF
(POS_ECEF

r

)]n
2 (A.43)

where n is the drag precision parameter which has a numerical value of 2 for low
inclination orbits and 6 for polar orbits.

A.5 Solar Radiation Pressure Model

A satellite that is exposed to solar radiation experiences a small force that arises
from the absorption or reflection of photons. The acceleration due to the solar
radiation depends on the satellite’s mass and surface area. The following description
of the solar radiation pressure is based on [12].

The size of the solar radiation pressure is determined by the solar flux:

Φ = ∆E
A∆t (A.44)

where ∆E is the energy that passes through an area A in the time interval ∆t.
A single photon of energy Eν carries an impulse pν :

pν = Eν

c
(A.45)

where c is the speed of light. Accordingly, the total impulse of an absorbing
body that is illuminated by the Sun changes by ∆p during the time ∆t:

∆p = ∆E
c

= Φ
c
A∆t. (A.46)

Assuming that the satellite’s surface A absorbs all photons and is perpendicular
to the incoming radiation, the force experienced by the satellite is given by:

F = ∆p
∆t = Φ

c
A = PA. (A.47)

At a distance of one Astronomical Unit from the Sun the solar flux is:

Φ ≈ 1367 [Wm−2]. (A.48)

The reference solar radiation pressure PRef at one Astronomical Unit from the
Sun is given by:

PRef = Φ
A
≈ 4.56 · 10−6 [Nm−2] (A.49)

The general case of a satellite surface with an arbitrary orientation is illustrated

A Perturbation Models 125

Figure A.1. Force due to solar radiation pressure for absorbing (ϵ = 0) and reflecting
(ϵ = 1) surface elements.

in Figure A.1.
In contrast to specular reflection, the diffuse reflection of light is neglected in

the sequel. The normal unit vector n gives the orientation of the surface A. It is
inclined at an angle θ to the unit vector e which points into the direction of the Sun.

For an absorbing surface, the force Fabs is directed away from the Sun and is
equal to:

Fabs = −PRef cos θAe (A.50)

where cos θA is the cross–section of the bundle of light that illuminates A.
For a reflecting surface, the force is not, in general, directed away from the Sun,

since no impulse is transferred in the direction parallel to the surface. Due to the
reflected light rays, the impulse transferred in the direction of n is twice as large
w.r.t. the case of pure absorption:

Frefl = −2PRef cos θA cos θn. (A.51)

These two equations can be combined for a body that reflects a fraction ϵ of the
incoming radiation ∆E, while it absorbs the remaining energy (1− ϵ)∆E:

F = −PRef cos θA[(1− ϵ)e + 2ϵ cos θn]. (A.52)

For typical materials used in the construction of satellites, the reflectivity ϵ lies in
the range from 0.2 to 0.9. Due to the eccentricity of the Earth’s orbit, the distance
between an Earth–orbiting satellite and the Sun varies between 147 · 106 km and
152 · 106 km during the course of a year. This results in an annual variation of the
reference solar radiation pressure by about ±3.3%, since the solar flux decreases
with the square of the distance from the Sun. Accounting for this dependence, the

126 6. Conclusions

Figure A.2. Simple cilinder model for shadow of Earth.

following expression is finally obtained for the acceleration aSP of a satellite due to
the solar radiation pressure:

aSP = −PRef
d2

Ref
r2

SUN

A

m
cos θ[(1− ϵ)e + 2ϵ cos θn] (A.53)

where m is the mass of the satellite and rSUN is the magnitude of the satellite to
Sun vector rSUN.

For many applications (e.g. satellites with large solar arrays) it suffices, however,
to assume that the surface normal n points in the direction of the Sun e. In this
case, the previous equation may further be simplified, yielding:

aSP = −PRefCsp
A

m

rSUN
r3

SUN
d2

Ref (A.54)

where the radiation pressure coefficient Csp stands for:

Csp = 1 + ϵ. (A.55)

If the satellite is in eclipse condition, no solar radiation pressure force acts on
the satellite. In order to evaluate the eclipse condition, a simple cylinder model has
been implemented (see Figure A.2).

Given the Sun position unity vector e, the satellite’s position vector r and the
Earth’s radius R, and defining:

F1 = r cos Φ = rT e (A.56)

F2 = r
√

1− cos2 Φ = ∥r− F1e∥. (A.57)

The eclipse condition is true if:

F1 < 0 & F2 < R (A.58)

B Algorithms 127

B Algorithms

B.1 GDOP Computation

As a first step in computing DOP, consider the unit vectors from the receiver to the
i–th satellite: (

xi − x
Ri

yi − y
Ri

zi − z
Ri

)
(B.59)

where xi, yi and zi are the coordinates of the i–th satellite, x, y and z are the
coordinates of the receiver, Ri is computed as:

Ri =
√

(xi − x)2 + (yi − y)2 + (zi − z)2. (B.60)

After this the matrix A must be formulated. Considering N pseudorange mea-
surements the matrix assumes this form:

A =



x1 − x
R1

y1 − y
R1

z1 − z
R1

1

x2 − x
R2

y2 − y
R2

z2 − z
R2

1

...
...

...
...

xN − x
RN

yN − y
RN

zN − z
RN

1


. (B.61)

The first three elements of each row of A are the components of a unit vector
from the receiver to the indicated satellite. The last element of each row refers to
the partial derivative of pseudorange w.r.t. receiver’s clock bias. From this, one can
formulate the covariance matrix Q as:

Q = (AT A)−1 (B.62)

which has the following form:

Q =



σ2
x σxy σxz σxt

σxy σ2
y σyz σyt

σxz σyz σ2
z σzt

σxt σyt σzt σ2
t


. (B.63)

128 6. Conclusions

The PDOP, TDOP and GDOP are give by:

PDOP =
√
σ2

x + σ2
y + σ2

z (B.64)

TDOP =
√
σ2

t (B.65)

GDOP =
√
σ2

x + σ2
y + σ2

z + σ2
t . (B.66)

So the GDOP is the square root of the trace of the Q matrix.

B.2 UDU Covariance Factorization

Given a generic covariance matrix P ∈ RN×N which is symmetric and positive
definite, the algorithm returns two matrices U ∈ RN×N and D ∈ RN×N such that:

P = UDUT (B.67)

with:

U =



1 U1,2 U1,N

0 1

.

.

. 1 UN−1,N

0 0 1


(B.68)

D =



D1,1 0 0
0 D2,2

.

.

. DN−1,N−1 0
.0 0 DN,N


. (B.69)

For the N–th coloumn:
DN,N = PN,N (B.70)

Ui,N =

1 i = N

Pi,N/DN,N i = N − 1, N − 2, . . . , 1
. (B.71)

Then, for the remaining coloumns j = N − 1, . . . , 1, compute:

Dj,j = Pj,j −
N∑

k=j+1
[Dk,kU

2
j,k] (B.72)

B Algorithms 129

Ui,j =



0 i > j

1 i = j[
Pi,j −

N∑
k=j+1

Dk,kUi,kUj,k

]
/Dj,j i = j − 1, j − 2, . . . , 1

. (B.73)

B.3 UDU Covariance Propagation

When using UDU factorization of the state error covariance matrix, U and D are
propagated directly. The covariance matrix can be reformed from the propagated U
and D. The propagation requires the state transition matrix Φ and the state noise
covariance matrix Q which can be factorized in Gd, Qd such that:

Q = GdQdG
T
d . (B.74)

Note that in the filter algorithm the state noise covariance matrix is defined at
the beginning and does not change during the iterations.

Given the matrices U(ti), D(ti), Gd, Qd and the state transition matrix Φ define
a N × 2N matrix Y in this way:

Y =
[
ΦU(ti) Gd

]
. (B.75)

Define a 2N × 2N diagonal matrix D̃ as:

D̃ =
[
D(ti) 0

0 Qd

]
. (B.76)

In the following algorithm aj , ak, ck and dk each represent N vectors with 2N
elements, not 2N × 2N matrices; and ckj and akj represent element (j) in vector (k),
not matrix element (k,j).

N vectors, each of dimension 2N, are initialized as follows:[
a1 a2 aN

]
= Y T (B.77)

and iterated on the following relations for k = N,N − 1, . . . , 1:

ck = D̃ak. (B.78)

Because D̃ is diagonal, ck is computed as shown below:

ck,j = D̃j,jak,j j = 1, 2, . . . , 2N (B.79)

130 6. Conclusions

Dk,k(ti+1) = aT
k ck (B.80)

dk = ck

Dk,k(ti+1) (B.81)

Uj,k(ti+1) = aT
j dk

aj ← aj − Uj,k(ti + 1)ak

 j = 1, 2, . . . , k − 1 (B.82)

where → denotes replacement or writing over. On the last iteration, for k=1,
only the equations for ck,j and Dk,k are computed.

B.4 UDU Measurement Update

Given X̂− the state before the correction, U−, D− the factorization matrices before
the correction, H ∈ R1×N the jacobian matrix of the i–th measurement, Y the
i–th measurement, Ŷ the estimated i–th measurement and y = Y − Ŷ the i–th
measurement residual compute:

f = [U−]THT (B.83)

vj = D−
i,jfj j = 1, 2, . . . , N (B.84)

and set a0 = σ2, where σ is the 1 sigma measurement error.
For j = 1, 2, . . . , N compute:

aj = aj−1 + fjvj . (B.85)

The predicted measurement residual variance, Vk, is computed as:

Vk = aN . (B.86)

Then perform the n–sigma measurement residual test:

D = y√
Vk
. (B.87)

If |D| ≤ Nσ, accept the measurement and continue the update, otherwise reject
the measurement and restart with a new one. If the test is passed, update the
covariance factors for k = 1, 2, . . . , N as follows:

D+
k,k = D−

k,kak−1/ak (B.88)

bk ← vk (B.89)

pk = −fk/ak−1 (B.90)

B Algorithms 131

U+
j,k = U−

j,k + bjpk

bj ← bj + U−
j,kvk

 j = 1, 2, . . . , k − 1. (B.91)

Then the Kalman gain vector K ∈ RN×1 is computes as:

K = b/Vk. (B.92)

The state is then updated:

X̂+ = X̂− +Ky (B.93)

This procedure is performed for every measurement by replacing U− ← U+,
D− ← D+ and X̂− ← X̂+.

133

Bibliography

[1] J. R. Vetter, “Fifty years of orbit determination,” Johns Hopkins APL technical
digest, vol. 27, no. 3, p. 239, 2007.

[2] D. Menegatti, A. Giuseppi, and A. Pietrabissa, “Model predictive control
for collision-free spacecraft formation with artificial potential functions,” in
2022 30th Mediterranean Conference on Control and Automation (MED),
pp. 564–570, IEEE, 2022.

[3] A. Giuseppi, A. Pietrabissa, S. Cilione, and L. Galvagni, “Feedback
linearization-based satellite attitude control with a life-support device without
communications,” Control Engineering Practice, vol. 90, pp. 221–230, 2019.

[4] Y. Feng, “An alternative orbit integration algorithm for gps-based precise leo
autonomous navigation,” GPS Solutions, vol. 5, pp. 1–11, 2001.

[5] R. C. Hart, K. R. Hartman, A. C. Long, T. Lee, and D. H. Oza, “Global
positioning system (gps) enhanced orbit determination experiment (geode) on
the small satellite technology initiative (ssti) lewis spacecraft,” Proceedings of
the ION-GPS-1996, Kansas City, MO, USA, pp. 17–20, 1996.

[6] E.-J. Choi, J.-C. Yoon, B.-S. Lee, S.-Y. Park, and K.-H. Choi, “Onboard orbit
determination using gps observations based on the unscented kalman filter,”
Advances in Space Research, vol. 46, no. 11, pp. 1440–1450, 2010.

[7] R. Zanetti and C. D’Souza, “Recursive implementations of the schmidt-kalman
‘consider’filter,” The Journal of the Astronautical Sciences, vol. 60, no. 3-4,
pp. 672–685, 2013.

[8] M. O. Karslioglu, E. Erdogan, and O. Pamuk, “Gps-based real-time orbit
determination of low earth orbit satellites using robust unscented kalman
filter,” Journal of Aerospace Engineering, vol. 30, no. 6, p. 04017063, 2017.

134 Bibliography

[9] S. Kavitha, P. Mula, M. Kamat, S. Nirmala, and J. G. Manathara, “Extended
kalman filter-based precise orbit estimation of leo satellites using gps range
measurements,” IFAC-PapersOnLine, vol. 55, no. 1, pp. 235–240, 2022.

[10] A. Tantucci, A. Wrona, and A. Pietrabissa, “Precise orbit determination on leo
satellite using pseudorange and pseudorange-rate measurements,” in 2023 31st
Mediterranean Conference on Control and Automation (MED), pp. 341–347,
IEEE, 2023.

[11] N. K. Pavlis, S. A. Holmes, S. C. Kenyon, and J. K. Factor, “The development
and evaluation of the earth gravitational model 2008 (egm2008),” Journal of
geophysical research: solid earth, vol. 117, no. B4, 2012.

[12] O. M. E. Gill and O. Montenbruck, Satellite orbits. Springer, 2013.

[13] R. E. Kalman et al., “Contributions to the theory of optimal control,” Bol.
soc. mat. mexicana, vol. 5, no. 2, pp. 102–119, 1960.

[14] R. E. Kalman, “A new approach to linear filtering and prediction problems,”
1960.

[15] R. E. Kalman and R. S. Bucy, “New results in linear filtering and prediction
theory,” 1961.

[16] G. J. Bierman and C. L. Thornton, “Numerical comparison of kalman filter
algorithms: Orbit determination case study,” Automatica, vol. 13, no. 1,
pp. 23–35, 1977.

[17] G. J. Bierman, Factorization methods for discrete sequential estimation. Courier
Corporation, 2006.

[18] C. L. Thornton, “Triangular covariance factorizations for,” tech. rep., 1976.

[19] S. Evans, W. Taber, T. Drain, J. Smith, H.-C. Wu, M. Guevara, R. Sunseri,
and J. Evans, “Monte: the next generation of mission design and navigation
software,” CEAS Space Journal, vol. 10, pp. 79–86, 2018.

[20] G. H. Golub and C. F. Van Loan, Matrix computations. JHU press, 2013.

[21] M. Verhaegen and P. Van Dooren, “Numerical aspects of different kalman
filter implementations,” IEEE Transactions on Automatic Control, vol. 31,
no. 10, pp. 907–917, 1986.

[22] C. L. THORNTON and G. J. BIERMAN, “Gram-schmidt algorithms for
covariance propagation,” International Journal of Control, vol. 25, no. 2,
pp. 243–260, 1977.

Bibliography 135

[23] O. Montenbruck and P. Ramos-Bosch, “Precision real-time navigation of
leo satellites using global positioning system measurements,” GPS solutions,
vol. 12, pp. 187–198, 2008.

[24] T. Carrico, J. Carrico, L. Policastri, and M. Loucks, “Investigating orbital
debris events using numerical methods with full force model orbit propagation,”
Adv. Astronaut. Sci, vol. 130, no. PART 1, pp. 407–426, 2008.

[25] CelesTrak, “Norad gp element sets current data.” https://celestrak.org/

NORAD/elements/. Accessed: 2023-09-09.

[26] W. J. Larson, J. R. Wertz, et al., Space mission analysis and design, vol. 3.
Springer, 1992.

[27] W. Marquis, “The gps block iir/iir-m antenna panel pattern rev 3,” LMCO
2013, 2013.

[28] P. J. Teunissen and O. Montenbruck, Springer handbook of global navigation
satellite systems, vol. 10. Springer, 2017.

[29] G. Seeber, Satellite geodesy. Walter de gruyter, 2003.

[30] C. Zucca and P. Tavella, “The clock model and its relationship with the allan
and related variances,” IEEE transactions on ultrasonics, ferroelectrics, and
frequency control, vol. 52, no. 2, pp. 289–296, 2005.

[31] L. Galleani, L. Sacerdote, P. Tavella, and C. Zucca, “A mathematical model
for the atomic clock error,” Metrologia, vol. 40, no. 3, p. S257, 2003.

[32] E. D. Kaplan and C. Hegarty, Understanding GPS/GNSS: principles and
applications. Artech house, 2017.

[33] L. Galleani, “A tutorial on the two-state model of the atomic clock noise,”
Metrologia, vol. 45, no. 6, p. S175, 2008.

[34] J. Kouba, “Improved relativistic transformations in gps,” GPS Solutions, vol. 8,
pp. 170–180, 2004.

[35] F. Rosenblatt, “The perceptron: a probabilistic model for information storage
and organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386,
1958.

[36] A. Zell, Simulation neuronaler netze, vol. 1. Addison-Wesley Bonn, 1994.

https://celestrak.org/NORAD/elements/
https://celestrak.org/NORAD/elements/

136 Bibliography

[37] S. Linnainmaa, The representation of the cumulative rounding error of an
algorithm as a Taylor expansion of the local rounding errors. PhD thesis,
Master’s Thesis (in Finnish), Univ. Helsinki, 1970.

[38] D. E. Rumelhart, G. E. Hinton, R. J. Williams, et al., “Learning internal
representations by error propagation,” 1985.

[39] R. Venkatesan and B. Li, Convolutional neural networks in visual computing:
a concise guide. CRC Press, 2017.

[40] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
networks, vol. 61, pp. 85–117, 2015.

[41] N. Khan-Mayberry, “The lunar environment: Determining the health effects of
exposure to moon dusts,” Acta Astronautica, vol. 63, no. 7-10, pp. 1006–1014,
2008.

[42] J. Capolicchio, T. Catuogno, C. Lauro, M. Eleuteri, and C. Stallo, “The bright
side of the moon: Multi-constrained optimized maps in support of future
mission planning,” in 72th International Astronautical Congress, 2021.

[43] D. Smith, M. Zuber, G. Neumann, F. Lemoine, M. Robinson, O. Aharonson,
J. Head, X. Sun, J. Cavanaugh, and G. Jackson, “The lunar orbiter laser
altimeter (lola) on the lunar reconnaissance orbiter,” in AGU Fall Meeting
Abstracts, vol. 2006, pp. U41C–0826, 2006.

[44] R. Povilaitis, M. Robinson, C. Van der Bogert, H. Hiesinger, H. Meyer,
and L. Ostrach, “Crater density differences: Exploring regional resurfacing,
secondary crater populations, and crater saturation equilibrium on the moon,”
Planetary and Space Science, vol. 162, pp. 41–51, 2018.

[45] J. W. Head III, C. I. Fassett, S. J. Kadish, D. E. Smith, M. T. Zuber,
G. A. Neumann, and E. Mazarico, “Global distribution of large lunar craters:
Implications for resurfacing and impactor populations,” science, vol. 329,
no. 5998, pp. 1504–1507, 2010.

[46] S. J. Robbins, “A new global database of lunar impact craters> 1–2 km: 1.
crater locations and sizes, comparisons with published databases, and global
analysis,” Journal of Geophysical Research: Planets, vol. 124, no. 4, pp. 871–
892, 2019.

[47] N. Petro, J. Keller, B. Cohen, and T. McClanahan, “Ten years of the lunar
reconnaissance orbiter (lro): Advancing lunar science and context for future

Bibliography 137

lunar exploration,” in 50th Annual Lunar and Planetary Science Conference,
no. 2132, p. 2780, 2019.

[48] E. Mazarico, D. Rowlands, G. Neumann, D. Smith, M. Torrence, F. Lemoine,
and M. Zuber, “Orbit determination of the lunar reconnaissance orbiter,”
Journal of Geodesy, vol. 86, pp. 193–207, 2012.

[49] C. Harris, M. Stephens, et al., “A combined corner and edge detector,” in
Alvey vision conference, vol. 15, pp. 10–5244, Citeseer, 1988.

[50] T. Catuogno, E. E. Zini, C. Di Lauro, O. Trematerra, and C. Iacurto, “Crater
matching for orbit determination boosted by neural networks,”

[51] J. J. Gibson, “The perception of the visual world.,” 1950.

[52] C. S. Royden and K. D. Moore, “Use of speed cues in the detection of moving
objects by moving observers,” Vision research, vol. 59, pp. 17–24, 2012.

[53] K. R. Aires, A. M. Santana, and A. A. Medeiros, “Optical flow using color
information: preliminary results,” in Proceedings of the 2008 ACM symposium
on Applied computing, pp. 1607–1611, 2008.

[54] G. L. Barrows, J. S. Chahl, and M. V. Srinivasan, “Biologically inspired
visual sensing and flight control,” The Aeronautical Journal, vol. 107, no. 1069,
pp. 159–168, 2003.

[55] C. Brown and C. Brown, Advances in Computer Vision: Volume 1, vol. 1.
Psychology Press, 2014.

[56] D. Fleet and Y. Weiss, “Optical flow estimation,” in Handbook of mathematical
models in computer vision, pp. 237–257, Springer, 2006.

[57] J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical flow
techniques,” International journal of computer vision, vol. 12, pp. 43–77, 1994.

[58] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and R. Szeliski, “A
database and evaluation methodology for optical flow,” International journal
of computer vision, vol. 92, pp. 1–31, 2011.

[59] A. Reyes, A. Alba, and E. R. Arce-Santana, “Optical flow estimation using
phase only-correlation,” Procedia Technology, vol. 7, pp. 103–110, 2013.

[60] S. S. Sengar and S. Mukhopadhyay, “Motion detection using block based
bi-directional optical flow method,” Journal of Visual Communication and
Image Representation, vol. 49, pp. 89–103, 2017.

138 Bibliography

[61] B. D. Lucas and T. Kanade, “An iterative image registration technique with an
application to stereo vision,” in IJCAI’81: 7th international joint conference
on Artificial intelligence, vol. 2, pp. 674–679, 1981.

[62] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial intelli-
gence, vol. 17, no. 1-3, pp. 185–203, 1981.

[63] B. F. Buxton and H. Buxton, “Computation of optic flow from the motion of
edge features in image sequences,” Image and Vision Computing, vol. 2, no. 2,
pp. 59–75, 1984.

[64] A. Jepson and M. J. Black, “Mixture models for optical flow computation,” in
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
pp. 760–761, IEEE, 1993.

[65] J. Weickert, A. Bruhn, N. Papenberg, and T. Brox, “Variational optic flow
computation: From continuous models to algorithms,” IWCVIA, vol. 3, pp. 1–6,
2003.

[66] M. Menze, C. Heipke, and A. Geiger, “Discrete optimization for optical
flow,” in Pattern Recognition: 37th German Conference, GCPR 2015, Aachen,
Germany, October 7-10, 2015, Proceedings 37, pp. 16–28, Springer, 2015.

[67] G. Dantzig and D. R. Fulkerson, “On the max flow min cut theorem of
networks,” Linear inequalities and related systems, vol. 38, pp. 225–231, 2003.

[68] G. Badura, C. Valenta, and B. Gunter, “Convolutional neural networks for
inference of space object attitude status,” 09 2020.

[69] K. Thangavel, D. Spiller, R. Sabatini, S. Amici, S. T. Sasidharan, H. Fayek,
and P. Marzocca, “Autonomous satellite wildfire detection using hyperspectral
imagery and neural networks: A case study on australian wildfire,” Remote
Sensing, vol. 15, no. 3, p. 720, 2023.

[70] V. S. Bilodeau, S. Clerc, R. Drai, and J. De Lafontaine, “Optical navigation
system for pin-point lunar landing,” IFAC Proceedings Volumes, vol. 47, no. 3,
pp. 10535–10542, 2014.

[71] A. Silburt, M. Ali-Dib, C. Zhu, A. Jackson, D. Valencia, Y. Kissin, D. Tamayo,
and K. Menou, “Lunar crater identification via deep learning,” Icarus, vol. 317,
pp. 27–38, 2019.

[72] O. Ronneberger, P. Fischer, and T. Brox, “Convolutional networks for biomed-
ical image segmentation,” in Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015 Conference Proceedings, 2022.

Bibliography 139

[73] L. M. Downes, T. J. Steiner, and J. P. How, “Lunar terrain relative navigation
using a convolutional neural network for visual crater detection,” in 2020
American Control Conference (ACC), pp. 4448–4453, IEEE, 2020.

[74] L. Downes, T. J. Steiner, and J. P. How, “Deep learning crater detection for
lunar terrain relative navigation,” in AIAA SciTech 2020 Forum, p. 1838,
2020.

[75] D. M. DeLatte, S. T. Crites, N. Guttenberg, E. J. Tasker, and T. Yairi,
“Segmentation convolutional neural networks for automatic crater detection on
mars,” IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 12, no. 8, pp. 2944–2957, 2019.

[76] E. Emami, T. Ahmad, G. Bebis, A. Nefian, and T. Fong, “Crater detection
using unsupervised algorithms and convolutional neural networks,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 57, no. 8, pp. 5373–5383,
2019.

[77] H. Yuen, J. Princen, J. Illingworth, and J. Kittler, “Comparative study of
hough transform methods for circle finding,” Image and vision computing,
vol. 8, no. 1, pp. 71–77, 1990.

[78] D. W. Jacobs, “Robust and efficient detection of salient convex groups,” IEEE
transactions on pattern analysis and machine intelligence, vol. 18, no. 1, pp. 23–
37, 1996.

[79] R. Alfredo et al., “A robust crater matching algorithm for autonomous vision-
based spacecraft navigation,” in 2021 IEEE 8th International Workshop on
Metrology for AeroSpace (MetroAeroSpace), pp. 322–327, IEEE, 2021.

[80] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings
of the IEEE international conference on computer vision, pp. 2961–2969, 2017.

[81] S. Silvestrini, M. Piccinin, G. Zanotti, A. Brandonisio, I. Bloise, L. Feruglio,
P. Lunghi, M. Lavagna, and M. Varile, “Optical navigation for lunar landing
based on convolutional neural network crater detector,” Aerospace Science and
Technology, vol. 123, p. 107503, 2022.

[82] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2015: 18th International Conference, Munich,
Germany, October 5-9, 2015, Proceedings, Part III 18, pp. 234–241, Springer,
2015.

140 Bibliography

[83] J. Brownlee, “A gentle introduction to the rectified linear unit (relu),” Machine
learning mastery, vol. 6, 2019.

[84] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016,
Proceedings, Part I 14, pp. 21–37, Springer, 2016.

[85] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” arXiv preprint arXiv:1704.04861,
2017.

[86] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 4510–4520, 2018.

[87] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan, et al., “Searching for mobilenetv3,” in Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 1314–
1324, 2019.

[88] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and
Q. V. Le, “Mnasnet: Platform-aware neural architecture search for mobile,”
in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 2820–2828, 2019.

[89] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units for neural
network function approximation in reinforcement learning,” Neural networks,
vol. 107, pp. 3–11, 2018.

[90] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,”
arXiv preprint arXiv:1710.05941, 2017.

[91] D. Hendrycks and K. Gimpel, “Bridging nonlinearities and stochastic regular-
izers with gaussian error linear units,” ArXiv, vol. abs/1606.08415, 2016.

[92] Unibap, “Spacecloud iX5-100 datasheet,” 2015.

[93] M. Barker, E. Mazarico, G. Neumann, M. Zuber, J. Haruyama, and D. Smith,
“A new lunar digital elevation model from the lunar orbiter laser altimeter and
selene terrain camera,” Icarus, vol. 273, pp. 346–355, 2016.

Bibliography 141

[94] D. E. Smith, M. T. Zuber, G. A. Neumann, F. G. Lemoine, E. Mazarico, M. H.
Torrence, J. F. McGarry, D. D. Rowlands, J. W. Head III, T. H. Duxbury, et al.,
“Initial observations from the lunar orbiter laser altimeter (lola),” Geophysical
Research Letters, vol. 37, no. 18, 2010.

[95] A. L. Shumway, M. Whiteley, J. Q. Peterson, Q. Young, and J. J. Hancock,
“Digital imaging space camera (disc) design and testing,” 2007.

[96] A. Wrona and A. Tantucci, “Artificial intelligence–based data path control in
leo satellites–driven optical communications,” Authorea, 2023.

[97] A. Yaqoob, T. Bi, and G.-M. Muntean, “A survey on adaptive 360 video
streaming: Solutions, challenges and opportunities,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 4, pp. 2801–2838, 2020.

[98] M. N. Sadiku, S. M. Musa, and O. D. Momoh, “Cloud computing: opportunities
and challenges,” IEEE potentials, vol. 33, no. 1, pp. 34–36, 2014.

[99] S. Li, L. D. Xu, and S. Zhao, “The internet of things: a survey,” Information
systems frontiers, vol. 17, pp. 243–259, 2015.

[100] H. Kaushal, V. Jain, and S. Kar, Free space optical communication. Springer,
2017.

[101] D. W. Ball, “The electromagnetic spectrum: a history,” Spectroscopy, vol. 22,
no. 3, p. 14, 2007.

[102] D. Killinger, “Free space optics for laser communication through the air,”
Optics and photonics news, vol. 13, no. 10, pp. 36–42, 2002.

[103] H. Burchardt, N. Serafimovski, D. Tsonev, S. Videv, and H. Haas, “Vlc:
Beyond point-to-point communication,” IEEE Communications Magazine,
vol. 52, no. 7, pp. 98–105, 2014.

[104] A. Biswas, M. Srinivasan, S. Piazzolla, and D. Hoppe, “Deep space opti-
cal communications,” in Free-Space Laser Communication and Atmospheric
Propagation XXX, vol. 10524, pp. 242–252, SPIE, 2018.

[105] H. Hauschildt, C. Elia, H. L. Moeller, and D. Schmitt, “Scylight—esa’s secure
and laser communication technology framework for satcom,” in 2017 IEEE
International Conference on Space Optical Systems and Applications (ICSOS),
pp. 250–254, IEEE, 2017.

[106] L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. Al-Habash, “Theory of
optical scintillation,” JOSA A, vol. 16, no. 6, pp. 1417–1429, 1999.

142 Bibliography

[107] G. Berman, A. Chumak, and V. Gorshkov, “Beam wandering in the atmosphere:
The effect of partial coherence,” Physical Review E, vol. 76, no. 5, p. 056606,
2007.

[108] Z. Wang, J. Zhang, and H. Gao, “Impacts of laser beam divergence on li-
dar multiple scattering polarization returns from water clouds,” Journal of
Quantitative Spectroscopy and Radiative Transfer, vol. 268, p. 107618, 2021.

[109] P. Chitre and F. Yegenoglu, “Next-generation satellite networks: architectures
and implementations,” IEEE Communications Magazine, vol. 37, no. 3, pp. 30–
36, 1999.

[110] X. Mao, D. Arnold, V. Girardin, A. Villiger, and A. Jäggi, “Dynamic gps-based
leo orbit determination with 1 cm precision using the bernese gnss software,”
Advances in space research, vol. 67, no. 2, pp. 788–805, 2021.

[111] C. B. Lim, A. Montmerle-Bonnefois, C. Petit, J.-F. Sauvage, S. Meimon,
P. Perrault, F. Mendez, B. Fleury, J. Montri, J.-M. Conan, et al., “Single-mode
fiber coupling with adaptive optics for free-space optical communication under
strong scintillation,” in 2019 IEEE International Conference on Space Optical
Systems and Applications (ICSOS), pp. 1–6, IEEE, 2019.

[112] C. Zhang, J. Jin, L. Kuang, and J. Yan, “Leo constellation design methodology
for observing multi-targets,” Astrodynamics, vol. 2, pp. 121–131, 2018.

[113] Y. Su, Y. Liu, Y. Zhou, J. Yuan, H. Cao, and J. Shi, “Broadband leo satel-
lite communications: Architectures and key technologies,” IEEE Wireless
Communications, vol. 26, no. 2, pp. 55–61, 2019.

[114] P. Yue, J. An, J. Zhang, J. Ye, G. Pan, S. Wang, P. Xiao, and L. Hanzo, “Low
earth orbit satellite security and reliability: Issues, solutions, and the road
ahead,” IEEE Communications Surveys & Tutorials, 2023.

[115] P. K. Chowdhury, M. Atiquzzaman, and W. Ivancic, “Handover schemes in
satellite networks: State-of-the-art and future research directions,” IEEE
Communications Surveys & Tutorials, vol. 8, no. 4, pp. 2–14, 2006.

[116] S. He, T. Wang, and S. Wang, “Load-aware satellite handover strategy based
on multi-agent reinforcement learning,” in GLOBECOM 2020-2020 IEEE
Global Communications Conference, pp. 1–6, IEEE, 2020.

[117] M. Kasper, E. Fedrigo, D. P. Looze, H. Bonnet, L. Ivanescu, and S. Oberti,
“Fast calibration of high-order adaptive optics systems,” JOSA A, vol. 21, no. 6,
pp. 1004–1008, 2004.

Bibliography 143

[118] R. K. Tyson and B. W. Frazier, Principles of adaptive optics. CRC press,
2022.

[119] G. Vosselman and H.-g. Maas, “Adjustment and filtering of raw laser altimetry
data,” in Proceedings of OEEPE Workshop on Airborne Laserscanning and
Interferometric SAR for Detailed Digital Terrain Models, Stockholm, Sweden,
OEEPE, 2001.

[120] S. W. Jolly, O. Gobert, and F. Quéré, “Spatio-temporal characterization of
ultrashort laser beams: a tutorial,” Journal of Optics, vol. 22, no. 10, p. 103501,
2020.

[121] A. Wrona, E. De Santis, F. D. Priscoli, and F. G. Lavacca, “An intelligent
ground station selection algorithm in satellite optical communications via deep
learning,” in 2023 31st Mediterranean Conference on Control and Automation
(MED), pp. 493–499, IEEE, 2023.

[122] B. Rödiger, D. Ginthör, J. P. Labrador, J. Ramirez, C. Schmidt, and C. Fuchs,
“Demonstration of an fso/rf hybrid-communication system on aeronautical and
space applications,” in Laser Communication and Propagation through the
Atmosphere and Oceans IX, vol. 11506, p. 1150603, SPIE, 2020.

[123] C. Sinka and J. Bitó, “Site diversity against rain fading in lmds systems,”
IEEE microwave and wireless components letters, vol. 13, no. 8, pp. 317–319,
2003.

[124] T. Nakatani, Y. Maekawa, Y. Shibagaki, and K. Hatsuda, “Relationship
between rain front motion and site diversity in ku-band satellite links,” in 25th
AIAA International Communications Satellite Systems Conference (organized
by APSCC), p. 3173, APSCC, 2007.

[125] P. Petropoulou, E. T. Michailidis, A. D. Panagopoulos, and A. G. Kanatas,
“Radio propagation channel measurements for multi-antenna satellite communi-
cation systems: A survey,” IEEE Antennas and Propagation Magazine, vol. 56,
no. 6, pp. 102–122, 2014.

[126] J. P. Baptista and P. Davies, “Reference book on attenuation measurement
and prediction,” in 2nd Workshop OPEX, OPEX, 1994.

[127] J. Goldhirsh, B. H. Musiani, A. W. Dissanayake, and K.-T. Lin, “Three-site
space-diversity experiment at 20 ghz using acts in the eastern united states,”
Proceedings of the IEEE, vol. 85, no. 6, pp. 970–980, 1997.

144 Bibliography

[128] S. Lin, H. Bergmann, and M. Pursley, “Rain attenuation on earth-satellite
paths—summary of 10-year experiments and studies,” Bell System Technical
Journal, vol. 59, no. 2, pp. 183–228, 1980.

[129] M. Luglio, R. Mancini, C. Riva, A. Paraboni, and F. Barbaliscia, “Large-scale
site diversity for satellite communication networks,” International journal of
satellite communications, vol. 20, no. 4, pp. 251–260, 2002.

[130] C. Bruni, F. D. Priscoli, G. Koch, A. Pietrabissa, and L. Pimpinella, “Net-
work decomposition and multi-path routing optimal control,” Transactions on
Emerging Telecommunications Technologies, vol. 24, pp. 154–165, May 2012.

[131] A. Pietrabissa, L. R. Celsi, F. Cimorelli, V. Suraci, F. D. Priscoli, A. D. Giorgio,
A. Giuseppi, and S. Monaco, “Lyapunov-based design of a distributed wardrop
load-balancing algorithm with application to software-defined networking,”
IEEE Transactions on Control Systems Technology, vol. 27, pp. 1924–1936,
Sept. 2019.

[132] S. Poulenard, M. Crosnier, and A. Rissons, “Ground segment design for
broadband geostationary satellite with optical feeder link,” Journal of Optical
Communications and Networking, vol. 7, no. 4, pp. 325–336, 2015.

[133] T. Rossi, M. De Sanctis, F. Maggio, M. Ruggieri, C. Hibberd, and C. Togni,
“Smart gateway diversity optimization for ehf satellite networks,” IEEE Trans-
actions on Aerospace and Electronic Systems, vol. 56, no. 1, pp. 130–141,
2019.

[134] C. N. Efrem and A. D. Panagopoulos, “Globally optimal selection of ground sta-
tions in satellite systems with site diversity,” IEEE Wireless Communications
Letters, vol. 9, no. 7, pp. 1101–1104, 2020.

[135] C. Fuchs and F. Moll, “Ground station network optimization for space-to-
ground optical communication links,” Journal of Optical Communications and
Networking, vol. 7, no. 12, pp. 1148–1159, 2015.

[136] N. K. Lyras, C. N. Efrem, C. I. Kourogiorgas, and A. D. Panagopoulos,
“Optimum monthly based selection of ground stations for optical satellite
networks,” IEEE Communications Letters, vol. 22, no. 6, pp. 1192–1195, 2018.

[137] E. Erdogan, I. Altunbas, G. K. Kurt, M. Bellemare, G. Lamontagne, and
H. Yanikomeroglu, “Site diversity in downlink optical satellite networks through
ground station selection,” IEEE Access, vol. 9, pp. 31179–31190, 2021.

Bibliography 145

[138] X. Hu, Y. Zhang, X. Liao, Z. Liu, W. Wang, and F. M. Ghannouchi, “Dy-
namic beam hopping method based on multi-objective deep reinforcement
learning for next generation satellite broadband systems,” IEEE Transactions
on Broadcasting, vol. 66, no. 3, pp. 630–646, 2020.

[139] X. Hu, S. Liu, Y. Wang, L. Xu, Y. Zhang, C. Wang, and W. Wang, “Deep
reinforcement learning-based beam hopping algorithm in multibeam satellite
systems,” IET Communications, vol. 13, no. 16, pp. 2485–2491, 2019.

[140] S. Liu, X. Hu, and W. Wang, “Deep reinforcement learning based dynamic
channel allocation algorithm in multibeam satellite systems,” IEEE Access,
vol. 6, pp. 15733–15742, 2018.

[141] X. Hu, S. Liu, R. Chen, W. Wang, and C. Wang, “A deep reinforcement
learning-based framework for dynamic resource allocation in multibeam satellite
systems,” IEEE Communications Letters, vol. 22, no. 8, pp. 1612–1615, 2018.

[142] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural networks:
Lstm cells and network architectures,” Neural computation, vol. 31, no. 7,
pp. 1235–1270, 2019.

[143] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-
tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[144] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[145] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, pp. 279–
292, 1992.

[146] N. Ashby, “The sagnac effect in the global positioning system,” in Relativity
in rotating frames: relativistic physics in rotating reference frames, pp. 11–28,
Springer, 2004.

[147] D. Beniaguev, “Historical hourly weather data 2012-2017.” https://www.

kaggle.com/datasets/selfishgene/historical-hourly-weather-data,
Dec 2017. Accessed June 28, 2023.

[148] GMT, “Astronomical tables for equinoxes and solstices.” https:

//greenwichmeantime.com/longest-day/equinox-solstice-2010-2020/.
Accessed July 6, 2023.

[149] H. Henniger and O. Wilfert, “An introduction to free-space optical communi-
cations.,” Radioengineering, vol. 19, no. 2, 2010.

https://www.kaggle.com/datasets/selfishgene/historical-hourly-weather-data
https://www.kaggle.com/datasets/selfishgene/historical-hourly-weather-data
https://greenwichmeantime.com/longest-day/equinox-solstice-2010-2020/
https://greenwichmeantime.com/longest-day/equinox-solstice-2010-2020/

146 Bibliography

[150] J. San-Miguel-Ayanz, T. Durrant, R. Boca, P. Maianti, G. Liberta’, D. Oom,
A. Branco, D. De Rigo, D. Ferrari, E. Roglia, and N. Scionti, “Advance report
on forest fires in europe, middle east and north africa 2022,” no. KJ-NA-31-
479-EN-N (online), 2023.

[151] J. San-Miguel-Ayanz, R. Boca, T. Durrant, P. Maianti, G. Liberta’, D. Oom,
A. Branco, D. De Rigo, D. Ferrari, E. Roglia, and N. Scionti, “Forest fires in eu-
rope, middle east and north africa 2021,” no. KJ-NA-31-269-EN-N (online),KJ-
NA-31-269-EN-C (print), 2022.

[152] J. San-Miguel-Ayanz, T. Durrant, R. Boca, P. Maianti, G. Liberta’, T. Artes Vi-
vancos, D. Jacome Felix Oom, A. Branco, D. De Rigo, D. Ferrari, H. Pfeiffer,
R. Grecchi, D. Nuijten, and T. Leray, “Forest fires in europe, middle east and
north africa 2020,” no. KJ-NA-30862-EN-N (online) , KJ-NA-30862-EN-C
(print), 2021.

[153] J. San-Miguel-Ayanz, R. Boca, T. Durrant, P. Maianti, G. Liberta’, T. Artes Vi-
vancos, D. Jacome Felix Oom, A. Branco, D. De Rigo, D. Ferrari, H. Pfeiffer,
R. Grecchi, D. Nuijten, and T. Leray, “Forest fires in europe, middle east
and north africa 2019,” no. KJ-NA-30402-EN-N (online),KJ-NA-30402-EN-C
(print), 2020.

[154] J. San-Miguel-Ayanz, T. Durrant, R. Boca, G. Liberta’, A. Branco, D. De Rigo,
D. Ferrari, P. Maianti, T. Artes Vivancos, H. Pfeiffer, P. Loffler, D. Nuijten,
T. Leray, and D. Jacome Felix Oom, “Forest fires in europe, middle east
and north africa 2018,” no. KJ-NA-29856-EN-N (online),KJ-NA-29856-EN-C
(print), 2019.

[155] K. Yamaguchi, K. Sakamoto, T. Akabane, and Y. Fujimoto, “A neural network
for speaker-independent isolated word recognition.,” in ICSLP, 1990.

[156] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The
journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[157] I. Goodfellow, Y. Bengio, and A. Courville, “Softmax units for multinoulli
output distributions. deep learning,” 2018.

[158] R. G. Gottlieb, “Fast gravity, gravity partials, normalized gravity, gravity
gradient torque and magnetic field: derivation, code and data,” tech. rep.,
1993.

Bibliography 147

[159] J. Cappellari, C. Vélez, and A. J. Fuchs, Mathematical theory of the Goddard
trajectory determination system, vol. 71106. Goddard Space Flight Center,
1976.

	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	I On–Board Precise Orbit Determination on Earth and Moon Orbit
	Precise Orbit Determination on LEO Satellite using Pseudorange and Pseudorange-Rate Measurements
	State of the art
	Original Contribution
	Implementation
	Mathematical Model of the Satellite Motion
	On–Board Navigation Algorithm

	Simulations and Results
	Simulation environment
	Simulation Results

	Future Works

	Space Qualified VPU Benchmarking of Crater Matching ODTS Solutions based on Convolutional Neural Networks
	Introduction
	Neural Networks
	Lunar Environment and Crater Featuring
	Crater Matching Techniques
	Optical Flow
	On–Board Data Processing and Neural Networks

	State of the Art and Original Contribution
	Theory and calculations
	Methods
	Hardware Specifications
	Algorithm Implementation

	Results and Discussion
	Future Works

	II Other Works
	Artificial Intelligence–Based Data Path Control in LEO Satellites–Driven Optical Communications
	Introduction
	State of the Art and Original Contribution
	Preliminaries
	LSTM Neural Networks
	Markov Decision Process and Reinforcement Learning

	Modelling
	Satellite Equations of Motion
	Visibility Analysis
	Ground to Satellite Visibility
	Satellite to Satellite Visibility
	Markov Decision Process Formulation

	Simulations and results
	Iridium Constellation
	Starlink Constellation
	Mixed Constellation

	Conclusions and Future Works

	PhiFireAI
	Introduction
	sat–2 Mission Overview
	sat–2 Payload
	CogniSat AI processor
	Nanosat MO Framework

	Solution and Contribution to the Community
	Methods
	Data Preparation
	Neural Network Architecture
	Training and Validation Strategy

	Results and Discussion
	Training and Validation Results
	Inference Pipeline
	Test Set Validation
	Space–Qualified Test

	Conclusions and Future Works

	Conclusions
	Appendix
	Perturbation Models
	Gravity Model
	Magnetic Field Model
	Third Boby Model
	Atmospheric Drag Model
	Solar Radiation Pressure Model

	Algorithms
	GDOP Computation
	UDU Covariance Factorization
	UDU Covariance Propagation
	UDU Measurement Update

	Bibliography

