
PHYSICAL REVIEW RESEARCH 4, L022044 (2022)
Letter

Flagellar elasticity and the multiple swimming modes of interfacial bacteria
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In peritrichous bacteria, such as E. coli, flagella join into a compact bundle that is usually assumed to be rigidly
connected to the cell body allowing only counter-rotations around a common axis. This simple microswimmer
model has been very successful in providing quantitative predictions on swimming behavior in bulk fluids and
in the proximity of different kinds of interfaces and confinement. Here, we show that, when bacteria colonize a
water-air interface, capillary forces can strongly deform the body-bundle complex, giving rise to unusual and
heterogeneous swimming modes. We find that all trajectories can be classified into four main modes, with
cells tracing either clockwise or counterclockwise circles while the cell body can be locked to the swimming
direction or spin freely. All the observed phenomenology can be reproduced by simply allowing elastic bending
of the bundle axis, where stiffness is the main factor in selecting the swimming mode. Our results allow us to
experimentally test flexible models of microswimmers in highly perturbed contexts and provide physical insights
into the early stages of bacterial pellicles.
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Bacteria can colonize air-water interfaces by forming pel-
licles [1]. Unlike biofilms over solid substrates, little is known
about pellicles in general and even about the dynamics of indi-
vidual cells that breach the interface [2]. This is not surprising
if we consider that even for colloidal spheres, the static and
dynamic properties at the interfaces can be nontrivial. For in-
stance, contact lines reach equilibrium through slow hopping
processes recalling aging in glassy systems [3]. Contact line
dynamics also contributes an additional drag term for trans-
lations over the interface plane [4] and strongly suppresses
rotations about any axis orthogonal to the interface normal [5].
When self-propulsion is added to the mix, as in catalytic Janus
microspheres trapped at an interface, capillary forces produce
speeds and reorientation times that can be very different from
the bulk values [6]. For swimming bacteria we only know that
a combination of hydrodynamic and steric interactions can re-
tain cells over the surface of an impenetrable boundary where
they trace circular trajectories [7]. For liquid-solid interfaces,
these circles are traced counterclockwise [8], when looked at
from the solid side, while for liquid-air interfaces the direction
is reversed [9,10]. All bacteria display the same swimming
pattern that is solely dictated by the boundary conditions
imposed by the interface on the fluid [11–14].

Here, we show that, when bacteria colonize a liquid-air
interface, a complex interplay between flagellar torque, cap-
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illary forces, and hydrodynamic interactions gives rise to four
distinct swimming modes. By combining holographic mi-
croscopy and theoretical modeling, we demonstrate that each
cell selects one of these four swimming modes based on the
value of two intrinsic parameters: the orientation of the cell
body relatively to the flagellar bundle and the angular stiffness
of the bundle.

E. coli cells are often represented by two rigid bodies, a
cell body and flagellar bundle, that translate with the same
velocity but are free to rotate around a common axis [15].
Freely swimming bacteria are torque free so that an equal
and opposite torque is applied by flagellar motors to body and
bundle. Both the body and the bundle have time-averaged hy-
drodynamic resistance tensors with a principal axis parallel to
the torque. As a result, internal deformations are only present
as small-amplitude oscillations and can be often neglected. In
monotrichous bacteria, the presence of the hook, a flexible
joint connecting flagella to the cell body, can cause random
reorientations through buckling [16,17], while no major role
was attributed to the flexibility of flagellar bundles in per-
itrichous bacteria such as E. coli. When a cell breaches a
liquid-air interface, the presence of a contact line suppresses
out-of-plane motions and only allows body rotations around
the surface normal ẑ [5]. In this situation, equal and oppo-
site torques result in nonparallel angular velocities and small
differences in bundle stiffness and alignment result in very dif-
ferent swimming modes. Three-axis holographic microscopy
[10,18–20] provides volumetric reconstructions of the prolate
cell body. In adsorbed cells, vertical fluctuations as well as
wobbling are strongly suppressed due to contact line pinning
and surface tension as shown in Fig. 1. Looking at the tra-
jectories of these interface bound cells, we found a variety of
different behaviors. These swimming patterns can be grouped
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FIG. 1. Side view on volumetric images of (a) a fully wet cell
swimming below the water-air interface, and (b) a partially wet cell
that is trapped at the interface by capillary forces. The exact location
of the interface is not known directly and the one shown in the
figure is intended only as a graphical representation.

into four modes that are represented in Figs. 2(a)–2(d). In
the top two rows, we have “locked” cells, with the cell body
forming a constant angle with the swimming direction while
both rotate clockwise (CW) in Fig. 2(a) and counterclockwise
(CCW) in Fig. 2(b), when viewed from the air side. The two
bottom rows show two examples of “spinning” cells with
the body axis always rotating CCW while the body center
traces CW [Fig. 2(c)] or CCW [Fig. 2(d)] circles, respectively.
Locked cells [Figs. 2(a) and 2(b)] and CW spinning cells
[Fig. 2(c)] swim with a stationary dynamics while the trajecto-
ries of CCW spinning cells [Fig. 2(d)] are often discontinuous
with CCW arcs interrupted by kinks where the cell body
rotates faster.

Despite this apparent complexity, the nature and the fea-
tures of these different swimming modes can be understood
by a very simple elastohydrodynamic model. We treat the cell
body and the bundle as two hydrodynamically uncoupled units
connected by a joint at the center of the cell body through
which they can exchange a force F and a torque T. The cell
body linear and angular velocities U and � are linearly related
to F and T by a mobility matrix:(

U
�

)
=

(
A 0
0 B

)
·
(

F
T

)
. (1)

An equal and opposite force and torque will act on the bundle
for which we also must include rototranslational coupling
terms: (

U
ω

)
=

(
a c
cT b

)
·
(−F

−T

)
. (2)

All mobility tensors A, B, a, b, c are referred to the cell body
center. Force and torque in (1) should also include the cap-
illary contributions that behave as reaction forces restricting
body translations on the xy plane and rotations to the sole
z axis. Instead of explicitly introducing these reaction forces
we can use effective mobility matrices [21] that, assuming a
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FIG. 2. Swimming modes of interfacial bacteria. The left column
shows volumetric reconstructions of E. coli cells trapped at a water-
air interface. “Locked” cells [(a), (b)] keep a constant angle between
the body axis and the velocity vector while for “spinning” cells [(c),
(d)] the cell body freely rotates counterclockwise. Both “locked” and
“spinning” cells move over circular trajectories that are traced either
clockwise [(a), (c)] or counterclockwise [(b), (d)]. The right column
shows four sample trajectories generated by direct integration of the
equations of motion described in the text. The selected values for
parameters θ0 and k/τ are represented in Fig. 5 over the predicted
swimming mode diagram.

spherical cell body, have the following form:

A = A(x̂x̂ + ŷŷ), B = Bẑẑ. (3)

We can assume that bundles are fully wetted [21] and are
described by constant axisymmetric mobility tensors,

a = a‖ l̂l̂ + (a⊥ + b⊥L2)(I − l̂l̂), (4)

b = b‖ l̂l̂ + b⊥(I − l̂l̂), (5)

c = −cl̂l̂ − Lb⊥ l̂ × I, (6)

where I is the identity tensor, l̂ is the bundle axis, 2L is the
bundle length, while a‖, a⊥, b‖, b⊥, and c are the mobility
components referred to the center of the bundle. Shifting the
mobility tensor from the bundle to body center [22] gives the
terms b⊥L2(I − l̂l̂) in Eq. (4) and Lb⊥ l̂ × I in Eq. (6). The
torque T has two components: an axial torque transmitted by
flagellar motors and an off-axis torque that elastically restores
the bundle axis onto an equilibrium direction l̂0 that is rigidly
anchored to the cell body:

T = τ l̂ − k l̂ × l̂0. (7)

Although liquid-air interfaces are all but simple [10] we model
our interface as a stress-free boundary. In principle, the pres-
ence of an interface will affect all components of the bundle
mobility matrices a, b, c but the most important correction
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FIG. 3. (a) l̂0 represents the direction of the bundle at rest and
follows rigidly the cell body. l̂ is the actual bundle direction during
swimming. The two vectors l̂0 and l̂ form respectively the angles θ0

and θ with the interface plane. (b) δφ is the angle between the in-
plane projections of l̂0 and l̂ (dashed lines). (c) T is the torque exerted
by flagellar motors on the cell body and producing CCW rotations
around the only available axis for rotations ẑ. The hydrodynamic
image of the bundle applies a torque T′ on the fluid whose resulting
flow advects the real bundle and drives CW rotations.

to bulk mobilities is the appearance of a new coupling term
that is responsible for CW swimming at liquid-air interfaces
[9]. We find that this term is well estimated by the analytic
expression

c′ = (l̂ × ẑ)l̂
16πηL2 sin θ

, (8)

obtained by evaluating the flow field produced at the bundle
center by a line of torques distributed over the axis of the
bundle’s hydrodynamic image [9]. The goodness of this
approximation is validated by numerical simulations [21].
A generic configuration is described by the vectors l̂0 and l̂
that rotate with the body and bundle angular velocities � and
ω, respectively. In a Cartesian coordinate system with the z
axis directed along the interface normal [Fig. 3(c)], l̂0 and l̂
have coordinates l̂0 = (cos θ0 cos φ0, cos θ0 sin φ0, sin θ0) and
l̂ = (cos θ cos φ, cos θ sin φ, sin θ ). For our smooth swim-
ming strain, the bundle forms in the bulk and keeps a fixed
orientation l̂0 with respect to the cell body. As the cell body
becomes trapped by the interface, the bundle axis l̂ deviates
from the equilibrium direction l̂0 that rotates rigidly with the
cell body. Since body rotations are restricted to the z axis, l̂0
will form a fixed angle θ0 with the interface plane. For a given
configuration specified by θ and δφ = φ0 − φ, we can solve
the four vector equations (1) and (2) for the four unknown
vectors F, U, �, and ω, once the cell properties θ0, k, and τ are
specified. We find that the cell body rotates with an angular
speed

φ̇0 = �z = Bτ sin θ − Bk cos θ cos θ0 sin δφ. (9)

The azimuthal bundle angle evolves as [23]

φ̇ = ωz − tan θ ωx = −b⊥τ

α

1

sin θ
+ b⊥k

β

cos θ0 sin δφ

cos θ
,

(10)

where β = 1 + b⊥L2/(A + a⊥ + b⊥L2) and α = 16πηL(A +
a⊥). Equations (9) and (10) imply that, when the bundle is in
its rest equilibrium configuration, δφ = 0 and the cell body
is driven by the motor torque in a CCW (positive z) rotation
that is faster the larger is the angle θ . Conversely, the bundle
is advected in a CW rotation by the flow produced by image
torques that is stronger as θ becomes smaller, and the bundle
gets closer to the interface. As the body and the bundle rotate
in opposite directions, the angle δφ = φ0 − φ evolves as

˙δφ

Bτ
= sin θ + b⊥/B

α sin θ
− k

τ

(
cos θ − b⊥/B

β cos θ

)
cos θ0 sin δφ,

(11)

where time is normalized in units of 1/Bτ . As the stiffness
k/τ increases, there will be an equilibrium angle δφ for which
the cell body and bundle rotations are locked (δφ̇ = 0) and
spin with the same angular speed. The sign of this common
speed can be either positive (CCW) or negative (CW)
depending on the angle θ only. At the transition between
CCW and CW motion, both φ̇0 and φ̇ will be 0 so that from
(9) and (10) we can derive a threshold value for θ :

tan2 θ∗ = β/α. (12)

For θ > θ∗ the bundle is sufficiently far from the interface
and the z component of flagellar torque on the cell body
drives CCW rotations while for θ < θ∗ the bundle is strongly
coupled with the interface causing CW rotations as in free
swimming over a liquid interface [9]. This consideration also
suggests that for CCW locked cells, the bundle is more verti-
cal and the in-plane component of the thrust is reduced giving
rise to circular trajectories with smaller radii, as can be ob-
served comparing Figs. S2(a) and S2(b) in the Supplemental
Material [21]. Using numerical values for the mobility matrix
[21] we can estimate the magnitude of this threshold angle
θ∗ = 11◦. From (11) we also see that if k/τ is too small
we never attain a stationary value for δφ which grows unre-
stricted. An example of this can be seen in Fig. 2(c) where the
cell body constantly spins CCW while the swimming direc-
tion, which is approximately parallel to the bundle projection
over the interface plane, rotates CW. If our flexible bundle
model is correct, the angle δφ between the cell body and the
bundle, or equivalently the swimming direction, should grow
with a rate that has a sinusoidal dependence on δφ. This is
clearly visible when we plot the experimental values for δ̇φ as
a function of δφ as shown in Fig. 4(a). Black circles are ob-
tained by averaging over all spinning CW bacteria after shift-
ing all curves so that δφ = 0 corresponds to the equilibrium
angle between the body and the bundle. As a further quantita-
tive check we report in Fig. 4(b) the observed time evolution
of φ0 and φ for a CW spinning cell together with theoretical
predictions obtained by numerical integration of (9) and (10)
along with the equation governing the evolution of θ [21].
The best fit parameters are all in the expected range: A =
74 μm s−1 pN−1, B = 48 μm−1 s−1 pN−1, τ = 1.25 pN μm,
k = 0.56 pN μm, θ0 = 60◦, L = 4.6 μm. In principle, it
could also be possible to have a spinning cell body moving
along a CCW trajectory, but most of the times we find trajec-
tories such as the one in Fig. 2(d) that look more like locked
CCW trajectories interrupted by transient cell body spins.
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FIG. 4. (a) As predicted by (11), an elastically restored bundle
gives a sinusoidal dependence of δφ̇ on δφ as observed in all cells
(colored lines) and in their average (black circles). The solid black
line is the best fit to a sinusoidal curve. (b) Dashed lines represent
the experimental angular dynamics of the cell body angle φ0 (teal)
and the swimming direction φ (green) in a CW spinning state. Solid
lines are obtained by numerical integration of Eqs. (9) and (10) and
Eq. (S13) in the Supplemental Material [21].

Using numerical estimates for the mobility coefficients
[21], we perform numerical integration over a 200 × 200 grid
of θ0 and k/τ values, and classified solutions as “locked” if
δφ reached a stationary value or “spinning” otherwise. We
further divide the solutions into CCW or CW according to the
sign of (10) evaluated over the numerical trajectory. The re-
sulting map is shown in Fig. 5(a) where we also report, as the
surface height, the cell speed U normalized to the bulk value
U0 = cτ/(1 + a‖/A). We see that for stiff bundles (k/τ � 1)
the transition between CCW and CW occurs at θ∗ � 11◦. For
low k/τ values, we always have CW spinning states while
CCW spinning states only exist in a limited range of values.
This explains why pure CCW spinning states were not ex-
perimentally observed. Different values of body mobility lead
to small deformations of the boundaries between swimming
modes, but the overall picture remains the same [21]. The
distribution of observed swimming modes is represented in
Fig. 5(b) where every cell appears at coordinates given by
the average values of φ̇0 and φ̇. We see from the diagram in
Fig. 5 that cells have access to all different swimming patterns
if k/τ takes values around 1. To provide the order of magni-
tudes we can first assume that all bending occurs at the hook,
whose bending stiffness during swimming was estimated to
be EI ≈ 0.1 pN μm2 for V. alginolyticus [16]. Considering a
hook length l ≈ 0.1 μm we get a torsional spring stiffness
k = EI/l ≈ 1 pN μm which is of the same order of typical
estimates for motor torque [19,24–26]. A comparable value
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FIG. 5. (a) Theoretical diagram of swimming states generated
by varying bundle rest angle θ0 and normalized stiffness k/τ . The
surface height represents the corresponding normalized cell speed.
The four white points on the surface represent the parameters used
to generate the trajectories in Figs. 2(e)–2(h). (b) Data points falling
on the line φ̇0 = φ̇ represent locked cells, while those in the teal and
orange regions are CW and CCW spinning cells, respectively.

is obtained if we assume that the flexibility of the bundle is
only due to filament bending. Also in this case we get k =
EI/L ≈ 1 pN μm when we use EI = 3.5 pN μm2 [27] for the
bending stiffness of flagellar filaments and 2L = 6.9 μm for
the filament length. We take four representative points on the
diagram and directly integrate the equations of motion (1) and
(2) using a more realistic, anisotropic form for the mobility
matrix A = A‖ l̂0 l̂0 + A⊥(I − l̂0 l̂0) with A‖ = 75 μm pN−1 s−1

and A⊥ = 61 μm pN−1 s−1 as for a prolate spheroid with
major and minor axes of 3 and 1 μm, respectively. The corre-
sponding trajectories are shown in the right column of Fig. 2
and are consistent with the swimming modes predicted by the
diagram in Fig. 5. By tuning θ0 and k/τ we can control the
geometry of trajectories and select the values that best match
experimental trajectories in Figs. 2(a)–2(d). Keeping those
values fixed we could match experimental timescales in Fig. 2
by choosing torque values in the range τ = 0.6–2.1 pN μm.

In conclusion, we studied how capillary forces affect swim-
ming in bacteria that are partially wet at a water-air interface.
Using a simple analytical model where the cell body is con-
strained by capillary forces and the flagellar bundle is flexible
and hydrodynamically coupled to the interface, we can re-
produce the four observed swimming modes by varying two
parameters: (i) the equilibrium pitch angle θ0 of the bun-
dle, and (ii) the normalized stiffness k/τ that, as the cell
swims, pulls the bundle back to the equilibrium configura-
tion. Although this simple model can quantitatively reproduce
most of the observed trajectories, some features such as the
unsteady behavior of CCW spinning cells [Figs. 2(d)–2(h)]
remain unexplained. A possible reason could be the intrin-
sic noise driving real systems across boundaries between
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swimming modes. More refined simulation strategies could
be used to confirm the validity of our simple picture while
experiments with different microswimmers could explore its
generality.
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search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (Grant Agreement
No. 834615).
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