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Abstract: Tuberculosis remains one of the world’s deadliest infectious diseases, accounting for nearly
1.3 million deaths every year. Tuberculosis treatment is challenging because of the toxicity, decreased
bioavailability at the target site of the conventional drugs and, most importantly, low adherence
of patients; this leads to drug resistance. Here, we describe the development of suitable nanocar-
riers with specific physicochemical properties to efficiently deliver two potent antimycobacterial
compounds. We prepared nanoemulsions and niosomes formulations and loaded them with two
different MmpL3 inhibitors previously identified (NEs + BM635 and NIs + BM859). NEs + BM635 and
NIs + BM859 were deeply characterized for their physicochemical properties and anti-mycobacterial
activity. NEs + BM635 and NIs + BM859 showed good hydrodynamic diameter, ζ-Potential, PDI,
drug-entrapment efficiency, polarity, and microviscosity and stability. Even though both formula-
tions proved to perform well, only NIs + BM859 showed potent antimycobacterial activity against
M. tuberculosis (MIC = 0.6 µM) compared to that of the free compound. This is most probably caused
by the fact that BM635, being highly hydrophobic, encounters maximum hindrance in diffusion,
whereas BM859, characterized by high solubility in aqueous medium (152 µM), diffuses more easily.
The niosomal formulation described in this work may be a useful therapeutic tool for tuberculosis
treatment, and further studies will follow to characterize the in vivo behavior of the formulation.

Keywords: nanocarriers; niosomes; nanoemulsions; tuberculosis

1. Introduction

Infectious diseases remain one of the most life-threatening challenges in the modern
world, regardless of advanced technology and innovation. Prior to the COVID-19 pandemic,
tuberculosis (TB) was the leading cause of deaths worldwide from a single infectious agent,
accounting for 1.3 million deaths in 2020 [1]. Even though the combination of timely
diagnosis and treatment with first-line drugs for six months can cure people who develop
drug-susceptible TB and prevent the transmission of infection, cure success rates are
very low. Indeed, inappropriate use of anti-TB medicines, poor quality drugs, and poor
patience compliance can cause the emergence of drug-resistant strains. Multi-drug resistant
TB (MDR-TB) is caused by M. tuberculosis (Mtb) strains resistant to isoniazid (INH) and
rifampicin (RIF), whereas extensively drug-resistant TB (XDR-TB) is caused by Mtb strains
resistant to INH and RIF, in addition to any fluoroquinolone and at least bedaquiline or
linezolid, if not both. The World Health Organization (WHO) estimates that the success
rate of treatment of MDR/XDR TB patients was 59% in 2018 [1]. Therefore, there is an
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urgent need to develop a faster-acting and simplified TB regimen containing new drugs
without pre-existing resistance.

In this scenario, we have developed a potent class of antimycobacterial compounds
acting as inhibitors of the essential mycobacterial membrane protein large 3 (MmpL3).
Among this class of compounds, the 1,5-diarylpyrrole BM635 and the 1,5-diarylpyrazole
BM859 (Figure 1) showed outstanding in vitro activity against Mtb (minimum inhibitory
concentration (MIC) = 0.12 µM and 0.3 µM, respectively) as well as good in vivo efficacy in
a murine model of TB infection. The main drawback of these potent compounds was the
high lipophilicity (8.1 Chrom log DpH 7.4 and 7.31 Chrom log DpH 7.4, respectively) [2,3].

Figure 1. Chemical structures of BM635 and BM859.

Nanocarriers for drug delivery represent an interesting and efficient strategy to over-
come many pharmacological conventional therapies’ limits such as: poor drug bioavail-
ability, drug in vivo degradation/inactivation, and side effects (due to high administration
doses). Niosomes (NIs) are vesicular drug delivery systems composed by surfactants
characterized by the same liposome structures: an inner aqueous core entrapped within a
lipophilic bilayer. Due to this internal structure, vesicular nanocarriers are able to entrap
lipophilic drugs and hydrophilic ones.

It is possible to prepare both vesicular systems as unilamellar or multilamellar struc-
tures by employing the same preparation methods but modifying some experimental con-
ditions/parameters, and nanocarriers with specific physical–chemical characteristics can be
obtained. Compared to liposomes, niosomes are characterized by great advantages related
to their low costs and their high versatility. In fact, it is possible to derivatize the different
surfactants with molecules that confer to the nanocarriers’ stimuli-responsive behavior.

An ever-increasing interest has been exhibited on the application of NIs in the field
of pharmaceutics, cosmetics, and the food industry, leading to the publication of more
than 1325 research articles, about 200 patents and 6 clinical trials from 1980 (from Scopus.
com accessed on 28 January 2022). In particular, Tween 20 is a non-ionic surfactant, the
stability and relative non-toxicity of which allows it to be used as an excipient for oral
administration [4,5].

Nanoemulsions (NEs) are a different type of nanocarrier with respect to NIs that
represent promising drug delivery systems for antimycobacterial compounds delivery
for tuberculosis treatment. Both systems are amphiphilic-based nanocarriers but with
different internal structure and molecule organization, which affect their loading and
delivery properties. NEs are composed of surfactant and oils, they are translucent systems,
kinetically stable, and they show good entrapment efficiency. Oil in water (O/W) Nes,
due to the presence of oil droplets, can load and delivery lipophilic drugs. Surfactants,
Nes’ fundamental components, reduce the interfacial tension resulting in the formation of
stable NEs as well as confer good physical–chemical characteristics. The choice of oil and
surfactant is a crucial point in designing and preparing specific and efficient NEs. Indeed,
functional NEs oil properties can have a synergic effect with the entrapped drug in order to
potentiate the overall system activity; moreover, an efficient NEs is characterized by a low
surfactant concentration useful to assure drug permeation but capable to prevent side or
toxic effects.

Scopus.com
Scopus.com
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The preferred pathway for administering anti-TB drugs is the oral route because
this way is painless, non-invasive, and consequently invokes a great degree of patients’
compliance and this, in turn, means a good degree of adherence to a therapeutic regimen [6].

BM635 and BM859 have been chosen for this study because they proved to be the most
active compounds of the MmpL3 inhibitors series previously developed. Both drugs were
characterized by several issues, such as high lipophilicity as well as low in vivo bioavailability.

Indeed, to enhance the BM635 and BM859 oral bioavailability, protect these drugs from
inactivation, and possibly reduce their administered doses, a possible and efficient strategy
could be represented by drug delivery systems. Surfactants are frequently encountered in
classical and enabling formulations (e.g., surfactants-based formulations) and they could
contribute to drug solubility enhancement, as well as after application. In particular, the
use of nanocarriers to improve the oral bioavailability of specific drugs or therapeutic
peptides and proteins is an area of extensive research. However, the oral delivery of
nanocarriers is challenging, due to the inherently unfavorable physio-chemical properties
of the gastrointestinal tract; a different pH range or the presence of digestive enzymes in
the gastrointestinal tract could affect free-drug and nanocarriers’ stability. These several
physiological conditions could represent obstacles to the bioavailability and efficacy of the
loaded active molecules. Therefore, to obtain an efficient drug delivery system suitable for
the oral administration route, the designing, preparation, and characterization steps are
crucial. In this work, the authors selected and proposed NEs/NIs by Tween 20 as gastro-
resistant nanovectors for the oral administration of antimycobacterial compounds [7–9].

Preliminary studies were carried out to select the most appropriate nanocarrier for
both compounds and, even if NIs vesicles should be able to entrap both lipophilic and
hydrophilic drugs [10–12], the more lipophilic BM635 could not be entrapped into NIs
[data not showed], and NEs were selected as the best formulation for BM635, whereas
BM859 could be loaded into NIs. We report herein the preparation and physical-chemical
characterization of the two different formulations (summarized in Figure 2). In particular,
together with nanocarrier morphological characteristics, their stability in different biological
media such as Simulated Gastric Fluid (SGF), Simulated Intestinal Fluid (SIF) and Human
Serum (HS) was evaluated. Moreover, the in vitro activity against Mtb of NEs and NIs
loaded with BM635 and BM859 was evaluated and compared with free drug activity.
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Figure 2. Nanocarriers’ physiochemical properties that were investigated.

2. Materials and Methods
2.1. Materials

Tween 20, Almond Oil, Cholesterol, Hepes salt (N-(2-hydroxyethyl) piperazine-N-(2-
ethanesulphonic acid)), pyrene, ethanol, trypsin, pepsin, sodium chloride and human serum
were purchased by Sigma-Aldrich (St. Louis, MO, USA). BM635 and BM859 were prepared
following a procedure reported in the Figures S1 and S2 from the Supplementary Materials.
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2.2. Ternary Diagram Construction and Empty and Loaded NEs Preparation

The ternary phase diagram of Almond Oil NEs was developed. The mixtures were
prepared by combining the appropriate amounts of surfactant, oil phase, and aqueous
phase (Hepes buffer, pH 7.4) in different weight ratios (Table S1) in a test tube and were
vortexed vigorously for 10 s to ensure thorough mixing. Visual inspection was made after
each sample preparation. The best formulation of NEs prepared and characterized with
BM635 was selected by the homogenous phase (blue zone, Table S1, sample 52) of ternary
diagram. To allow the NEs to form, the selected compounds (Table 1) together with BM635
(for loaded NEs) were mixed using an UtraTurrax (IKA® T18, Staufen, Germany) for 1 min
at 5000 rpm, and then, the obtained microscale droplets were sonicated for 20 min at 50 ◦C
using a tapered microtip operating at 20 kHz at an amplitude of 18% (Vibracell-VCX 400,
Sonics, Taunton, MA, USA) to obtain the NEs. At this stage, all formulations could be
sterilized using cellulose filters (0.22 µm) in accordance with Ph. Eur.

Table 1. Sample compositions.

Sample Tween 20
(mg/mL)

Almond Oil
(mg/mL)

BM635 Loaded
(mg/mL)

Cholesterol
(mg/mL)

BM859 Loaded
(mg/mL)

NEs

18.4

18.4
- - -

Nes + BM635 4.6

NIs - - 5.8
-

Nis + BM859 3.8

2.3. Preparation of NIs and Drug-Loaded NIs

NIs and drug-loaded NIs were prepared by Thin Layer Evaporation technique as
previously reported [13]. Sample composition is reported in Table 1. Lipophilic components
and BM859 were solubilized in an organic mixture (CH3Cl:CH3OH, 3:1 v/v) that was
evaporated for one hour using a Rotavapor® R-210 (Büchi-Italia S.r.l., Assago, Italy) and an
oil pump under vacuum to obtain a thin lipid film. The suspension was then sonicated for
5 min at 60 ◦C with 16% of amplitude using a microprobe operating at 20 kHz (Vibracell-
VCX 400, Sonics, Taunton, MA, USA). Finally, centrifugation (MPW-260R) was carried out
to purify the vesicle suspension from unloaded components remaining in the precipitate at
10,000 RPM for 10 min at 15 ◦C.

2.4. Dynamic Light Scattering and ζ-Potential Measurements

The obtained samples were characterized in terms of hydrodynamic diameter, ζ-
Potential, and size distribution (polydispersity index, PDI) using a Malvern NanoZetaSizer
apparatus (Malvern Instruments, Worcestershire, UK) equipped with a 5 mW HeNe laser,
λ = 632.8 nm. All samples were diluted with Hepes buffer just before measurement to avoid
multiple scattering phenomena.

Contin algorithm was used for the analysis of the intensity autocorrelation function at
90◦ as scattering angle. The hydrodynamic diameter and the polydispersity index (PDI)
were obtained after data analysis by the cumulant method [14].

The calculated mean hydrodynamic radius corresponds to the intensity weighted
average [15]. Electrophoretic mobility (u) of the vesicles was measured by laser Doppler
anemometry using the Malvern Zetasizer Nano ZS90 apparatus.

The Smoluchowski relation ζ = uη/ð, where η is the viscosity and ð the permittivity
of the solvent phase, was used to obtain the ζ-potential value by electrophoretic mobility
measurement [16].

2.5. Fluorometric Measurements

Pyrene is a fluorescent probe employed to obtain information about oil droplet and
niosomes bilayer features. The probe (4 mM) was added inside both nanocarriers together
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with lipophilic compounds maintaining the same preparation method previously described
for NIs and NEs preparation. The fluorescent signals emitted by pyrene loaded inside
both nanocarriers were collected; the emission spectrum (λ = 350–550 nm) and Ex = 330 nm
were evaluated using a luminescence spectrometer (LS5013, PerkinElmer, Waltham, MA,
USA) [17]. The probe spectrum is characterized by five emission bands (I1–I5) as monomer
and one as excimer (IE), and their fluorescence intensities depend on the lateral distribution
and mobility of the probe into the oil droplet or into the niosomes bilayer. By the I1/I3
ratio (first and third vibration bands respectively), it is possible to obtain information
about the polarity of the probe environment, whereas the ratio between IE and I3 provides
information about viscosity [18].

2.6. Drug-Entrapment Efficiency (E.E.%)

Entrapment efficiency (EE) of drugs in NEs and NIs vesicles was evaluated by UV-vis
spectrometer (Lambda 25, PerkinElmer, Waltham, MA, USA). In particular, the active
compound concentration was calculated using the calibration curves previously deter-
mined. Both samples were diluted in Ethanol:Hepes 70:30 v:v and absorbance of drugs at
λ = 285 nm for BM635 and at λ = 252 nm for BM859 was measured.

E.E.% was calculated as (1):

E.E. (%) =
Entrapped drug (mg)
Total drug used (mg)

× 100 (1)

2.7. Physicochemical Stability

The empty and drug-loaded NEs and NIs formulations were stored at 4 ◦C and room
temperature for a period of 30 days, and stability studies were carried out by DLS (Malvern
Instruments, Worcestershire, UK) and UV-VIS (Lambda 25, PerkinElmer, Waltham, MA,
USA). Samples from each batch of empty nanosystems and drug-loaded NEs and NIs were
withdrawn at fixed time intervals (1, 7, 14, 21 and 30 days), and the mean of hydrodynamic
diameter and PDI, ζ-potential were determined as previously described.

The stability of free drugs and drug-entrapment in niosomes and nanoemulsions was
also controlled at two different temperatures, 4 ◦C and room temperature, and after 1, 7, 14,
21 and 30 days were evaluated by UV-vis spectrometer (Lambda 25, PerkinElmer, Waltham,
MA, USA).

2.8. NEs and NIs Biological Stability

The biological stability of NEs and NIs in the presence of SGF, SIF, and HS were
evaluated. In particular, a mixture of NEs and Nis, and 45% of the fluid was prepared
and placed at 37 ◦C. By DLS (Malvern Instruments, Worcestershire, UK), the mixture
was analyzed at different time intervals (0, 0.5, 1, 2 and 3 h) to evaluate the particle size
and ζ-potential.

2.9. NEs and NIs Stability in Culture Medium

As a preliminary biological evaluation, the in vitro stability of NEs and NIs in the
presence of culture medium Middlebrook 7H9 medium (Difco, Franklin Lakes, NJ, USA)
used for MIC determination was carried out. Samples were diluted in culture medium to
obtain a final concentration of 45%. The average size, polydispersity index, and ζ-potential
were evaluated by means of DLS (Malvern Instruments, Worcestershire, UK), maintaining
samples at 37 ◦C and performing measurements at different time points (for 7 days).

2.10. In Vitro Release Studies

In vitro release experiments were performed to test drug release from NEs and NIs.
Experiments were carried out using dialysis tubes (molecular weight cut-off: 8000 MW by
Spectra/Por®, Rancho Dominguez, CA, USA) at 37 ◦C in a release medium Ethanol:Hepes
70:30 v/v, which was gently magnetically stirred during the experiment.
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Drug concentration in the release medium was measured using the UV spectropho-
tometer (Lambda 25, PerkinElmer, Waltham, MA, USA). The experiments were carried
out over 24 h; 1 mL of acceptor compartment was withdrawn to evaluate the quantity of
drugs released by both nanocarriers. The measurement was carried out at selected interval
times: from 1 h to 8 h hourly and after at the 24 h mark. Each aliquot that was withdrawn
to perform UV analyses was then reinserted back into the acceptor compartment. The
experiment was repeated three independent times and the errors represent the standard
deviation.

2.11. MIC Determination

The activity of Nes + BM635 and Nis + BM859 was evaluated against Mtb H37Rv ATCC
27294 by the resazurin microtiter assay (REMA) plate method. Formulations were diluted
in Middlebrook 7H9 medium with 10% ADC (bovine Albumin Fraction V 0.5%, Dextrose
0.2%, Catalase 0.003%) enrichment to obtain a concentration of 256 µg/L. Serial two-fold
dilutions of each formulation were prepared directly in sterile, flat-bottom, 96-well plates
containing 100 µL/well of 7H9 medium. Each well received the same volume of Mtb H37Rv
inoculum obtained from fresh cultures in 7H9, diluted to a McFarland standard of 1.0, and
then further diluted 1:20 in the same medium. Final concentrations of NEs + BM635 and
NIs + BM859 ranged between 0.00025 and 128 µg/L, and the final inoculum of Mtb H37Rv
was 2.5 × 105 cells/mL. Serial dilutions of empty NEs and NIs were also evaluated to verify
any potential interaction with the growth of mycobacteria, as well as of free compounds.
A growth control and a sterile control were also included. Plates were incubated at 37 ◦C
for 7 days in 5% CO2. Next, 30 µL of freshly prepared filter-sterilized 0.01% resazurin
solution in H2O was added to each well. Plates were incubated for an additional 24 h at
37 ◦C. A color change from blue to pink indicated mycobacterial growth. The MIC was
determined as the lowest concentration that prevented the color change. All experiments
were performed in triplicate. Isoniazid was employed as reference drug in all assays.

2.12. Statistical Analysis

The results of physicochemical and biological characterization are expressed as the
mean of three independent experiments ± standard deviation (SD). These statistical analy-
ses were performed using Student’s t-test and a p-value lower than 0.05 was considered
statistically significant.

3. Results and Discussion
3.1. NEs and NIs Characterization

To select the appropriate NEs in terms of hydrodynamic diameter, ζ-potential, and PDI,
the ternary phase diagram of almond oil was developed. At first, different formulations
were evaluated by visual inspection to delimit the three different zones in the diagram
(Figure 3), which included homogenous and non-homogenous ones. In fact, only employing
specific ratios of oil, surfactant and water phase (HEPES buffer) at specific concentration,
it is possible to obtain a homogeneous dispersion without separation phenomena. The
red region represents the homogenous region, and the green zone is the non-homogenous
one. In addition, the sonication performed on the samples in the non-homogenous zone
led to formation of monophasic dispersion represented by the yellow zone (or borderline
zone) [19–21].

To optimize the monophasic emulsion in the red region as a suitable drug delivery
system, all samples were sonicated (at the conditions described in Materials and Methods).
A better formulation in terms of hydrodynamic diameter, ζ-potential, and PDI was selected
(Table S1 sample 52, Supplementary Materials) and the same qualitative–quantitative
surfactant composition was used to prepare NIs samples.
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Figure 3. Ternary phase diagrams among Almond oil, Tween 20, and Hepes buffer. The observed
phases were the homogeneous phase (red area), the non-homogenous phase (green area), and the
borderline phase region (yellow area). NEs in the red region were chosen.

The total component amounts employed for NEs/NIs preparation are reported in
Table 1.

To obtain an efficient entrapment efficiency value, taking into account the differ-
ent water solubility and lipophilicity of BM859 and BM635, two different nanocarriers
were selected. In particular, BM635 and BM635 were respectively loaded into NEs and
NIs formulations.

The physical–chemical properties of NEs and Nis either empty or loaded with BM635
and BM859 are reported in Table 2. NEs and NIs samples were characterized in terms
of hydrodynamic diameter, ζ-Potential, PDI, drug-entrapment efficiency, polarity and
microviscosity (Table 2). First, it can be observed that the entrapment efficiency (E.E.%) of
the drugs, evaluated by UV analysis, is very high for both formulations (Nes: 95.6%/Nis:
81.6%), and the size of the empty and loaded NEs and NIs remains in the same range. In
fact, for loaded NIs and NEs, only a slight and not significant increase in the hydrodynamic
diameter was recorded when drugs were loaded.

Table 2. Physical-chemical properties of NEs/NIs formulations.

Sample
Hydrodynamic
Diameter (nm)

± SD

ζ-Potential
(mV) ± SD PDI ± SD Drug-Entrapment

Efficiency (E.E.%)
I1/I3

(Polarity)
IE/I3

(Microviscosity)

NEs 132.6 ± 3.4
159.5 ± 4.6

−21.9 ± 1.2
−25.9 ± 2.3

0.1 ± 0.01 - 0.96 1.87
NEs + BM635 0.1 ± 0.01 95.6 0.97 2.15

NIs 161.0 ± 3.3
172.5 ± 4.2

−28.5 ± 1.4
−19.4 ± 3.3

0.1 ± 0.01 - 1.26 0.67
NIs + BM859 0.1 ± 0.01 81.6 1.32 0.82

Moreover, the PDI values for both empty and loaded nanocarriers is compatible with
a monodisperse population. The ζ-potential values are negative (NEs: −25.9/NIs: −19.4)



Pharmaceutics 2022, 14, 610 8 of 13

and they are able to assure a good formulation stability, enhancing repulsion effects that
prevent aggregation or precipitation phenomena [22,23].

All formulations are characterized by the same parameters in terms of hydrodynamic
diameter, ζ-potential, and PDI, and as such, it is possible to compare the in vitro results of
the nanocarriers. Indeed, it is well known that nanocarrier features affect cell internalization
and have a direct impact on their efficacy or toxicity [24].

In order to characterize the nature of the NEs lipophilic droplet and NIs bilayer, the
microviscosity and polarity parameters were evaluated. Pyrene-loaded nanocarriers were
prepared following the procedure previously described, and the fluorescence spectrum
allowed the calculation of the values of polarity and microviscosity reported in Table 2.
The polarity values were quite similar for empty and loaded nanocarriers, but microvis-
cosity values increased with BM635/BM859 inclusion. The increase in microviscosity
(Table 2) could be influenced by BM635/BM859 localization in the oil phase/bilayer of
NEs and NIs respectively, in agreement with the compounds’ nature. It is likely that the
slight increase in the microviscosity value seen for NIs/NIs + BM859 (0.67–0.82) with
respect to NEs/NEs + BM635 (1.87–2.15) was caused by the one order of magnitude lower
lipophilicity of BM859 compared to BM635 (8.1 versus 7.3).

Physicochemical Stability

To study the stability over time of NEs and NIs formulations, the samples were stored
at both room temperature and 4 ◦C for a period of 30 days (Figure 4, panel B and E). It is
possible to observe that during the storage, zeta potential increased, in modulus, with the
accommodation and stabilization of the system, but these parameters ensure nanocarriers
repulsion and their stability over time [23,25]. So, it is possible to affirm that NEs and NIs
were stable under these experimental conditions due to the negative ζ-potential values able
to prevent aggregation or precipitation phenomena.

Figure 4. Physical-chemical stability over time of loaded nanocarriers. Effect of storage temperature
(room temperature, RT; and 4 ◦C) on hydrodynamic diameter (panels (A,D)), ζ-potential (panels
(B,E)) and concentration (panels (C,F)) for BM635-loaded NEs and BM859-loaded Nis. Data were
obtained as the mean of three independent experiments.
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In order to evaluate drugs’ stability in terms of decomposition/degradation inside
the nanocarriers, NEs + BM635 and NIs + BM859 were analyzed by UV analysis. The
UV spectra were recorded immediately after the samples’ preparation and after 7, 14, 21
and 30 days (and up to 60 days, Figure S3, Supplementary Materials) at two different
temperatures (room temperature and 4 ◦C). Drug concentration values are reported in
Figure 4, panel C and F. BM635 and BM859 concentrations remained constant during the
time interval analyzed when loaded into NEs/NIs. We may conclude that drug inclusion
in nanocarriers leads to significant benefits in terms of drug-degradation protection and
increased water solubility (by NEs/NIs inclusion). Indeed, at this concentration, the free
drugs cannot be dissolved in water or HEPES buffer.

3.2. Nes and Nis Biological Stability

To obtain an efficient drug delivery system for oral administration, loaded Nes and Nis
should be resistant to the harsh gastrointestinal conditions. To test that, the stability of both
NEs + BM635 and NIs + BM859 was evaluated in simulated gastrointestinal conditions. The
physical stability of empty (Figure S4, Supplementary Materials) and loaded (Figure 5) NEs
and NIs was assessed in SGF (pH 2) and in SIF (pH 7) following the previously described
experimental conditions. The obtained results (Figure 5) demonstrate that these media did
not affect the Nes/Nis integrity after 3 h of incubation; in fact, DLS analyses revealed that
both hydrodynamic diameter and ζ-potential values of all formulations remained constant
at the experimental conditions. For both samples, the ζ-potential in SIF decreased notably
(values around −30 mV) immediately after incubation but remained constant during the
time interval analyzed, assuring a good repulsion between dispersed particles. We may
conclude that the different pH values and compositions of both simulated fluids have no
effects on the nanocarriers’ integrity.

Figure 5. Stability studies in the presence of simulated intestinal fluid (SIF), simulated gastric
fluid (SGF), and Human serum (HS) following variation in terms of hydrodynamic diameter and
ζ-potential: panel (A,B) for NEs + BM635 and panel (C,D) NIs + BM859. Reported data represent the
mean of three experiments ± SD.
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Similar results were obtained when NEs/NIs were incubated in HS (Figure 5). Indeed,
even if it is possible to observe a slight increase in nanocarrier dimensions, due to the
surface absorbance of serum protein, the Nis and Nes’ integrity was maintained during
the experiment.

3.3. Release Studies

In order to evaluate the NEs-NIs’ capability to release the entrapped drugs, release
studies were performed. The aim of these studies was to understand how the different
nanocarriers could influence the release of the entrapped drugs. In particular, Figure 6
shows the concentration versus time profiles of both active compounds released by the
formulations. Both nanocarriers show high initial release, followed by a decreasing release
rate. From Figure 6, it is possible to hypothesize the release kinetic model in comparison
with literature data. In this case, the release curves of both formulations could be described
as a bimodal release ref. More specifically, there was a faster release initially (a–b), followed
by a relatively slow release (b–c), thus forming a “Γ” shape-like curve [26]. It is possible to
observe that the total amount of BM635 released from NEs is around 30%, whereas 40%
of BM859 is released from Nis. The slightly different release could be due to the different
microviscosity values of NEs + BM635 and NIs + BM859. The loaded NEs formulation
is characterized by a higher microviscosity value (2.5) compared with that of NIs (0.82),
probably because BM635 is more lipophilic than BM859 (8.1 and 7.31).

Figure 6. Kinetic model release profile (panel (A)) and drug release studies from nanoemulsions
(panel (B)) and niosomes (panel (C)) in which faster release initially (a–b), followed by a relatively
slow release (b–c) is shown.

3.4. Microbiological Activity of Formulated Compounds

MIC values against Mtb H37Rv of free and formulated BM635 and BM859 are re-
ported in Table 3. Although NIs + BM859 showed potent antimycobacterial activity
(MIC = 0.6 µM), comparable to that of the free compound, NEs + BM635 completely lost
the activity. This is most probably caused by the fact that BM635, being highly hydropho-
bic, encounters maximum hindrance in diffusion whereas BM859, characterized by high
solubility in aqueous medium (152 µM), diffuses more easily. To date, empty NEs and NIs
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have not show any influence on mycobacterial growth, indicating that these formulations
do not have any anti-mycobacterial activity per se [27].

Table 3. Activity against Mtb H37RV (MIC) of NEs + BM635 and NIs + BM859 compared to free
BM635 and BM859.

Compound MIC (µM)

Nes + BM635 40

BM635 0.12

NEs ND a

Nis + BM859 0.6

BM859 0.3

NIs ND a

a Not determined.

4. Conclusions

Current tuberculosis treatment, consisting of multi-drug administration for a long
period of time, is challenging because it presents drug-related side effects and poor patient
compliance. The risk of patients stopping the therapy too early, and the emergence of
MDR-TB is high. Nanocarriers have the advantage of mitigating drug limitations by
improving stability, solubility, and bioavailability to the target site, thus reducing off-target
effects. In this study, NEs and NIs nanocarriers have been used to entrap two potent
anti-mycobacterial compounds. During preliminary experiments, screenings were done to
select the most appropriate nanocarrier for both compounds and, even if it is well known
that niosomal vesicles are able to entrap both lipophilic and hydrophilic drugs [10–12], the
entrapment of lipophilic BM635 into NIs was negligible, whereas more hydrophilic BM859
can be successfully loaded into NIs. Due to this, the more lipophilic BM635 was loaded
into different nanocarriers (NEs with high EE). Both formulations exhibited good stability
in simulated biological media. Unfortunately, only NIs + BM859 showed activity against
Mtb, whereas NEs + BM635 seemed to be completely inactive.

These preliminary results highlighted that the choice of nanocarriers needs to be
related to drug features and that the niosomal formulation described in this work could be
a useful therapeutic tool for tuberculosis treatment.

The biological results need to be confirmed by further studies to understand the
in vivo behavior of selected formulations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics14030610/s1, Table S1: Composition of all studied NEs formulations in the
ternary diagram; in bold, sample composition in the red region, Figure S1: Synthetic pathway for
BM635, Figure S2: Synthetic pathway for BM859, Figure S3: Physico-chemical stability up to 60 days
of drug loaded into nanocarriers. Effect of storage temperature (room temperature, RT; and 4 ◦C)
in terms of drug concentration for BM635-loaded NEs (Panel A) and for BM859-loaded NIs (Panel
B), Figure S4: Stability studies in the presence of simulated intestinal fluid (SIF), simulated gastric
fluid (SGF) and human serum (HS) following variation in terms of hydrodynamic diameter and
ζ-potential, panel A and B for empty NEs and empty Nis, respectively.
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