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Generation and manipulation of randomness is a relevant task for several 
applications of information technology. It has been shown that quantum 
mechanics offers some advantages for this type of task. A promising 
model for randomness manipulation is provided by Bernoulli factories—
protocols capable of changing the bias of Bernoulli random processes in 
a controlled way. At first, this framework was proposed and investigated 
in a fully classical regime. Recent extensions of this model to the quantum 
case showed the possibility of implementing a wider class of randomness 
manipulation functions. We propose a Bernoulli factory scheme with 
quantum states as the input and output, using a photonic-path-encoding 
approach. Our scheme is modular and universal and its functioning is truly 
oblivious of the input bias—characteristics that were missing in earlier work. 
We report on experimental implementations using an integrated and fully 
programmable photonic platform, thereby demonstrating the viability of 
our approach. These results open new paths for randomness manipulation 
with integrated quantum technologies.

Randomness plays an essential role in several research fields and daily 
life applications, such as those connected to sensitive data protection. 
There are several deterministic techniques that can be exploited to 
generate randomness, whose security and efficiency depend on the 
precise algorithm used. Quantum mechanics provides intrinsic ran-
domness, which is unbreakable from the theoretical point of view, 
but hard to ensure from the experimental one, due to the inevitable 
noise and imperfect control over devices. This peculiar property of 
quantum theory leads to several advantages in the manipulation, 
communication and processing of information, which are shown 
by various quantum communication protocols1–3 and quantum 
computational algorithms2,4–8. The generation and manipulation of 
quantum randomness have been studied in depth, resulting in imple-
mentations using different platforms9–12, degrees of freedom13–16 and  
protocols17–21.

A recent proposal aims at using quantum resources to manipulate 
randomness in Bernoulli processes. Classical Bernoulli factories were 
first introduced in ref. 22 to address the problem of how to process 
instances of a Bernoulli variable (flips of a biased coin) with the goal of 
generating an output Bernoulli variable whose bias is a desired function 
of the (unknown) input bias. This task was called a classical-to-classical 
Bernoulli factory (CCBF), since both input and output are classical 
coins, and finds applications in several fields ranging from Markov 
chain Monte Carlo simulation23 to economy24. In ref. 22, the space of 
simulable functions was also characterized, and a method was pro-
posed to construct them.

In recent years, the problem has been extended to the quantum 
domain by analysing the possibility of replacing the input and/or out-
put Bernoulli variables with quantum counterparts. In refs. 25,26, the 
first quantum version of this process, named quantum-to-classical 
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ignorance of the user about the value of the input bias. In ref. 22, a 
necessary and sufficient condition for a Bernoulli factory to exist for 
a given function f was identified. In particular, it was shown that not all 
functions are exactly implementable as a Bernoulli factory.

The concept of a Bernoulli factory has been extended to the quan-
tum domain by exploiting a new fundamental resource, namely, a 
quoin, of parameter p. In detail, a quoin is a qubit in the pure state 
||Cp⟩ ∶= √1 − p |0⟩ + √p |1⟩. A QCBF, first proposed in ref. 25, has quoins 
as inputs with bias parameter p, and—at the output—produces a series 
of classical bits that follow a Bernoulli distribution with parameter f(p). 
The set of functions f for which a CCBF can be constructed was shown25,26 
to be strictly included in the set that can be implemented via a QCBF.

On the other hand, in the QQBF29, both input and output are quan-
tum states. In detail, a QQBF takes a set of quoins as the input, all with 
the same bias parameter p, and returns a quoin with parameter 
f(p) ∶ 𝒟𝒟 𝒟 𝒟0, 1] → 𝒟0, 1]. In general, we furthermore define the follow-

ing parameterization of single-qubit states proved to be helpful in the 
analysis of Bernoulli factories:

|z⟩ ∶= z |0⟩ + |1⟩
√1 + |z|2

, (1)

where z is a complex variable; this can be seen as a stereographic  
projection of the Bloch sphere onto the complex plane. For a general 
input qubit |z〉, a QQBF associated to a complex function g(z) ∶ ℂ → ℂ  
is a process that generates a qubit in the state |g(z)〉 at the output.  
In ref. 29, it was demonstrated that a necessary and sufficient condition 
for a QQBF to exist is that the associated function belongs to the  
complex field generated by element z, that is, g(z) is a complex rational 
function in the parameter z. Using the previous result and the algebraic 
theory of the field, the necessary and sufficient condition to demon-
strate the feasibility of implementing all the complex rational functions 
(that is, all the simulable QQBF) relies on showing the possibility  
of implementing the quantum version of the field operations, which 
are inversion, addition and product, as well as the possibility to  
combine them.

Bernoulli factory (QCBF), was defined by considering a quantum input 
and a classical output. This QCBF extension simulates a Bernoulli vari-
able given a quantum coin (or quoin) as an input parameter. A quoin 
is a qubit in a pure state that—when measured in the computational 
basis—returns a classical Bernoulli variable. It was observed that all 
the functions simulable by a CCBF can also be implemented as a QCBF. 
Indeed, it is enough to measure the quoin in the computational basis 
to recover a Bernoulli variable with the same parameter. In ref. 25, 
the authors characterized the space of simulable functions with a 
quantum input and showed that a change in the basis is the only nec-
essary quantum operation required to implement the complete set 
of simulable functions. In fact, a Bernoulli factory that uses quoins as 
inputs can implement a strictly larger set of bias manipulation func-
tions than the fully classical case. Moreover, there is experimental 
evidence that a quantum advantage can be achieved27,28 with respect 
to the required number of inputs, even for the class of classically  
simulable functions.

A more complex quantum extension of the Bernoulli factory was 
later proposed29, now having quoins as both input and output and 
aptly named a quantum-to-quantum Bernoulli factory (QQBF). In  
ref. 29, the set of simulable functions by a QQBF was completely char-
acterized, and a procedure to construct them was defined. For any 
version of the Bernoulli factory, it is important that the implemen-
tation is the same independent of the input bias, that is, the proto-
col should not use any information on the bias. Furthermore, any 
experimental scheme should aim at the possibility of concatenating 
different operations in a modular fashion without the knowledge of 
the output state from the prior step. All previous attempts to experi-
mentally implement QQBFs30,31 were unable to simultaneously enforce 
these conditions. Once all the features of the QQBF are verified, the 
quantum input and output enable its use as a subroutine in quantum 
algorithms. For example, QQBF-like operations have been used for del-
egated quantum computing32 to obtain genuine secure quantum-state  
preparation.

In this work, we propose a modular approach to implement a genu-
ine QQBF and we report its experimental realization using integrated 
quantum photonics. In detail, we use a six-mode, fully programmable, 
integrated photonic processor (IPP) to manipulate photonic qubits 
generated by spontaneous parametric down conversion. Our approach 
provides a viable route for computational tasks involving Bernoulli 
processes, within a programmable platform that is highly stable, reli-
able and compact.

This paper is structured as follows. In the ‘Bernoulli factory’ sec-
tion, we review the theory of Bernoulli factory processes. Then, in the 
‘Modular scheme for a photonic QQBF’ section, we describe our pro-
posed modular approach. In the ‘Implementation’ and ‘Experimental 
results’ sections, we discuss our experimental apparatus and we dem-
onstrate both individual and concatenated modules corresponding 
to the various operations that lead to a universal QQBF capable of, in 
principle, implementing any quantum simulable function.

Bernoulli factory
Different types of Bernoulli factory are proposed in the literature, 
which may take either classical or quantum resources as inputs and 
outputs (Fig. 1).

A Bernoulli factory, in a classical context, is an algorithm for the 
manipulation of random processes that follow a Bernoulli distribution 
ℬ(p), described by the bias parameter p. More specifically, a Bernoulli 
factory aims at constructing a function Gf: {0, 1}∞→{0, 1}, associated with 
a function f ∶ 𝒟𝒟 𝒟 𝒟0, 1] → 𝒟0, 1], such that its application to a sample 
following a Bernoulli distribution with parameter p is equivalent to 
sampling exactly from a different Bernoulli distribution with bias 
parameter f(p). Formally, this corresponds to searching for a function 
Gf satisfying Gf (ℬ(p)

∞) = ℬ (f(p)). An essential requirement is that the 
function Gf must not depend on p, which reflects the assumed 
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Fig. 1 | Conceptual scheme of a Bernoulli factory. a, CCBF where a sequence of 
classical coins with unknown bias p are processed for producing a new coin with 
bias f(p) (refs. 22,44). b, QCBF in which a quoin serves as the input to synthesize 
a classical one25,26. c, Fully quantum version where both input and output are 
general quantum states29.
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Modular scheme for a photonic QQBF
To demonstrate the feasibility of a generic QQBF using integrated 
photonics, we will explicitly construct an appropriate scheme to 
implement the field operations with photons. Previous attempts 
to experimentally implement the field operations30,31 were limited, 
as they substantially relied on prior knowledge of the input state 
(Supplementary Note 1). This is in stark contrast to the fundamental 
requirement for a correct implementation of the protocol, that is, 
full ignorance of the input state. Here we present three interferom-
eters (Fig. 2), each of them implementing a particular field opera-
tion that can be concatenated at will. These schemes use the usual 
dual-rail encoding for photonic qubits, where logical states |0〉 and 
|1〉 are encoded as the presence of a photon in one of two possible 
optical paths. This choice is motivated by the current state of the art 
in integrated photonic technology, which allows the implementation 
of complex architectures33 based on beamsplitters (BSs) and phase 
shifters. Let us now discuss the implementation of each field opera-
tion building block.

The inversion operation, corresponding to the transformation 
|z⟩ → ||

1

z
⟩, is performed by swapping the two modes of the dual-rail 

qubit (Fig. 2a). It should be noted that this is the only unitary operation 
among the three, thereby having a success probability equal to 1.

The product operation corresponds to the transformation  
|z1〉|z2〉→|z1z2〉 and can be implemented as shown in Fig. 2b. Two photons 
are injected in the interferometer, one for each dual-rail qubit mode 
pair (|0〉1, |1〉1) and (|0〉2, |1〉2). Then, the modes representing states |1〉1 
and |0〉2 of the two dual-rail qubits are routed as the input modes of a 
balanced BS. The output modes after the BS are then measured by using 
the two detectors labelled ‘+’ and ‘–’ (Fig. 2b). Conditioned on the 
detection of a single photon in one of the two outputs of the BS, the 
output state on the remaining modes |0〉o and |1〉o, after inserting a 

relative π/2 phase shift, is found to be |±z1z2⟩o =
|1⟩o±z1z2 |0⟩o

√1+|z1z2|2
, where the 

‘+’ or ‘–’ sign depends on which detector clicks. Hence, the conditional 
output is found in the product state, up to a state-independent phase 
factor of π. The success probabilities P+ and P− of the two post-selected 
outputs are given by

P+ = P− = 1 + |z1|2|z2|2
2 (1 + |z1|2) (1 + |z2|2)

. (2)

We observe that the success probability is greater than zero for all 
the inputs, except for the pairs (z1 = 0, z2 = ∞) and (z1 = ∞, z2 = 0). Indeed, 
for these pairs, the product operation returns an indeterminate form. 
In Supplementary Note 2, we provide some further analysis of the 
behaviour of the success probability.

Finally, the addition operation, corresponding to the transforma-
tion |z1〉|z2〉→|z1 + z2〉, can be implemented with the interferometer 
shown in Fig. 2c. Two photons are injected in the interferometer, one 
for each mode pair (|0〉1, |1〉1) and (|0〉2, |1〉2). Two identical BSs are used 
to mix the mode pairs representing the same logical state for the two 
qubits, combining |0〉1 with |0〉2 and |1〉1 with |1〉2. After the mixing pro-
cess, one output port of each BS is measured via the two detectors 
labelled as S and I (Fig. 2c), whereas a π/2 phase shift is added in mode 
|1〉o. Conditioned on the detection of a single photon in S, the output 

state is found to be ||(z1 + z2)√RT/(R − T)⟩
o

, where R and T are the 

reflectivity and transmissivity of the BSs, respectively. If a single photon 
is detected at I instead, the corresponding output state is 
||−z1z2/(z1 + z2)(R − T )/√RT⟩

o
. The numerical multiplicative factor 

√RT/(R − T) can be set to 1 by choosing the reflectivity of both BSs to 

be R = 5+√5
10

. For this choice of R, the output conditioned on a click in 

detector S is the sum state |z1 + z2〉o, whereas the one conditioned on a 

click in detector I is the harmonic mean state |–z1z2/(z1 + z2)〉o. The cor-
responding success probabilities are found to be

PS =
|z1 + z2|2 + 1

5 (1 + |z1|2) (1 + |z2|2)
, (3)

PI =
|z1 + z2|2 + |z1z2|2

5 (1 + |z1|2) (1 + |z2|2)
. (4)

The probability of success is non-zero for all the inputs, except for the 
pairs (z1 = ∞, z2 = ∞) for addition and (z1 = 0, z2 = 0) for harmonic mean, 
since the results of the corresponding operations for these pairs are 
an indeterminate form.

Our implementation, involving linear optics and dual-rail encod-
ing, is, thus, based on a post-selection process. More specifically, the 
schemes for the product and addition operations, involving the mini-
mum cost in terms of the number of photons and modes, are found to 
be probabilistic. Furthermore, the success probability is then found 
to be dependent on the transformation f being implemented by the 
scheme and on the input state |z1〉|z2〉. However, we observe that such 
probabilistic nature is unavoidable within the protocol due to the intrin-
sic nature of the Bernoulli process. In Supplementary Note 3, we show 
that our proposed interferometer designs for the implementation of 
the field operations are essentially unique if we use only four modes.

After the definition of the building blocks for the presented 
scheme, we now discuss the possibility of concatenating the field opera-
tions. This is an important characteristic feature of our approach, and 
fundamentally different from previous realizations30,31. Our modular 
scheme allows for a sequential application of the operations. This is 
possible owing to the common encoding strategy for the input and 
output states of the building blocks. Thus, to concatenate two opera-
tions, it is sufficient to apply the respective modules in sequence, 
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Fig. 2 | Building blocks for a generic QQBF. Interferometric schemes that 
implement the basic operations to build a generic QQBF with dual-rail encoded 
qubits are shown. The inputs of the interferometers are labelled by numbers 
1 and 2, and the outputs are labelled as ‘o’. a, Inversion operation is performed 
by swapping the two modes of the input dual-rail qubit. b, Product operation is 
performed by sending one waveguide from each dual-rail qubit (|1〉1 and |0〉2) into 
a balanced BS, and measuring the outgoing modes. Detection of a single photon 
in the modes labelled ‘+’ or ‘–’ signals success (up to a global phase). c, Addition 
operation is implemented by directing the modes, representing the same state 
of the two qubits, to equally unbalanced BSs, and measuring one output mode 
for each BS. When one photon is found in the detector labelled S, and the other 
photon is in output mode |0〉o or |1〉o, the output state is the sum of the input ones 
(up to a global phase).
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using the output of one operation as the input of the subsequent one. 
Importantly, for each product and addition, an additional photon 
must be added due to the post-selection process required by these  
operations.

Implementation
The experimental certification of our modular QQBF was implemented 
by using up to three photonic qubits in a six-mode IPP (Fig. 3). The 
IPP was fabricated in-house in a glass substrate by femtosecond laser 

b c

a

φ

φ

R

R = 0.5 R = 0.5
θ

Fig. 3 | Scheme of the six-mode IPP. a, Interferometer layout. The device 
is a six-mode fully programmable interferometer based on the universal 
rectangular architecture45, allowing the implementation of arbitrary linear 
optical transformations. b, Each BS of arbitrary reflectivity R, required in the 
scheme described elsewhere45, is implemented via a module composed of a 

Mach–Zehnder interferometer with symmetric 50/50 directional couplers, and 
two tunable phase shifts θ and φ. The programmable phases are implemented via 
thermo-optic phase shifters. c, Picture of the actual device. The footprint of the 
circuit is 82 × 20 mm2.
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Fig. 4 | Circuit representation of the IPP programmed to implement a 
complete Bernoulli factory and the building blocks. a, Depiction of the full 
device highlighting stages for state preparation, Bernoulli factory evolution 
and state characterization. In particular, the Bernoulli factory evolution shown 
here corresponds to the settings required to implement the concatenation 
of an addition followed by a product. In this case, BS5, BS8, BS11 and BS14 
are represented with dotted lines since their reflectivities are set to 1; the 

reflectivities of BS4, BS9, BS12 and BS13 are set to 0, whereas the reflectivities 
of BS6, BS7 and BS10 are tuned to match the value required for the desired 
operation. BS1, BS2, BS3 and BS15 are controlled during the experiment to 
generate the input state and reconstruct the output state. b, Settings of the 
internal evolution required to implement the building block corresponding to 
the product operation. c, Setting corresponding to the required configuration 
for the addition operation.
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micromachining34,35. A complete scheme of the experimental apparatus 
used for the experiment is described in the Methods and Supplemen-
tary Note 4. We discuss now, in detail, how to implement a QQBF in our 
six-mode integrated interferometer, and specifically how to achieve 
the different required operations by suitably programming the BS 
network according to the block scheme shown in Fig. 4a. Note that this 
approach, demonstrated here for six modes and thus accommodating 
three dual-rail qubits, could be extended to arbitrary dimensions by 
scaling up the architecture. Our six-mode device is composed of six lay-
ers of BSs with arbitrary reflectivities, and phases in the [0, 2π) interval. 
The functionality of the different layers can be divided into three main 
stages, corresponding to state preparation, Bernoulli factory evolution 
(implementing the linear optical elements for the desired operation) 
and state characterization.

In the state preparation stage, the six input modes are mixed in 
pairs by using three different BSs. For each BS, a phase shifter is pre-
sent in one of the two output ports. This configuration allows the 
preparation of a set of generic input qubits in the dual-rail encoding 
(Supplementary Note 5).

In the second stage of the device, the actual evolution for the 
desired Bernoulli factory operation is applied. More specifically, the 
reflectivity of the BSs and the phase applied by the phase shifters are 
appropriately tuned depending on the unitary evolution to be imple-
mented. In particular, the scheme shown in Fig. 4a represents the 
implementation of an addition operation followed by a product opera-
tion, whereas Fig. 4b,c represents the optical elements required for 
the implementation of each operation individually (configurations 

for the other operations are reported in Supplementary Note 6). Note 
that the addition operation is similar but not equal to the one repre-
sented in Fig. 2, since here the first two waveguides are exchanged. 
This change is inserted to reduce the number of layers required for the 
concatenation of two operations and is implemented by replacing the 
reflectivity of BS6 with its complement, thereby making BS6 and BS7  
complementary.

The final stage performs the necessary operations to characterize 
the output state. The system can be used to perform either tomography 
or direct measurement of the fidelity compared with a target state. 
State tomography for a single qubit requires three projective measure-
ments on mutually orthogonal bases, from which we can reconstruct 
the output state36. On the other hand, to estimate the fidelity, the char-
acterization stage is tuned to act as the projector onto the target state 
(Supplementary Note 5). In such a way, the verification of the protocol 
does not require full tomographic reconstruction of the output state. 
Note that if the output state is used as an input for additional calcula-
tions, the output modes |0〉o and |1〉o are not detected and can be routed 
to subsequent manipulation modules.

Experimental results
The first step towards characterizing the modular QQBF described 
above involves the demonstration of the individual building blocks by 
using the six-mode integrated processor. In particular, according to 
the required interferometric schemes (Fig. 4b,c), the current inside the 
thermo-optic phase shifters of the IPP is tuned to provide the required 
BS reflectivities and phase shifts.
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Fig. 5 | Experimental results of the building block operations. 
Characterization of the building blocks is performed by generating a set of 1,000 
pairs of random states (|z1〉 and |z2〉) sampled uniformly from the Bloch sphere. 
a,b, Representation of the sampled states for |z1〉 (a) and |z2〉 (b). The fidelity of 
the output state after the evolution is measured by projecting it onto the known 

target state. c–g, Distribution of the measured fidelities for each operation, 
for the set of sampled states. h–k, Comparison of the distribution of success 
probability for each operation (solid lines) with the corresponding theoretical 
expectation (dashed lines) for the set of sampled states.
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The operation of every single block is characterized by prepar-
ing (in the first stage of the circuit) a set of random input states (|z1〉 
and |z2〉) sampled from a uniform distribution on the Bloch sphere 
(Fig. 5a,b). Each pair of states is generated in the state preparation stage 
of the circuit by setting the phase and reflectivity of the first layer of 
the interferometer. After the transformation, the output is validated 
by measuring the success probability of the post-selection used and 
the fidelity reached with respect to the target state. The overall figure 
of merit defining the quality of implementation is provided by the 
mean fidelity over the set of sampled states. In Fig. 5c–g, we report the 
results of the measured output fidelities between the output state and 
target state of the operation, for all the three building blocks (inver-
sion, product and addition). The average results are summarized in 
Table 1. Furthermore, in Fig. 5h–k, we report the histograms show-
ing the output distribution of the success probabilities for the two 
operations implemented probabilistically (product and addition). 
From a direct comparison of the obtained results with the theoretical 
expectations, we find that the operations implemented by the circuit 
are performed with fidelities close to a unitary value, thereby demon-
strating the realization of the building blocks of a QQBF. In this case, 
corresponding to the verification of each stand-alone operation, the 
effect of experimental noise due to photon distinguishability is almost 
negligible. Indeed, the inversion operation scheme does not rely on 
photon interference, whereas both product and addition implementa-
tions are verified via two-photon experiments, which, in our source, 
belong to the same generated pair and thus possess a high degree  
of indistinguishability.

As the second step, we demonstrate the modularity of our scheme 
by showing the possibility of concatenating the individual operations. 
This aspect is necessary to fulfil all the requirements for the correct 
implementation of a complete Bernoulli factory. To test the concat-
enation of an addition, followed by a product [(z1 + z2)z3], the circuit 
operation is programmed according to the layout shown in Fig. 4a. 
This requires three input photons. The first two photons, impinging on 
BS1 and BS2, encode the input states for the addition. The third photon 
impinging on BS3, together with the output state from the first opera-
tion, encode the inputs of the product operation. Finally, the output 
of both concatenated blocks is validated by direct projection onto the 
target state in the final stage of the device for an estimation of fidelity.

To test the correctness of the concatenation, we measure the 
output fidelity for a particular set of states corresponding to relevant 
choices of the input. All the results are summarized in Table 2, where 
we report the obtained output-state fidelities. Being a three-photon 
experiment, this implementation requires the injection of photons gen-
erated by the source from different pairs. To compare the experimental 
data with the theoretical prediction, partial photon distinguishability 
between the input photons has to be taken into account. Thus, the 
fidelity FC, after the subtraction of dark counts and accidental coinci-
dences, has to be compared with a theoretical model that calculates 
FD by taking into account only the partial distinguishability between 

the input photons (Supplementary Note 7). We note that this effect is 
due to the used photon source, and not to the QQBF implementation 
itself. The obtained results show a high degree of compatibility between 
FC and FD, thereby demonstrating the correct implementation of the 
concatenation of building blocks. Additionally, we have performed the 
QQBF implementation of a different function, obtained by exchang-
ing the order of the addition and product operations (Supplementary 
Note 6). Also, for this different configuration, we obtain a high degree 
of compatibility with the theoretical predictions. All these results are 
summarized in Table 2.

Discussion
In this work, we have devised and demonstrated experimentally a full 
Bernoulli factory working with quantum states both at input and output 
(that is, a QQBF). In particular, we have proposed three interferometer 
designs implementing the basic operations of a field on qubit states. 
These act as building blocks for the implementation of the Bernoulli 
factory and, remarkably, can also be concatenated in different orders. 
This shows the modularity of our approach, making it capable, in 
principle, of implementing the complete set of functions known to 
be theoretically simulable. In addition, our methodology guarantees 
an important ingredient at the core of the Bernoulli factory problem, 
that is, manipulations that are truly oblivious to the input-state biases. 
Here we have implemented our scheme by means of a fully program-
mable six-mode IPP, manipulating three photonic qubits. We report 
a high degree of control in the optical operation of the IPP and a very 
high fidelity in the obtained results.

We note that the same device settings allow the implementation 
of more than one function depending on the post-selection event 
detected. Further investigation can be foreseen to investigate which 
functions can be implemented simultaneously with our devices. 
Moreover, the exploitation of fast reconfiguration would enable the 
application of feed-forward techniques, to allow the programming 
of subsequent stages depending on measurements and detections 
performed in previous ones. The feed-forward process could enable 
the active control of phase in the product module, thereby converting 
the anti-product operation into the product one and enhancing the 
success probability of the operation by a factor 2. Additionally, further 

Table 1 | Characterization of single operations

Operation Operation Measured Corrected

mean fidelity mean fidelity

FM FC

Inversion 1/z 0.989 ± 0.003 1.000 ± 0.003

Product z1z2 0.95 ± 0.02 0.99 ± 0.02

Anti-product −z1z2 0.95 ± 0.03 0.99 ± 0.02

Addition z1 + z2 0.90 ± 0.05 0.99 ± 0.02

Harmonic mean z1z2/(z1 + z2) 0.92 ± 0.05 0.99 ± 0.02

FM is estimated by averaging over an ensemble of 1,000 input sets of states uniformly 
sampled from the Bloch sphere.

Table 2 |  Characterization of concatenated operations

Input Output Corrected fidelity Theoretical fidelity

(z1, z2, z3) FC FD

Concatenation product–additiona

(0, 0, 0) 0 0.993 ± 0.005 1

(∞, ∞, 0) ∞ 0.993 ± 0.005 1

(1, 1, 0) 1 0.95 ± 0.02 0.96 ± 0.01

(0, 0, 1) 1 0.80 ± 0.02 0.79 ± 0.05

(1, 1, 1) 2 0.93 ± 0.01 0.92 ± 0.03

Concatenation addition–productb

(0, 0, 1) 0 0.98 ± 0.01 1

(∞, 0, 1) ∞ 1 ± 0.01 1

(1, 0, 1) 1 0.87 ± 0.02 0.88 ± 0.02

(0, 1, 1) 1 0.88 ± 0.02 0.88 ± 0.02

(1, 1, 1) 2 0.85 ± 0.02 0.88 ± 0.02
aResults obtained from the concatenation of a product followed by an addition. bResults for 
the concatenation of an addition, followed by a product. The measured FM value is directly 
estimated from the raw experimental data. FC is the fidelity measured at the output of the IPP 
by subtracting the dark counts and accidental coincidences. Conversely, FD is calculated by 
taking into account the partial distinguishability of the input photons. More details on the 
data analysis are provided in Supplementary Notes 7 and 8. All the errors are estimated from 
the propagation of the Poisson statistic proper of single-photon counts.
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investigation involves verifying whether the success probability can be 
boosted by adding ancillary photons and modes.

The successful integration of the algorithm within innovative 
integrated devices, as reported in this Article, opens the way to QQBF 
implementations as subroutine algorithms in compact platforms, 
which exploit the stability of the overall process. Indeed, current devel-
opments in photonic integrated technologies already facilitate the 
realization of systems with progressively increasing sizes. The use 
of photonic platforms to build a fundamental subroutine allows its 
natural integration at the interface between quantum computation 
and quantum communication networks, thereby enabling the pos-
sibility to exploit the substrate of photonic communication technol-
ogy, which is presently at a high level of technological and commercial 
maturity. In this scenario, the femtosecond laser micromachining 
technology used to fabricate the IPP may play a relevant role in provid-
ing custom-tailored photonic components. In particular, its unique 
three-dimensional capabilities may be beneficial in compactifying 
circuit designs37,38 and in enabling random transformations39,40. Moreo-
ver, the compatibility of our IPP with different types of photon source 
such as demultiplexed quantum dot sources41 allows the possibility 
to scale up the used number of photons in coincidence. In addition, 
we can also implement protocols of error mitigation to deal with the 
experimental imperfection present in the apparatus such as the partial 
distinguishability between photons42 or imperfect BSs43. The reliability, 
modularity and accuracy of our platform indeed pave the way towards 
the implementation of more complex protocols in which Bernoulli 
factories represent a key ingredient. Nevertheless, it is worth noting 
that Bernoulli factories are not limited to photonic implementations, 
and hence, this class of protocols could find application in different 
platforms ranging from ions to superconducting qubits.

Online content
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maries, source data, extended data, supplementary information, 
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Methods
Photon source
The photons required for dual-rail encoding are produced by a source 
based on non-collinear spontaneous parametric down conversion. 
In particular, two pairs of photons are emitted by the source, which 
are deterministically separated in four different paths by exploiting 
their polarization state (using half-wave plates and polarizing BSs and 
coupled into single-mode fibres). One photon is directly detected by a 
single-photon avalanche photodiode and acts as a trigger. The other 
three photons are sent through different paths, where they are made 
indistinguishable in the polarization and time-of-arrival degrees of 
freedom, and finally injected into the IPP. Optical fibres are also used 
to collect light at the outputs of the IPP. The detection stage is com-
posed of six in-fibre BSs, one for each output of the IPP, which feeds 12 
single-photon avalanche photodiode detectors. In fact, this system 
implements six probabilistic photon-number-resolving detectors that 
are used to characterize the output states.

IPP
The IPP consists of a reconfigurable, six-mode waveguide interferome-
ter46 realized according to the rectangular layout proposed elsewhere45 
and thus able to produce any linear transformation of six modes. The 
waveguides follow the optical paths depicted in Fig. 3a, the 15 BSs being 
actually implemented by tunable Mach–Zehnder interferometers 
(in Fig. 3b). Each of the latter components, in turn, consists of two 
cascaded waveguide directional couplers and is equipped with two 
programmable phase shifters. One of the phase shifters is placed inside 
the Mach–Zehnder ring, whereas the other one is placed on one of its 
input ports. By acting on these overall 30 phase shifters, full control 
of the IPP operation is achieved.

We have fabricated the IPP by femtosecond laser 
micro machining34,35 in EagleXG (Corning) glass substrate. The wave-
guides are directly inscribed in the substrate by laser irradiation, 25 μm 
deep below the substrate surface, followed by thermal annealing47,48. 
Phase shifters base their functioning on the thermo-optic effect and 
consist of microheaters realized on the chip surface49. The microheaters 
are resistive paths patterned by laser ablation on a metallic layer, which 
is deposited on the chip surface. On driving suitable currents into the 
microheaters, local heating of the substrate is achieved in a precise and 
controlled way. Such local heating induces, in turn, a refractive index 
change and thus controlled phase delays in the waveguides due to the 
thermo-optic effect. The chip surface is further microstructured by 
femtosecond laser processing, particularly creating thermal insulation 
trenches at the sides of the microheaters, to increase their efficiency 
and reduce cross-talk50. The full IPP has a footprint of 82 × 20 mm2. Fibre 
arrays are glued to the input and output ports to provide optical con-
nections, and fibre-to-fibre optical loss is 3 dB. A careful calibration of 
the IPP operation with respect to the driving currents in the microheat-
ers was performed using coherent light, yielding an average fidelity of 
99.7% to the target operation, calculated using thousands of randomly 
chosen unitary transformations. The calibration procedure allowed 
us to independently characterize the effect of each phase shifter on 
all the Mach–Zehnder interferometers. The measurements showed a 
full reconfiguration (that is, a 2π phase shift) with a dissipated power 
of 40.7 ± 5.4 mW per thermal shifter and a cross-talk on first-neighbour 
interferometers of 19.0 ± 5.2%. More details about the characterization 
of the processor with classical light can be found elsewhere46.
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