
New source for light dark matter isocurvature in low scale inflation

Andrea Caputo ,1 Michael Geller ,2 and Giuseppe Rossi 2

1Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland
2School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel

(Received 19 June 2023; accepted 13 August 2024; published 17 September 2024)

Light scalar and pseudoscalar particles are compelling dark matter candidates, with a vast running
experimental program to discover them. Previous studies have shown that these light fields can generate
sizable isocurvature perturbations in high scale inflationary models. Thereby, dark matter existence and
cosmic microwave background measurements impose an upper bound on the inflationary scale. In this
work, focusing on the axion case, we point out that light fields present during inflation can generate
important isocurvature perturbations also in scenarios of low-scale inflation. In our mechanism, the axion
field starts with some nonzero field value during inflation and rolls along its potential. Since inflation has a
different duration in different patches of the Universe, different regions will then have different values of
the axion field, generating cold dark matter isocurvature modes. These modes are fully correlated with the
adiabatic ones and share the same spectral index. In this scenario, the axion mass determines a lower bound
on the Hubble parameter during inflation.
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I. INTRODUCTION

The particle nature of dark matter and the physics of
cosmic inflation are two of the biggest open questions in
cosmology. For one of the standard dark matter candidates,
the axion [1–4], these two topics are intricately related. The
axion is known to leave its imprints in primordial fluctua-
tions that seed cosmic microwave background (CMB)
anisotropies and maps large scale structure. If the axion
is produced by the misalignment mechanism, its relic
abundance today is tied to the value of the axion field at
the end of inflation, which is misaligned from its minimum.
Therefore, in typical scenarios of high-scale inflation, the
axion dark matter abundance is sensitive to de Sitter
quantum fluctuations which add a perturbation to the initial
value of the axion field [5–9]. These fluctuations do not
observably perturb the total energy density during inflation,
but instead give rise to dark matter isocurvature perturba-
tions in the absence of thermal symmetry restoration after
inflation. The CMB is sensitive to the presence of such
fluctuations, which cannot be reduced to the fluctuations of
single clock. Planck data therefore set a limit on the axion
decay constant, fa and—in the case of axion discovery—
would determine an upper bound on the inflation scale.

In this work we show that the production of isocurva-
ture in axion models is not limited to this scenario of high
scale inflation. In particular, using the well-established
mathematical framework of cosmological perturbation
theories [10–13] we identify a new source of isocurvature
perturbation in axion dark matter models for low scale
inflation. While usually inflationary scale is taken to be
very large, the possibility of low scale inflation is also
plausible and allowed by data. Interestingly, low-scale
inflation scenarios may even be preferred by quantum
gravity theories [14]. Previously, isocurvature bounds
were only considered as an upper bound on the scale
of inflation. Here, we show that a lower bound on the
scale of inflation exists as well. In face, sizable isocurva-
ture perturbations arise if the axion field traverses some
distance along its potential during inflation. This occurs
when the Hubble scale during inflation is close to the
axion mass, implying that the lower bound on the inflation
scale is around the weak scale. While we focus for
simplicity and concreteness on axions, the mechanism
we study is relevant for any light scalar or pseudoscalar
dark matter candidate produced via the misalignment
mechanism.
The paper is organized as follows. We start with an

intuitive description of the mechanism and the expected
scaling of the effect with the axion mass. We then introduce
low-scale inflation and some of its features and theoretical
motivations. Next, we compute the adiabatic and isocur-
vature perturbations in a simple model of two fields, the
inflaton and the axion. We then derive constraints on the
inflationary scale from CMB measurements and compute
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the expected adiabatic and isocurvature spectral indices.
Finally, we summarize and conclude.

II. MECHANISM

We can intuitively understand the mechanism using a
separate universe approach. On superhorizon scales, dif-
ferent patches of the Universe will behave like separate
FRW universes with different parameters. Because of
quantum fluctuations, inflation will last a different amount
of e-foldings in different patches, producing locally differ-
ent scale factors. The curvature (or adiabatic) perturbation
is related to the fluctuation in the number of e-foldings via
δN ¼ R. In our scenario, the axion field starts with some
non-zero field value during inflation and traverses some
non-negligible distance toward the minimum of its poten-
tial. This distance depends on the duration of inflation.
Since inflation has a different duration in different patches,
regions that have more (less) time to inflate will have a
bigger (smaller) scale factor, therefore the value of the
axion field at the end of inflation will be locally smaller
(larger), producing axion fluctuations that are correlated
with the curvature fluctuations. These field fluctuations will
produce perturbations in the dark matter energy density
once the axion field starts oscillating after inflation. The
perturbations produced in this way are not adiabatic, i.e.,
different patches will not only have a different scale factor
(and hence a different energy density) but also different
dark matter concentration. These perturbations are called
isocurvature and they are constrained by CMB data at large
angular scales. Using this picture it is also easy to estimate
the size of the effect. The quantity to be computed is

δa ≡ δρa
ρa

¼ 2
δϕa

ϕa
; ð1Þ

deep into radiation era. However, for the cases of interest
for our work the field starts oscillating almost immediately
after the end of inflation and keeps moving near the origin
of its potential. Therefore the ratio δϕa

ϕa
stays constant (as δϕa

and ϕa obey the same equation of motion) and it can be
computed at the end of inflation. Then one has

δϕa ¼
dϕa

dt
δt ¼ ϕ̇a

δϕi

ϕ̇i
; ð2Þ

where ϕi is the inflaton field which dominates the energy
budget during inflation. As a consequence

δa ∼ 2

�
V 0
a

V 0
i

�
δϕi

ϕa
; ð3Þ

where in the last step we used the slow-roll approximation
ϕ̇a;i ∼ V 0

a;i=3H. We therefore see that our effect is expected
to be directly proportional to the field derivative V 0

a, i.e., to

how much the field “a”—which will become dark matter—
rolls down in its potential during inflation. More in details,
assuming a quadratic potential for the axion field, and using
Δt ∼ δN=H, one can also write

δa ∼
2m2

a

H2
δN: ð4Þ

Summing up, the core of our effect is the following: we
have two fields during inflation, both of them rolling down
their potentials. For this reason, two clocks are present
during inflation and isocurvature fluctuations are expected.
In fact, the inflaton perturbations alone only change the
inflaton clock and therefore create a mismatch between the
two clocks, thereby generating axion isocurvature.
Therefore, on one hand our effect is relevant only when
the axion field is massive enough because it needs to roll.
On the other hand, the axion cannot be too massive,
otherwise the relic abundance (and consequently the size
of the perturbations) will be exponentially suppressed.

III. INFLATIONARY DYNAMICS

A. Low scale inflation

We start by providing a brief overview of low-scale
inflation and typical parameters of interest. Low-scale
inflation has gained recent interest in the context of
quantumgravity, in particular by the trans-Planckian censor-
ship conjecture (TCC) [14], which limits the number of
e-foldings during inflation and predicts the Hubble param-
eter during inflation to be belowGeV, or much smaller in the
case of single field inflation H ≲ 0.01 eV [15]. A tighter
upper limit is also obtained if [16] the universe is radiation-
dominated (and expanding) between the Planck time and the
onset of inflation. One peculiarity of these models is an
extremely small value of the first inflationary parameter

ϵ ¼ H2

8π2M2
plΔ2

R
≈ 10−49

�
H
eV

�
2

; ð5Þ

where we have used the CMB normalization Δ2
R ≃ 2.2 ×

10−9 [17]. An extremely small ϵ also leads to an extremely
small tensor to scalar ratio, r ≃ 16ϵ.1 This also means that
any detection of primordial gravitational waves on cosmo-
logical scales would rule out these models.
Another peculiarity is a very small reheating temperature

Treh ¼
�
g�π2

90

�−1=4 ffiffiffiffiffiffiffiffiffiffiffiffi
HMPl

p
≃ 1015 MeV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H=10−6 eV

q
;

ð6Þ

1Notice that in multifield models, the tensor to scalar ratio is
fixed at horizon crossing and not at the end of inflation [18]. This
means that in our scenario it would be dominated by the axion
slow roll parameter rather than the inflaton.

CAPUTO, GELLER, and ROSSI PHYS. REV. D 110, 055027 (2024)

055027-2



which can however be safely larger than actual direct
bounds (which set Treh ≳ 4.7 MeV [19]). While in many
baryogenesis models, the reheating temperature must be
above the electroweak scale to produce the baryon asym-
metry, we note that baryogenesis can still be obtained for
lower values of Treh [20–23].
Notice that in low scale inflation the required number of

e-folds to solve the horizon problem is

N > log

�
T0

TR

�
∼ 30: ð7Þ

For simplicity, we assume that the only fields lighter than
the Hubble scale are the axion (ϕa) and the inflaton (ϕi) for
which we take a simple slow roll potential. Our theory can
be described by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ

X
j¼i;a

1

2
∂μϕj∂

μϕj − Vj

�
: ð8Þ

These fields are driving the system to a phase of quasi-de
Sitter exponential expansion with slow-roll parameters:

ϵj ¼
M2

Pl

2

�
V 0
j

V

�
2

ð9Þ

ηj ¼ M2
Pl

V 00
j

V
: ð10Þ

Wewill further assume that the energy density is dominated
by the inflaton field Vi ≫ Va. For a different axion study
motivated by the TCC conjecture see [24].

B. Inflationary perturbations

One of the most important aspects of inflation is that it
provides a quantum mechanical mechanism for the gener-
ation of the fluctuations observed in the cosmic microwave
background and in the large scale structure. These fluctua-
tions are believed to be the vacuum fluctuations of the light
fields active during inflation, as we now review. The
perturbed metric, involving only scalar degrees of freedom
in the Newtonian or longitudinal gauge reads [12,13]

ds2 ¼ ð1þ 2ΦÞdt2 − aðtÞ2ð1 − 2ΨÞdx⃗ · dx⃗ ð11Þ

And in absence of anisotropic stress Φ ¼ Ψ [13]. The
perturbations follow Einstein’s equation

Φ̇þHΦ ¼ 4πG

�X
i

ϕ̇iδϕi

�
ð12Þ

and the Klein Gordon equation for each field

δϕ̈j þ 3Hδϕ̇j þ
�
k2

a2
þ V 00

j

�
δϕj ¼ 4ϕ̇jΦ̇ − 2V 0

jΦ; ð13Þ

together with the constraint equation

�
Ḣ þ k2

a2

�
Φ ¼ 4πGN

X
j

ð−ϕ̇jδϕ̇j þ ϕ̈jδϕjÞ: ð14Þ

During inflation the scale factor exponentially increases
while the Hubble parameter H is decreasing, so at very
early times all modes of interest are subhorizon
q≡ k=a ≫ H. According to the equivalence principle,
the dynamics of the scalar fields δϕj at short scales must
match that of a massless scalar field in Minkowski space-
time. The typical assumption is that the field fluctuation are
in their vacuum state of this Minkowski space-time. This is
the so called Bunch-Davies state. They take the form

δϕjðk; tÞ ¼
HðtkÞffiffiffiffiffiffiffi
2k3

p ejðkÞ ð15Þ

where k ¼ aH and eiðk⃗Þ are Gaussian random variables
satisfying hejðkÞe�j0 ðk0Þi ¼ δjj0δ

ð3Þðk − k0Þ [12]. The field
fluctuations will maintain approximately frozen until the
modes become super-horizon and the equations of motion
can be approximated as

3Hδϕ̇j þ V 00
jδϕj ¼ −2V 0

jΦ: ð16Þ

These equations can be integrated analytically, see
Ref. [12] for the original derivation and the Appendixes.
The nondecreasing modes are

Φ ¼ −C1

Ḣ
H2

þ C3

3

ViV 02
a þ VaV 02

ðVa þ ViÞ2
δϕi

ϕ̇i
¼ C1

H
þ 2HC3

Va

Va þ Vi

δϕa

ϕ̇a
¼ C1

H
− 2HC3

Vi

Va þ Vi
: ð17Þ

Matching these equations to the fields at horizon cross-
ing gives

C1ðkÞ ¼ −
8πGHkffiffiffiffiffiffiffi

2k3
p

X
j

Vj

V 0
j
ejðkÞ

C3ðkÞ ¼
3Hk

2
ffiffiffiffiffiffiffi
2k3

p
V 0
a

eaðkÞ −
3Hk

2
ffiffiffiffiffiffiffi
2k3

p
V 0
i

eiðkÞ: ð18Þ

where all the quantities are evaluated at horizon crossing.
Notice that modes with different ks cross the horizon at
different times, so modes that cross the horizon first have
more time to roll down. This effect would produce a scale

NEW SOURCE FOR LIGHT DARK MATTER ISOCURVATURE IN … PHYS. REV. D 110, 055027 (2024)

055027-3



dependence in the coefficient of ea. This effect is negligible
in our regime, as the fluctuations are mostly in the ei
direction.
In the limit of interest, V 0

a ≫ V 0
i and Vi ≫ Va so that

C1 ≃ −
8πGHkffiffiffiffiffiffiffi

2k3
p Vi

V 0
i
eiðkÞ ¼ −

3H3
kffiffiffiffiffiffiffi

2k3
p

V 0
i

eiðkÞ;

C3 ≃ −
3Hk

2
ffiffiffiffiffiffiffi
2k3

p
V 0
i

eiðkÞ; ð19Þ

which can then be plugged in Eq. (17).
We also remark that in all previous works about

isocurvature fluctuations, it was always tacitly assumed
the opposite limit V 0

a ≪ V 0
i. This is in fact the case in high

scale inflation, while the opposite condition, V 0
a ≫ V 0

i, is
clearly met in low scale inflation. In fact, consider for
simplicity the case of a quadratic potential Va ¼ 1

2
m2

aϕ
2
a

V 0
a

V 0
i
¼ V 0

aMPlffiffiffiffiffi
2ϵ

p
Vi

¼ 1ffiffiffiffiffi
2ϵ

p
�
2MPl

ϕa

��
Va

Vi

�
ð20Þ

∼1016
�
ma

eV

�
2
�
eV
H

�
3
�

ϕa

109 GeV

�
; ð21Þ

where ϕa is the value of the axion field, and where in the
last steps we normalized to typical values of interest. On
one hand, the ratio ϕa=MPl may be of the order
Oð10−9–10−10Þ depending on the field decay constant;
on the other hand, however, the factor 1=

ffiffiffiffiffi
2ϵ

p
isOð1025Þ or

more [see Eq. (5)]. Finally, the factor 4π
3
ðma
H Þ2 will turn out

to be of order Oð0.1–1Þ. Summing up, the approximation
V 0
a ≫ V 0

i is an excellent for low scale inflation.

IV. POSTINFLATIONARY EVOLUTION

In the simplest scenario inflation is followed by a phase
of radiation domination, where the inflaton has damped its
energy into the standard model bath while the axion
remains decoupled. During this phase, the axion field
behaves initially as dark energy, while around ma ∼H it
stars oscillating and behaves as cold dark matter. Since we
are interested in parameters for whichma is typically of the
same order as H, the axion field stars oscillating almost
immediately after reheating. The axion field therefore
traverses a distance much smaller than fa, keeping fixed
the misalignment angle. We can also safely assume that δϕa

ϕa

remains fixed in this period as the axion is moving near the
origin, in the quadratic part of the potential.

A. Initial conditions in radiation era

In this section we discuss how the primordial perturba-
tion produced during inflation become perturbations in the
species that compose the cosmic fluid during the hot big

bang. After BBN, we assume that the cosmic fluid is
composed of four species: photons, dark matter in the form
of axions, baryons andmassless neutrinos behaving approx-
imately as fluids. Ignoring neutrino isocurvature modes, the
quantities of interests are the fractional energy density
fluctuations δj ≡ δρj=ρj and the gravitational potential Φ.
In the longitudinal gauge, for the superhorizon modes one
can write the initial conditions in the form [25,26]

δγ ¼ −2Φ; ð22Þ

δb ¼
3

2
δν ¼

3

4
δγ; ð23Þ

δa ¼ Sþ 3

4
δγ; ð24Þ

where we have introduced the isocurvature mode for the
axion S, the evolution of which can be studied separately.
These perturbations constitute the initial conditions for the
computation of the effect of the isocurvature on the CMB
and large scale structure. In the followingwewill relate these
to the perturbations during inflation.

1. Adiabatic mode

For the adiabatic mode, all the species have the same
covariant curvature perturbation. This means 1

4
δγ ¼ 1

4
δν ¼

1
3
δb ¼ 1

3
δa ¼ R. In our scenario, since inflation is

dominated by a single field, one gets the standard result
R ≈ C1 [12,26], i.e.,

R ≃ −
8πGHkffiffiffiffiffiffiffi

2k3
p

X
j

Vj

V 0
j
ejðkÞ ≃ −

3H3
kffiffiffiffiffiffiffi

2k3
p

V 0
i

eiðkÞ ð25Þ

up to corrections of order ∼Va=Vi ≪ 1.
In the following we explain this result. We can compute

the covariant curvature perturbation in another way, using
the δN formalism [27,28]. In the superhorizon limit,RðtÞ is
equal to the difference in the number of e-foldings δNðt�; tÞ
between a flat hypersurface at t ¼ t� and a uniform density
hypersurface at time t. During inflation and in the slow roll
regime, the number of e-foldings depends on the field
trajectory as

N ¼
Z

t

t�
Hdt ≃

1

M2
Pl

Z
ϕi end

ϕik

Vi

V 0
i
dϕi: ð26Þ

Since inflation ends on a constant ϕi surface and the energy
density is dominated by the inflaton field for all the relevant
cosmological evolution, inflation ends on a constant
density hypersurface, so the variation of the number of
e-folds involves only the field at horizon crossing [29]

δN ¼ Vi

M2
PlV

0
i
ðδϕiÞk; ð27Þ
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where the k subscript denotes values taken at horizon exit.
We finally note that the C3 component in ðδϕiÞk is sup-
pressed by OðVa

Vi
Þ [see Eq. (17)], and therefore R ≈ C1.

2. Isocurvature mode

We can find the initial conditions for the isocurvature
mode Sa by taking Φ → 0. Since the contribution of C3 to
Φ is negligible, this is equivalent within the approximation
Va=Vi ≪ 1 to setting C1 to zero. Therefore

S ¼ 2
δϕa

ϕa

����
C1→0

¼ 4

3

V 0ðϕaÞkC3

ϕak

¼ −2
V 0ðϕaÞk
ϕak

Hkffiffiffiffiffiffiffi
2k3

p
V 0ðϕiÞk

eiðkÞ: ð28Þ

B. Power spectra

Given the results of the previous sections we can
compute the various power spectra

Δ2
RðkÞ¼

k3

2π2
hR2i¼ H2

k

8M2
Plπ

2ϵk
; ð29Þ

Δ2
SðkÞ¼

k3

2π2
hS2i¼ V 0ðϕaÞ2kH2

k

π2V 0ðϕiÞ2kϕ2
ak

¼ 4

9

V 0ðϕaÞ2k
H4

kϕ
2
ak

Δ2
R; ð30Þ

Δ2
SRðkÞ¼

k3

2π2
hSRi¼ 3H4

kV
0ðϕaÞk

2π2V 0ðϕiÞ2kϕa
¼2V 0ðϕaÞk

3H2
kϕak

Δ2
R; ð31Þ

where ϵk in the first equation is the slow roll parameter for
the inflaton field.
In the next section we will use these results to place

constraints on the (low) scale of inflation from the last
Planck data release.

V. LOWER BOUND ON INFLATION
SCALE FROM PLANCK

In analogy to Ref. [5] (see the Appendix for a compari-
son with this standard high-scale scenario), and using
Eq. (29), we can define the isocurvature ratio

α≡ hjSðkÞj2i
hjSðkÞj2i þ hjRðkÞj2i ≃

4V 02
ak

9H4
kϕ

2
ak

; ð32Þ

where we assumed hjSðkÞj2i ≪ hjRðkÞj2i. Notice that
α ∝ ðma=HÞ4; as expected, the effect vanishes when
ma → 0, i.e., when the axion field is stuck and does not
roll down its potential during inflation. Then, for a given
inflationary scale, the experimental value of α would in
practice determine how much the axion field needs to roll in
order to produce sizable isocurvature perturbations.
With this ratio at hands, for a fixed axion mass, we can

derive the bounds on our model set by the last Planck data

release [30]. In particular, we can use the values in Table 14
for the fully-correlated case which sets αlow‐scale ≲ 10−3 for
Planck TT;TE;EEþ lowEþ lensing. This in turn leads to
a lower limit on the Hubble parameter during inflation for a
given axion mass

H ≳ 4.6 eV
�
ma

eV

��
10−3

α

�
1=4

; ð33Þ

which also means that the scale of inflation must be
larger than

Λinf ¼
�
3H2M2

pl

8π

�
1=4≳140 TeV

�
ma

eV

�
1=2

�
10−3

α

�
1=8

;

where we used MPl ¼ 1.22 × 1019 GeV. Equation (33)
also implies that the axion field transverse a dis-
tance Δϕa ∼ 0.04Ninfϕa.
This lower limit assumes the axion to constitute the

entirety of dark matter. This condition itself, however,
already sets a relation between the Hubble constant during
inflation and the axion mass, as we now explain.
We can distinguish two cases, the QCD axion, for which

the mass is a function of the standard model plasma
temperature and evolves with time [4,31,32], and the
ALP case for which the mass is fixed [33]. In these two
cases the relic abundance reads

Ωah2 ¼

8>><
>>:
2×104

�
fa

1016 GeV

�
7=6hθ2a;ii; QCD axion

0.12

�
fa

ffiffiffiffiffiffiffiffi
hθ2a;ii

p
1.9×1012 GeV

�
2�

ma
10−2 eV

�
1=2

; ALPs

ð34Þ

and we also remind the reader that the relation between the
axion decay constant and its mass for the QCD axion case
is ma ≃ 5.7 μeVð1012 GeV=faÞ [34].
In both cases, ALP and QCD axion, a small initial angle

would lead to a small relic abundance. This initial angle θI
is the axion angle at the end of inflation, which is also a
product of inflationary dynamics. In particular, during
inflation, when the fields are slow-rolling, the dimension-
less axion field θ ¼ ϕa=fa evolves as

θðtÞ ¼ θie
−m2

at
3H ; ð35Þ

where θi is the angle at the beginning of inflation, and
therefore at the end of inflation it will be

θI ¼ θie
−m2

aN

3H2 ; ð36Þ

where we defined the number of e-folds N ≡ logðaend=ainÞ.
This is the angle which roughly defines the initial
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conditions for misalignment to take place afterward.
Therefore, in order not to get too small relic abundance
this provides also a bound on the ratio between the axion
mass and the Hubble constant during inflation. In particu-
lar, if we do not want an extremely small θI, say ≳10−3,
then

H ≳ 1.2ma

�
N
30

�
1=2

; ð37Þ

which is a slightly weaker condition than the one coming
from isocurvature pertubations, Eq. (33), but roughly of the
same order. A precise comparison of the two bounds is
highly model dependent. In any case, even though iso-
curvature bounds currently do not offer much more new
information, it is exciting that future experiments may
probe a scale of inflation not currently constrained by the
relic abundance argument. A new discovery of a CDM
isocurvature component in the primordial spectrum fully
correlated with the adiabatic one, could offer a window on
the dark matter conundrum. Furthermore, in the next
section we show that our scenario gives a rather distinctive
prediction for the spectral index of the isocurvature
perturbations.

VI. PREDICTIONS FOR THE
SPECTRAL INDICES

In the following we compute the spectral indices of the
two perturbations. These are defined via the power-law
parametrizations

Δ2
RðkÞ ¼ A2

�
k
k0

�
nad−1

;

Δ2
SðkÞ ¼ B2

�
k
k0

�
niso−1

;

where k0 is a pivot scale and the quantities A and B are
overall normalizations determined experimentally. The
spectral indices in our cases can then be derived taking
a derivative respect to k of Eq. (A1) and using the
expressions in Eq. (29) for the spectra in our model.
The adiabatic spectral index reads

nad − 1 ¼ k0
A2

dΔ2
RðkÞ
dk

����
k¼k0

¼ k0
A2

1

8M2
Plπ

2

dðH2
k=ϵkÞ
dk

����
k¼k0

≃ −6ϵi þ 2ηi − 4ϵa ≃ 2ηi; ð38Þ

where we took ϵi ≪ 1 and where in order to arrive to
the last expression we used the following relations:
ϵ ¼ −Ḣ=H2, ϵ̇ ¼ Hϵð4ϵ − 2ηÞ.

In a similar manner one gets for the isocurvature spectral
index

niso − 1 ¼ k0
B2

dΔ2
SðkÞ
dk

����
k¼k0

¼ k0
π2B2

d
�
H2

kV
0ðϕaÞk=V 0ðϕiÞ2kϕ2

a

	
dk

�����
k¼k0

≃ 2ðηi − ϵa − ϵiÞ ∼ ðnad − 1Þ; ð39Þ

where we took the axion potential to be quadratic. It is
curious that while in general the two indices are not the
same, they are very nearly identical for low scale inflation
up to very small corrections of the order Oðf2a=M2

plÞ.

VII. CONCLUSIONS

In this article we have pointed out a new source of
isocurvature fluctuations for light scalar dark matter, and in
particular for the axion, in the case of low-scale inflation.
While, in standard setups, isocurvature fluctuations are due
to the quantum fluctuations of the axion field during
inflation, in our case the isocurvature fluctuations are a
consequence of the classical rolling of the axion field along
its potential. Since the duration of inflation is inhomo-
geneous due to inflaton perturbations, the excursion of the
axion field at the end of inflation would be different in
different patches, thereby creating CDM isocurvature
modes. As a smoking gun feature, these modes are fully
correlated with the adiabatic ones and their spectral indices
coincide. Their detection, together with that of axion dark
matter, may then shed light on the very first moment of the
universe and in particular on the physics of cosmic
inflation. The large experimental effort in the axion mass
range of interest makes our idea also extremely timing.
Would any of the running or to be running experiments,
such as Light A’Multilayer Periodic Optical SNSPD Target
(LAMPOST) [35], Broadband Solenoidal Haloscope for
Terahertz Axion Detection (BREAD), Axion Longitudinal
Plasma Haloscope (ALPHA) [36], the Oscillating Resonant
Group Axion Experiment (ORGAN) [37], detect axion
dark matter with massma ≳ μeV, then our work would rule
out all models of electroweak-scale inflation [38–41] for
scenarios in which axions are produced via misalignment.
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APPENDIX

In this appendix we rederive the axion isocurvature ratio
for the standard case of high-scale inflation and provide
extra details about the solutions for the perturbations
equations of motion.

1. Isocurvature bound in high scale inflation

Here we review the isocurvature bound in models of
inflation where inflation is driven by a scalar field with
V 0
i ≫ V 0

a and V 00
i ≫ V 00

a [5,42–44]. We will be interested in
the regime where ma ≪ H, which goes from inflation until
the axion field starts oscillating and behaves as cold dark
matter. The axion is a light field during inflation and the
field value develops superhorizon quantum fluctuations:

hjδϕaðkÞj2i ¼
�
H
2π

�
2 1

k3=2π2
; ðA1Þ

where H is evaluated at horizon exit (k ¼ aH), around
N ∼ 60 number of e-folds before the end of inflation. Since
the equation for the perturbations is dominated by Hubble
friction for ma ≪ H, the perturbation of the field remains
frozen until the value of H drops to ma during radiation
domination (notice that for the QCD axion this happens
when T ∼ ΛQCD). At this point, the axion acts as a non-
relativistic fluid, with ρa ¼ mana ¼ m2

ahϕ2
ai ¼ m2

af2ahθ2i
and the power spectrum of the isocuravature mode is

hjSðkÞj2ihigh‐scale ¼
2H2

k

k3f2ahθ2i
; ðA2Þ

The curvature power spectrum is the same as in the
low-scale inflation case, therefore the isocurvature ratio
becomes

α ≃
Δ2

S

Δ2
R
¼ M2

Plϵk
πf2ahθ2i

: ðA3Þ

with no correlation.

2. Solution of the perturbation equations

In the following we solve the equations for the scalar
field perturbations and the gravitational potential in the
superhorizon limit. The equation for the field perturbations
of the inflaton (and analogously for the axion) can be
written as [12]

δϕ̈þ 3Hδϕ̇þ V 00ðϕÞδϕ ¼ 4ϕ̇ Φ̇−2V 0ðϕÞΦ; ðA4Þ

which in the slow roll limit reduces to

3Hδϕ̇þ V 00ðϕÞδϕ ¼ −2V 0ðϕÞΦ: ðA5Þ

Dividing by 3H and then using the slow roll equation for
the background field one gets

δϕ̇ −
V 00ðϕÞ
V 0ðϕÞ ϕ̇δϕ ¼ δϕ̇ −

d
dt

�
log

�
1

V 0ðϕÞ
��

δϕ

¼ V 0ðϕÞ d
dt

�
δϕ

V 0ðϕÞ
�
: ðA6Þ

So our equation reduces to

d
dt

�
δϕ

V 0ðϕÞ
�

¼ −
2Φ
3H

; ðA7Þ

or, integrating

δϕ ¼ −
2

3
V 0ðϕÞ

�Z
dt

Φ
H

þ dϕ

�
; ðA8Þ

where dϕ is an integration constant. To fully solve the
equations we now need to impose the constraint for the
gravitational potential. Introducing the variable χ ≡ R

dt ΦH
this becomes

Hχ̇ þ 2Ḣχ ¼ 1

M2
Pl

ðdiϕ̇2
i þ daϕ̇

2
aÞ; ðA9Þ

and therefore

1

H
d
dt

ðH2χÞ ¼ 1

M2
Pl

ðdϕϕ̇2
i þ d2aϕ̇

2
aÞ: ðA10Þ

Consequently

χ ¼ 1

M2
PlH

2

Z
dtHðdiϕ̇i þ daϕ̇

2
aÞ ¼ ðA11Þ

¼ C1

2H2
−

1

3H2M2
Pl

ðdiVi þ daVaÞ; ðA12Þ

and finally

Φ ¼ −C1

Ḣ
H2

−H
d
dt

�
diVi þ daVa

Vi þ Va

�
; ðA13Þ

which is indeed our master formula, Eq. (17), with
C3 ¼ da − dϕ.
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