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Abstract

Mechanical metamaterials composed of a non dissipative periodic microstructure of flexible ligaments and
stiff rings, viscoelastically coupled with local resonators, are considered. By following a variational approach,
the linear damped dynamics are described according to a beam lattice formulation, valid for a generic coordi-
nation number. A consistent theoretical description of the viscoelastic ring-resonator coupling is introduced,
leading to an integral-differential form of the governing equations. The enlargement of the model dimen-
sion by addition of viscoelastic states allows to conveniently describe the metamaterial dynamics through
a system of ordinary differential equations. Therefore, the application of the Z-transform and a suitable
mapping in the wavevector space allows to obtain the system of ordinary differential equations governing
the free and forced propagation of damped waves. Subsequently, the polynomial eigenproblem ruling the
harmonic free wave propagation in the complex frequency domain is stated by applying the bilateral Laplace
transform, whereas an analytical procedure is outlined to solve the forced wave propagation problem in the
time domain. The triangular beam lattice metamaterial is considered as significant benchmark for appli-
cation of the theoretical and methodological framework. Considering first the free wave propagation, the
properties of the dynamic stiffness matrix are discussed and the dispersion frequency spectrum is paramet-
rically investigated, with focus on the spectral effects of the viscoelastic coupling. The dependence of the
stop bandwidth amplitude between the low and high-frequency spectral branches on the relaxation time
characterizing the viscous function is also highlighted and discussed. Moreover, the forced response to a
harmonic external point source is numerically investigated in the time domain. The results are qualitatively
compared and quantitatively discussed by distinguishing the fundamental cases of non-resonant, resonant
and quasi-resonant excitation frequency.

Keywords: Periodic materials, Mechanical metamaterials, Beam lattices, Viscous damping, Dispersion
properties, Complex band structure, Band gaps

1. Introduction

Microstructured material and metamaterial science is a fascinating and challenging field of theoretical and
applied research that is continuously garnering growing attention from the scientific community of solid and
structural mechanics [1, 2]. Within this engaging and promising scenario, exceptional and unprecedented
progresses in the technical disciplines of high-performance supercomputing, high-fidelity microengineering,5

and high-precision manufacturing concur to decisively support and propel the conception and development
of innovative materials with smart, unconventional or even exotic features. The primary valuable outcome
of these multidisciplinary research efforts is the rapid advent and sustainable design of new engineered
composites outperforming the basic physical properties of natural materials in a myriad of technical appli-
cations across all the classical and advanced branches of mechanics, including – among the others – extreme10

mechanics, nanomechanics, mechatronics, acoustics, thermomechanics, biomechanics [3–6].
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Within the rich variety of engineered cellular composites, the class of mechanical (or acoustic) metama-
terials is characterized by a periodic architected microstructure that can be mechanically functionalized to
achieve superior macroscopic effective properties, significantly outdistancing the individual performances of
each ingredient material used to create the microstructured cell [7–10]. Specifically, the exceptional perfor-15

mances of mechanical metamaterials are made possible by the fine design of intracellular micromechanisms,
which activate diffuse phenomena – like local resonances, inertia amplifications, viscoelastic metadamping –
that interact with (but can also govern) the global dynamics of the cellular microstructure. Indeed, mechan-
ical metamaterials have been successfully exploited to custom tailor several formidable or unconventional
dynamic functionalities, including for instance giant hysteresis, negative indexes of dynamic refraction, non-20

reciprocal vibration propagation, broadband sound absorption, controllable wave guiding, obstacle cloaking,
low-frequency noise filtering, energy focusing or harvesting [11–18]. According to a broader logic of multi-
objective design, mechanical metamaterials can also be optimized to conjugate their dynamic functionalities
with exceptional quasi-static properties, like super lightness-to-strength ratios, extra toughness, strong aux-
eticity, extreme thermal coefficients, vanishing shear moduli, morphing and multi-stability [19–23].25

Focusing on the linear dynamics of mechanical metamaterials, a major emerging research issue of theoret-
ical and applied interest consists in governing the free and forced wave propagation by means of optimization
techniques for the spectral band structure, often supported by the micromechanical design of local energy
dissipators. In the absence of dissipation, the wave propagation around certain target center-frequencies can
be inhibited by finely designing the stiffness and inertia parameters of the conservative cellular microstruc-30

ture, in order to open stop bands in the dispersion spectrum. Following this general idea, the spectral design
can be stated either as an inverse problem or as an optimization problem. According to the former approach,
the eigenproblem governing the free wave propagation can be stated, solved and – in principle – inverted to
analytically assess the microstructural parameters satisfying desired spectral requirements, like the existence
and position of a given harmonic spectral component or the amplitude and centerfrequency of certain pass35

or stop spectral bands [24, 25]. Naturally, the analytical solution of the direct and inverse eigenproblem
tends to be infeasible in presence of high model dimensions, large parameter spaces or important nonlineari-
ties, leaving space to consistent mathematical approximations, like asymptotic perturbation-based solutions
[26, 27]. According to the latter approach, the optimal solution in the multidimensional space of the de-
sign parameters is numerically identified by minimizing or maximizing a suited objective or multi-objective40

function [28–31]. Generally, a proper mathematical surrogation of the objective function or a proper dimen-
sionality reduction of the parameter space may help in reducing the computational costs and accelerating
the algorithmic convergence [32–34]. In the presence of dissipation, the mechanical energy trapped by the
propagation-inhibiting local mechanisms is irreversibly absorbed by dampers or – if convenient – extracted
by harvesters. In this respect, the spectral design of dissipative metamaterials poses serious conceptual and45

methodological challenges, including for instance (i) the enlargement of the parameter space, extended to
embrace the dissipation properties of the dampers or harvesters, (ii) the non-standard (e.g. non-polynomial)
nature of the eigenproblem governing the dispersion problem, if some common viscoelastic formulations are
adopted, (iii) the complexification of the dispersion relations defining the frequency spectrum, in which the
number of frequency-wavevector curves can also exceed the model dimension, due to the presence of pure50

attenuation branches associated to standing damped waveforms, (iv) the role played by geometrical and
constitutive nonlinearities, which may become crucial if the oscillation amplitudes require to be maximized
to enlarge the hysteresis cycles or improve the efficiency of the energy conversion [35]. This entire motivating
background can be efficiently synthesized by recognizing that a systematic improvement in the description
of the linear and nonlinear dissipation phenomena is the milestone for planning future advances in the en-55

ergetically consistent modelization and spectral design of mechanical metamaterials [3, 36]. According to a
broader vision, it could be postulated that in the next few years a completely new generation of mechanical
meta-behaviors will emerge, exploiting the virtuous contrast and collaborative synergy between constituent
materials and ingredients characterized by highly dissimilar elastic, plastic and viscous properties [20].

Based on these motivations, the paper presents a beam lattice formulation governing the free and forced60

wave propagation in a mechanical metamaterial, originated by viscoelastically coupling a periodic non dissi-
pative microstructure of flexible ligaments and stiff rings with local tunable resonators. As original aspect,
the mechanical model is formulated according to a variational strategy for a generic coordination number.
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The viscoelastic coupling is consistently derived by a physical-mathematical description based on the Boltz-
mann superposition integral [37], whose kernel is approximable by a Prony series [38–41]. Accordingly, the65

dissipative forces are defined in terms of the past history, and not only on the instantaneous values, of gener-
alized velocities via convolution of suitable kernel functions [42]. The integral description of the viscoelastic
dissipation enriches and includes (as particular cases) other classic formulations of viscous damping in me-
chanical metamaterials, mostly based on the rheological Rayleigh, Maxwell or Wiechert models [43–45].
According to the model assumptions, the free and forced damped dynamics of the mechanical metamaterial70

is governed by a linear system of coupled integro-differential equations of motion. As complementary origi-
nal aspect, the differentiation properties of the N exponential functions in the Prony series are leveraged to
reformulate the dynamic model in an enlarged state space, including N additional viscoelastic variables. The
essential and valuable consequence is that the free and forced damped dynamics turns out to be described
by a coupled system of ordinary differential equations providing a straightforward state-space representation75

suitable for the characterization and the study of non-viscously damped systems, as also shown in [46] and,
more recently, in [47]. Interestingly, the proposed mathematical formulation describing the viscoelastic be-
havior of internal resonators finds a strong similarity with the so-called indicial function theory adopted in
aerodynamics. Within this theory, the time evolution of the aerodynamic forces is described by the convolu-
tion integral of specific functions representing the response of a lifting surface to the instantaneous variation80

of an aerodynamic input. As for the case of viscoelasticity, the kernel functions can have several expressions,
as exponential series or polynomial fractions. This general theory for the formulation of aerodynamic loads
was first developed by [48] and studied by [49, 50] and, then, well illustrated in [51, 52]; finally, it found
several applications in the aeroelasticity of aircraft wings [53] and suspension bridges [54].

Back to the description of the present study, after application of the Laplace and Z transforms to deal85

with the time and space periodicity, the free propagation of damped harmonic waves is governed by a
polynomial algebraic eigenproblem. In this respect, enlarging the state space can be deemed a profitable
methodological advance that allows to circumvent the algorithmic complexities of de-rationalizing or asymp-
totically approximating the characteristic equation [55, 56]. Therefore, according to the so-called inverse
method [3], the eigenproblem is solved in the space of complex-valued frequencies for varying real-valued90

wavevectors to determine the dispersion spectrum. Concerning the supplementary dynamic problem of
forced wave propagation, a general procedure is outlined to achieve the analytical solution in the time
domain, thus complementing the solution scheme already outlined in the frequency domain, based on the
evaluation of the dynamic compliance matrix [56].

The paper is organized as follows. First, the general conceptual framework introduced above, concerning95

both the physical-mathematical models of mechanical metamaterials and the methodological tools necessary
to treat the governing equations, is presented (Sections 2 and 3). Second, the entire formulation is special-
ized for the triangular beam lattice metamaterial (Section 4). The free wave propagation is investigated
by discussing a priori the properties of the dynamic stiffness matrix and by subsequently analyzing the
dispersion properties (wavefrequencies and waveforms) and their parametric dependence on the viscoelastic100

parameters (Section 5). Therefore, the forced response to a harmonic mono-frequent external point source
is investigated in the time domain for the fundamental cases of non-resonant, resonant and quasi-resonant
excitation frequency (Section 6). Finally, concluding remarks are pointed out.

2. Mechanical formulation

An architected metamaterial characterized by a cellular microstructure, topologically based on an periodic105

and regular tessellation of the infinite two-dimensional domain, is considered (Fig. 1a). The composite cen-
trosymmetric microstructure of the periodic cell is featured by a central heavy and stiff ring, with mean
radius R. The nearest-neighborhood intercellular interactions are mechanically provided by n identical light,
flexible and slender ligaments, with length L, radially connecting the central ring to the rings of the adjacent
cells (Fig. 1b). The even number n ∈ N can be referred to as coordination number of the periodic microstruc-110

ture, adopting the nomenclature of molecular crystallography. According to a beam lattice formulation, the
ring is modeled as a perfectly rigid massive body, with mass M , while the ligaments are described as elastic
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Figure 1: Architected metamaterials with triangular (top) and quadrilateral (bottom) cellular topologies: (a) regular tessellation
of the infinite two-dimensional domain, (b) periodic cell, coordination ways and directions, (c) microstructural lattice model.

ring, embedded in an annular deformable matrix made of viscoelastic material. The inclusions, modeled as115

perfectly rigid circular bodies with mass Mr, play the role of damped local resonators able at exchanging
energy with the embedding periodic microstructure.

The linear kinematics of the system can conveniently be described by introducing the canonical basis
{e1, e2, e3}, where (e1, e2) is the plane containing the metamaterial and e3 is the out-of-plane direction. The
set J = (i1, ..., in/2) collects the indexes spanning the n/2 unique coordination ways, each identified by the120

unit vector nj (with j = 1, ..., n/2). A particular cell is univocally identified by fixing all the independent
indexes of the set J . The increment or decrement of the index ij allow the univocal identification of the
adjacent cells along the positive and negative directions of the ij-th coordination way, indexed by the sets
J +
[j] = (i1, ..., ij + 1, ..., in/2) and J−

[j] = (i1, ..., ij − 1, ..., in/2), respectively. As long as iso-length ligaments

are considered, the unit vectors nj are univocally defined by assigning the coordination number n, by125

virtue of geometrical considerations. Within this context, the dynamic configuration of the J -th cell is
described by the kinematic descriptors of the J -th ring and the J -th inclusion, defined through the 3-by-1
vectors uJ = [U, V, ϕ]⊤J and vJ = [Ur, Vr, ϕr]

⊤
J , respectively, where superscript ⊤ indicates the transpose

operator. In particular, the components U , V represent the in-plane displacements of the ring centroid
along the direction e1 and e2, respectively, while ϕ is the ring rotation about the axis e3. On the other130

hand, the components Ur, Vr, and ϕr are the centroidal displacements along e1 and e2, and the rotation
about e3, respectively, of the J -th rigid inclusion. It is worth remarking that, in the reference natural
configuration, the set of configurational nodes of the mechanical metamaterial univocally corresponds with
a two-dimensional lattice of geometric points with n/2 periodicity vectors dj .

According to a variational approach for the statement of the ordinary differential equations of motion
governing the beam lattice model, the kinetic energy of the J -th cell can be expressed as a quadratic function
of the ring and resonator velocity vectors

TJ = 1
2 u̇

⊤
JMu̇J + 1

2 v̇
⊤
JMrv̇J (1)
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Figure 1: Architected metamaterials with triangular (top) and quadrilateral (bottom) cellular topologies: (a) regular tessellation
of the infinite two-dimensional domain, (b) periodic cell, coordination ways and directions, (c) microstructural lattice model.
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hand, the components Ur, Vr, and ϕr are the centroidal displacements along e1 and e2, and the rotation
about e3, respectively, of the J -th rigid inclusion. It is worth remarking that, in the reference natural
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of the ring and resonator velocity vectors

TJ = 1
2 u̇

⊤
JMu̇J + 1

2 v̇
⊤
JMrv̇J (1)

where dot indicates differentiation with respect to the time t, while M = diag(M,M,MR2) and Mr =135

diag(Mr,Mr,
1
2MrR

2
r) represent the 3-by-3 diagonal mass matrices of the ring and the resonator, respectively.

The intercellular non-dissipative interactions between the J -th cell and the adjacent cells are governed
by the 6-by-6 elastic stiffness matrix K of the unshearable beams connecting the respective central rings.
Specifically, the elastic potential energy developed by the n beams connected to the ring of the J -th cell
can be expressed as a quadratic function of the nodal beam displacements

UJ = 1
2

n/2∑
j=1

a⊤J−
[j]

KaJ−
[j]
+ 1

2

n/2∑
j=1

a⊤J+
[j]

KaJ+
[j]

(2)

where the 6-by-1 vectors aJ−
[j]

and aJ+
[j]

collect columnwise the nodal displacements (whose components

are referred to the local basis of the beam-aligned reference system) of the two beams aligned along the
j-th coordination way and connecting the ordered (J−

[j] ,J )-pair and (J ,J +
[j] )-pair of rings, respectively.

The components of the nodal displacement vectors can be expressed in the canonical reference system by
applying the change-of-basis relations aJ−

[j]
= ΘjsJ−

[j]
and aJ+

[j]
= ΘjsJ+

[j]
. Therefore, the elastic potential

energy becomes

UJ = 1
2

n/2∑
j=1

s⊤J−
[j]

Θ⊤
j KΘjsJ−

[j]
+ 1

2

n/2∑
j=1

s⊤J+
[j]

Θ⊤
j KΘjsJ+

[j]
(3)

being the change-of-basis 6-by-6 matrix Θj = diag(R⊤
j ,R

⊤
j ), where

Rj =

 e1 · nj −(e1 × nj) · e3 0
(e1 × nj) · e3 e1 · nj 0

0 0 1

 (4)

is also the 3-by-3 rotation matrix rotating the canonical basis into the local basis of the nj-aligned beams.
Assuming perfectly rigid ring-beam connections, the nodal displacement vectors can be constrained to the
centroidal ring displacements by the linear relations

sJ−
[j]

= B−
j uJ−

[j]
+B+

j uJ , sJ+
[j]

= B−
j uJ +B+

j uJ+
[j]

(5)

where the 6-by-3 constraining matrices B+
j and B−

j are

B+
j =

[
I+Xj

O

]
, B−

j =

[
O

I−Xj

]
(6)

where I and O are the 3-by-3 identity and zero matrices, respectively, while Xj = R (e3 × nj) ⊗ e3, being
× the cross product and ⊗ the tensor product. By introducing the constraint relations (5), the potential
elastic energy can be expressed in the compact form

UJ = 1
2u

⊤
JK−uJ + 1

2u
⊤
JK+uJ + u⊤

J r−J + u⊤
J r+J + U−

J + U+
J (7)

where K− and K+ are the 3-by-3 global stiffness matrices accounting for the beams connected to the ring
of the J -th cell and aligned along the positive and negative directions of the ij-th coordination way

K− =

n/2∑
j=1

(B−
j )

⊤Θ⊤
j KΘj B

−
j , K+ =

n/2∑
j=1

(B+
j )

⊤Θ⊤
j KΘj B

+
j (8)
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and r−J and r+J are the R3 vectors collecting columwise the intercellular forces exerted at the centroid of the
J -th cell by the adjacent cells

r−J =

n/2∑
j=1

(B+
j )

⊤Θ⊤
j KΘj B

−
j uJ−

[j]
, r+J =

n/2∑
j=1

(B−
j )

⊤Θ⊤
j KΘj B

+
j uJ+

[j]
(9)

while the uJ -independent terms

U−
J = 1

2

n/2∑
j=1

u⊤
J−

[j]

(B−
j )

⊤Θ⊤
j KΘj B

−
j uJ−

[j]
, U+

J = 1
2

n/2∑
j=1

u⊤
J+

[j]

(B+
j )

⊤Θ⊤
j KΘj B

+
j uJ+

[j]
(10)

represent the contributions to the potential energy of the adjacent cells.
The intracellular dissipative interaction in the J -th cell microstructure is governed by a linear constitutive

law expressing the R3 vector gJ (t) of internal forces exchanged between the ring and the resonator. The
constitutive law is intended to synthetically describe the viscoelastic behavior of the intra-ring resonator-
embedding matrix by coupling the displacement vectors of the ring and the resonator according to the
convolution relationship

gJ (t) =

∫ t

−∞
G(t− t∗)

∂

∂t∗

(
uJ (t∗)− vJ (t∗)

)
dt∗, (11)

where t∗ indicates an auxiliary time variable and the time-dependent 3-by-3 viscoelastic diagonal kernel
collects the viscous relaxation functions. Employing the Prony series to express the relaxation functions and
considering only the first term (corresponding to infinite relaxation time) and lowest N terms (each of them
corresponding to a finite relaxation time tr,k) of the series, the viscoelastic kernel reads

G(t) = diag

(
kU

(
1 +

N∑
k=1

βU,k e
−t/tr,k

)
, kV

(
1 +

N∑
k=1

βV,k e
−t/tr,k

)
, kϕ

(
1 +

N∑
k=1

βϕ,k e
−t/tr,k

))
, (12)

where the positive nondimensional coefficients βU,k, βV,k, βϕ,k can be referred to as viscosity ratios for the
kth relaxation time tr,k. By assuming – without loss of generality – that the motion starts at time t = 0,
the difference uJ (t∗)− vJ (t∗) = 0 for t < 0, being G(t− t∗) = O for t < t∗ (i.e. considering G(t) a causal
function). Therefore, integrating by part, Eq. (11) becomes

gJ (t) = G0

(
uJ (t)− vJ (t)

)
−
∫ t

0

∂

∂t∗
G(t− t∗)

(
uJ (t∗)− vJ (t∗)

)
dt∗, (13)

where G0 = G(0) can conveniently be written as G0 = (I+ S)Ke, with I being the 3-by-3 identity matrix,

S =
∑N

k=1 Dk, while Ke and Dk are diagonal matrices defined as:

Ke = diag (kU , kV , kϕ) , Dk = diag (βU,k, βV,k, βϕ,k) . (14)

The matrix Ke is related to the elastic part of the intracellular coupling, while Dk represents the viscous part
associated with the kth term of the Prony series. Specifically, the two mechanical limit cases of (different)
undamped metamaterials, characterized by purely elastic resonators, are recovered for: (i) infinite relaxation
time tr,k → +∞ corresponding to G(t) = G0 (stiffer undamped metamaterial) or (ii) absence of viscosity,
realizable by null viscosity ratios S = O and/or vanishing relaxation time tr,k → 0+ (softer undamped
metamaterial). By invoking the differentiation properties of the exponential functions present in Eq. (12),

and introducing the kth vector wk(t) = [WU,kWV,kWϕ,k]
⊤
collecting additional viscoelastic states, Eq. (13)

can be re-written in the form

gJ (t) = (I+ S)Ke

(
uJ (t)− vJ (t)

)
−

N∑
k=1

Tk Dk Kewk(t), (15)

6



which is featured by time-independent coefficients (all details of the formulation are reported in the Appendix
A). For consistency, Eq. (15) is complemented by the N first-order evolutionary vector-valued equations
governing the dynamics of the added viscoelastic states

ẇk(t) +Tk wk(t)−
(
uJ (t)− vJ (t)

)
= 0 (k = 1, . . . , N), (16)

where Tk is a diagonal matrix collecting the inverse of the kth relaxation time as Tk = t−1
r,k I.

By introducing the internal work VJ = (uJ − vJ )⊤gJ done by the viscoelastic intracellular force gJ
and accounting for the external work WJ = u⊤

J fJ done by the R3 vector fJ = [FU , FV , Fϕ]
⊤
J of external

excitation acting on the ring (whereas the resonator is considered unloaded), the functional HJ representing
the generalized Hamiltonian action can be formulated as

HJ =

∫ t2

t1

(
TJ − UJ − VJ +WJ

)
dt (17)

and its variation with respect to all (and only) the configuration variables of the J -the cell reads

δHJ =

∫ t2

t1

[
δu̇⊤

JMu̇J − δu⊤
J
(
K−uJ +K+uJ + r+J + r−J + gJ − fJ

)
+ δv̇⊤

JMrv̇J + δv⊤
J gJ

]
dt. (18)

Therefore, integrating by parts the contributions of the varied kinetic energy and imposing the stationarity
condition δHJ = 0, ∀δuJ , ∀δvJ , the coupled linear system of ordinary differential equations governing the
forced damped dynamics of the J -th periodic cell are obtained

MüJ +K−uJ +K+uJ + r+J + r−J + gJ = fJ ,

Mrv̈J − gJ = 0,
(19)

where the first equation governs the motion of the central ring, the second equation governs the motion
of the resonator, and the coupling term gJ is given by Eq. (15) together with the system of evolutionary140

equations of the N additional viscoelastic states whose kth component is given by Eq. (16). Finally, natural
initial conditions are assigned to represent the dynamical state at time t = 0.

As conclusive remark, it may be worth noting that the variational formulation leading to Eqs. (19) is
effectively general. This consideration means that – once the mass matrices M and Mr, the stiffness matrix
K and the viscoelastic matrices Ke, S and Tk are defined – assigning just the coordination number n is145

sufficient to formulate the equations of motion for the corresponding beam lattice metamaterial (say n = 4
or n = 6 for the quadrilateral or triangular metamaterials illustrated in Fig. 1, respectively).

3. Damped Bloch wave propagation

The time-differential equation (19a) can be considered as a non-homogeneous linear space-difference equation
in the iterates of the variable uJ , governing the elasto-dynamic interactions of the generic J -th periodic
cell with its nearest neighborhoods. An efficient methodological strategy to solve this kind of mechanical
problems involving spatial periodicity consists in using the bilateral Z transform, which applies to the generic
m-dimensional vector-valued sequence yJ : Zn/2 → Cm as the product of n/2 infinite summations

Z[yJ ] = Z[y(i1,...,in/2)] =

∞∑
i1=−∞

. . .

∞∑
in/2=−∞

y(i1,...,in/2)z
−i1
1 . . . z

−in/2

n/2 =: ẙ(z) (20)

where the variable z ∈ Cn/2 and the transformed variable ẙ(z) : Cn/2 → Cm. As profitable consequence, the
Z-transforms of the intercellular vector forces r−J and r+J , depending on the j-incremented and j-decremented
variables uJ−

[j]
and uJ+

[j]
, can be expressed as ů(z)-dependent variables

r̊−(z) =
( n/2∑

j=1

z−1
j B−

j

⊤
Θ⊤

j KΘj B
+
j

)
ů(z), r̊+(z) =

( n/2∑
j=1

zjB
+
j

⊤
Θ⊤

j KΘj B
−
j

)
ů(z), (21)
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where the shifting property of the bilateral Z transform Z[y(i1±k1,...,in/2±kn/2)] = z±k1 ...z±kn/2Z[y(ii,...in/2)]
has been conveniently invoked. Therefore, the ordinary differential equations of motion governing the forced
dynamics of the periodic beam lattice metamaterial can be expressed in Z transformed variables as

M(ů(z))¨+ (I+ S)Ke

(
ů(z)− v̊(z)

)
+H(z)ů(z)−

N∑
k=1

Tk Dk Keẘk(z) = f̊(z), (22)

Mr (̊v(z))¨− (I+ S)Ke

(
ů(z)− v̊(z)

)
+

N∑
k=1

Tk Dk Keẘk(z) = 0,

(ẘk(z)) ˙+Tk ẘk(z)−
(
ů(z)− v̊(z)

)
= 0 (k = 1 . . . , N),

where the 3-by-3 Hermitian matrix

H(z) = K− +K+ +

n/2∑
j=1

z−1
j (B−

j )
⊤Θ⊤

j KΘj B
+
j +

n/2∑
j=1

zj(B
+
j )

⊤Θ⊤
j KΘj B

−
j , (23)

is the generalized z-dependent stiffness matrix governing the resonator-free periodic material in the trans-
formed Z-space. Furthermore, the complex-valued variables zj can be continuously mapped in the unitary
circle according to the relation zj = exp(ı Bnj · k), where ı is the imaginary unit and B = L + 2R is the
internodal distance between the lattice nodes. It is worth remarking that, since the mapped Z-space co-
incides with the reciprocal space, the vector variable k = [k1, k2, 0]

⊤ can play the role of wavevector for
the reciprocal lattice. By collecting the kinematic descriptors and the additional viscoelastic states into the
(6+3N)-by-1 vector q(t) = [uJ ,vJ , . . . ,wN ], and introducing the (6+3N)-by-1 vector p(t) = [fJ ,0, . . .0N ]
of the generalized forces, where 0 and 0N are 3-by-1 zero vectors, the Z-transformed counterparts of these
vectors can be defined as q̊(t,k) = Z[q(t)]|zj=exp(ı Bnj ·k) and p̊(t,k) = Z[p(t)]|zj=exp(ı Bnj ·k), respectively.
Then, the equations of motion (22) can be expressed in the compact form

M̃(̊q(t,k))¨+ Ỹ(̊q(t,k)) ˙+ K̃(k) q̊(t,k) = p̊(t,k), (24)

where the augmented (6 + 3N)-by-(6 + 3N) mass matrix M̃ = diag(M,Mr,O, ...,ON ) and the augmented
(6+3N)-by-(6+3N) matrix Ỹ = diag(O,O, I, ..., IN ). Finally, the augmented (6+3N)-by-(6+3N) stiffness150

matrix K̃ is non-symmetric, k-dependent and reported in the Appendix B.
The dynamic system (24) can be solved directly in the time domain, according to the analytical procedure

outlined in the Appendix C. Alternately, it may be convenient to re-formulate the equations of motion in the
frequency domain. To this purpose, the k-mapped Z-transformed variables in the Eqs.(24) can be treated
by applying the bilateral Laplace transform, which applies to the generic m-dimensional time-dependent
vector variable ẙ(t) : C → Cm as the integral

L[̊y(t)] =
∫ ∞

−∞
ẙ(t) exp(−st)dt =: ŷ(s), (25)

where s ∈ C is the Laplace variable and the transformed variable ŷ(s) : C → Cm. Consequently, the ordinary
differential equations of motion (22) can be re-formulated as algebraic equations in the compact form

L(s,k)q̂(s,k) = p̂(s,k), (26)

where q̂(s,k) = L[̊q] and p̂(s,k) = L[̊p], being L the bilateral Laplace-transform operator. Pre-multiplying
the k-th equation (22) by TkDkKe, the (6+ 3N)-by-(6+ 3N) dynamic stiffness matrix L(s,k) assumes the
convenient quasi-symmetric form

L(s,k) =


s2 M+ (I+ S)Ke +H(k) − (I+ S)Ke . . . −TN DN Ke

− (I+ S)Ke s2 Mr + (I+ S)Ke . . . TN DN Ke

...
...

. . .
...

−TN DN Ke TN DN Ke . . . (s I+TN )TN DN Ke

 (27)
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where it can be recognized that L(s,k) is not symmetric becauseH(k) is Hermitian for the generic wavevector
k, but L(s,k) is not Hermitian because s is complex-valued, in the general case.

4. Triangular beam lattice metamaterial

The general mechanical formulation developed for beam lattice metamaterials is specified hereinafter for155

the triangular metamaterial univocally characterized by the coordination number n = 6, corresponding to a
periodic regular hexagonal cell (Fig. 1a,b). The diameter of the circle inscribed in the hexagon coincides with
the internodal distance B. Accordingly, the n/2 = 3 coordination directions are identified by the unit vectors
n1 = [1, 0, 0]⊤, n2 = [cos(π/3), sin(π/3), 0]⊤, n3 = [cos(2π/3), sin(2π/3), 0]⊤, respectively, and by the corre-
sponding periodicity vectors dj = Bnj (j = 1, 2, 3). The physical domain of the regular hexagonal cell can be160

defined asD =
{
x ∈ R3 :

(
|x1| ≤ B/2

)
∧
(
|x1| ≤ B + x2 tan (π/3)

)
∧
(
|x1| ≤ B − x2 tan (π/3)

)
∧ (x3 = 0)

}
,

where symbol ∧ indicates logical conjunction. Accordingly, the geometry of the regular hexagonal domain
of the first Brillouin zone of the reciprocal lattice [57], spanned by the wavevector k = [k1, k2, 0]

⊤, is
defined as K =

{
k ∈ R3 :

(
|k2| ≤ Br/2

)
∧
(
|k2| ≤ Br + k1 tan (π/3)

)
∧
(
|k2| ≤ Br − k1 tan (π/3)

)}
, where

Br = 2π/(B sin(π/3)) is the diameter of the circle inscribed in the hexagon (Fig. 1c).165

With regard to the dissipation function introduced to model the damping properties the metamate-
rial, only two terms of the Prony series (i.e., N = 1) are considered sufficient to accurately describe the
relaxation functions defining the viscoelastic ring-resonator coupling in the triangular beam lattice meta-
material. Therefore, the following expressions are introduced to simplify the notation: S = D1 ≡ D =
diag (βU , βV , βϕ), T1 ≡ T = t−1

r I, and w1(t) ≡ w(t) = [WU ,WV ,Wϕ]
⊤; therefore, G0 = (I+D)Ke.170

4.1. Nondimensional form of the equations of motion

The geometric and mechanical parameters of the system can be cast in nondimensional form by introducing
suitable characteristic quantities, namely, a circular frequency ωr and a reference length Lr of the meta-
material, respectively. Hence, the nondimensional time coordinate and Laplace variable become τ = ωrt
and σ = s/ωr, respectively, while the displacements of the ring and the resonator can be expressed in
nondimensional form as u = U/Lr, v = V/Lr, and ur = Ur/Lr, vr = Vr/Lr, respectively. On the other
hand, the additional viscoelastic states can be nondimensionalized as wu =WUωr/Lr, wv =WV ωr/Lr, and
wϕ = Wϕωr, respectively; finally, the nondimensional relaxation time is given by τr = ωrtr. The nondi-
mensional kinematic descriptors and viscoelastic states can be then collected into the vector of the system
variables φ(τ,b) (i.e., the nondimensional counterpart of the vector q(t,k)). Moreover, the nondimensional
wave numbers are β1 = Bk1 and β2 = Bk2, respectively, and can be collected in the real-valued wavevector
b = [β1, β2, 0]

⊤, spanning the hexagonal domain of the nondimensional first Brillouin zone represented in
Fig. 2a, which can be defined as

B=
{
b ∈ R3 :

(
|β2| ≤ βc

)
∧
(
|β2| ≤ βr + β1 tan

π
3

)
∧
(
|β2| ≤ βr − β1 tan

π
3

)}
, (28)

where βr = 2π/ sin(π/3) and βc = βr/2 are the nondimensional diameter and radius of the circle inscribed
in the hexagon. Finally, the curvilinear abscissa ξ (known also as reduced wavevector) is introduced to span
the closed triangular boundary of the first irreducible Brillouin zone B∗ identified by the vertices b0, b1,
b2 (see Fig. 2a). Accordingly, the components of the nondimensional wavevector b can be parameterized175

in terms of ξ as β1 = ξ and β2 = 0, for ξ ∈ [0, βc csc(π/3)], β1 = βc(cot(π/3) + csc(π/3)) − ξ cos(π/3) and
β2 = ξ sin(π/3)−βc, for ξ ∈ [βc csc(π/3), βc(csc(π/3)+cot(π/3))], β1 = βc(sin(π/3)+cos(π/3)+1)−ξ sin(π/3)
and β2 = βc(cot(π/3)+csc(π/3)+1) cos(π/3)−ξ cos(π/3), for ξ ∈ [βc(csc(π/3)+cot(π/3)), βc(1+csc(π/3)+
cot(π/3))], respectively.

A suited minimal set of nondimensional independent mechanical parameters, sufficient to completely
describe the beam lattice metamaterial, is given by the quantities

χ =
R

L
, χr =

Rr√
2L
, ϱ2 =

Mr

M
, µ2 =

J

AL2
, κu =

kU
ω2
rM

, κv =
kV
ω2
rM

, κϕ =
kϕ

ω2
rML2

, (29)
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Figure 2: Nondimensional first Brillouin zone B (gray region) of the triangular beam lattice metamaterial: (a) first irreducible
Brillouin zone B∗ (blue region) with vertices b0 = (0, 0, 0), b1 = (βc csc(π/3), 0, 0), b2 = (βc sin(π/3), βc cos(π/3), 0) (blue
dots) and edge midpoints b01 = (1/2βc csc(π/3), 0, 0), b12 = (βc sin(π/3)+1/2βc cos(π/3) cot(π/3), 1/2βc sin(π/3) cot(π/3), 0),
b20 = (1/2βc sin(π/3), 1/2βc cos(π/3), 0), (b) wavevector loci for which the dynamics of the kinematic functions are decoupled.

where the parameter ϱ2 is the ring-to-resonator mass ratio, while the parameters χ and χr account for the
rotational-to-translational inertia of the ring and the resonator, respectively. The parameter χ can also
be interpreted as a measure of the spatial density of the rings in the metamaterial plane, meaning that –
for a fixed ring radius – higher values of χ correspond to a larger number of massive rings per the unit
area (say heavy metamaterial) and viceversa (say light metamaterial), and the nondimensional parameter µ2

expresses the (inverse of) slenderness of the flexible ligaments. Moreover, the external forces and couples in
nondimensional form read fu = FU/

(
ω2
rMLr

)
, fv = FV /

(
ω2
rMLr

)
, and fϕ = Fϕ/

(
ω2
rML2

r

)
, respectively,

and are collected in the first three rows of the 9-by-1 vector δ(τ,b) representing the nondimensional coun-
terpart of the vector p(t,k). Finally, the viscoelastic forces and couples can be expressed in nondimensional
form as γu = gU/

(
ω2
rMLr

)
, γv = gV /

(
ω2
rMLr

)
, and γϕ = gϕ/

(
ω2
rML2

r

)
, respectively, and collected in the

vector γγγ(τ), that is, the nondimensional counterpart of the viscoelastic force vector g(t). Hence, equations
of motion (26) can be expressed in nondimensional form as

Γ(σ,b)φ̂(σ,b) = δ̂(σ,b), (30)

where φ̂(σ,b) and δ̂(σ,b) are the nondimensional vectors of the Laplace transformed counterparts of the180

Z-transformed variables and forces collected in the vectors φ(τ,b) and δ(τ,b), respectively, while the
nondimensional 9-by-9 governing matrix Γ(σ,b) is reported in the Appendix B.

It is worth noting that the internal roto-translational couplings among the three degrees of freedom û, v̂,
and ϕ̂, are provided by the out-of-diagonal σ-independent components of the matrix Γ(σ,b), which identi-
cally vanish (satisfying the condition C123 : Γ12(b) = Γ13(b) = Γ23(b) = 0) for the limit of long wavelengths185

b = (0, 0, 0), located at the center of the hexagonal Brillouin zone, and for the limits of short wavelengths
b = (±4π/3, 0, 0), b = (0,±2π/ tan(π/3), 0), b = (2π/3,±2π/ tan(π/3), 0), b = (−2π/3,±2π/ tan(π/3), 0),
sitting on the boundary of the hexagon (marked by the orange circles in Fig. 2b). Since all the other subma-
trices composing the matrix Γ(σ,b) are diagonal, these b-values correspond to uncoupled equations of free
wave propagation and – consequently – perfectly polarized waveforms. Knowing the b points satisfying the190

C123-condition may be interesting because perfect or quasi perfect polarization implies that the mechanical
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energy propagated by the traveling wave is completely, or nearly completely, stored in a subset of wavecom-
ponents [14]. Furthermore, it can be remarked that other σ-independent wavevector loci realize: (i) perfect
uncoupling between the ring translational degrees of freedom û and v̂ (namely, the b-locus satisfying the
condition C12 : Γ12(b) = 0 = Γ21(b) and marked by red dashed lines in Fig. 2b); (ii) perfect uncoupling195

between û and ϕ̂ (condition C13 : Γ13(b) = 0 = −Γ31(b), blue solid lines) and between v̂ and ϕ̂ (condition
C23 : Γ23(b) = 0 = −Γ32(b), green solid lines). In particular, it is interesting to note that the whole sub-
domain β2 = 0 is characterized by uncoupled dynamics of the translational degrees of freedom û and v̂ and
the rototranslational degrees of freedom û and ϕ̂.

In the next Sections, equations (30) are analyzed to describe the free and forced propagation of harmonic200

waves. For illustrative purposes, a particular metamaterial M is selected as reference, by fixing the values
of the mechanical parameters in technically feasible ranges. Specifically, the nondimensional geometrical,
inertial and elastic parameters are ϱ2 = 25/6, χ2 = 1/25, χ2

r = 1/200, µ2 = 1/4800 (consistently with
[56]). The nondimensional viscoelastic parameters of the metamaterial M are τr = 1/5, κu = κv = 7/20,
κϕ = 4/625, and βU = βV = βϕ = 1. Moreover, the stiffer undamped metamaterial M∞ (for τr → +∞)205

and softer undamped metamaterial M0 (for τr → 0+) are considered as limit conditions.

5. Free wave propagation

The free damped oscillations of the triangular beam lattice metamaterial are conveniently studied in the
frequency domain. By neglecting the external excitation, hence setting δ̂(σ,b) = 0 in Eq. (30), the b-
dependent system of homogeneous algebraic equations governing the free wave propagation can be recognized
as a non-standard eigenproblem in the form

Γ(σ,b)φ̂(σ,b) = 0, (31)

whose non-trivial solution, that can be calculated by imposing the characteristic equation detΓ(σ,b) = 0,
delivers fifteenth eigenpairs (σ, φ̂) for each selected wavevector b. Among them, six pairs of complex-
conjugate and three real negative eigenvalues can be distinguished, corresponding to six complex-conjugate210

and three complex eigenvectors φ̂, respectively. In particular, the eigenvectors associated with the three
real eigenvalues σ turn out to be real-valued vectors only if the rotational and the translational degrees
of freedom are uncoupled (that is, when Γ13 = Γ23 = 0). From the mechanical point of view, σ and φ̂
play the role of complex-valued wavefrequency and waveform, respectively, for the Bloch wave propagating
according to the real-valued wavevector b. Complex-conjugate wavefrequencies are related to couples of215

forward and backward waves propagating with I(σ)-monoharmonic oscillations and exponentially time-
decaying amplitude whose rate is proportional to R(σ), associated to a damping ratio ζ = −R(σ)/|σ|

Table 1: Wavefrequencies of the triangular beam lattice metamaterial at notable wavevector values of the first irreducible
Brillouin zone B∗.

b0 b01 b1 b12 b2 b20

(0, 0, 0) ( 2
3
π, 0, 0) ( 4

3
π, 0, 0) ( 7

6
π, 1

2
√
3
π, 0) (π, 1√

3
π, 0) ( 1

2
π, 1

2
√
3
π, 0)

σ1 0 -0.005+0.26ı -0.007+0.279ı -0.007+0.274ı -0.006+0.267ı -0.004+0.248ı

σ2 0 -0.007+0.276ı -0.007+0.279ı -0.007+0.281ı -0.007+0.282ı -0.007+0.274ı

σ3 -0.007+0.413ı -0.003+0.357ı -0.001+0.285ı -0.001+0.297ı -0.001+0.306ı -0.004+0.37ı

σ4 -0.043+0.663ı -0.043+0.767ı -0.046+0.729ı -0.045+0.734ı -0.045+0.738ı -0.043+0.777ı

σ5 -0.043+0.663ı -0.036+1.379ı -0.031+2.219ı -0.033+1.811ı -0.035+1.552ı -0.038+1.183ı

σ6 -0.04+0.82ı -0.032+1.977ı -0.031+2.219ı -0.029+2.455ı -0.029+2.536ı -0.033+1.845ı

σ7 -4.913 -4.922 -4.924 -4.926 -4.927 -4.921

σ8 -4.913 -4.917 -4.924 -4.921 -4.919 -4.916

σ9 -4.907 -4.907 -4.907 -4.907 -4.907 -4.907
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Figure 3: Real form of the waveforms and wavecomponents of the triangular beam lattice metamaterial at the limit of short
wavelength b1: waveforms φ̂1, φ̂2, φ̂3 (top, from left to right), and φ̂4, φ̂5, φ̂6 (bottom, from left to right).
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Figure 4: Real form of the waveforms and wavecomponents of the triangular beam lattice metamaterial at the limit of short
wavelength b1: waveforms φ̂7, φ̂8, φ̂9 (from left to right).

(normalized with respect the critical damping attained for ζcr = 1), where |σ| stands for the magnitude
of the complex wavefrequency σ. On the other hand, negative real-valued wavefrequencies are related to
standing (non propagating) waves with exponentially time-decaying amplitude. It may be worth noting220

that the mechanical formulation based on the added viscoelastic states has the methodological advantage
of stating a polynomial eigenproblem, thus bypassing the algorithmic complexities of de-rationalizing or
asymptotically approximating the characteristic polynomial [56].
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Figure 5: Real form of the waveforms and wavecomponents of the triangular beam lattice metamaterial at the wavevector b12:
waveforms φ̂1, φ̂2, φ̂3 (top, from left to right), and φ̂4, φ̂5, φ̂6 (bottom, from left to right).
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Figure 6: Real form of the waveforms and wavecomponents of the triangular beam lattice metamaterial at the wavevector b12:
waveforms φ̂7, φ̂8, φ̂9 (from left to right).

The eigenvalues σ corresponding to notable wavevector b-values in the first irreducible Brillouin zone B∗

(namely the vertices b0, b1, b2 and the midpoints b01, b12, b20 of each edge, marked by blue and red dots in225

Fig. 2a, respectively) are reported in Tab. 1. Complex conjugate wavefrequencies corresponding to backward
waves (with negative imaginary part) are not reported for the sake of synthesis. It is worth noting that the six
complex wavefrequencies σ1-σ6 (as well as their conjugates) are systematically characterized by a real parts
significantly smaller than those of the three real-valued wavefrequencies σ7-σ9. This characteristic scenario
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Figure 7: Loci of complex-valued frequencies σ under variation of the relaxation time (gray arrows indicate increasing relaxation
time in the range τr ∈ [10−3, 103]) for wavevectors b01 (black lines), b12 (blue lines), b20 (red lines): (a) frequencies from the
low-frequency spectral branches (dashed lines) and (b) frequencies from the high-frequency spectral branches (solid lines); (c)
amplitude of the stop bandwidth between the low and high-frequency spectral branches, with spectra for τr = 0 (red stop band)
and τr = 10 (blue stop band); (d), (e), (f) damping ratios ζ under variation of the relaxation time in the range τr ∈ [10−3, 10].

is physically justified by the typical waveforms associated with the wavefrequencies. Indeed, the waveforms230

φ̂1-φ̂6 associated to the complex conjugate wavefrequencies σ1-σ6 mainly involve the ring and resonator
dynamics, with more or less polarization in one or the other wavecomponents, but minimal participation of
the added viscoelastic states. Conversely, the waveforms φ̂7-φ̂9 associated to the real wavefrequencies σ7-σ9
are strongly polarized in the added viscoelastic states, with minimal participation of the ring and resonator.
To exemplify, the real forms of the waveforms corresponding to the limit of short wavelength b1, satisfying235

the full uncoupling condition C123, are depicted in Fig. 3 and Fig. 4. As expected, the waveforms φ̂1 and φ̂5

are dominated by the ring and resonator dynamics, with strong polarization in the wavecomponent subset
(v̂, v̂r) and minimal participation of the added viscoelastic states (Fig. 3). Similar results are appreciable for
the waveforms φ̂2 and φ̂6, strongly polarized in the wavecomponent subset (û, ûr), and φ̂3 and φ̂4, strongly

polarized in the wavecomponent subset (ϕ̂, ϕ̂r). Conversely, the waveforms φ̂7-φ̂9 are strongly polarized240

in the added viscoelastic states ŵu, ŵv and ŵϕ, respectively (Fig. 4). The waveforms corresponding to
the wavevector b12, providing instead full internal coupling (that is C12, C23, C13 not satisfied), are shown
in Fig. 5 and Fig. 6. As expected, the waveforms φ̂1-φ̂6 are participated in a comparable manner by all
the wavecomponents of the ring and the resonator (Fig. 5), whereas the waveforms φ̂7-φ̂9 remain strongly
polarized in the added viscoelastic states (Fig. 6).245
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Figure 8: Frequency dispersion spectrum of the undamped metamaterial M∞ (magenta curves) and the damped metamaterial
M (gray, black and orange curves): (a) spectra in the three-dimensional domain (ξ, I(σ),R(σ)), (b) spectra in the two-
dimensional domain (ξ, I(σ)), (c),(d),(e) spectra in the two-dimensional domain (ξ,R(σ)). Dashed-blue and dashed red vertical
lines indicate reduced wavevectors ξ corresponding to b0, b1, b2 and b01, b12, b20, respectively.

A comprehensive analysis of the spectral effects provided by the dissipative ring-resonator coupling may
require a suited parametric analysis focused on the relaxation time, which is the key parameter governing the
assumed viscoelastic law. The loci of the complex-valued frequencies σ of the metamaterial M are illustrated
in Figs. 7a,b under large variation of the relaxation time τr for selected wavevectors b corresponding to
the red points in Fig. 2a. From the quantitative viewpoint, it is worth noting that the three complex250

frequencies σ having lower imaginary part are associated with lower real parts (Fig. 7a), whereas the three
complex frequencies σ having higher imaginary part are associated with larger real parts (Fig. 7b). From
the qualitative viewpoint, it can be observed that the real part R(σ) strictly depends on the relaxation time
τr and – as major remark – it always shows a minimum between the limit conditions of softer undamped
metamaterial M0 (for τr → 0+) and the stiffer undamped metamaterial M∞ (for τr → +∞). From a255

physical perspective, this relevant remark highlights how the damping ratio ζ of the spectral branches does
not monotonically grow with the viscosity increments of the ring-resonator coupling regulated by decrements
of the relaxation time τr. Consequently, particular relaxation times providing the maximal decay rate in
the amplitude of damped propagating waves can be identified. This peculiar scenario is also known to
characterize a variety of viscoelastically-coupled engineering structures, and has been often exploited to260

develop optimization strategies for passive control [58, 59]. To investigate the phenomenon, the behavior of
the damping ratio ζ versus the relaxation time τr is analyzed numerically and illustrated in Figs. 7d-f for
different wavevectors. The results show that damping maxima exist for all the spectral branches, although
they may significantly differ in magnitude. Damping maxima also are attained at lower relaxation times
(τr ≈ 1) for high-frequency branches (solid lines), and at larger relaxation times (τr ≈ 2) for low-frequency265

branches (dashed lines). Within this context, the relaxation time characterizing the ring-resonator coupling
of the reference metamaterial M (namely τr = 1/5) is selected so as to provide large damping of the
high-frequency waves and low damping of the low-frequency waves. As complementary remark, a direct
comparison among Figs. 7d-f evidences how the relaxation time corresponding to the maximum damping
ratio of each spectral branch does not depend significantly on the wavevector b.270

The dispersion spectrum σ(b) of the damped metamaterial M is fully defined by spanning the first
irreducible Brillouin zone B∗ with the wavevector b. A comprehensive but synthetic description of the
spectrum can be obtained in the form σ(ξ), by spanning the closed boundary ∂B∗ of B∗ (see Fig. 2a) with the
reduced wavevector ξ. The representation of the spectrum in the three-dimensional domain (ξ, I(σ),R(σ))
is shown in Fig. 8a, where only the complex eigenvalues σ having positive imaginary part are reported and275
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Figure 9: Dispersion spectra of the damped metamaterial M: (a) imaginary part and (b) real part of the complex-valued
dispersion surfaces over the whole first Brillouin zone B.

the case of stiffer undamped metamaterial M∞ (magenta lines) and damped metamaterial M (black and
gray lines) are compared. The undamped metamaterial M∞ shows a dispersion spectrum composed by
six branches. All the spectral branches are purely imaginary and systematically lie in the plane (ξ, I(σ)).
The typical scenario of three low-frequency dispersion curves (with waveforms strongly polarized in the
ring wavecomponents) and three high-frequency dispersion curves (with waveforms strongly polarized in280

the resonator wavecomponents), separated by a frequency band gap, can be recognized. Differently, the
damped metamaterial M shows a dispersion spectrum composed by nine branches. Three curves lie in the
low-frequency range (low-frequency curves marked by gray lines in Figs. 8a,b) and can be considered as
spectral branches of weak-attenuation, since they are associated with lower real parts (low damping ratios),
as shown in Fig. 8c. Three curves lie in the high-frequency range (high-frequency curvesmarked by black lines285

in Figs. 8a,b) and can be considered spectral branches of strong-attenuation since they are associated with
higher real parts (high damping ratios), as shown in Fig. 8d. It is interesting to note that the viscoelastic
coupling produces a strong frequency reduction of the three high-frequency curves and a remarkable decrease
of the low-frequency curves over a wide ξ-range (Fig. 8b). This implies a not negligible decrement in the stop
bandwidth, that is, the gap between the imaginary parts of the high-frequency and the low-frequency curves,290

together with a small shift of the stop band centerfrequency. The dependence of the stop bandwidth on
increasing relaxation times is analyzed in Fig. 7c, where the bandwith∆34 = min∂B∗(I(σ4))−max∂B∗(I(σ3))
can be observed to increase monotonically from τr = 0 and to tend to an asymptotic value for large τr (say
greater than τr = 10). In particular, the stop bandwidth attains the value ∆34 ≃ 0.25 for the relaxation time
τr = 1/5 of the metamaterial M. The real-valued eigenvalues corresponding to waveforms polarized in the295

added viscoelastic states determine the last three dispersion curves lying in the highly-negative R(σ)-range
of the (ξ,R(σ))-plane (high-damping curves, marked by orange lines in Fig. 8e) and can be considered as
spectral branches of pure-attenuation corresponding to non-periodic highly overdamped waves.

Focusing on the intersection between two spectral branches, referred to as cross-overs or crossing points, it
is interesting to highlight that the two cross-overs involving the imaginary-valued high-frequency branches of300
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the undamped metamaterialM∞ are preserved in the complex-valued spectrum of the damped metamaterial
M (crossing points marked by green circles of the magenta and black dispersion curves at wavevectors close
to the limit of long wavelengths b = 0). The same behaviour is shown also by the cross-over occurring
at the wavevector b1. On the contrary, the two cross-overs involving the low-frequency branches of the
undamped metamaterial M∞ disappear in the spectrum of the damped metamaterial M (crossing points305

marked by green squares of the magenta dispersion curves at wavevectors b ≃ b01 and b ≃ b20). Attention
can also be paid to the veering (avoided crossing) points, in which strong linear interactions and energy
transfers may occur between the waveforms [14]. Two relevant veering points can be detected in the high-
frequency branches of the undamped metamaterial M∞ (within the magenta regions in Fig. 8a and windows
in Fig. 8b). These veering points are found to persist also in the complex-valued spectrum of the damped310

metamaterial M.
Finally, the six complex-valued dispersion surfaces of the frequency spectrum for the damped metama-

terial M are illustrated over the whole first Brillouin zone B in Fig. 9. Looking first at the imaginary part
of the dispersion surfaces, the large amplitude of the full band gap separating the low-frequency pass band
and the high-frequency pass band can be appreciated (Fig. 9a). Furthermore, coalescence of the two highest315

and the two lowest dispersion surfaces can be noted to occur at all the six vertices of the hexagonal Brillouin
zone B. In these points, the geometrical topology of the coalescent dispersion surfaces resembles the typical
Dirac cones characterizing the electronic band structure of monolayer graphene sheets, similarly featured
by a periodic hexagonal cell [60]. Looking at the real part of the dispersion surfaces, the large differences
characterizing the low-frequency and high-frequency dispersion surfaces can be appreciated (Fig. 9b).320

6. Forced wave propagation

The forced response of the damped mechanical metamaterial can be studied either in the frequency or in
the time domain. In the frequency domain, the solution of the equations of motion, in nondimensional form,
can be determined by inverting the dynamic stiffness matrix Γ(σ,b) in Eq. (30) so as to obtain

φ̂(σ,b) = Γ(σ,b)−1δ̂(σ,b) (32)

where Γ(σ,b)−1 can be regarded as dynamic compliance (or flexibility) matrix. By then applying, first, the
inverse bilateral Laplace transform and, second, the inverse discrete Fourier transform (see [56] for details)
it is possible to calculate the dynamic response in the time domain and physical space.

Alternately, the forced response can be determined by solving analytically (according to the procedure
detailed in Appendix C) or by integrating numerically the ordinary differential equations of motion expressed
in the time domain and in the reciprocal space. Specifically, equations (24) can be particularized for the
triangular beam lattice metamaterial and expressed in nondimensional form as

Π(φ̊(τ,b))¨+Υ(φ̊(τ,b)) ˙+Σ(b) φ̊(τ,b) = δ̊(τ,b), (33)

where the nondimensional 9-by-9 mass matrix Π = diag(Πa,Πr,O) with Πa = diag (1, 1, χ2) and Πr =
diag (ϱ2, ϱ2, χ2

r), the nondimensional 9-by-9 matrix Υ = diag(O,O, I) and the nondimensional 9-by-9 gen-
eralized stiffness matrix Σ(b) is not-symmetric, b-dependent and reported in the Appendix B. Once the
solution φ(τ,b) is analytically or numerically known in the reciprocal space, the forced response φJ (τ) in
the physical space can be determined by applying the inverse discrete Fourier transform

φJ (τ) = F−1
d [φ̊(τ,k)] =

1

|B|

∫
B
φ̊(τ,b) exp[ı(i1 − 1)(n1 · b)]... exp[ı(in/2 − 1)(nn/2 · b)]db, (34)

where |B| is the size of the first Brillouin zone.325

By virtue of the dynamic problem linearity and without loss of generality, it may be convenient to analyze
the forced response to a single punctual excitation δJ (τ) applied to the J -th lattice node, taken as reference
for the sake of simplicity (namely J = O). Specifically, the generic real-valued mono-harmonic component

δO(τ) = δ(0,...,0) (τ) =
1
2ψH(τ) exp(ς τ) + cc, (35)
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Figure 10: Forced response to harmonic punctual force characterized by monocomponent amplitude vector ψv (not-null com-
ponent ψv = 5× 10−2) for wavevector b1 in the resonant (red lines), quasi-resonant (black lines) and non-resonant (blue lines)
cases: (a), (b) time history and FFT of the relative displacement (̊v − v̊r); (c) time history of the viscoelastic state ẘv ; (d)
oscillation cycles of viscoelastic force γ̊v versus relative displacement (̊v − v̊r).

of a time-periodic force is considered, with constant amplitude 9-by-1 vector ψ = [ψu, ψv, ψϕ, 0, ..., 0]
⊤,

complex nondimensional excitation frequency ς, H(τ) indicating the unit step function and cc standing for
complex conjugate. In particular, the analyses in the following are limited to non-decaying (R(ς) = 0) or
exponentially decaying (R(ς) < 0) excitations. Under these assumptions, the mapped Z-transform of the
excitation is b-independent and reads δ̊(τ) = 1

2ψH(τ) exp(ς τ) + cc.330

Hereinafter, the forced responses φ̊(τ,b) are investigated separately for punctual forces ψu, ψv or punctual
couples ψϕ and different values of the wavevector b, particularizing the stiffness matrix Σ(b), by direct time
integrations of Eq. (33). Moreover, the added-state formulation, which by-passes the computational issues
related to the presence of convolution integrals in the equations of motion, is exploited to directly assess
in time the dynamics of the viscoelastic states. This implies also the valuable possibility of evaluating,335

straightforwardly, the dissipative force vector γ̊γγ(τ) (i.e., the mapped Z-transform of the nondimensional
vector γγγ(τ)) through the expression given in Eq. (15). Consequently, the force-displacement cycles can be
obtained and employed to determine the energy dissipated by the viscoelastic resonators.

The forced response to a particular harmonic punctual force characterized by monocomponent amplitude
vector ψv (where ψv = 5 × 10−2, while ψu = ψϕ = 0) and different excitation frequencies is illustrated in340

Fig. 10 for the stiffness matrix particularized by fixed wavevector b1. Specifically, the time-histories of
the real-valued relative ring-resonator displacement (̊v − v̊r) and the corresponding viscoelastic state ẘv

are illustrated in Figs. 10a,c. For the relative displacement, the fast Fourier transform (FFT) is shown in
Fig. 10b. Finally, the oscillation cycles of the viscoelastic force γ̊v versus the relative displacement (̊v − v̊r)
are portrayed in Fig. 10d. Since the wavevector b1 satisfies the condition of full decoupling C123, the forced345

response involves only the waveforms φ1 and φ5 participated by the wavecomponents v̊ and v̊r (activable
waveforms). Three cases of interest are analyzed: (i) the resonant case of time-decaying force having real
and imaginary parts of the excitation frequency equal to a certain harmonic component of the spectrum
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Figure 11: Forced response to harmonic punctual force characterized by monocomponent amplitude vector ψv (not-null com-
ponent ψv = 5×10−2) for wavevector b12 in the resonant (red lines), quasi-resonant (black lines) and non-resonant (blue lines)
cases: (a), (b) time history and FFT of the relative displacement (ů − ůr); (c) time history of the viscoelastic state ẘu; (d)
oscillation cycles of viscoelastic force γ̊u versus relative displacement (ů− ůr).

(namely ς = σ5, results plotted with red lines); (ii) the quasi-resonant case of non-decaying force having
imaginary part of the excitation frequency equal to a certain harmonic component of the imaginary spectrum350

(namely R(ς) = 0, I(ς) = I(σ5), results plotted with black lines); (iii) the non-resonant case of non-decaying
force having imaginary part of the excitation frequency far from the activable harmonic components of the
imaginary spectrum (namely R(ς) = 0, I(ς) = 1, results plotted with blue lines). Clearly, the excitation
frequency of the resonant and nearly-resonant cases has been tuned with the imaginary part of the complex
wavefrequency σ5, with the aim of primarily exciting the waveform φ5 that is strongly polarized in the355

relative displacement (̊v − v̊r). As expected, the largest amplitudes of the time-histories are associated to
the quasi-resonant case, whose forced response reaches a high-amplitude steady state, after a transient.
The mono-harmonic component of the steady state is evidenced by the corresponding FFT, showing a
dominant high-amplitude peak at the forcing frequency I(σ5). The time-histories of the non-resonant case
show a qualitatively similar behaviour, with a steady state characterized by significantly lower amplitudes.360

Furthermore, the different mono-harmonic component is disclosed by the corresponding FFT, showing a
dominant but lower-amplitude peak at the forcing frequency I(ς). Differently, the time-histories of the
resonant case do not reach a constant-amplitude steady state, due to the time-decay of the excitation force.
Accordingly, the corresponding FFT reveals the same mono-harmonic component of the quasi-resonant
case, although with lower amplitude of the dominant frequency peak. Consistently, the quasi-resonant case365

shows also the largest energy dissipation in the oscillation cycles of the viscoelastic force versus the relative
displacement at the steady state.

Since a few wavevectors actually satisfy the condition of full decoupling C123, it is interesting to inves-
tigate the forced response for wavevectors providing full coupling (see Fig.2b). To this end, the harmonic
punctual force characterized by monocomponent amplitude vector ψv is applied in combination with the370

fixed wavevector b12. Due to the full coupling provided by the out-of-diagonal terms of the stiffness matrix
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Figure 12: Forced response to harmonic punctual force characterized by monocomponent amplitude vector ψv (not-null com-
ponent ψv = 5 × 10−2) for wavevector b12 in the resonant (red lines), quasi-resonant (black lines) and non-resonant (blue
lines) cases: (a), (b) time history and FFT of the relative displacement (̊v − v̊r); (c) time history of the viscoelastic state ẘv ;
(d) oscillation cycles of viscoelastic force γ̊v versus relative displacement (̊v − v̊r).

Σ(b12), all the waveforms φ1-φ6 are activated by the external excitation and all the degrees of freedom
participate in the forced response. The real-valued relative displacements (̊u − ůr) and (̊v − v̊r), are illus-
trated in Fig. 11 and Fig. 12, respectively. The relative rotations (ϕ̊− ϕ̊r) are instead imaginary-valued due
to the complex-valued coupling terms Σ12 = −Σ21 and Σ13 = −Σ31 in the stiffness matrix. The relevant375

cases of resonant (red lines), quasi-resonant (black lines) and non-resonant (blue lines) forcing excitation are
investigated. From the qualitative viewpoint, all the responses show the typical mono-harmonic oscillations
characterized – after a certain transient – by a high-amplitude steady state (quasi-resonant excitation), a
low-amplitude steady state (non resonant excitation), an exponential time decay with absence of steady state
(resonant excitation). From the quantitative viewpoint, the relative displacements (̊u − ůr) and (̊v − v̊r)380

reach comparable oscillation amplitudes, associated to rather similar amplitudes of the viscoelastic states
ẘu, ẘv corresponding to similar performances in terms of dissipated energy. On the contrary, the relative
rotation (ϕ̊ − ϕ̊r), here not illustrated for the sake of synthesis, is found to reach oscillation amplitudes
significantly lower, corresponding to negligible energy dissipation.

A thorough investigation concerning the effects of a variable wavevector b can be performed by spanning385

the whole first hexagonal Brillouin zone. To this purpose, the maximum amplitude of the forced response to
the harmonic punctual force characterized by monocomponent amplitude vector ψv is illustrated in Fig. 13.
The cases of complex-valued excitation frequency ς = σ5 and imaginary-valued excitation frequencies ς =
I(σ5) or ς = ı are presented (where σ5 is evaluated at the wavevector b12). From the qualitative viewpoint,
it can be recognized that the maximum amplitudes of the forced response respect the centrosymmetry390

in the Brillouin zone for all the relative displacements and rotations. From the quantitative viewpoint,
the amplitudes grow up everywhere resonance or quasi-resonance conditions occur between the excitation
frequency and one of the complex-valued spectral frequencies for a certain wavevector b, as expected.

Having investigated parametrically the effects of a non-null real part of the excitation frequency (red
versus black curves in Fig. 11 and Fig. 12) and the consequences of a variable wavevector (Fig. 13), the395
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Figure 13: Maximum amplitudes of the forced response to harmonic punctual force characterized by monocomponent amplitude
vector ψv (not-null component ψv = 5 × 10−2): (a) relative displacement (ů − ůr), (b) relative displacement (̊v − v̊r), (c)

relative rotation (ϕ̊− ϕ̊r). Excitation frequencies ς = σ5 (left), ς = I(σ5) (center), ς = ı (right).

dependence of the forced response on different amplitude vectors φ for large ranges of the excitation fre-
quency ς remains to be discussed. To this end, three monocomponent amplitude vectors ψu (with not-null
component ψu = 5×10−2) and ψv (with not-null component ψv = 5×10−2) are considered. The maximum
amplitudes of the forced response are illustrated over the full range of the reduced wavevector ξ for a signifi-
cant range of purely imaginary excitation frequencies ς. Specifically, the relative displacements and rotations400

for the amplitude vector ψu are illustrated in Fig. 14 for the excitation frequencies range I(ς) ∈ [0.55, 2.65].
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Figure 14: Forced response to harmonic punctual force characterized by monocomponent amplitude vector ψu (not-null
component ψv = 5 × 10−2): (a) maximum amplitudes in the (ξ, I(ς))-plane, (b) maximum amplitudes versus the reduced
wavevector for fixed excitation frequencies I(ς).

(a)

(b)
ξ

I(ς)

max(R(ů − ůr))
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Figure 15: Forced response to harmonic punctual force characterized by monocomponent amplitude vector ψv (not-null compo-
nent ψv = 5× 10−2): (a) maximum amplitudes in the (ξ, I(ς))-plane, (b) maximum amplitudes versus the reduced wavevector
for fixed excitation frequencies I(ς).
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It can be recognized how quasi-resonances, causing large but finite amplitudes (not-purple crests), occur
in correspondence of the spectral branches associated to activable waveforms (Fig. 14a). To exemplify, the
activable waveforms over the range ξ ∈ [0, βc csc(π/3)], in which the decoupling conditions C12 and C13 are
satisfied, are those participated by the relative displacement (̊u − ůr). Curves illustrating the maximum405

amplitude versus reduced wavevector are also illustrated in Fig. 14b, considering a pair of fixed excitation
frequencies (dashed lines in Fig. 14a). The Figure highlights the different number and positions of the
response peaks, depending on the quasi-resonance conditions generated by different excitation frequencies
(black and blue curves). Analogous considerations can be pointed out for the relative displacements and
rotations of the response to external force with amplitude vector ψu, illustrated in Fig. 15.410

7. Conclusions

Following a variational energetic approach, a general physical-mathematical formulation has been presented
to describe the linear dynamics of mechanical metamaterials. Specifically, a parametric beam lattice model
has been formulated for the large class of two-dimensional unbounded media characterized by a periodic
microstructure. In particular, the model formulation holds for cellular non-dissipative microstructures artifi-415

cially made by a geometrically repetitive pattern of circular rings, in which each ring is radially interconnected
with the nearest neighborhoods by a generic number of rectilinear ligaments (coordination number). The
configurational lattice nodes coincide with the equispaced centroids of the stiff and heavy rings, modeled
as massive rigid bodies. Nodes can exchange intercellular forces (attraction/repulsion, shear and moment)
through the flexible and light ligaments, modeled as massless unshearable beams. The beam lattice model420

has been enriched by introducing the microstructural dynamic interactions provided by intra-ring tunable
oscillators, viscoelastically coupled with the hosting rings to realize damped local resonators. As peculiar
aspect, the viscoelastic ring-resonator coupling has been derived by a consistent mathematical formulation
based on the Boltzmann superposition integral, whose kernel can be expressed by a Prony series.

According to the model assumptions, the forced dynamics of the beam lattice model are initially gov-425

erned by a system of ordinary integral-differential equations. As primary methodological development with
respect to previous studies, the dynamic state space has been enlarged by adding auxiliary internal variables
(intracellular viscoelastic states), whose coupled linear dynamics are governed by first-order linear differen-
tial equations. According to this strategy, the model dimension grows proportionally to the terms of the
Prony series, but can be conveniently described by a system of ordinary differential equations. Considering430

a generic number of added viscoelastic states, the Z-transform and a suitable mapping in the wavevector
space have been applied to obtain the system of ordinary differential equations governing the free and forced
propagation of damped waves. From the methodological viewpoint, this mathematical approach can be
considered a valid alternative to the common application of the quasi-periodicity conditions according to
the Floquet-Bloch theory. First, a fully-analytical procedure has been outlined to solve the propagation435

problem of generically forced waves, by attacking the governing differential equations in the time domain.
Second, the polynomial algebraic eigenproblem governing the free propagation of harmonic damped waves in
the complex frequency domain has been stated by applying the bilateral Laplace transform. In this respect,
the enlargement of the state space has been proved to profitably circumvent the algorithmic necessity of
de-rationalizing or asymptotically approximating the characteristic equation.440

The triangular beam lattice metamaterial has been selected as prototypical reference model for illustrat-
ing the theoretical and methodological developments. The governing equations of motion have been derived
by considering the lowest two terms of the Prony series, corresponding to the minimal enlargement of the
state space. Considering first the free wave propagation, the structural properties of the quasi-symmetric
dynamic stiffness matrix have been discussed up to identifying the wavevector loci that realize the strongest445

and weakest (null) coupling among the relative ring-resonator displacements participating in the waveforms.
This investigation opens interesting perspectives in the management of the mechanical energy transferred
by strongly polarized propagating waves. Therefore, the dispersion frequency spectrum has been paramet-
rically investigated in the space of real-valued wavevectors and complex-valued frequencies, with focus on
the spectral effects of the viscoelastic coupling. As major qualitative remark, the addition of viscoelastic450

states determines a relevant enrichment of the dispersion spectrum, which shows the typical complex-valued
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branches corresponding to propagating damped waves, but also extra real-valued branches corresponding
to standing (non-propagating) waves. As complementary quantitative remark, the viscosity-related effect
of amplitude widening/narrowing in the pass and stop band structure has been highlighted, with respect
to non-dissipative metamaterials with the same microstructure. Significantly, the spectral damping ratio of455

propagating waves has been verified to attain a wavevector-dependent maximum, for a particular value of
the relaxation time ruling the viscoelastic coupling. This particular finding paves the way for stating spectral
design problems targeted at optimizing the viscoelastic properties for the maximization of the dissipated
energy. Moreover, the dependence of the stop bandwidth amplitude between the low and high-frequency
spectral branches on the relaxation time characterizing the viscous function has also been highlighted and460

discussed. Finally, considering the forced wave propagation, the response to harmonically decaying and
non-decaying excitations, given by an external mono-frequency point force, has been investigated. The
metamaterial response has been determined numerically in the time domain. Considerations regarding the
participation of one or the other waveforms have been pointed out, on the basis of the stronger or weaker
conditions of internal coupling occurring at different wavevectors. Spanning a large range of excitation465

frequency has allowed to qualitatively compare and quantitatively discuss the results by distinguishing the
fundamental cases of no-resonance, resonance and quasi-resonance, respectively.

Appendix A. Formulation with added states

Given the convolution expression of the time-dependent function F (t)

F (t) = F0

∫ t

−∞
Φ(t− t∗)∂t∗ξ(t∗) dt∗, (A.1)

where t∗ is an auxiliary time variable, ξ is a generic casual time-dependent dynamic state, Φ(t − t∗) is a
continuous and differentiable function of times t and t∗ and ∂t∗ represents partial differentiation with respect
to the auxiliary time t∗. By assuming ξ = 0 when t < 0 for all casual time-dependent dynamic states ξ, and
since Φ(t− t∗) = 0 for t < t∗, then Eq. (A.1) becomes

F (t) = F0

[
Φ(t)ξ(0) +

∫ t

0

Φ(t− t∗)∂t∗ξ(t∗) dt∗

]
. (A.2)

Integrating by part the convolution integral in (A.2), the function F (t) can be expressed as

F (t) = F0

{
Φ(t)ξ(0) +

[
Φ(0)ξ(t)− Φ(t)ξ(0)

]
−
∫ t

0

∂t∗Φ(t− t∗)ξ(t∗) dt∗

}
, (A.3)

which simplifies as

F (t) = F0

[
Φ(0)ξ(t)−

∫ t

0

∂t∗Φ(t− t∗)ξ(t∗) dt∗

]
. (A.4)

In the particular case in which the function Φ(t− t∗) is a series of exponential functions

Φ(t− t∗) = 1−
N∑
i=1

aie
−bi(t−t∗), (A.5)

where ai and bi are constant coefficient terms of the series, its derivative with respect to time t∗ can be
calculated as

∂t∗Φ(t− t∗) = −
N∑
i=1

aibie
−bi(t−t∗). (A.6)

By introducing, for the sake of notational simplicity, the function φi(t − t∗) := e−bi(t−t∗) representative of
the ith term of the series, then Eqs. (A.5) and (A.6) can be rewritten in the more compact form as

Φ(t− t∗) = 1−
N∑
i=1

aiφi(t− t∗), ∂t∗Φ(t− t∗) = −
N∑
i=1

aibiφi(t− t∗), (A.7)
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respectively; hence, the convolution integral in Eq. (A.4) can be written as∫ t

0

∂t∗Φ(t− t∗)ξ(t∗) dt∗ = −
N∑
i=1

aibi

∫ t

0

φi(t− t∗)ξ(t∗) dt∗ . (A.8)

By denoting by Wi the ith additional dynamic variable defined as

Wi(t) :=

∫ t

0

φi(t− t∗)ξ(t∗) dt∗ , (A.9)

then Eq. (A.8) becomes: ∫ t

0

∂t∗Φ(t− t∗)ξ(t∗) dt∗ = −
N∑
i=1

aibiWi(t) . (A.10)

By enforcing the differentiation properties of the convolution integral, the derivative with respect to time t
of the ith additional dynamic variable Wi can be written as

Ẇi(t) = φi(0)ξ(t) +

∫ t

0

φ̇i(t− t∗)ξ(t∗) dt∗ , (A.11)

where the overdot indicates derivative with respect to time t. The derivative with respect to time t of the
function φi(t− t∗) reads φ̇i(t− t∗) = −bie−bi(t−t∗); therefore, due to the definition of the function φi(t− t∗),
its time derivative can be written as

φ̇i(t− t∗) = −biφi(t− t∗) . (A.12)

Hence, Eq. (A.11) becomes

Ẇi(t) = φi(0)ξ(t)− bi

∫ t

0

φi(t− t∗)ξ(t∗) dt∗ , (A.13)

where, due to the definition provided in Eq. (A.9), the integral in the right hand side of Eq. (A.13) is the
additional dynamic state Wi(t) and Eq. (A.13) can be then written in the more compact form as:

Ẇi(t) + biWi(t)− φi(0)ξ(t) = 0 , (A.14)

which represents the first-order differential equation governing the dynamics of the additional ithe dynamic
state Wi(t). Finally, being Φ(0) = 1−∑N

i=1 ai, the function F (t) can be written as a linear combination of
the N dynamic states as:

F (t) = F0

[(
1−

N∑
i=1

ai

)
ξ(t) +

N∑
i=1

aibiWi(t)

]
, (A.15)

whose dynamics, since φi(0) = 1, are governed by the N differential equations

Ẇi(t) + biWi(t)− ξ(t) = 0 , i = 1, . . . , N . (A.16)

Appendix B. Governing matrices

The augmented (6+3N)-by-(6+3N) stiffness matrix K̃ multiplying the k-mapped Z-transformed displace-
ments q̊(t,k) in Eq.(24) reads

K̃(k) =


(I+ S)Ke +H(k) − (I+ S)Ke . . . −TNDNKe

− (I+ S)Ke (I+ S)Ke . . . TNDNKe

...
...

. . .
...

−I I . . . TN

 . (B.1)
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The nondimensional 9-by-9 matrix Γ(σ,b) in Eq.(30) governing the dynamics of the triangular beam lattice
metamaterial in the frequency domain reads

Γ(σ,b) =

 σ2 Πa + (I+D)Σe +Ξ(b) − (I+D)Σe −ΩDΣe

− (I+D)Σe σ2 Πr + (I+D)Σe ΩDΣe

−ΩDΣe ΩDΣe (σ I+Ω)ΩDΣe

 (B.2)

while the nondimensional 9-by-9 matrix Σ(b) in Eq.(33) governing the forced dynamics of the triangular
beam lattice metamaterial in the time domain reads

Σ(b) =

 (I+D)Σe +Ξ(b) − (I+D)Σe −ΩDΣe

− (I+D)Σe (I+D)Σe ΩDΣe

−ΩDΣe ΩDΣe ΩΩDΣe

 (B.3)

where Πa = diag (1, 1, χ2) and Πr = diag (ϱ2, ϱ2, χ2
r) are the nondimensional mass matrices of the ring

and the resonator, respectively, while Σe = diag (κu, κv, κϕ) is the nondimensional coupling stiffness ma-
trix, and Ω = τ−1

r I is the nondimensional matrix accounting for the relaxation time. Finally Ξ(b) is the
nondimensional representation of the 3-by-3 Hermitian matrix H(k), and its components read

Ξ11(b) = 3 + 36µ2 − 2c0(b)−
(
1 + 36µ2

)
c1(b),

Ξ22(b) = 3 + 36µ2 − 24µ2c0(b)− 3
(
1 + 4µ2

)
c1(b),

Ξ22(b) = 4µ2
[
6
(
1 + 3χ+ 3χ2

)
+
(
1 + 6χ+ 6χ2

)
(c0(b) + 2 c1(b))

]
,

Ξ12(b) = Ξ21(b) =
(
1− 12µ2

)
c2(b) tan(π/3),

Ξ13(b) = −Ξ31(b) = −ı12µ2 (1 + 2χ) c3(b) tan(π/3),

Ξ23(b) = −Ξ32(b) = ı 12µ2 (1 + 2χ) (c4(b) + 2c5(b)) ,

(B.4)

where the auxiliary trigonometric functions c0(b) = cosβ1, c1(b) = cos
(
1
2β1
)
cos
(
1
2β2 tan(π/3)

)
, c2(b) =470

sin
(
1
2β1
)
sin
(
1
2β2 tan(π/3)

)
, c3(b) = cos

(
1
2β1
)
sin
(
1
2β2 tan(π/3)

)
, c4(b) = sin

(
1
2β1
)
cos
(
1
2β2 tan(π/3)

)
,

c5(b) = sin
(
1
2β1
)
cos
(
1
2β1
)
have been introduced. It is worth noting that, sinceΠ, D, Σe are diagonal matri-

ces, the relations Γ12(σ,b) = Σ12(b) = Ξ12(b), Γ13(σ,b) = Σ13(b) = Ξ13(b), Γ23(σ,b) = Σ23(b) = Ξ23(b)
hold.

Appendix C. Forced response in the time domain475

The ordinary differential equations of motion (24) governing the forced response of the mechanical meta-
material in the time domain and the reciprocal space can be expressed as a first-order linear dynamic
system A(̊x)˙+Bx̊ = b̊, by defining the (k, t)-dependent vector variables x̊ = [(ů) ,̇ ů, (̊v) ,̇ v̊, ..., ẘNk

]⊤ and

b̊ = [̊f ,0,0,0, ...,0]⊤ and introducing the (12 + 3Nk)-by-(12 + 3Nk) matrix A = diag(M, I,Mr, I, I, ..., IN )
and the k-dependent (12 + 3Nk)-by-(12 + 3Nk) matrix

B(k) =


O (I+ S)Ke +H(k) O −(I+ S)Ke ... −TNk

DNk
Ke

−I O O O ... O
O −(I+ S)Ke O (I+ S)Ke ... TNk

DNk
Ke

O O −I O ... O
... ... ... ... ... ...
O −I O I ... TNk

 (C.1)

and, since the matrix A is invertible (being detA = 1
2M

3M3
rR

2R2
r), the system can suitably be cast in the

form (̊x)˙− J(k)̊x = c̊, where J(k) = −A−1B(k) and c̊ = A−1b̊. The solution can formally be expressed as

x̊(t,k) = exp [(t− t0)J(k)] x̊0(k) +

∫ t

t0

exp [(t− t∗)J(k)] c̊(t∗,k)dt∗ (C.2)
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where it may be worth recalling the definition of exponential of the matrix

exp [(t− t0)J(k)] =

∞∑
ℓ=0

1

ℓ !
[J(k) (t− t0)]

ℓ
, (C.3)

and the initial conditions read x̊0(k) = x̊(t = t0,k). Recalling equation (23) and the mapping rule zj =
exp(ı Bnj · k), the matrix H(k) can be written

H(k) = H0 +

n/2∑
j=1

H−
j exp(−ı Bnj · k) +

n/2∑
j=1

H+
j exp(ı Bnj · k), (C.4)

where the k-independent matrices H0 = K− +K+, H−
j = (B−

j )
⊤Θ⊤

j KΘj B
+
j , H

+
j = (B+

j )
⊤Θ⊤

j KΘj B
−
j

are introduced. Accordingly, the H(k)-dependent matrix J(k) can be expressed as

J(k) = J0 +

n/2∑
j=1

J−
j exp(−ı Bnj · k) +

n/2∑
j=1

J+
j exp(ı Bnj · k) =

n/2∑
j=−n/2

Jj exp(ı Bnj · kh[j]), (C.5)

where h[j] = 2H[j] − 1 depends on the discrete Heaviside function H[j]. The definition of the exponential
matrix in (C.3) requires the assessment of the ℓ-power of the J(k), which can be determined as

J(k)ℓ =
∑

r1+...+rn+1=ℓ

(
ℓ

r1, ..., rn+1

) n+1∏
j=1

[Jjexp(ı Bnj · kh[j])]rj (C.6)

where r1, ..., rn+1 ∈ N∗ in the binomial coefficient. Therefore, by substituting equation (C.6) into equation
(C.3), the solution (C.2) is

x̊(t,k) =

 ∞∑
ℓ=0

1

ℓ !
(t− t0)

ℓ
∑

r1+...+rn+1=ℓ

(
ℓ

r1, ..., rn+1

) n+1∏
j=1

[Jjexp(ı Bnj · kh[j])]rj
 x̊0(k)+ (C.7)

+

∞∑
ℓ=0

1

ℓ !

∫ t

t0

(t− t∗)
ℓ

 ∑
r1+...+rn+1=ℓ

(
ℓ

r1, ..., rn+1

) n+1∏
j=1

[Jjexp(ı Bnj · kh[j])]rj
 c̊(t∗,k)dt∗

where the order of integration and sum has been inverted by virtue of the series convergence. Finally, by
applying the inverse discrete Fourier transform, the solution in the physical space is determined as

xJ (t) = F−1
d [̊x(t,k)] =

1

|B|

∫
B
x̊(t,k)

n/2∏
j=1

exp[ı(ij − 1)(Bnj · k)]dk (C.8)

where |B| is the size of the first Brillouin zone.
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