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Simple Summary: Breast cancer is still the most common cancer in the female population and is the
second leading cause of cancer death in women. Although only 6% of breast cancers have metastatic
spread at onset, metastases remain the first cause of death. An artificial intelligence approach
could be a valuable noninvasive predictor of the risk of distant metastasis. The purpose of this
study is to determine the role of a Deep Learning model approach based on a convolutional neural
network in predicting the risk of distant metastasis in patients with breast cancer using dynamic
Contrast-Enhanced 3T-MRI images.

Abstract: Background: The incidence of breast cancer metastasis has decreased over the years.
However, 20-30% of patients with early breast cancer still die from metastases. The purpose of
this study is to evaluate the performance of a Deep Learning Convolutional Neural Networks
(CNN) model to predict the risk of distant metastasis using 3T-MRI DCE sequences (Dynamic
Contrast-Enhanced). Methods: A total of 157 breast cancer patients who underwent staging 3T-
MRI examinations from January 2011 to July 2022 were retrospectively examined. Patient data,
tumor histological and MRI characteristics, and clinical and imaging follow-up examinations of up
to 7 years were collected. Of the 157 MRI examinations, 39/157 patients (40 lesions) had distant
metastases, while 118/157 patients (120 lesions) were negative for distant metastases (control group).
We analyzed the role of the Deep Learning technique using a single variable size bounding box (SVB)
option and employed a Voxel Based (VB) NET CNN model. The CNN performance was evaluated in
terms of accuracy, sensitivity, specificity, and area under the ROC curve (AUC). Results: The VB-NET
model obtained a sensitivity, specificity, accuracy, and AUC of 52.50%, 80.51%, 73.42%, and 68.56%,
respectively. A significant correlation was found between the risk of distant metastasis and tumor
size, and the expression of PgR and HER2. Conclusions: We demonstrated a currently insufficient
ability of the Deep Learning approach in predicting a distant metastasis status in patients with BC
using CNNs.

Keywords: breast cancer; 3T-MRI Dynamic Contrast-Enhanced sequences (DCE); Deep Learning
(DL); convolution neural network (CNN); metastasis
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1. Introduction

Currently, patients with early invasive breast cancer (BC) are mainly treated by surgical
approaches, with or without radiotherapy, possibly preceded by neoadjuvant chemotherapy
and followed by adjuvant systemic therapy to reduce the risk of recurrence and distant
metastasis. BC presenting with distant metastasis at onset corresponds to about less than
6% of all invasive BC [1,2].

Few studies exist that investigate the incidences of metastasis in patients with BC and
the relative mean time to metastasis onset and the subsequent survival. A large study from
the German cancer registry described that the proportion of patients without metastases at
diagnosis, but who later developed metastases within 5 years of initial diagnosis, decreased
from 27% in 1978-1984 to 15% in 1995-2003. The same study showed a reduction in the
proportion of bone metastases, with a relative increase in metastases to other sites, mainly
the liver and brain [3].

The risk of occurrence of distant metastases can be influenced by different factors such
as tumor stage, grade, and subtype. A large Australian study demonstrated a difference in
the 5-year risk of metastasis between women with node-negative disease (5.3%) and those
with node-positive or locally advanced disease at diagnosis (18.1%) [4].

To ensure the best treatment and achieve the best results, accurate BC staging is
essential. Magnetic Resonance Imaging (MRI) has demonstrated itself to be a highly
sensitive and non-invasive technique that provides both morphologic and functional data.
Currently, MRI is used in the diagnosis step, preoperative tumor staging, and evaluation
of response to chemotherapy treatment [5]. Most of the tumor information on MRI is
qualitative and radiologist-dependent. Despite this, Apparent Diffusion Coefficient (ADC)
values were found to correlate with both grading and biopsy, and surgical cellularity [6,7].

In recent years, image-based Machine Learning (ML) processes have been employed
in many oncological fields. Radiomics is a relatively new area of artificial intelligence (AI),
first developed by Lambin et al. [8]. It involves extracting and converting a large number
of quantitative data (called “features”) from medical images. After careful selection, ML
models are trained to provide prediction tools for various outcomes. When combined with
image-derived clinical and qualitative analyses, these data can aid in medical decision
making, potentially improving patient prognosis and lesion characterization.

Al aims to assist physicians in evaluating lesions beyond the subjective visual in-
terpretation that is possible with currently employed methodologies. Although it is still
a developing area of research, the effects of radiomics-derived data analysis on lesion
diagnosis, prediction of response to chemotherapy, risk of recurrence, disease-free survival,
axillary lymph node status, and the influence of tumor edema in histologic characterization
of BC have already been studied in the field of BC [9-11]. However, considerable study het-
erogeneity has been found in the literature, mainly regarding the specifics of the radiomic
approach [10].

Building a ML system requires engineering and expertise to design an extractor that
transforms the features into an appropriate representation that the learning subsystem can
detect or classify. For this reason, there has been an emergence of the Deep Learning (DL)
approach, which improves this process by automatically discovering the representations
needed for the specific task from the raw data [12]. A key role is played by Convolutional
Neural Networks (CNNs), which are a set of deep architectures that receive raw image
data as input and extract features to learn discriminative properties using hierarchical
representations of images.

Deep Learning has already been applied to BC-MRI in the lesion diagnosis, prediction
of tumor molecular subtypes, pathological complete response, and axillary lymph node
status [13-17]. To our knowledge, there are no articles that have studied the role of Al
through DL in predicting the risk of distant metastasis from primary BC. Therefore, the
purpose of this study is to develop a DL-CNN model to predict the risk of distant metastasis
using Contrast-Enhanced 3T-MRL
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2. Materials and Methods
2.1. Study Population

This is a retrospective observational study where only existing information col-
lected from human participants was used, with no identifiers linking individuals to the
data/samples. All methods and procedures meet institutional and research committee
ethical standards in accordance with the 2013 Declaration of Helsinki.

All breast 3T-MRI exams performed at the Radiology Department of our hospital,
from January 2011 to July 2022 for pre-operative evaluation, were retrospectively reviewed.
The inclusion criteria were as follows: (a) pre-operative breast 3T-MRI with Dynamic DCE-
MRI sequences; (b) diagnostic confirmation of invasive breast cancer by histopathological
analysis; (c) complete histological analysis including molecular receptor status (estrogen
receptor ER; progesterone receptor PgR; epidermal growth factor receptor HER2) and
proliferation index Ki-67; (d) patients undergoing clinical and imaging follow-up at our
institution for at least seven years or until distant metastases diagnosis.

The presence of breast implants, post-chemotherapy follow-up patients, exams for
neo-adjuvant treatment evaluation, and images that were not of good diagnostic quality
were all considered as exclusion criteria.

Written informed consent was obtained for all patients before MRI.

Following the mentioned criteria, a total of 157 breast cancer patients with 160 breast
lesions were included in the study. Patients clinical data (age, menopausal state, family
history, hormone therapy) were collected.

2.2. MRI Imaging and Data Analysis

All MRI exams were performed on a 3T magnet (Discovery 750; GE Healthcare,
Milwaukee, WI, USA). Patients were positioned prone and a dedicated eight-channel breast
coil (8US TORSOPA) was used. Three orthogonal localizer sequences were employed, then
images were acquired following this protocol:

e  T2-weighted axial single-shot fast spin echo sequence with a modified Dixon technique
(IDEAL) for intravoxel fat-water separation (TR/TE 3500-5200/120-135 ms, slice
thickness 3.5 mm).

Diffusion-weighted axial single-shot echo-planar with fat suppression sequence.
(TR/TE 2700/58 ms, slice thickness 5 mm) with diffusion-sensitizing gradient with a
b-value of 0, 500, and 1000 s/mm?.

e  Dynamic 3D-T1lw axial and sagittal gradient echo sequence with fat suppression after
injection of 0.1 mmol/kg body weight of Gadoteric acid (Dotarem®, Guerbet S.p.A.,
Villepinte France, or Claricyclic®, GE Healthcare S.r.1, Chicago, IL, USA) at a rate of
2 mL/sec followed by a bolus of 15 mL saline flush (TR/TE 4/2 ms, slice thickness
2.4 mm), before, and five to ten times after intravenous contrast medium injection.

Subtracted images were automatically produced in post-processing from the images
after contrast medium administration for a more accurate tumor analysis. The largest
lesion was considered to be the index lesion for statistical analysis purposes. Reading was
performed without access to the original reports and clinical data.

The following MRI characteristics were collected for each lesion using DCE sequences
as reference images for tumor detection and characterization.

Location on the breast quadrant;

Margins: regular, irregular, lobulated, speculated, non-mass;
Size (mm);

Morphology: round, oval, or irregular.

For each index lesion, a signal-intensity-to-time curve (SI/T) was automatically gener-
ated by placing a region of interest (ROI) within the lesion on a subjectively recognized area
of maximal contrast enhancement and evaluating all the acquired DCE series. The kinetics
curves were classified as I (progressive wash-in), II (plateau) or III (rapid wash-out), as
reported in the current ACR BI-RADS guidelines [18].
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ADC values were calculated for quantitative analysis by superimposing the subtracted
images on the ADC map. An ROI with a diameter of 3-6 mm was manually drawn on the
slice where the lesion reached its greatest diameter. ADC measurements were performed
only on the enhanced solid portion to avoid areas of T2 shine-through.

Distant metastasis status for each patient was recorded using clinical and imaging
follow-up, with definitive histological characterization confirming breast cancer cells as a
dichotomous result: positive, if there was at least one organ with metastases, or negative,
if there were no metastases. Radiological examinations (MRI, CT, and PET) and medical
records of the Patients were collected up to a maximum of seven years after the initial
diagnosis of breast cancer; if distant metastases were found, their organ site was recorded.

2.3. Histologic Characteristics

All breast lesions were characterized on the histological specimen obtained by a
core biopsy and on the histological definitive sample after surgery by two pathologists.
Histological diagnosis was performed according to the WHO classification.

The histopathological grade was evaluated according to the Nottingham Grading
System, considering tubule formation, pleomorphism, and mitotic count through a scoring
system. The total score ranges from 3 to 9: 3-5 corresponds to grade 1 (G1), 6 or 7 to grade
2 (G2), and 8 or 9 to grade 3 (G3).

Immunohistochemical (IHC) analysis was performed to evaluate molecular receptor
status (ER, PgR, and HER?2) and to calculate the Ki-67 index. Evaluation of ER and PgR
status was performed by IHC using Dako monoclonal antibody, 1:100 dilution. The mono-
clonal antibody Mib-1 (1:200 dilution; Dako, Glostrup, Denmark) was used to assess the
Ki-67 index, which was reported as the percentage of immune-reactive cells out of 2000 tu-
mor cells in randomly selected high-power fields surrounding the tumor core. HER2 status
was re-evaluated using the Hercep test (Dako, Glostrup, Denmark), following published
guidelines. Samples that gave an equivocal IHC result were subjected to fluorescence in
situ hybridization (FISH) analysis. A ratio of HER2 gene signals to chromosome 17 signals
greater than 2.2 was used as a cut-off value to define HER2 gene amplification. ER and
PgR status were considered to be positive if the expression was >1% and negative if the
expression was <1%. HER2 expression was classified as 0, 1+, 2+ or 3+; only tumors
reaching a score of 3+ were considered to be HER2-positive.

2.4. Segmentation and Pre-Processing

Each case was anonymized and identified with a progressive identification num-
ber (ID).

For the analysis of bilateral tumors, lesions were considered one at a time with dif-
ferent IDs. Image preparation was performed on a personal workstation using 3D Slicer
(version 5.0, The Slicer Community, Brigham and Women’s Hospital, Boston, USA): a
freely available open-source software. For each tumor, the second post-contrast subtracted
T1lw sequence was selected. For each case, a label map was generated. Using manual
and thresholding-assisted segmentation techniques, the lesions were drawn manually.
Segmentation was initially always performed in the axial projections and subsequently re-
shaped and optimized in the other projections until an optimal lesion contour was obtained.
Multifocal or multicentric lesions were also segmented.

2.5. Volumes Extraction

To limit the amount of non-tumor tissue to be included, the smallest 3D rectangle
circumscribed by the tumor region was considered for each patient in Single Variable-size
Box (SVB), as shown in Figure 1.

Denoting with dxp x dyp x dzp the size of the bounding rectangle of patient p, a 3D
cubic box of size dmp x dmp x dmp is used, where dmp = max(dxp, dyp, dzp), to crop
the subject. The cubic box of the SVB option depends on the patient. Therefore, the amount
of non-tumor tissue depends on the shape of each patient’s tumor region and the difference
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between the largest (dmp) and maximum (dxp, dyp, dzp) size, and the difference between
the largest (dmp) and smallest (dmp) size.

Figure 1. Representation of the SVB option, only the smallest 3D bounding box confined to the tumor
region is considered.

However, in the case of multifocal and multicentric tumors, the parenchyma between
lesions was included in the 4D volume extracted. Each voxel was associated with its
size information in millimeters (mm). During the acquisition of the DCE sequence for
patient p, the Pixel Spacing attribute was the physical distance between the centers of each
two-dimensional pixel, specified by two numerical values ("xp, “yp) that represented the
row spacing and vertical spacing, respectively. In addition, the attribute spacing between
slices specified by the numerical value "zp was the distance between slices measured along
the normal to the first image.

2.6. Metastasis Prevision Assessment

We exploited CNN s for the prediction of extra-nodal metastasis. The voxel-based (VB)-
NET model was used, considering that the size of the selection rectangle varies according
to the tumor region of each patient.

The proposed networks consist of several reduction layers and two fully connected
layers. A reduction layer is a block with a convolutional layer, followed by a normalization
layer and the ReLU function. Each convolutional layer reduces the dimensionality of
the input feature map and doubles the number of channels, making pooling operations
(maximum or average pooling) unnecessary.

The architecture of VB-NET is shown in Figure 2. We used a 3D CNN, consisting
of five reduction blocks. The input volume (4D data) represented the smallest cubic box
surrounding the tumor region or lesion of each patient. Because the SVB considered a
selection rectangle size that varies according to each patient’s tumor region, resizing was
used to give the volumes a common size of 64 x 64 x 64, before feeding them to the
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Figure 2. Architecture of the VB-NET used for the SVB. The VB-NET is a 3D CNN with five reduction
blocks and two fully connected layers.

Performance was evaluated in terms of accuracy, sensitivity, specificity, and area under
the ROC curve (AUC). The experiment was performed in a 10-fold cross-validation (CV)
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setting. A patient-based cross-validation was performed to reliably estimate performance,
avoiding the use of 3D volumes or slices of the same patient during the training and
evaluation phase. The experiment was conducted using Pytorch (version 1.10, Meta Al,
Astor Place, New York, NY, USA), while the pre-processing phase, including the different
bounding box options, were implemented in MATLAB 2020b.

2.7. Statistical Analysis

Descriptive statistics were carried out using the statistical software SPSS© version 25.0.
Statistical significance was set at p < 0.05. Spearman’s rank-order correlation was evaluated
to assess whether there was a correlation between the presence of distant metastases during
follow-up and categorical variables, clinical (menopausal status, hormone therapy, family
history), MRI (site, margins, size, morphology, kinetic curves), and histologic features
(histologic type, grading, expression of ER, PgR and HER?2). The Kolmogorov—-Smirnov
test was performed to determine whether age, tumor size, Ki-67 index, and ADC values
followed a normal distribution.

Statistical comparisons between the presence of distant metastases during follow-up
and age, tumor size, Ki-67 index, and ADC values were performed using the Kruskal-Wallis
H test.

3. Results

In this study, 157 breast cancer patients with 160 lesions were included. Three patients
had bilateral breast cancer, but only one patient with bilateral BC presented distant metas-
tases at follow-up. The mean age of the patients was 55 years (range 30-85 years). The
patients were divided into two groups:

- Patients with distant metastases at follow-up (39/157 patients, 40 lesions);
- Patients negative for distant metastasis (control group, 118/157 patients, 120 lesions).

Metastasis sites are represented as follows: 3 (5%) brain, 17 (31%) lung, 19 (34%) bone,
14 (25%) liver, 1 (2%) gluteal subcutis, and 1 (2%) brachial plexus.

Anamnestic and clinical data of the study population were collected. The mean age of
patients with metastases at follow-up was 54.3 years (range 30-84 years), while the mean
age of the control group was 55.2 years (range 30-85 years). The average time to occurrence
of distant metastasis was 22.8 months (range: 1-84 months).

The mean diameters of the measured lesions in the study population, the group with
distant metastases, and the control group were 22.6 mm (range 6-90 mm), 33.3 mm (range
7-90 mm), 19.7 mm (range 6-80 mm), respectively.

The main imaging, histological, and clinical characteristics of the patients are shown
in Tables 1-3. Two examples are reported in Figures 3 and 4.

Table 1. Description of the extracted MRI characteristics.

. Study Patients with
Variation Population Metastasis Control Group p-Value
Kinetic Curve n 21 7 14
% 13.1% 17.5% 11.7%
n 71 15 56 0.962
Y% 44.4% 37.5% 46.7%
n 68 18 50
% 42.5% 45.0% 41.7%
Margins n 4 0 4
Y% 2.5% 0.0% 3.3%
Irregular n 86 21 65
Y% 53.8% 52.5% 54.2%
Lobulated n 25 7 18 0.349

Y% 15.6% 17.5% 15.0%
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Table 1. Cont.
Variation Po::llll:t)i’on P;;Letg;:av;:h Control Group p-Value
Spiculated n 33 6 27
% 20.6% 15.0% 22.5%
Non-mass n 12 6 6
% 7.5% 15.0% 5.0%
Table 2. Description of the extracted histologic characteristics. * indicates statistical significance
(p < 0.05).
Variation Pos:ll:t}i,on P;;zg::a‘;viisth Control Group p-Value
Histology IDC n 127 30 97
% 79.4% 75.0% 80.8%
ILC n 33 10 23 0.433
% 20.6% 25.0% 19.2%
hﬁi‘;‘;:‘r Luminal A n 59 1 48
% 36.9% 27.5% 40.0%
Luminal B n 69 18 51
% 43.1% 45.0% 42.5%
HER2+ n 13 3 10 0.079
% 8.1% 7.5% 8.3%
Triple negative n 19 8 11
11.9% 20.0% 9.2%
ER Status Negative n 31 12 19
% 19.4% 30.0% 15.8%
Positive n 129 28 101 0.195
% 80.6% 70.0% 84.2%
PgR Status Negative n 58 23 35
% 36.3% 57.5% 29.2%
Positive n 102 17 85 0.001 *
% 63.7% 42.5% 70.8%
HER2 Status Negative n 137 32 105
% 85.6% 80.0% 87.5%
Positive n 23 8 15 0.044 *
14.4% 20.0% 12.5%
Grade 1 n 19 4 15
% 11.9% 10.0% 12.5%
2 n 71 15 56 0.225
% 44.4% 37.5% 46.7%
3 n 70 21 49
% 43.8% 52.5% 40.8%

IDC: Invasive Ductal Cancer; ILC: Invasive Lobular Cancer.
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Table 3. Description of the extracted clinical characteristics.

.. Stud Patients with
Variation Populat)i’on Metastasis Control Group p-Value
Menopause Pre- n 71 17 54
% 44.4% 42.5% 45.0%
Post- n 89 23 66 0.784
% 55.6% 57.5% 55.0%
Hormone None n 109 39 35
Therapy
% 90.8% 97.5% 29.2%
Positive n 11 1 85 0.168
% 9.2% 2.5% 70.8%
Family History No relatives n 118 32 86
%o 73.8% 80.0% 71.7%
>1 relative with BC n 42 8 34 0.303
26.3% 20.0% 28.3%

Figure 3. Case of a 52-year-old woman with a G3 triple negative invasive ductal carcinoma, Ki-67 of

30%. (a) The post-contrast image shows a retroareolar irregular non-mass-enhancing lesion in the left

breast. (b) At 1-year follow-up: post-contrast axial CT image, with some metastatic nodules in the

liver parenchyma. (c) Representation of the extraction of the segmentation mask.
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Figure 4. Case of a 53-year-old woman with a G2 Luminal B invasive ductal carcinoma, Ki-67 of 25%.
(a) The post-contrast image shows an irregular mass-enhancing lesion in the upper quadrants of the
right breast. (b) At 3-year follow-up: post-contrast axial CT image, with a metastatic nodule in the
right frontal lobe (arrow). (c) Representation of the extraction of the segmentation mask.

Using Spearman’s rank test, no correlation was found between the presence of distant
metastasis at follow-up and menopausal status, family history, hormone therapy, lesion
margins and morphology, kinetic curve, histologic type, histologic class, grading, and ER
expression (p > 0.5). A significant correlation was found between the presence of distant
metastasis at follow-up and the expression of PgR and HER2. The Kruskal-Wallis H test
demonstrated a significant correlation between the presence of distant metastasis at follow-
up and lesion size (p value < 0.001). No correlation was found between the presence of
distant metastasis at follow-up, patient age, ADC values, and Ki-67 index.

The VB-NET model achieved a sensitivity, specificity, accuracy, and AUC of 52.50%,
80.51%, 73.42%, and 68.56%, respectively.

4. Discussion

Conflicting evidence exists regarding the improved survival of metastatic patients
from BC. Some studies have found that the development and spread of adjuvant systemic
therapies have resulted in a reduction in the spread of BC metastases, but not an increase in
survival, due to the shift from lesions developing in sites with higher survival rates, such
as the bone, to more aggressive sites such as the brain and liver [3]. However, according to
other studies [19-23], adjuvant therapy has increased patient survival.

BC can be characterized by clinical cancer dormancy [24,25], and a wide window of
relapse, which can range from months to decades after treatment of the primary tumor.
This is related to the characteristic histologic heterogeneity of breast tumors; due to a
higher incidence rate of metastasis, basal-like, and HER2-positive BC having a worse
prognosis than tumors that express the estrogen receptor [26]. Therefore, in order to further
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individualize BC treatment for each patient, it is crucial to identify a potential risk marker
for metastasis development.

Al has the ability to infer data from the images that are not visible to the subjective
eye of the radiologist. Our aim was to test in our sample whether using a 3T-MRI-based
Deep Learning model we can non-invasively predict the risk of distant metastasis from BC.
We also studied whether clinical, MRI, or histologic features could play a similar role in
this task.

Ours is the first study that attempts to build a predictive model based on CNN Deep
Learning for predicting distant metastasis of BC. However, our results demonstrated low
AUC, accuracy, and sensitivity values of 68.56%, 80.51%, and 52.50%, respectively. These
results reflect a currently insufficient capacity of the Deep Learning approach with CNN
in its ability to predict the development of distant metastasis. In our previous studies,
we have shown that both a radiomic and a DL approach can predict with greater than
80% accuracy the lymph node status of patients with BC [16,27]. We assume that this
is due to the presence of lymphovascular invasion phenomena, some of which are not
perceptible to the human eye. In the radiomic approach with a convex hull optimized
segmentation, and in DL with the SVB bounding option, mammary regions adjacent to
the tumor were also analyzed, obtaining information on possible lymphatic spread. For
the same reason, we found that radiomics applied to the study of peritumoral edema also
contribute significantly to predicting tumor histology and prognosis [11].

Furthermore, in this study no correlation was found between the risk of distant
metastasis and almost all MRI, histologic, and clinical features considered. Tumor size,
and therefore tumor stage, have a very good correlation with the risk of metastasis, as
already found in the literature [28,29]; however, Sopik et al. determined that there is
a linear relationship between metastatic risk and primary tumor size only for lesions
between 7 and 60 mm, while both very small and very large tumors do not respect a linear
relationship. No correlation was found between ADC values and the risk of metastasis; on
the contrary, Kim et al. found that patients with lower minimum ADC values and higher
ADC difference values had worse distant metastasis-free survival [30]. Tumors with these
characteristics had greater cellularity and intratumoral heterogeneity, corresponding to
greater aggressiveness.

With a DL approach, which is more complex than conventional radiomics, we did
not find a meaningful performance of the model for several possible factors. BC is a
heterogeneous disease, characterized by considerable pathophysiologic and histologic
variability: the different molecular subtypes each have a different rate of aggressiveness and
a different mean period free of recurrence or relapse. In addition, each molecular subtype
has preferential sites of metastasis development. In a study by Xiao et al., HR+ BCs were
correlated with the risk of bone metastasis, HER2+ subtypes were significantly associated
with higher rates of liver, brain, and lung metastasis, and triple-negative tumors had a
higher rate of brain metastasis but a significantly lower rate of bone metastasis [31]. These
differences imply variability in the risk of metastasis as well as their clinical manifestation.
This necessarily implies that surgical and pharmacological treatment must be particularly
tailored to the patient, an element that may lead to further variation in the risk of distant
disease and the time required for the onset of metastasis. A recent study by Cheng et al.
investigated and validated the radiomic approach for predicting the risk of metastasis
from BC: in this study, patients with the same molecular subtype (triple negative BCs)
and with metastasis only in the brain site were selected. We expect that achieving similar
homogeneity of the selected patient cohort may result in increased performance of the
Al model.

Our study has some limits: this is a retrospective study, with a relatively small number
of patients with highly heterogeneous BC types. In addition, we could not explore the
possible differences between the different histologic and molecular subtypes, nor the risks
of developing metastases for each organ site, due to the small sample size. Segmentation
was performed by one radiologist using the same methodology for all lesions, but with
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a manual assisted approach, which is a method that is time-consuming as well as not
error-free. Only the second post-contrast phase was used as the segmentation mask, which,
although it is recognized as the phase with higher contrast resolution for BCs, could cause
the loss of additional information available from the other sequences. In particular, by
considering only the second post-contrast phase, we lost information on the temporal
dimension of the post-contrast tumoral enhancement progression, which was instead
included in our previous DL study on the prediction of loco-regional lymph node status,
which might explain the higher accuracy obtained [16].

Therefore, several steps are needed to improve the current performance of our model:
enrollment of more patients to alleviate histological differences in BCs, sharing of different
datasets among multiple institutions, development of prospective and multicenter studies,
and validation and comparison of additional Al models. Thus, the study population should
be as homogeneous as possible, with equal histological and molecular subtypes, and
metastases in the same sites. In this regard, in this study we found a significant correlation
between HER2, PgR expression, and metastasis risk, so the first successive step should be
to select a cohort of patients with the expression of these two specific molecular receptors.

5. Conclusions

Our study demonstrated a currently insufficient ability of the Deep Learning approach
in predicting distant metastasis status in patients with BC using CNNSs. Our results suggest
that further studies are necessary to investigate the role of Al in this specific task.
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