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Abstract A nonlinear energy sink (NES), conceived
to mitigate the vibrations of a multi-degree-of-freedom
host mechanical system, is considered. The high-
dimensional slow invariant manifold (SIM) describ-
ing the high-amplitude slow dynamics of the system is
derived and exploited to interpret its transient regimes
caused by impulsive excitation. It is shown that alge-
braic expressions derived from the SIM formulation
enable to identify the so-called interaction points, pro-
viding the conditions in which two modes of the pri-
mary system interact and share energy through the non-
linear absorber. Moreover, the mutual effect of differ-
ently activated host system modes on the NES energy
dissipation mechanism is discussed. Through sections
of the multidimensional SIM, modal interaction trig-
gering resonance capture cascades (RCC) can be effec-
tively explained. The dissipation capabilities are even-
tually assessed in order to evaluate the efficiency of the
RCC regime.
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1 Introduction

The mitigation of impact-induced vibrations in struc-
tural systems represents a challenging task in a vari-
ety of engineering contexts. Irrespective of the specific
application, a realistic representation of such systems
implies to consider either continuous or multi-degree-
of-freedom mechanical (MDOF) models. So, the mit-
igation task is accomplished by absorbing efficiently
energy from main excited systems, the dynamics of
which typically involve either infinite or large number
of frequencies. Thus, from an engineering standpoint,
the goal is to devise the minimum number of possi-
bly passive vibration absorbers designed to resonate
for broad frequency band. Toward this goal, nonlinear
vibration absorbers have received growing attention in
the past two decades for their potentialities in over-
coming the narrow frequency-band capabilities of their
linear counterparts, i.e., the tuned mass damper (i.e.,
TMD). Within this context, the nonlinear energy sink
(NES), consisting of a small mass connected to the pri-
mary system by an essential nonlinear spring, has been
extensively studied.As shown in a series ofworks [1,2],
the lack of any preferential resonance frequency of the
NES makes it capable of resonating with any mode
of the primary structure. In the case of multimodal
response, resonance capture cascades (RCC) during
which the nonlinear attachment resonates with differ-
ent modes sequentially, from higher to lower ones,
were also observed [3–7]. In these studies, the transient
dynamics following the impulsive excitation applied

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-020-05937-4&domain=pdf
http://orcid.org/0000-0003-3323-6901


G. Habib, F. Romeo

to the primary system are mostly investigated by con-
sidering specific manifolds, namely the nonlinear nor-
mal modes (NNM) and the impulsive orbits (IO), in
the background of the underlying Hamiltonian system.
Accordingly, the energy redistribution modalities are
discussed by varying the initial excitation in terms of
energy level and position in the primary system. The
ensuing temporal evolution of the energy redistribu-
tion within the system, including RCC, is interpreted
by means of frequency energy plots. Suitable mea-
sures of absorption efficiency are introduced in order to
assess and possibly exploit the most favorable dynamic
regimes [8].

From the analytical standpoint, different asymptotic
approaches enabling to reduce the dimension of non-
linear systems comprising NESs have been so far pro-
posed; given the usual assumption on the NES, i.e.,
small mass and nonlinearizable stiffness, they were
mostly based on singular perturbations and invari-
ant manifold considerations. Irrespective of the cho-
sen asymptotic approach, the slow invariant manifold
(SIM), i.e., the set of fixed points for amplitude of
oscillations for the fast timescale, has been abundantly
resorted to. It enabled to interpret the main dynamic
regimes characterizing the nonlinear response of differ-
ent types of NESs under either impulsive or harmonic
excitation [8]; for different physical systems, interest-
ing dynamic regimes and their connection to the SIM
topological features have been highlighted [9].

Set of NESs were recently proposed for passive
mitigation of dynamic instability in discrete systems
[10,11]. Nonlinear SDOF and MDOF primary sys-
tems were considered, respectively, providing the so-
called mitigation limit of the NESs, i.e., the value of
a chosen bifurcation parameter which separates harm-
ful situations from harmless situations. To this end, an
asymptotic analysis of the slow flow based on geomet-
ric singular perturbation theory was adopted showing
that the critical manifold of the system can be reduced
to a one-dimensional parametric curve evolving in a
multidimensional space. In [12], the passive control
of a two-degree-of-freedom pendulum by a NES with
cubic restoring force was investigated resorting to the
phase-dependent SIM derived from complexification
and multiple-scale methods.

In further recent studies [13,14], the RCC phe-
nomenon was again addressed in order to guide NES
design by identifying a tuning procedure and predicting
the so-called cascading time. The latter studies hinge

on the single-mode SIM which is derived for the gen-
eral case of NES stiffness (odd) polynomial nonlinear-
ity and small positive or negative linear part. For mul-
timodal vibrations and RCC, the proposed algebraic
performance measures are extended, albeit based on
the single-mode assumption, by introducing a modal
decomposition of the initial conditions.

Recently, the use of the SIM was proposed by the
authors to design a tuned bistable NES, a nonlinear
attachment capable of mitigating efficiently oscilla-
tions of the primary system at different energy lev-
els and for more than one mode of vibration [15].
Further studies addressed qualitative and quantita-
tive comparisons between TMD and NES capabili-
ties for mitigation of broadband impulsive energy; by
exploiting the four-dimensional invariant manifold of
a two-DoF host system, an effective performance mea-
sure was introduced, the so-called relative dissipation
power [16]. Stemming from the latter study, NES con-
nected to a multi-degree-of-freedom (MDOF) system
is here considered. Invariant manifolds describing the
high-amplitude slow dynamics are analytically identi-
fied providing useful algebraic equations. These high-
dimensional surfaces, which relate the absorber vibra-
tion amplitude to the primary system ones, allow to
explain the involved modal interaction governing the
temporal evolution of the energy redistribution associ-
ated with the presence of the nonlinear absorber. It is
worth emphasizing that the present study tackles the
dissipation mechanism analysis with reference to the
linear modes of the primary system. Differently from
what is mostly reported in the literature, it is shown
that such modes enable to explain the main vibration
mitigation phenomena triggered by the NES.

The paper is organized as follows. At first, in Sect. 2,
the mechanical model and the dimensionless equations
of motion are presented to pave the way to the slow
invariant manifold derivation described in Sect. 3. In
Sect. 4, the SIM analysis, including its stability, is car-
ried out aiming at identifying the conditions in which
vibration energy is shared by more than one mode of
the primary system. Moreover, the mutual effect of
differently activated host system modes on the NES
energy dissipation mechanism is discussed. In Sect. 5,
the modal interaction triggering resonance capture cas-
cades is explained by means of suitable sections of
the multidimensional SIM. Section 6 is devoted to
assess the dissipation performance corresponding to
RCC by comparing the primary system energy decre-
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ment for different dynamic regimes. The conclusive
section summarizes the main findings and points out
open questions worth to be further investigated.

2 Mechanical model and non-dimensionalization

The dynamics of an NES attached to an undamped lin-
ear n-DOF primary system are modeled by the follow-
ing system of differential equations

n∑

j=1

mhj ẍ j +
n∑

j=1

khj x j = 0 for h = 1, . . . , n, h �= l

n∑

j=1

ml j ẍ j +
n∑

j=1

kl j x j + ca (ẋl − ẋn+1)

+knl (xl − xn+1)
3 = 0

εẍn+1 + ca (ẋn+1 − ẋl) + knl (xn+1 − xl)
3 = 0, (1)

where mhj = m jh and khj = k jh are the terms of
the primary system mass and stiffness matrices, ε is
the absorber mass, ca and knl are the absorber linear
damping and cubic stiffness coefficients, respectively.
ε is assumed small with respect to the primary sys-
tem masses. We notice that the absorber is assumed to
directly interact only with the l th DoF of the primary
system. It is also assumed that the natural frequencies
of the primary system are incommensurate and remote.
Thus, the special case of internal resonances is not con-
sidered in this study.

In order to perform a modal analysis of the primary
system, we temporarily neglect the contribution of the
absorber, reducing the system to

Mẍ + Kx = 0, (2)

where M and K are n × n matrices (the full system
has dimension n + 1). Performing a classical modal
analysis, we decouple the primary system, adopting the
transformation x = Uq, where U contains the eigen-
values of M−1K, normalized such that UTMU = I,
where I is the identity matrix. U is defined as

U =
⎡

⎢⎣
u11 · · · u1n
...

. . .
...

un1 · · · unn

⎤

⎥⎦ . (3)

Aftermodal analysis, the primary system can be rewrit-
ten as

q̈ + Ωq = 0, (4)

where Ω = [
ω2
h

]
is a diagonal matrix formed by the

squares of the natural frequencies of the primary sys-
tem.

By reintroducing the absorber into the system, by
considering the coordinate transformation and that the
NES is attached to the l th DoF of the primary system,
we obtain the system of differential equations

q̈h + ω2
hqi = −ulh

(
ca ż + knlz

3
)

for h = 1, . . . , n

εz̈ + ca ż + knlz
3 = ε

n∑

j=1

ul j q̈ j , (5)

where z = xl−xn+1. Next,we introduce dimensionless
absorber parameters ζa = ca/ (2εω1) and λ3 = knl/ε,
attaining

q̈h + ω2
hqh = −ulhε

(
2ζaω1 ż + λ3z

3
)

for h = 1, . . . , n

z̈ + 2ζaω1 ż + λ3z
3 =

n∑

j=1

ul j q̈ j , (6)

Finally, we scale displacements with respect to the
absorber’s nonlinear stiffness coefficient, by introduc-
ing the coordinates yh = √

λ3qh and yn+1 = √
λ3z.

This leads to the dimensionless (in amplitude, not in
time) equations of motion

ÿh + ω2
h yh = −ulhε

(
2ζaω1 ẏn+1 + y3n+1

)

for h = 1, . . . , n

ÿn+1 + 2ζaω1 ẏn+1 + y3n+1 =
n∑

j=1

ul j ÿ j . (7)

3 Slow invariant manifold

Aiming at characterizing the behavior of the NES
against impulsive excitation, we seek for the SIM
describing the slow dynamics of the system, follow-
ing the procedure adopted in [15]. According to engi-
neering practice, we assume that ε is a small parameter
(ε � 1).We also assume that q j (for j = 1, . . . , n+1)
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are of order ε1, while knl is of order ε−1, which makes
y j (for j = 1, . . . , n+1) having order ε0. Additionally,
according to the parameter values used in the follow-
ing, we assume that ζa has order of magnitude ε1/2.
Neglecting terms having order of ε equal to 1 or larger,
we reduce the system of equations to

ÿh + ω2
h yh = 0 for h = 1, . . . , n

ÿn+1 + 2ζaω1 ẏn+1 + y3n+1 =
n∑

j=1

ul j ÿ j . (8)

The system in Eq. (8) corresponds to n decoupled
undamped linear oscillators and one damped essen-
tially nonlinear oscillator, excited by the other linear
oscillators. The contribution of each oscillator to forc-
ing the nonlinear one depends on its acceleration, on the
modal shapes of the primary system and on its position,
characterized by ul j .With respect to energy absorption,
the larger the vibration amplitude of yn+1, the higher
the dissipation power of the absorber, which is given by

P = 2ζaεω1 ẏ
2
n+1. (9)

We define an approximate solution by adopting the
harmonic balance method, assuming 1:1 resonance
between the primary system and the absorber. The solu-
tion of the first n equations of (8) is given by

yh = Ahe
iωhT + c.c. for h = 1, . . . , n, (10)

where Ah is complex and c.c. stands for complex con-
jugate. The approximate solution for yn+1 is expressed
by

yn+1 ≈
n∑

j=1

Bje
iω j T + c.c. (11)

We notice that for the case in which two or more modes
are closely spaced, Eq. (11) is no longer applicable
and intermodal energy exchange mediated by the NES
occurs [17].

Substituting yh , h = 1, . . . , n into the last of Eq. (8)
and collecting the different harmonics (assuming that
there are no internal resonances), we have
(
eiωhT

)
: −ω2

h Bh + ulhω
2
h Ah

−3B2
h B̄h + 6Bh

n∑

j=1

Bj B̄ j

+2ζaω1ωhi Bh for h = 1, . . . , n. (12)

By defining Ah = aheiαh/2 and Bh = bheiβh/2, sep-
arating real and imaginary parts of a generic equation
of (12), we have

1

2
ulhω

2
hah cosαh = 1

2
bh

⎛

⎝ω2
h + 3

4
b2h − 3

2

n∑

j=1

b2j

⎞

⎠

cosβh + ζaω1ωhbh sin βh

1

2
ulhω

2
hah sin αh = 1

2
bh

⎛

⎝ω2
h + 3

4
b2h − 3

2

n∑

j=1

b2j

⎞

⎠

sin βh − ζaω1ωhbh cosβh

for h = 1, . . . , n. (13)

We calculate the squares of the two equations of (13)
and sum them up attaining

u2lhω
4
ha

2
h = b2h

((
ω2
h + 3

4
b2h − 3

2

n∑

j=1

b2j

)2

+4ζ 2
a ω2

1ω
2
h

)
for h = 1, . . . , n, (14)

which form a system of algebraic equations which
defines the SIM of the system. ah indicates the ampli-
tude of oscillation of the hth mode of the primary sys-
tem, while bh indicates the component of the relative
amplitude of oscillation of the absorber at ωh angu-
lar frequency. Equation (14) explicitly provides ah as a
function of bh ; however, in general, it is more interest-
ing to know the oscillation amplitude of the absorber
with respect to the primary system and not the opposite.
Since Eq. (14) cannot be made explicit with respect to
bh , the algebraic system of equations is numerically
solved.

Without loss of generality, in the remainder of the
paper a four-DoF primary systemwill be considered. It
will allow to interpret the numerical evidence of dissi-
pative mechanisms in the background of suitable sec-
tions of the SIMandmanageable algebraic expressions.

4 Study of the manifold

Asystemconsisting of four identicalmasses attached in
a chain through five identical springs is considered. The
masses can move only horizontally, and the absorber is
attached to the second mass. The equations of motion
of the system read
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mẍ1 + 2kx1 − kx2 = 0

mẍ2 − kx1 + 2kx2 − kx3 + ca (ẋ2 − ẋ5)

+ knl (x2 − x5)
3 = 0

mẍ3 − kx2 + 2kx3 − kx4 = 0

mẍ4 − kx3 + 2kx4 = 0

ma ẍ5 + ca (ẋ5 − ẋ2) + knl (x5 − x2)
3 = 0. (15)

Non-dimensionalizing the system and introducing
modal coordinates Eqs. (15) take the form

ÿ1 + ω2
1 y1 = −u21ε

(
2ζaω1 ẏ5 + y35

)

ÿ2 + ω2
2 y2 = −u22ε

(
2ζaω1 ẏ5 + y35

)

ÿ3 + ω2
3 y3 = −u23ε

(
2ζaω1 ẏ5 + y35

)

ÿ4 + ω2
4 y4 = −u24ε

(
2ζaω1 ẏ5 + y35

)

ÿ5 + 2ζaω1 ẏ5 + y35 = u21 ÿ1+u22 ÿ2+u23 ÿ3+u24 ÿ4,
(16)

where dimensionless time is T = t
√
m/k, amplitude is

non-dimensionalized according to x̃i = xi
√
knl/ (kε)

for i = 1, . . . , 5, with x̃i general dimensionless
amplitude, ε = ma/m is the mass ratio, ζa =
ca/

(
2ω1ε

√
km

)
, y1, y2, y3 and y4 are the pri-

mary system dimensionless modal coordinates, y5 =
(x2 − x5)

√
knl/ (kε) is the dimensionless relative dis-

placement of the absorber with respect to the second
mass, ω1 = 0.618, ω2 = 1.1756, ω3 = 1.618 and
ω4 = 1.9021 are the dimensionless natural frequen-
cies, while u21 = 0.6015, u22 = −0.3717, u23 =
0.3717 and u24 = 0.6015 are the modal displacement
components of the second mass, which is connected to
the NES. The values of parameters ε and ζa are 0.02
and 0.1, respectively. Considering Eq. (14), the SIM
now is given by

u221ω
4
1a

2
1 = b21

((
ω2
1 − 3

4
b21 − 3

2
b22 − 3

2
b23 − 3

2
b24

)2

+4ζ 2
a ω2

1ω
2
1

)
(17)

u222ω
4
2a

2
2 = b22

((
ω2
2 − 3

4
b22 − 3

2
b21 − 3

2
b23 − 3

2
b24

)2

+4ζ 2
a ω2

1ω
2
2

)
(18)

u223ω
4
3a

2
3 = b23

((
ω2
3 − 3

4
b23 − 3

2
b21 − 3

2
b22 − 3

2
b24

)2

+4ζ 2
a ω2

1ω
2
3

)
(19)

u224ω
4
4a

2
4 = b24

((
ω2
4 − 3

4
b24 − 3

2
b21 − 3

2
b22 − 3

2
b23

)2

+4ζ 2
a ω2

1ω
2
4

)
. (20)

If only onemode of the primary system is activated, the
dynamics of the system can be approximately reduced
to that of a single DoF with an attached NES. This case
was extensively studied in the literature with similar
techniques [13–16,18]; therefore, here we only recall
its main features. Figure 1 illustrates the four differ-
ent manifolds (which are actually sections of the SIM),
each one represented in the ah, bh space, for a j = 0
if j �= h (i.e., the other modes are assumed null). The
curves in the figure relate the amplitude of oscillation
of the absorber to that of the primary system for a
specific vibration mode. Solid and dashed lines indi-
cate stable and unstable branches, respectively; stabil-
ity was studied adopting the Hill’s method [19], whose
direct implementation is clearly explained in [20,21].
Despite the simplicity of the procedure for obtaining
these curves, they are very informative regarding the
slowdynamics of the system. They can be easily related
to the energy dissipated by theNES [16], and they allow
topredict the time required to dissipate a certain amount
of energy [13], enabling a relatively precise design of
the NES, without requiring extensive numerical simu-
lations [18].

From the SIM, it is possible to estimate the dis-
sipation power of the absorber, which is given by
Eq. (9). Taking into account only the principal harmon-
ics of the system and integrating over one period, the
average dissipation power is approximated by Pav =
ω1εζa

(
ω2
1b

2
1 + ω2

2b
2
2 + ω2

3b
2
3 + ω2

4b
2
4

)
. Then, in order

to have an engineering-relevant measure of the NES
performance, the average dissipation power can be
divided by the energy in the primary system, obtain-
ing what we define as relative dissipation power [16]

Pr = 2ω1εζa
ω2
1b

2
1 + ω2

2b
2
2 + ω2

3b
2
3 + ω2

4b
2
4

ω2
1a

2
1 + ω2

2a
2
2 + ω2

3a
2
3 + ω2

4a
2
4

. (21)

The relative dissipation power for the system having
energy only on the first mode (a2 = a3 = a4 = 0) is
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represented in Fig. 1e. The peak at a1 = 0.24 indicates
the point ofmaximal performance of theNES. If energy
on the primary system is either lower or higher than this
value, the relative dissipation power abruptly drops or
quickly decreases, respectively. The exact position of
the peak for any mode of the primary system (assum-
ing that it is the only activated mode) can be explicitly
found considering Eqs. (14) and (21), and it is given by
the simple formula

ahpeak = 4ζaω1

ulh
√
3
, (22)

while the maximum relative dissipation power is

Pr,max = εu2lhω
2
h

2ζaω1
. (23)

The simpleEqs. (22) and (23) provide very useful infor-
mation about the energy level of optimal performance
and maximal relative dissipation power of the NES,
which is essential for its engineering design.

For all the modes, the SIM assumes the classical “S”
shape, whose folds (marked by red dots in the figure)
have coordinates

⎛

⎜⎜⎜⎝

√√√√√
8

(
2ω2

h −
√

ω4
h − 12ω2

1ω
2
hζ

2
a

) (
12ω2

1ζ
2
a + ω2

h +
√

ω4
h − 12ω2

1ω
2
hζ

2
a

)

81u2lhω
2
h

,
2

3

√
2ω2

h −
√

ω4
h − 12ω2

1ω
2
hζ

2
a

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

√√√√√
8

(
2ω2

h +
√

ω4
h − 12ω2

1ω
2
hζ

2
a

) (
12ω2

1ζ
2
a + ω2

h −
√

ω4
h − 12ω2

1ω
2
hζ

2
a

)

81u2lhω
2
h

,
2

3

√
2ω2

h +
√

ω4
h − 12ω2

1ω
2
hζ

2
a

⎞

⎟⎟⎟⎠ .

(24)

Comparing Fig. 1a and e, it can be recognized that
the NES has optimal performance in the vicinity of
the upper fold, for an amplitude of the primary system
slightly larger than the fold.

4.1 Interaction points

In general, vibration energy is shared by more than
one mode of the primary system. We now consider the
case of one mode initially strongly activated and other

modes possessing only very low initial energy. Figure
2 depicts sections of the SIM, representing the trend
of b1, b2, b3 and b4 for variations of a2 (strongly acti-
vated mode), while a1, a3 and a4 are small and fixed at
0.01 (very slightly activated modes). b2 is practically
unchanged with respect to what illustrated in Fig. 1.
Regarding b1, b3 and b4, we notice that they have sig-
nificant variations for varyinga2, althougha1,a3 anda4
are kept fixed. Even though they generally have a small
amplitude, the SIMsections referred to the slightly acti-
vatedmodes showcurves that resemble a frequency res-
onance, with a pronounced peak. In order to understand
the origin of these peaks and predict their position, we
consider the equation of the SIM itself. Considering,
for instance, Eq. (19), in correspondence of this sort
of resonance, we have that b1 and b4 are very small,
so their squares can be neglected. Similarly, b23 � b22,
which allows us to reduce the equation to

b23 ≈ u223ω
4
3a

2
3(

ω2
3 − 3

2b
2
2

)2 + 4ζ 2
a ω4

1

. (25)

According to Eq. (25), b3 has a maximum for

b2 =
√
2

3
ω3 (26)

that corresponds to

a2 ≈
√
2

3

ω3

u22ω2
2

√√√√
(

ω2
2 − ω2

3

2

)2

+ 4ζ 2
a ω2

1ω
2
2. (27)
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Fig. 1 a–d Sections of the SIM in the ah, bh space when a single mode is activated; e relative dissipation power for the first mode. In
each subplot, the not-represented modes are set to zero. Solid lines: stable branches, dashed lines: unstable branches

For the system considered here, these equations pro-
vide a2 = 0.418 and b2 = 1.321. The same rea-
soning can also be done for b1 and b4, obtaining the
values a2 = 1.179, b2 = 0.505 and a2 = 1.364,
b2 = 1.553, respectively. These values, marked by
magenta dots in Fig. 2b, are here named interaction
points. The peaks in Fig. 2a, c and d are estimated by
bh = ahu2hωh/ (2ζaω1), which, for the system under
study, gives 0.030, 0.049 and 0.093, respectively.

Considering a general n-DoF system with attached
NES, as in Eq. (7), the coordinates of the interaction
point bh-bk can be generalized in the ah, bh space and
they are given by

⎛

⎜⎝
√
2

3

ωk

ulhω2
h

√√√√
(

ω2
h − ω2

k

2

)2

+ 4ζ 2
a ω2

1ω
2
h,

√
2

3
ωk

⎞

⎟⎠ .

(28)

The nomenclature bh-bk indicates the point where
energy on the kth mode mainly interacts with the hth

mode; in Fig. 2b, interaction points b2-b1, b2-b3 and b2-
b4 are represented. As it will be also shown in the next
subsection, the above-described peaks and the ensuing
interactionpoints are qualitatively significant to explain
the modal interaction. In particular, they enable a rapid
qualitative prediction of how the presence of a small
amount of energy on modes different from the main
activated one affects the overall dissipation.

4.2 Effect of slightly
activated modes on a strongly activated mode

Assuming that most of the energy of the primary sys-
tem is initially concentrated on the second mode, we
analyze the effect of gradually increasing the energy on
the other modes. In particular, we start by introducing
additional energy on the third mode of the primary sys-
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Fig. 2 Sections of the SIM
represented with respect to
variations of a2 for
a1 = a3 = a4 = 0.01.
Magenta dots represent
interaction points and are
given by Eq. (26). Solid
lines: stable branches,
dashed lines: unstable
branches
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tem. By keeping a1 = a4 = 0.01, sections of the SIM
for a3 = 0.01, 0.1, 0.2 and 0.3 are depicted in Fig. 3.
Looking at Fig. 3a, we see that incrementing a3 in
correspondence of the interaction point (magenta dot)
found in the previous section, there is a sort of tongue,
which enlarges as a3 increases. This is clearly due to
the increased contribution of b3 in Eq. (18). The peak in
b3 (Fig. 3b) tends to bend to the right for growing val-
ues of a3. (Notice that b3 is normalized with respect to
a3 in Fig. 3b.) This is related to the increased relevance
of b3 with respect to b2, which makes the inequality
b3 � b2 less accurate. Equation (25) reads now

b23 ≈ u223ω
2
3a

2
3(

ω2
3 + ω2

a − 3
2b

2
2 − 3

4b
2
3

)2 + 4ζ 2
a ω2

1ω
2
2

. (29)

From a practical point of view, this might have an
important effect on the dissipation of the second mode.
Let us assume that our main objective is to dissipate
energy on the secondmode. The fact that there is energy
on the third mode of the primary system moves the

fold to the right, changing the energy level at which the
NES works optimally for the second mode. This can
be deducted from Fig. 3a by comparing the line corre-
sponding to a3 = 0.01, which shows an upper fold for
a2 = 0.38, and the one for a3 = 0.3, which has a fold
for a2 = 1.36.

This interpretation is validated by the numerical
results shown by the red curves in Fig. 4a and b, in
which the analytically obtained SIM for a3 = 0.3 (blue
curves) is also depicted. In order to keep a3 constant
during the simulation (necessary to compare analyti-
cal and numerical results), the right-hand sides of the
first, third and fourth equations of Eq. (16) are set
equal to zero. This mathematical artifice implies that
although all modes are coupled to the NES, energy is
dissipated only on the second mode. Even though the
quantitative matching between analytical and numer-
ical results is not excellent, the analytically predicted
trend of b2 and b3 is confirmed.While a2 decreases due
to energy dissipation,b2 suddenly dropswhile, simulta-
neously, b3 increases. In the wavelet transformation of
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Fig. 3 SIM representation
with respect to variations in
a2 for a1 = a4 = 0.01 and
a3 = 0.01, 0.1, 0.2 and 0.3.
Solid lines: stable branches,
dashed lines: unstable
branches
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the NES response shown in Fig. 4d, this jump occur-
ring at T ≈ 1900 is clearly visible. Then, b2 slowly
increases again and b3 decreases, until theNES dynam-
ically disengages from the main structure and both b2
and b3 jump down to very low values. As it can be
recognized from the time series of y2 in Fig. 4c, the
drop of b2 significantly influences the energy dissipa-
tion of y2. The mismatch between numerical and ana-
lytical results ismost probably related tomodal interac-
tions neglected in the present analytical development.
In fact, apart from the directly activated frequencies
ω2 = 1.18 and ω3 = 1.62, the wavelet transformation
of Fig. 4d shows the presence of harmonic content at
frequencies of 2ω2 −ω3 = 0.73, 2ω3 −ω2 = 2.06 and
3ω2 − 2ω3 = 0.29. A comparison between the blue
and the yellow time series in Fig. 4c clearly illustrates
the detrimental effect of the presence of energy on the
third mode in terms of energy dissipation.

Stability analysis illustrates that an unstable branch
is generated by two Neimark–Sacker bifurcations for
0.32 < a2 < 2.22 (apart from the unstable branch
related to the fold of the SIM for 1.36 < a2 <

3.80). This instability, arguably producing a branch
of quasiperiodic solutions, does not seem to have a
significant role in the dissipation performance of the
NES, since the state of the system in the slow dynam-
ics remains in the vicinity of this unstable branch.

The black dotted lines in Fig. 4a and 4b refer to a fic-
titious numerical simulations obtained by changing the
sign of the right-hand side of Eq. (16). This makes the
NES artificially pump energy in the system, instead of
dissipating it. This simulation, which is merely a math-
ematical abstraction without physical sense, enables us

to verify the correctness of the lower branch of the SIM
obtained analytically.

The same analysis can be performed considering a
non-negligible value of a4. Imposing a4 = 0.2 (keep-
ing a1 = a3 = 0.01), we obtain sections of the SIM,
time series and thewavelet transformation illustrated in
Fig. 5. Figures 4 and5 share exactly the samequalitative
features. The tongue in Fig. 5a starts in correspondence
of themagenta dotmarking theb2-b4 interaction,which
lies slightly above the one related to the b2-b3 interac-
tion (see Fig. 2b for comparison). The wavelet trans-
formation of Fig. 5d illustrates the existence of inter-
nal resonances at frequencies of 2ω2 − ω4 = 0.45 and
2ω4−ω2 = 2.63 apart fromω2 = 1.18 andω4 = 1.90.
Also for this case, the time series (Fig. 5c) comparing
the decrement of y2 with a4 = 0.2 (blue line) and
a4 = 0.01 (yellow line) clearly show the detrimental
effect of a4.

We now consider a small non-negligible value of
a1, which is a mode smaller than the activated one
a2. Before analyzing the numerical results, we already
notice from Fig. 2b that the magenta point correspond-
ing to the b2-b1 interaction lies below the fold of the
SIM. As it was extensively discussed in the literature
[13,15], this part of the manifold corresponds to very
poor performance of the NES, since the ratio between
the NES relative oscillation amplitude and the pri-
mary system oscillation amplitude is low. Imposing
a1 = 0.5, we see from Fig. 6a that no tongue is gener-
ated, but only a small bump appears, which increases
the value of b2, having an opposite effect to the one pro-
vided by non-negligible a3 or a4 values. This implies
that the effect of a1 is not detrimental with respect to
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Fig. 4 a,b Sections of the
SIM represented with
respect to variations in a2
for a1 = a4 = 0.01 and
a3 = 0.3. Blue lines:
analytical SIM, red lines:
numerical results obtained
by wavelet transformations,
black dotted lines:
numerical results obtained
by wavelet transformations
inverting sign of the
right-hand side of Eq. (16),
dotted blue line: the case of
a3 = 0.01; dashed lines:
unstable branches; c time
decrement of y2, blue line:
a3 = 0.3, yellow line:
a3 = 0.01; d wavelet
transformation of the
absorber displacement,
relative to the case of
a3 = 0.3
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energy dissipation. The red lines in Fig. 6a and b, refer-
ring to numerical simulations performed keeping artifi-
cially a1 constant (right-hand side of the first equation
of Eq. (16) is imposed equal to zero), show a good
agreement between numerical and analytical results.
The jump-down of b2 is well predicted, while there
is a slight mismatch between analytical and numeri-
cal manifolds in the upper branch of b2 (lower branch
of b1). The wavelet transformation (Fig. 6d) shows
the presence of a modal interaction for the frequency
of 2ω2 − ω1 = 1.73, which is probably causing the
mismatch. After the jump-down of b2 at T = 1400,
the amplitudes of b1 and b2 are well predicted. The
only additional harmonics identifiable from thewavelet
transformation after the jump are 2ω1−ω2 = 0.06 and
3ω1 = 1.85; however, they are very weak (and only
hardly detectable from the figure). Figure 6c clearly
shows that the energy on the second mode is smoothly
dissipated until the fold of the manifold is reached,
whose position is not affected by a1. Besides, com-

paring the case of a1 = 0.5 and a1 = 0.01, it can be
recognized that after the jump-down of b2 (T ≈ 1450),
the presence of a1 improves energy dissipation on the
second mode thanks to the small bump of b2 illustrated
in Fig. 6a. We remark that, for the case of a1 = 0.5,
a couple of Neimark–Sacker bifurcations delimits a
large unstable part of the lower branch. The effect of
this instability is not disclosed by the present analysis,
because for a2 values corresponding to the instability,
the state of the system in the slow dynamics lies in the
vicinity of the upper branch. Nevertheless, acknowl-
edging that the lower branch corresponds to poor per-
formance, we do not expect that this instability is par-
ticularly relevant from an engineering point of view.

The analysis so far performed illustrates that non-
negligible values of slightly activated modes can have
a significant effect on the energy dissipation of the acti-
vatedmode. This effect can be partially predicted based
on the position of the interaction points. As it was also
shown in previous studies [13,15,16], theNEShas opti-
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Fig. 5 a,b Sections of the
SIM represented with
respect to variations in a2
for a1 = a3 = 0.01 and
a4 = 0.2. Blue lines:
analytical SIM, red lines:
numerical results obtained
by wavelet transformations,
dashed blue line: the case of
a4 = 0.01, dashed lines:
unstable branches; c time
decrement of y2, blue line:
a4 = 0.2, yellow line:
a4 = 0.01; d wavelet
transformation of the
absorber displacement,
relative to the case of
a4 = 0.2
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mal dissipation energy in the vicinity of the upper fold
of the SIM; therefore, if an interaction point lies near
the upper fold, the corresponding mode can have an
impact on energy dissipation properties of the other
mode. Comparing Eqs. (24) and (26), it can be rec-
ognized that resonance points related to lower modes
always lie below the upper fold, while resonance points
related to upper modes may lie either above or below.
The higher is the mode, the higher is the position of the
interaction point on the manifold. As a general rule, if
the two resonances are close, interaction points might
lie in the vicinity of the fold, while if they are very far
from each other, they will lie far from the upper fold.

In Fig. 7, this trend can be verified for the first, third
and fourth modes of the system under study. From
Fig. 7a, it can be inferred that the second mode has
a strong impact on the first one, while the third and
the fourth ones have effects only at high amplitude, far
from optimal behavior of the NES on the first mode.

This is confirmed by the red curve in the figure, where
a2, a3 and a4 are different from zero. Figure 7b shows
that the first and second interaction points lie on the
lower branch, so small non-negligible values of a1 and
a2 would not significantly affect NES dissipation per-
formance on the third mode; b3-b4 interaction point,
instead, lies in between the two folds of the manifold;
it is therefore difficult to ascertain a priori whether
small a4 values would significantly affect performance
ofNESor not.However, the red curve in Fig. 7b, depict-
ing the SIM for a small non-negligible values of the a4,
illustrates that the introduction of energy on the fourth
mode modifies the manifold in a way which should
not deteriorate energy dissipation on the third mode.
In Fig. 7c, referring to the fourth mode, all interaction
points lie on the lower SIM branch, suggesting that the
NES performance on the fourth mode is rather robust
against small values of a1, a2 or a3. This is also con-
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Fig. 6 a,b Sections of the
SIM represented with
respect to variations in a2
for a3 = a4 = 0.01 and
a1 = 0.5. Blue lines:
analytical SIM, red lines:
numerical results obtained
by wavelet transformations,
dashed blue line: the case of
a1 = 0.01, dashed lines:
unstable branches; c time
decrement of y2, blue line:
a1 = 0.5, yellow line:
a1 = 0.01; d wavelet
transformation of the
absorber displacement,
relative to the case of
a1 = 0.5
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firmed by the red curve in Fig. 7c, which is almost
overlapped on the blue one.

We remark that in this section only small values of
the non-activated modes were considered. If more than
one mode of the primary system possesses a significant
amount of energy, the analysis is much more involved,
as it will be partially discussed in the next section.

5 Resonance capture cascade

Several research works [1,5,8,13,18] already illus-
trated that anNESattached to amulti-DoF system tends
to first dissipate energy on higher modes and then on
lower modes, generating the so-called resonance cap-
ture cascade (RCC). In the present study, we aim at
illustrating and interpreting this phenomenon exploit-
ing the SIM.

At first, we assume that only the first two modes
are activated, with initial displacements y1(0) =
y2(0) = 3. Referring to a direct numerical simulation
of Eq. (16), Fig. 8a and b depicts the time series of y1

and y2, Fig. 8c shows the wavelet transformation of the
NES relative displacement (y5), while Fig. 8d depicts
the amplitude of oscillation of the NES relative dis-
placement on the first and second modes (blue and red
lines, respectively), obtained from thewavelet transfor-
mation. The wavelet transformation clearly illustrates
that initially the NES vibrates according to the second
mode (with frequency 1.18), while at T ≈ T1 = 1150 it
partially disengages from the second mode and it oscil-
lates according to the first mode, until, at T ≈ T2 =
5080, it disengages also from the first one. This kind
of behavior is usually referred to as RCC. The energy
initially present at f = 1.73 is related to the modal
interaction 2ω2 − ω1 = 1.73.

Given that both a1 and a2 vary, the interpretation
of the dynamics is carried out through SIM sections.
Figure 9a–c depicts sections of the SIM in the a1, b1,
a2, b2 and a2, b1 spaces, respectively, for various a1
and a2 values. From Fig. 9a and b, it can be imme-
diately recognized that the value a2 = 3 drastically
reduces the initial value of b1, while a1 = 3 has prac-
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Fig. 8 Numerical simulations of the system in Eq. (16) with ini-
tial conditions y1(0) = y2(0) = 3. a,b Time series; c wavelet
transformation of y5; d modal amplitude of oscillation of y5 on

the first (blue line) and second (red line) modes obtained from
the wavelet transformation

tically no effect on b2 for a2 = 3. Initially, a1 and a2
are both equal to 3, which, according to the SIM, cor-
responds to b1 = 0.17 and b2 = 1.7 (point T0 in the
figure). Consequently, we expect that energy will be
dissipated mainly in the second mode. This observa-
tion is consistent with what found numerically, i.e., the
NES interacts with the second mode. In order to fol-
low the slow dynamics of the system, we focus on the
sections of the SIM in Fig. 9b and c, referring to con-
stant a1 = 3. a2 decreases up to 0.36 (T1 in the figure),
when b2 experiences a jump-down and b1 a jump-up,
which corresponds to the modal shift visible in Fig. 8c

at T1 (T ≈ 1150). At this point, the NES interacts with
both modes with a simultaneous decrement of a1 and
a2; therefore, the slow dynamics cannot be directly fol-
lowed on the sections of the SIM in Fig. 9. However, the
rapid decrement of b2 illustrated by the wavelet trans-
formation for 1150 < T < 2670 can be related to the
lower branch of the SIM in Fig. 9b for a2 < 0.36. (The
lower jump predicted by Fig. 9 is probably smoothed
out because a1 is not constant). Oncemost of the energy
on the second mode is dissipated, the reference section
of the SIM is the orange line in Fig. 9a, which the sys-
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tem follows until a1 = 0.24, corresponding to the NES
disengagement occurring at T2 (T ≈ 5080).

Figure 10a and b represents three-dimensional sec-
tions of the SIM in the a1, a2, b1 and a1, a2, b2 spaces,
respectively. These plots enable us to visualize the evo-
lution of the slow dynamics obtained numerically on
the SIM. It can be recognized that the black lines qual-
itatively follow the SIM. The quantitative differences
are probably related to the presence of additional har-
monics, as illustrated in Fig. 8c. The three-dimensional
sections of the SIM show that for small energy content
in the primary system (small values of a1 and a2), the
structure of themanifold is rather involved. On the con-
trary, for high energy content, the manifold has either
high b1 and low b2 values or the opposite, whichmeans
that the NES interacts alternatively with the first or
with the second mode. This feature was extensively
discussed in [16].

Figure 8a illustrates that, while the NES has 1:1
modal interaction with the second mode (T < T1),
energy not only is not dissipated in the first mode but
it also slightly increases. Although this phenomenon
cannot be explained with the adopted analytical frame-
work, numerical tests suggest that it is related to the
internal resonance which seems to pump energy from
the second to the first mode through the NES. This phe-
nomenon occurs also between the third and the second
modes and between the fourth and the third modes, as
it can be observed in Fig. 11, which represents a RCC
involving all four modes of the primary system. Such
internal resonances occur at 2ωn+1 − ωn , and the thor-
ough analysis of this phenomenon is out of the scope
of this paper.

We now consider the system in Eq. (16) with all the
modes initially equally activated. Namely, we impose
initial conditions y1(0) = y2(0) = y3(0) = y4(0) = 3.
Time series of the numerical simulations are depicted in
Fig. 11a-d, while Fig. 11e illustrates the wavelet trans-
formation of the NES relative displacement (y5). The
time series clearly show theRCC. Initially, theNES res-
onates with the fourth mode (ω4 = 1.90), which is the
only one dissipated for T < 310. At T ≈ 310 (T1), the
NES disengages from the fourth mode and starts res-
onating according to the third mode (ω3 = 1.62) and
energy on the third mode is rapidly dissipated while it
slightly increases on the second mode. At T ≈ 1030
(T2), the NES disengages from the third mode and
switches to the second mode and energy on the second
mode is now dissipated, while energy slightly increases

on the first mode. At T ≈ 2330 (T3), the NES finally
starts resonatingwith the firstmode and dissipatesmost
of the remaining energy in the system. At T ≈ 6670
(T4), theNES disengages also from the first mode and it
becomes practically unable to dissipate the remaining
energy. The scenario just described represents a typi-
cal RCC, and the wavelet transformation of Fig. 11e
perfectly visualizes the phenomenon.

The analysis of the RCC through the SIM would
imply to consider an eight-dimensional space in which
most of the dimensions are relevant for the cascade
description. In order to simplify the representation,
we assume that the cascade makes the NES dissipate
energy exactly from one mode at a time and we try to
follow the trend of the slow dynamics through a series
of two-dimensional sections of the SIM.

Sections of the SIM for initial conditions a1 = a2 =
a3 = a4 = 3 are depicted by the blue lines in Fig. 12.
Comparing the blue with the dotted black lines in each
subplot of Fig. 12, we immediately recognized that the
amplitudes of b1, b2 and b3 are strongly reduced by
the presence of the other modes, while b4 (Fig. 12a)
is practically unaffected. This suggests that the NES
initially dissipates energy mostly in the fourth mode,
as confirmed by the shown numerical simulation.

In order to capture the first jump-down of the cas-
cade from the fourth to the third mode, we focus on the
blue lines of Figs. 12a and 13a,which illustrate the vari-
ations in b4 and b3 with respect to a4, respectively, for
fixed values of a1, a2 and a3 (whose variations are min-
imal, as proven numerically). a4 decreases due to the
high value of b4. When a4 reaches approximately 0.33,
the two sections of the SIM present a fold (marked by
T1 in thefigures)whichmakesb4 jumpdown (Fig. 12a),
while b3 jumps up (Fig. 13a). This point marks the first
step of the RCC.

At this stage, the fourth mode is almost completely
dissipated; therefore, we approximate a4 to 0, while a1,
a2 and a3 are still around 3. Corresponding sections of
theSIMs are represented by the orange lines inFig. 12b,
c and d. According to these sections of the SIM, b3 is
relatively large, while b1 and b2 are small, whichmeans
that the NES resonates with the third mode. The sec-
ond jump of the resonance cascade, marked by T2 in the
figures, can be captured considering the orange curves
in Figs. 12b and 13b. When a3 reaches 0.36, b3 expe-
riences a jump-down and b2 a jump-up, which marks
the second step of the RCC.
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in the figures. Solid lines: stable branches, dashed lines: unstable branches

Fig. 10 Three-dimensional
sections of the SIM for
a3 = a4 = 0.01 in the
a1, a2, b1 (a) and a1, a2, b2
spaces (b); the thick black
lines indicate the path
followed by the numerical
simulation

0 1000 2000 3000 4000 5000 6000 7000
-4

-2

0

2

4

0 1000 2000 3000 4000 5000 6000 7000
-4

-2

0

2

4

0 1000 2000 3000 4000 5000 6000 7000
-4

-2

0

2

4

0 1000 2000 3000 4000 5000 6000 7000
-4

-2

0

2

4

(a)

(b)

(c)

(d)

(e)

y 1
y 2

y 3
y 4

fr
eq
ue
nc
y

T T T

T3

T3

T4

T2 T1

T1 T2 T1 T2 T3 T4

Fig. 11 Numerical simulations of the system in Eq. (16) with initial conditions y1(0) = y2(0) = y3(0) = y4(0) = 3. a–d Time series;
e wavelet transformation of y5; dashed red lines indicate frequency jumps
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Fig. 12 Sections of the
SIM in the a4, b4 (a), a3, b3
(b) a2, b2 (c) and a1, b1 (d)
spaces; the other values are
indicated in the figures.
Solid lines: stable branches,
dashed lines: unstable
branches. Sections referring
to a single activated mode
are depicted by dotted black
lines
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Fig. 13 Sections of the SIM in the a4, b3 (a), a3, b2 (b) and a2, b1 (c) spaces; the other values are indicated in the figures. Solid lines:
stable branches, dashed lines: unstable branches
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Following the same procedure, we try to visualize
the following step of the cascade, i.e., from the second
to the first mode. Now, both a3 and a4 are assumed null,
while a1 and a2 are approximately 3. Indeed, this is the
initial condition considered in the previous numerical
simulation (Fig. 8). Corresponding sections of the SIM
are given by the purple curves in Fig. 12c and d. These
illustrate that b2 is much larger than b1; therefore, the
NES resonates according to the secondmode, reducing
a2 and letting a1 almost constant. For a2 ≈ 0.36 (T3),
b2 has a jump-down, while b1 has a jump-up, marking
the third step of the cascade.

Finally, the primary system has energy almost only
on the first vibration mode; therefore, the SIM is
reduced to the simple case of a single activated mode,
depicted by the black dashed line in Fig. 12d. From
this moment on, the NES dissipates energy on the first
mode, until the fold of the manifold is reached for
a1 ≈ 0.24 (T4), which marks the last step of the RCC.

6 Performance analysis

The RCC is an interesting phenomenon characterizing
nonlinear vibration absorbers, which, as known, cannot
occur with a TMD. In this section, we aim at analyz-
ing its efficiency with respect to the speed of energy
dissipation of the NES. Figure 14a depicts the time
required to dissipate 80% of initial energy if the system
in Eq. (16) has energy initially equally distributed on
all four modes of the primary system. This is obtained
by setting initial displacement at zero and modal initial
velocity equal for allmodes (marked by ẏh(0) in the fig-
ure). For very small initial energy, the dissipation time
is relatively large, starting from approximately 3200
time units. It then rapidly decreases reaching its mini-
mum for ẏh(0) ≈ 0.65 (i.e., optimal dissipation time,
approximately 400 time units). By further increasing
initial energy, the dissipation time increases again in
a monotonous way on average, reaching 3150 time
units for ẏh(0) = 3.5, which is almost eight times
the optimal one. According to these observations, the
considered amplitude range can be roughly divided in
three regions. For ẏh(0) < 0.5, the system is prac-
tically below the minimum energy threshold for acti-
vating resonances with the NES; however, this limit is
not the same for all modes; therefore, dissipation time
does not have a discontinuity at ẏh(0) = 0.5, but it has
only a steep decrement. As it is illustrated below, for

0.5 < ẏh(0) < 1, apart from the absolute minimum at
ẏh(0) ≈ 0.65, the NES has indicatively optimal per-
formance and it is able to interact with more than one
mode at the same time; on the contrary, for ẏh(0) > 1,
the RCC takes place.

In order to investigate whether the RCC occurs for
specific initial conditions and if there is a relation
between RCC and performance, we define the param-
eter

Chk = Ek (Th)

Ek (0)
, (30)

where Th is the dissipation time of 80% of the energy
of the hth mode and Ek(0) and Ek (Th) are the initial
energy on the kth mode and its energy at time instant
Th , respectively. In essence when, for instance, C43

is approximately 1, it means that the RCC from the
fourth to the third is verified since when 80% of the
energy on the fourth mode is dissipated (marked by
time T = T4), the one on the third mode is practically
unchanged (E3(T4) ≈ E3(0)). Conversely, if C43 is
significantly smaller than 1, it implies that, when 80%
of the energy on the fourth mode is dissipated, the NES
already dissipated energy on the third mode as well
(E3(T4) � E3(0)); therefore, we can state that the
RCC between the two modes is not taking place.

Figure 14b–d illustrates the values of C43, C32 and
C21 for the same initial conditions of Fig. 14a. The
RCC from the fourth to the third mode and that from
the third to the second mode occur for ẏh(0) > 1;
however, the values of C43 and C32 are rather fuzzy
and irregular; it is therefore unclear from which exact
value the RCC occurs; the RCC from the second to the
first mode occurs approximately for ẏh(0) > 0.65. In
general, for high energy level, the RCC seems to occur
always; however, by comparing the trends of C43, C32

and C21 with the dissipation time in Fig. 14a, it can be
recognized that for the energy level of fastest energy
dissipation (0.5 < ẏh(0) < 1), theRCCdoes not occur.

Figures 15 and 16 illustrate time series, energy
decrement and wavelet transformations for two numer-
ical simulations relative to the initial condition ẏ1(0) =
ẏ2(0) = ẏ3(0) = ẏ4(0) = 1.3 and 0.65, respectively.
The former simulation corresponds to a case of rela-
tively fast energy dissipation (dissipation time is 841
time units), which presents a clear RCC, while the lat-
ter simulation corresponds to the case of almost fastest
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Fig. 14 Results referred to
simulations having initial
conditions y1(0) = y2(0) =
y3(0) = y4(0) = 0 and
ẏ1(0) = ẏ2(0) = ẏ3(0) =
ẏ4(0) = ẏh(0) indicated on
the x-axis of the figures. a
Time required to dissipate
80% of initial energy; b–d
cascade coefficients C43,
C32 and C21
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energy dissipation (dissipation time is 409 time units)
which only partially presents RCC.

In the first case (Fig. 15), the RCC takes place, as it
can be clearly recognized from the energy decrement of
Fig. 15b. Energy is first dissipated on the fourth mode,
then on the third, successively on the second and finally
on the first one (in a relatively long time). Although the
numerous subresonances do not facilitate to recognize
the steps of the RCC, the wavelet transformation of
the NES relative displacement exhibits a clear trend
ascribable to the RCC.

In the second case (Fig. 16), the NES dissipates very
rapidly energy on the third and fourth modes, practi-
cally at the same time. The dissipation of energy in
the second mode is slightly slower, while the dissi-
pation of energy in the first mode starts at T ≈ 150.
Overall the dissipation time is 409 time units. Although
energy on the third, second and firstmodes is dissipated
resembling a RCC, the NES resonates with the third
and fourth modes at the same time, as clearly visible
from the wavelet transformation in Fig. 16c. Despite

the faster energy dissipation, we notice that in the case
in Fig. 16 the residual energy in the second, third and
fourth modes is much larger than in the case illustrated
in Fig. 15, where RCC occurs.

It is particularly difficult to relate the NES dynamics
illustrated in Fig. 16 to the SIM, because energy is dis-
sipated on several modes at the same time. Therefore,
in order to follow the dynamics on the SIM, it would
be necessary to use all its eight dimensions, making its
representation impossible.

However, through several sections of the SIM, it
is still possible to shed some light on the dynamical
behavior exhibited by the NES in the simulation dis-
played in Fig. 16. In Fig. 17a–d, sections of the SIM
assuming that all four modes have the same velocity
(ω1a1 = ω2a2 = ω3a3 = ω4a4) are represented. We
notice that all the four sections present four bumps. In
the b1 space (Fig. 17a), the first bump is the highest, in
the b2 space the second one is the highest, and similarly,
in the b3 and b4 spaces the third and the fourth bumps
are the highest, respectively. Considering Fig. 16c, we
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notice that initially the NES has the highest energy on
the third mode (ω3 = 1.62), with a simultaneous sub-
stantial amount of energy on the fourth mode (ω4 =
1.90) as well, while initially energy on the second and
first modes is very low. Such an energy distribution
corresponds to the third bump of Fig. 17a-d, which, for
ωhah = 0.65, has b1 = 0.068, b2 = 0.11, b3 = 1.17
and b4 = 1.11 (marked by blue dots in Fig. 17a-d).
This clearly enables the NES to dissipate energy on the
third and fourth modes at the same time, as verified
numerically and illustrated in Fig. 16b. Indeed, this is
probably the main reason why the NES is able, in this
region, to interact with more than one mode at the time,
decreasing dissipation time. Successively, the numeri-
cal simulation shows that the NES dissipates energy on
the second and finally on the first mode; however, these
further steps of the energy dissipation cannot be dis-

cussed with the SIM sections illustrated, since it is not
verified any longer thatω1a1 ≈ ω2a2 ≈ ω3a3 ≈ ω4a4.

SIM sections in Fig. 17a–d enable us to partially
explain also the dynamics exhibited in Fig. 15. In this
case, we have initially ωhah = 1.3 and energy is first
dissipated only on the fourth mode. Such a behavior
is probably related to the system lying on the fourth
bump, where b1, b2 and b3 are very small (b1 = 0.061,
b2 = 0.081 and b3 = 0.14, orange dots in Fig. 17a–c),
while b4 is rather large (b4 = 2.36). After dissipating
energy on the fourth mode, the system seemingly fol-
lows a path similar to the one described by the SIM
sections of Figs. 12 and 13. However, for the sake of
brevity, the SIM sections corresponding to this case are
omitted here. The relative energy decrement in the two
analyzed cases is compared in Fig. 17f.

In Fig. 17e, the relative dissipation power is repre-
sented assuming once again that all fourmodes have the
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energy decrement for the numerical simulations in Figs. 15 and
16. Stability of the branches was not computed for this case

same velocity (ω1a1 = ω2a2 = ω3a3 = ω4a4). In the
figure, four peaks, corresponding to the four bumps of
the SIM sections, are clearly recognizable. The highest
peak is associated with the highest bump of b4, while
the lowest one is associatedwith the highest bumpofb1.

The three highest peaks occur at ωhah ≈ 0.4, which
means that by initiating the primary system slightly
above this value the high dissipation power correspond-
ing to the peaks is exploited. This explains the fast
dissipation time obtained in this region. To facilitate
the comparison, the same-colored regions adopted in
Fig. 14a are depicted in Fig. 17b.

Another interesting aspect of the relative dissipation
power curve in Fig. 17e is that, for ωhah between 0.43
and 1.1, the Pr has five or more coexisting solutions.
This explains why C43, C32 and C21 coefficients are
fuzzy for those values and a sharp limit above which
the RCC is verified cannot be defined. In fact, it can

be inferred that the dynamical response of the system
depends on its exact initial conditions, and not only on
the energy level. In spite of that, the dissipation time
(Fig. 14a) experiences only relatively small variations,
meaning that the different dynamical paths provide
similar overall performance. From a design prospec-
tive, we remind that the oscillation amplitude was non-
dimensionalized with respect to the nonlinear stiffness
of the NES; therefore, by adjusting the nonlinear stiff-
ness coefficient, it is possible to define the energy level
of optimal operation of the absorber.

7 Conclusion

In this study, the dynamics of a multi-degree-of-
freedom system equipped with a nonlinear energy
sink (NES) are analyzed. Under impulsive excitation,
it is shown that the NES is able to trigger different
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broadband energy dissipation mechanisms associated
with a variety of modal energy exchanges; the latter
are thoroughly investigated by resorting to the multi-
dimensional slow invariant manifold (SIM). Interac-
tion points lying on the SIM curves have been identi-
fied; they not only provide conditions at which mul-
timodal interference occurs, but also enable to pre-
dict whether such interference is detrimental or not
to overall energy dissipation. Sections of the SIM are
effectively exploited to interpret the resonance capture
cascade (RCC) phenomenon by allowing to track the
evolution of the modal energy distribution. Based on
the SIM, relative dissipation power curves are intro-
duced in order to quantify the NES performance; it is
shown that peaks on these curves correspond to opti-
mal dissipation regimes. By discussing the dissipation
performance, it is also highlighted that RCC regimes
do not guarantee optimal conditions since they gener-
ally occur for energy levels higher than those at which
the relative dissipation power modal tongues occur.

The main limit of the implementation of the SIM for
NESperformance estimation is that internal resonances
are overlooked, while numerical simulations illustrate
that they can significantly affect the dynamics. In par-
ticular, internal resonances seem to cause energy trans-
fer from one mode of the primary system to a lower
one via the NES. Another strong assumption adopted
for the mathematical formalization of the SIM is that
natural frequencies of the primary system are far from
each other; however, closely spaced modes often occur
in real systems and this might significantly affect the
NES performance. These two aspects will be the sub-
ject of future studies.

Acknowledgements GH acknowledges the financial support
of the Higher Education Excellence Program of the Ministry of
Human Capacities in the frame of Biotechnology research area
of Budapest University of Technology and Economics BIO) and
Kevin Dekemele for fruitful discussions. FR acknowledges the
financial support of PRIN 2015 N. 2015TTJN95.

Funding Open access funding provided by Budapest University
of Technology and Economics.

Compliance with ethical standards

Conflicts of interest The authors declare that they have no con-
flict of interest.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits

use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The
images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/.

References

1. Vakakis, A.F., Manevitch, L., Gendelman, O., Bergman,
L.: Dynamics of linear discrete systems connected to local,
essentially non-linear attachments. J. Sound Vib. 264(3),
559–577 (2003)

2. Vakakis, A.F.: Shock isolation through the use of nonlinear
energy sinks. Modal Anal. 9(1–2), 79–93 (2003)

3. Vakakis, A.F., McFarland, D.M., Bergman, L., Manevitch,
L.I., Gendelman, O.: Isolated resonance captures and
resonance capture cascades leading to single-or multi-mode
passive energy pumping in damped coupled oscillators. J.
Vib. Acoust. 126(2), 235–244 (2004)

4. Kerschen, G., Lee, Y.S., Vakakis, A.F., McFarland, D.M.,
Bergman, L.A.: Irreversible passive energy transfer in
coupled oscillators with essential nonlinearity. SIAM J.
Appl. Math. 66(2), 648–679 (2005)

5. Kerschen, G., Kowtko, J.J., McFarland, D.M., Bergman,
L.A., Vakakis, A.F.: Theoretical and experimental study of
multimodal targeted energy transfer in a system of coupled
oscillators. Nonlinear Dyn. 47(1–3), 285–309 (2007)

6. Hubbard, S.A., McFarland, D.M., Bergman, L.A., Vakakis,
A.F.: Targeted energy transfer between amodel flexiblewing
and nonlinear energy sink. J. Aircr. 47(6), 1918–1931 (2010)

7. Sigalov, G., Gendelman, O., Al-Shudeifat, M., Manevitch,
L., Vakakis, A.F., Bergman, L.: Resonance captures and
targeted energy transfers in an inertially-coupled rotational
nonlinear energy sink. Nonlinear Dyn. 69(4), 1693–1704
(2012)

8. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFar-
land, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted
Energy Transfer in Mechanical and Structural Systems, vol.
156. Springer, Berlin (2008)

9. Gendelman, O., Alloni, A.: Dynamics of forced system
with vibro-impact energy sink. J. Sound Vib. 358, 301–314
(2015)

10. Bergeot, B., Bellizzi, S.: Asymptotic analysis of passive
mitigation of dynamic instability using a nonlinear energy
sink network. Nonlinear Dyn. 94(2), 1501–1522 (2018)

11. Bergeot, B., Bellizzi, S.: Steady-state regimes prediction
of a multi-degree-of-freedom unstable dynamical system
coupled to a set of nonlinear energy sinks. Mech. Syst.
Signal Process. 131, 728–750 (2019)

12. Hurel, G., Ture Savadkoohi, A., Lamarque, C.-H.:
Nonlinear vibratory energy exchanges between a two-

123

http://creativecommons.org/licenses/by/4.0/


G. Habib, F. Romeo

degree-of-freedom pendulum and a nonlinear absorber. J.
Eng. Mech. 145(8), 04019058 (2019)

13. Dekemele, K., De Keyser, R., Loccufier, M.: Performance
measures for targeted energy transfer and resonance capture
cascading in nonlinear energy sinks. Nonlinear Dyn. 93(2),
259–284 (2018)

14. Dekemele, K., Van Torre, P., Loccufier, M.: Performance
and tuning of a chaotic bi-stable nes to mitigate transient
vibrations. Nonlinear Dyn. 98(3), 1831–1851 (2019)

15. Habib, G., Romeo, F.: The tuned bistable nonlinear energy
sink. Nonlinear Dyn. 89(1), 179–196 (2017)

16. Habib, G., Romeo, F.: “Comparative analysis of NES
and TMD performance via high-dimensional invariant
manifolds,” In: Kovacic, I., Lenci, S. (eds.) IUTAM Sym-
posium on Exploiting Nonlinear Dynamics for Engineering
Systems, pp. 143–153, Springer (2018)

17. Starosvetsky, Y., Gendelman, O.: Interaction of nonlinear
energy sink with a two degrees of freedom linear system:
Internal resonance. J. Sound Vib. 329(10), 1836–1852
(2010)

18. Dekemele, K., Van Torre, P., Loccufier, M.: Design,
construction and experimental performance of a nonlinear
energy sink in mitigating multi-modal vibrations. J. Sound
Vib. 473, 115243 (2020)

19. Hill, G.W.: On the part of the motion of the lunar perigee
which is a function of the mean motions of the sun and
moon. Acta Math. 8(1), 1–36 (1886)

20. Von Groll, G., Ewins, D.J.: The harmonic balance method
with arc-length continuation in rotor/stator contact prob-
lems. J. Sound Vib. 241(2), 223–233 (2001)

21. Detroux, T.: Performance and Robustness of Nonlinear
Systems Using Bifurcation Analysis. PhD thesis, Université
de Liège, Liège, Belgium (2016)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123


	Tracking modal interactions in nonlinear energy sink dynamics via high-dimensional invariant manifold
	Abstract
	1 Introduction
	2 Mechanical model and non-dimensionalization
	3 Slow invariant manifold
	4 Study of the manifold
	4.1 Interaction points
	4.2 Effect of slightly activated modes on a strongly activated mode

	5 Resonance capture cascade
	6 Performance analysis
	7 Conclusion
	Acknowledgements
	References




