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Abstract
Radio-frequency fingerprinting is a technique for the
authentication and identification of wireless devices
using their intrinsic physical features and an analysis
of the digitized signal collected during transmission.
The technique is based on the fact that the unique
physical features of the devices generate discriminating
features in the transmitted signal, which can then be
analyzed using signal-processing and machine-learning
algorithms. Deep learning and more specifically convo-
lutional neural networks (CNNs) have been successfully
applied to the problem of radio-frequency fingerprint-
ing using a spectral domain representation of the signal.
A potential problem is the large size of the data to be
processed, because this size impacts on the processing
time during the application of the CNN. We propose an
approach to addressing this problem, based on dimen-
sionality reduction using feature-selection algorithms
before the spectrum domain representation is given as
an input to the CNN. The approach is applied to two pub-
lic data sets of radio-frequency devices using different
feature-selection algorithms for different values of the
signal-to-noise ratio. The results show that the approach
is able to achieve not only a shorter processing time;

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.
© 2023 The Authors. Computational Intelligence published by Wiley Periodicals LLC.

734 wileyonlinelibrary.com/journal/coin Computational Intelligence. 2023;39:734–758.

http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/COIN
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fcoin.12592&domain=pdf&date_stamp=2023-07-03


BALDINI et al. 735

it also provides a superior classification performance in
comparison to the direct application of CNNs.

K E Y W O R D S

deep learning, feature selection, radio frequency, security, wireless
communication

1 INTRODUCTION

Radio-frequency fingerprinting (RFF) is an identification technique for electronic devices, more
specifically wireless devices. RFF does not rely on cryptographic means, but exploits the intrinsic
physical features of electronic devices. The concept is that the electronic components of wire-
less devices have small differences between the different models—and even devices of the same
model—that is due to the use of different manufacturing processes or materials in the production
phase. These differences do not usually affect the quality of the communications or compliance
with the wireless standard, but can be used to distinguish between the devices by analysing the
digital output generated by the device (e.g., signal in space).1,2 The digital output of the wireless
device retains the physical features of the electronic components during transmission, which can
be extracted using a radio-frequency sampler or receiver. For example, the non-linearities of an
amplifier generate small differences in the signal in space, even if they are not enough to ham-
per the functioning of the device and the conformity to the standard implemented by the wireless
device (e.g., an 802.11g access point in case of a common Wi-Fi device). This general concept
has been proven to successfully distinguish between wireless devices with great accuracy (better
than 90%) using a hand-crafted set of features (e.g., standard deviation, skewness, kurtosis) and
machine-learning algorithms in References 3,4. Deep learning (DL) was also demonstrated to
offer superior performance to “shallow machine learning” (e.g., a decision-tree algorithm) at the
expense of more computing resources and time.5,6 In comparison to approaches based on shal-
low machine learning and on selected features, the DL algorithm is able to learn the optimal set
of features independently.

Two of the most important metrics to evaluate the RFF approach are the identification accu-
racy and the computing time, which should be minimized. Studies available in the literature1-3

have shown that there is usually a trade-off between the two. These two metrics are also related
to the robustness of the approach, where robustness in this context means the ability of the
approach to identify the wireless devices when the signal-to-noise ratio (SNR) decreases due to
the increasing presence of noise.

In RFF one of the potential problems associated with obtaining good performance according
to the metrics identified above is related to the size of the input data, which could be linked to
the sampling rate used to collect the signals in space from the wireless devices. High sampling
rates are preferable because they provide a high level of granularity, necessary to preserve the dis-
criminating information in the signals.1,2,7 On the other hand, high sampling rates generate large
samples, which take a lot of time to process using the ML/DL algorithm. It would be preferable
to implement a pre-processing step for a dimensionality reduction of the samples, so as to reduce
their size before before being used as an input for the ML/DL algorithm. The objective is to design
such a step in a way that minimizes the computational time (and computational resources needed
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736 BALDINI et al.

for the computation) while maintaining a competitive level of accuracy compared to the baseline
using all the input data.

This paper proposes a novel approach (to the best of the authors’ knowledge) in the field
of RFF that combines three different conceptual elements or steps: (1) a feature-extraction pro-
cess performed on a segmented spectral domain representation of the original input data, (2) the
application of different feature-selection algorithms (FSAs) to identify the most discriminating
features and their associated segments in the spectral domain representation, and (3) the applica-
tion of a convolutional neural network (CNN), which is a kind of DL algorithm, to the reassembled
segments identified in the previous step, that is, a reduced size of the input data.

The hypothesis of the approach is that the pre-processing steps (1) and (2) would be able to
perform a dimensionality reduction without removing the discriminating features. In addition,
this approach should be time efficient. The time needed to extract the features (TimeS1) added to
the time required to apply the FSA (TimeS2) and the time needed to apply the CNN to the reduced
spectral representation (TimeS3), should not take up more computational time and resources than
applying the CNN algorithm directly to the initial input data, which is considered as the baseline
case. Then, TimeS1 + TimeS2 + TimeS3 < Timebaseline. The reason why the spectral domain is used
instead of the initial time-domain representation is that studies in the literature2,6,8 have shown
that the spectral domain representation generally supports a more accurate identification of the
wireless devices in the RFF than the time-domain representation. One possible reason for this is
that the nonlinearities of electronic components such as filters and amplifiers are more apparent
in the spectral domain because their frequency response is different.

In the RFF research literature, one or two of the above elements have been used, but not
a combination of all three as proposed in this paper. An approach to dimensionality reduc-
tion in RFF was employed in References 3,9 by extracting statistical features from portions of
the spectral domain representation of the signal. Subsequently, shallow machine-learning algo-
rithms such as support vector machine (SVM) were used to classify the wireless devices, but no
segment-to-feature mapping was used because the SVM was applied directly to the extracted fea-
tures. The application of a CNN in the RFF domain was shown to be successful in recent literature
in comparison to other DL algorithms and shallow machine-learning algorithms, which support
its use in this paper.5,6 Additional details about the state of art in the literature are provided in
Section 3.

Our contribution: We summarize here the key contributions of this paper:

1. We propose a novel RFF approach based on the integration of spectral domain, data segmen-
tation, feature extraction and feature selection in combination with a CNN to support the
objective of reducing the input data and consequently the computational time required for
source RF identification. The secondary objective is to maintain a competitive identification
accuracy compared to the case where no data reduction is performed (which will be referred
to as the baseline case in the remainder of this paper).

2. The approach is applied to two different public RFF data sets (described in Section 5).
3. The approach is evaluated for robustness against the presence of noise for decreasing values

of the SNR in dB.
4. Different FSAs based on different designs are applied and their performance is compared.

The results show that the proposed approach is not only able to achieve the primary (com-
putational time efficiency) and secondary (identification accuracy) goals, but is also more robust
than the baseline case in both data sets under high and medium SNR conditions.
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BALDINI et al. 737

The structure of the paper is as follows. Section 2 introduces the main concepts of data seg-
mentation, feature extraction, feature selection and the CNN, the applications of which to the
RFF problem are described in the rest of this paper. Section 3 provides an overview of related stud-
ies in the RFF domain or the application of similar approaches to the one proposed in this paper
in other domains. Section 4 describes the overall methodology of the proposed approach, includ-
ing a description of the CNN architecture, the adopted FSAs and the metrics of the evaluation.
Section 5 describes the two public data sets used to evaluate the proposed approach. Section 6 pro-
vides the results of the evaluation, including a comparison of the different FSAs. Finally, Section 7
draws the conclusions of the paper and describes future developments.

2 PRELIMINARY KNOWLEDGE

The aim of this section is to provide preliminary information about the main elements used in
this study: data segmentation, feature extraction, feature selection and the CNN used for the
classification. In addition, Table 1 gives the definition of the acronyms used in this paper.

2.1 Time-series data mining and segmentation

The approach proposed in this paper is based on the concept of the segmentation of time-series
data,10 where the segmentation is performed in the spectral domain of the initial time series and
the goal of the segmentation is to achieve a dimensionality reduction while trying to preserve the
most discriminating segments. In general, this is not a trivial problem and many different methods
have been proposed in literature. Reference 11 provides a comprehensive overview of the differ-
ent time-series data mining and segmentation techniques adopted in literature. The techniques
can be based on a sliding-window approach with a fixed segment, the identification of specific
patterns or change-point detection for adaptive segment-size definition (which is more computa-
tionally demanding, as described in Reference 11). If we consider that one of the main objectives
of our approach is time efficiency, since the total computation time should be lower than when the
CNN is applied directly to the whole input data, we have chosen the sliding-window approach in
the spectral domain with a fixed window due to its simplicity and lack of computational complex-
ity. For the same reasons, we chose non-overlapping sliding windows. In a further extension of
this work, techniques with adaptive segment-size definition while minimizing the computational
time can be investigated.

2.2 Feature extraction

Another element of the proposed approach is the feature-extraction step, which is applied to
the segments identified in the time-series data-segmentation step described in the previous
sub-section 2.1. In this case it is applied to the spectral domain representation of the signal.

Feature extraction can be defined as the process of creating derived values (known as fea-
tures) that are intended to be informative and non-redundant to facilitate subsequent steps such
as classification, as in this study.12 The challenge with the approach is to select features that are
both informative (e.g., discriminative for classification) and which have low computational com-
plexity. The features (e.g., standard deviation) were selected based on these criteria and their use
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738 BALDINI et al.

T A B L E 1 Definitions.

Acronym Definition

AWGN Additive white Gaussian noise

CNN Convolutional neural networks

CUDA Compute unified device architecture

DG Dependence guided

dB deciBel

FFT Fast fourier transform, FFT(k)x =
∑N

j=1x(j)W (j−1)(k−1)
N ,WN = e(−2𝜋i)∕N , x = signal

FMi Feature matrix related to HLF i (i = 1… 5)

FN False negative

FP False positive

FSA Feature-selection algorithm

GF Generalized fisher

GSM Global system for mobile communications

HLF High-level feature (e.g., kurtosis)

MI Mutual information

mRMR minimum redundancy maximum relevance

PCA Principal component analysis

QCLP Quadratically constrained linear programming

RF Radio frequency

RFF Radio-frequency fingerprinting

RMS Root mean square, RMSx =
√

1
N

∑N
1 |xn|

2, x = signal

RMSProp Root-mean-square propagation

SDAR Spectral domain amplitude representation

SDR Software-defined radio

SFj Segment feature (j+1… 150)

SGO Structured graph optimization

SGDM Stochastic gradient descent with momentum

SNR Signal-to-noise ratio, SNRdB = 10 × log10

√
∑N

1 |xn|
2

√
∑N

1 |yn|
2
, x=signal, y=noise.

SVM Support vector machine

TN True negative

TP True positive

USOBC Unsupervised simultaneous orthogonal basis clustering

USRP Universal software radio periphal
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BALDINI et al. 739

in the RFF literature.3 As described in section 4, the features are only used to indicate the most
informative segments, which are related to the features.

2.3 Feature-selection algorithms

Seven FSAs were used to evaluate the approach proposed in this paper: ReliefF; generalized
Fisher (GF) score; structured graph optimization (SGO); dependence guided (DG); minimum
redundancy maximum relevance (mRMR); unsupervised simultaneous orthogonal basis clus-
tering (USOBC); and mutual information-based (MI). These algorithms were selected for their
computational efficiency, because they are widely used as a baseline for historical reasons (e.g.,
reliefF), because they are based on different concepts, and because newer concepts (e.g., SGO and
DG) have recently been proposed in the research literature. In the following paragraphs we pro-
vide a brief description. For additional details the reader can refer to the cited reference in each
paragraph.

ReliefF13 calculates a feature score (based on the identification of feature-value differences
between nearest-neighbor instance pairs) for each feature, which can then be applied to rank and
select top scoring features for the feature selection.14 In this study the reliefF nearest-neighbor
parameter (KR) is used.

The GF score was proposed in Reference 15 and can be used to find a subset of features
that maximizes the lower bound of the traditional Fisher score. The resulting feature-selection
problem is mixed integer programming, which can be reformulated as quadratically constrained
linear programming (QCLP).

SGO was designed to address the problem that conventional embedded, unsupervised meth-
ods need to construct the similarity matrix, which makes the selected features highly dependent
on the learned structure. The authors of SGO in Reference 13 developed an algorithm that
addresses this problem and performs feature selection and local structure learning simultane-
ously, and where the similarity matrix can thus be determined adaptively. Moreover, the authors
in Reference 13 imposed constraints on the similarity matrix to obtain more accurate information
about the data structure so that the proposed approach can select more valuable features. SGO
adaptively learns the local manifold structure, and thus SGO can select more valuable features
than other methods.

DG16 is a joint learning framework for feature selection and clustering where a
projection-free feature-selection model is proposed based on l2,0-norm equality constraints, and
dependence-guided terms are used to enhance the dependence among original data, cluster
labels, and selected features.

mRMR is part of the minimal-optimal family of FSAs that seek to identify a small set of fea-
tures that, when combined, have the maximum-possible predictive power.17 This method handles
each feature separately from the data set and uses the mutual information between them to mea-
sure the level of similarity between two features A and B.18 The motivation for using the mRMR
FSA is that it can effectively reduce the redundant features while keeping the relevant features
for the model.

USOBC is an unsupervised version of simultaneous orthogonal basis clustering feature selec-
tion, which was proposed by the authors in Reference 19. USOBC is a FSA that makes use of the
local structure information of the data points in the input data. As described in Reference 19,
this FSA does not explicitly adopt pre-computed local structure information, but concentrates on
the latent cluster information by conducting orthogonal basis clustering directly on the projected
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740 BALDINI et al.

data points to estimate the latent cluster centers. Since the target matrix is put in a single unified
term for the regression of the proposed objective function, the feature selection and clustering
are simultaneously performed, with the advantage that the feature selection is computed by the
estimated latent cluster centers of the projected data points.

The last FSA used in this study is another (in addition to mRMR) mutual-information-based
algorithm proposed by the authors in Reference 20, which takes into account both the
class-dependent and class-independent correlations among features. In particular, this FSA
includes both relevance and redundancy factors, model redundancy using both class-dependent
and class-independent correlation and takes the average redundancy over all the previously
selected features.

The MATLAB implementation provided by the authors of References 13,15,16,18-20 and the
ReliefF function by Mathworks were used in combination with the matFR toolbox by Reference
21, which was used as a common programming interface.

2.4 Convolutional neural network

A CNN is a type of DL inspired by human learning because the connectivity pattern between
the neurons resembles the organization of an animal’s visual cortex. A CNN is a kind of feed-
forward neural network that is able to extract features from data with a convolution structure.22

Conventional machine-learning techniques like SVM generally require feature extraction (e.g.,
the application of a standard deviation to the data) as the prerequisite, and this requires a domain
expert or the hand-picking of discriminating features, which can be appropriate for the data set
(i.e., the selected features have more discriminating power). DL techniques overcome the problem
of feature selection by not requiring pre-selected features, but by extracting the discriminating
features from the raw input data automatically for a problem in hand (i.e., in this case the clas-
sification of wireless devices using RF fingerprints). As described before, the cost for this higher
performance in comparison to other machine-learning algorithms is the need for powerful com-
puting resources. In fact, the recent increased use of DL models is also due to the availability of
high-performance computing platforms.23 DL usually consists of a collection of processing layers
that can automatically learn features from data through multiple levels of abstraction. A CNN,
often called ConvNet, is a type of deep-learning algorithm. It has a deep feed-forward architec-
ture and has proved to have a high performance for many classification tasks, in particular object
recognition and image classification.24 In this case the CNN is used to detect specific patterns
related to the RF fingerprints of wireless devices in a one-dimensional space, which is the spec-
tral domain representation (using a fast fourier transform) of the digitized signal in space. The
reason for selecting a CNN for this particular problem is because it has proven to have a superior
performance in similar RFF problems in References 5,6.

3 RELATED WORK

RFF is a promising identification and authentication technique for wireless devices that can
complement cryptographic techniques. As described before, RFF relies on exploiting the small
differences in the electronic components transmitted to the digital signal in space, where they
can be collected for analysis. Several studies have described the key elements of RFF and pro-
vided an overview of the various RFF concepts.1,2,25 These surveys have shown that the first RFF
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BALDINI et al. 741

implementations were based on the extraction of manually created features (e.g., variance, Shan-
non entropy)3,26 or the conversion of the signal in space into a representation in the spectral
domain.27,28 A new trend is the application of DL to RFF, drawing inspiration from the highly
successful application of DL algorithms to image analysis and classification.

CNNs have been successfully used for RFF by either applying the CNN to the original time
representation of the signal as I/Q samples in Reference 29 or by implementing a pre-processing
step that converts the original time representation into a spectral domain representation that
serves as the input to the CNN. In the literature the spectral representation combined with the
CNN has generally been shown to be more robust and accurate than the time-domain represen-
tation.6,8 One possible reason is that the non-linearities of the electronic components like filters
and amplifiers are more evident in the spectral domain because their frequency response might
be different.2 For this reason, the approach proposed in this paper is based on the spectral domain
representation given as the input to the CNN. One issue with this approach is that the size of the
specific sample that serves as the input to the CNN can be large, since a high level of granularity
is required to extract the discriminating features to classify the RF devices. For example, in Refer-
ence 30 segments of the samples are randomly chosen with a sliding window to reduce the size of
the sample. This processing step is also based on the understanding that the RF fingerprints are
not evenly distributed over the entire spectral range, since the nonlinearities often affect certain
parts of the spectral domain and not others, or only to a small extent, for example, due to reso-
nance elements in the components. In References 3,9, a dimensionality-reduction approach was
used for RFF by extracting statistical features from parts of the spectral domain representation
of the signal. Shallow machine-learning algorithms such as SVM were used to classify the wire-
less devices. One possible approach would be to combine the dimensionality reduction approach
presented in Reference 3 with the deep-learning approach that has achieved considerable success
in the domain of RFF. One possibility would be to apply the CNN to the feature space created
by the application of statistical features from Reference 3 (i.e., standard deviation, skewness and
kurtosis), but there is a risk that the feature-extraction step removes the discriminating informa-
tion from the RF fingerprints. Another option (which was used in this study) would be to use the
statistical feature-based space to identify the most discriminating parts of the spectral domain,
which can then be prioritized (i.e., using a feature-selection algorithm) and recombined to create
a spectral representation that can be fed to the deep-learning algorithm. The hypothesis is that
such a pre-processing step would be able to perform dimensionality reduction without removing
the discriminating features. In addition, this approach should save time: extracting the features
added to apply the feature-selection algorithm and applying deep learning to the reduced spec-
tral representation should not require more computational time and resources than applying the
deep-learning algorithm directly.

Along these lines, one recent approach proposed in the literature for another domain (anal-
ysis of electrocardiogram signals in biomedical engineering) is presented in Reference 31, where
the Shannon entropy measure is applied to the time-frequency representation of the electrocar-
diogram to produce reduced images using principal component analysis (PCA), which are then
fed to a CNN. The study proposed in this paper takes inspiration from Reference 31 but goes a
step further by using other features and employing FSAs for the filter type instead of PCA. We
used feature-selection algorithms instead of PCA because the approach proposed in this paper is
slightly different from Reference 31 as it focuses on selecting the most discriminating segments of
the spectral range associated with the features. In addition, we prefer dimensionality-reduction
techniques that allow feature ranking rather than creating a new space with reduced dimensions
as in PCA.
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4 METHODOLOGY

4.1 Workflow

Figure 1 presents the workflow. In the initial step all the data samples from both data sets
(DATASET1 and DATASET2) are synchronized and normalized by subtracting the mean and by
calculating the ratio of the signal with its root mean square (RMS). A detailed description of the
data sets is provided in Section 5. The synchronization and normalization steps are introduced to
ensure that the proposed approach and the algorithms are based only on the fingerprints of the
RF and are not affected by different distances between the transmitter and the receiver used to
acquire the RF samples (in DATASET1, for example, these are the distances between the drone
controllers and the receiver/sampler used to acquire the signal in space). After synchronization
and normalization of the data sets, a fast fourier transform (FFT) is applied to each of the sam-
ples of the data set to obtain the spectral domain representation with an amplitude and a phase
component. Although both components of the spectral domain can be used, an experimental
analysis (not presented here because of space limitations) has shown that the amplitude com-
ponent alone has greater discriminating power in both data sets. This is referred to and used
below as the spectral domain amplitude representation (SDAR). The SDAR is divided into seg-
ments SDARSEGi of equal size SEGS1 = 100 for DATASET1 and SEGS2 = 50 for DATASET2 (in
an extended study of this paper, SEGS1 and SEGS2 could be hyper-parameters). Since the SDAR

F I G U R E 1 Workflow of the proposed approach.
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BALDINI et al. 743

in both data sets is symmetric (because it is the application of the FFT to a real signal), only the
first half of the SDAR can be used in the study, which reduces the computational cost. Then,
considering that the size of the SDAR is 30,000 in DATASET1 and 2600 in DATASET2 the num-
ber of segments is 30000/(2*100)=150 in DATASET1 and 2600/(2*50)=26 in DATASET2. Thus,
SDARSEGi, i = 1..150 in DATASET1 and SDARSEGi, i = 1..26 in DATASET2.

For each segment SDARSEGi, five different high-level features are applied. The following fea-
tures are used in this study: (1) mean, (2) standard deviation, (3) Shannon entropy, (4) skewness,
and (5) kurtosis. These features are used because they are adopted in the literature for RFF and
because they have a low computing complexity. Then, five feature matrices FMj (i=1… 5) of size
6750*150 are created for DATASET1 and five feature matrices of size 9000*26 for DATASET2 (the
application of the FSA is only for the training set portion of 3/4 of the overall data set).

It is important to emphasize that, according to the hierarchy of meanings in this approach, the
term “feature” has two different forms. The first type of feature, which we refer to as a high-level
feature (HLF), is the feature (e.g., mean, standard deviation) used to convert the SDAR into a FMj
(j=1… 5). The second type of feature, which we call the segment feature or SFij in the rest of this
paper, is the value of the j HLF applied to a specific segment SDARSEGi. A more detailed view of
these steps is shown in Figure 2.

Then, on each FMj a feature-selection algorithm (FSA) is applied to reduce the number of fea-
tures (e.g., from 26 to 10). As described in subsection 2.3, seven different FSAs are used. Then,
each algorithm will provide a ranking of features. In this paper the first high-ranking NF = 20 seg-
ment features are selected on the basis of criteria explained in Section 6 for DATASET1 and the
first high-ranking NF = 10 segment features were selected for DATASET2. In reality each feature
corresponds to a particular segment index. Subsequently, the NF features are used to generate a

F I G U R E 2 Scheme for the application of feature selection in the identification and re-assembling of the
most discriminating segments SDARSEGi of the spectral domain SDAR. An example for the DATASET1 is shown
in the figure.
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744 BALDINI et al.

new spectral domain representation of the signals, where NF segments are continuously recom-
bined. Note that the recomposition process is the same for all samples from all instruments in
the data set for consistency. The reduction is significant because the new sample size is 20 * 100
= 2000 instead of the initial 150,000 (a factor reduction of 7.5). The hypothesis is that such a pro-
cedure selected only the best discriminating features in the spectral range, and this is based on
the understanding that RF fingerprints are mostly related to nonlinearities in certain frequency
bands, as they are caused by inadequacies in filters, amplifiers, and so on. In the final step the
CNN is applied to the reduced spectral domain representation to perform the classification. For
comparison, the CNN is also applied to the original SDAR with all the segments to evaluate the
performance of the proposed approach, as is common in the literature5 (this is referred to as the
baseline in the remainder of this paper).

4.2 Architecture of the convolutional neural network

A one-dimensional CNN architecture is used because the input is the one-dimensional spec-
tral amplitude SDAR of the RF fingerprint signal, which is reduced with the optimal segments
selected by the FSA and then re-assembled. The architecture of the CNN is shown in Figure 3,
where three layers are used and the value of the parameters is the result of a grid optimization in
the ranges defined below. In Figure 3, FS is the filter size and f is the number of filters in the con-
volutional layers, P is the pool size, and S is the stride size in the pooling layer. Adam is the CNN
solver algorithm with an initial learning rate of 0.005. The optimization ranges were defined as
follows: for the filters between 8 and 64, the number of convolutional layers between 2 and 4, the
initial learning rate in the value set [0.001, 0.005, 0.01, 0.05, 0.1], the initial convolutional size Ws
in the value set [8, 16, 24, 32, 40, 48], and the solvers between Adam, RMSProp and SGDM. The
maximum number of epochs was set to 40, as we found that a larger number of epochs was not
necessary since the CNN converged before 40 epochs.

Each data set was split into a portion of 3/4 of the total set for the training set, including 1/10
of the training set for validation, and a portion of 1/4 of the total set for testing. The CNN was
executed 10 times, randomly shuffling the training and test sets each time, and the results were
averaged.

A Windows computing platform with an Intel i9-10885H processor, 2.4 GHz of clock speed, 32
Gbytes of memory, and NVIDIA QUADRO P4000, which is Compute Unified Device Architecture
(CUDA enabled) with MATLAB as the programming language was used to compute the results

F I G U R E 3 1D CNN architecture used in the analysis.
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BALDINI et al. 745

and the execution time. The MATLAB implementations used in this study are listed at the end of
Section 2.3. The Deep-Learning MATLAB toolbox (version 2021a) from Mathworks was used to
implement the CNN.

5 DESCRIPTION OF THE DATA SETS

To evaluate our approach we used two different public data sets described in the following
subsections.

5.1 DATASET1: Drone controllers

The first data set was published in Reference 32 and used by the authors in Reference 33. The data
set contains several sets of signals collected from radio remote controllers for drones transmit-
ting in the 2.4-GHz band. The sampling frequency used to capture the signals was 20 GSamples
per second. Analysis of the data shows that nine controllers from the entire data set have similar
signal structures and the same number of samples, and these were selected for analysis. All 1000
data samples from each controller were used, as the total data set consists of 9000 samples. All
the samples were normalized and synchronized around the transient, and a time interval of 1.5
microseconds was chosen, corresponding to a vector of length 30,000. Figure 4 shows a sample
from each device in the time domain where the transient phase is visible. The transient portion
of the signal was chosen because it has been shown in the literature2,34,35 that the transient por-
tion of the signal contains the most significant discriminating characteristics of the signal, but
the collection of the transient portion requires a relatively high sampling rate, which in turn pro-
duces large input files, as in this (where a sampling rate of 20 GSamples per second was used). To

F I G U R E 4 Samples from each device used in the first data set (DATASET1).
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746 BALDINI et al.

evaluate the robustness of the approach in the presence of noise, additive white gaussian noise
(AWGN) was added to the data set to simulate different SNRs in dB. It should noted that the RFF
problem for this is relatively straightforward since the drone controllers are of different models
and the transient portion of the signal is different, as shown in Figure 4. Then, AWGN is added
to evaluate the proposed approach under more difficult conditions where the controller signal is
obscured by the presence of noise. This is a common approach in the literature where AWGN is
used to evaluate the robustness of the proposed algorithm.3,5,34

In the rest of this paper, this data set is identified with the keyword DATASET1.

5.2 DATASET2: GSM

The second data set is based on the collection of wireless signals based on the global system for
mobile communications (GSM) standard from 12 mobile phones of four different models, with
a set of three phones for each model. The data set is public and it is available at Reference 36.
The data set was created using a controlled test bed in which the RF signals from each of the 12
transmitting wireless devices were collected using a universal software radio peripheral (USRP)
N200 receiver of the software-defined radio (SDR) type with a sampling rate of 20 MHz. The SDR
was fully disciplined and synchronised with a global navigation satellite system (GNSS) receiver.
A total of 1000 bursts were collected from each cell phone to generate a data set of 12,000 sam-
ples. For each GSM burst, the data payload was removed, and only the ramp-up, ramp-down, and
preamble are maintained, so that the distortion caused by the content (i.e., speech) did not mat-
ter to the RFF (the preamble was configured to be the same for all the phones). Subsequently,
all the bursts were normalised. As in the first data set, different SNR conditions were generated
using the AWGN to evaluate the robustness of the approach to the presence of noise. A graphical
representation of one sample for each of the 12 mobile phones is reproduced in Figure 5.

In the rest of this paper, this data set is identified with the keyword DATASET2.

F I G U R E 5 Samples from each device used in the second data set (DATASET2).
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BALDINI et al. 747

6 RESULTS

This section presents the results and related analysis for applying the approach proposed in this
paper to DATASET1 and DATASET2. This section is organised as follows. The first subsection 6.1
describes the evaluation metrics. Subsection 6.2 shows the comparison between the different
FSAs. Subsection 6.3 shows some examples of the influence of hyperparameters in the approach.

6.1 Evaluation metrics

The metrics used to evaluate the performance of the proposed approach are accuracy, F-score,
and execution time in seconds to measure the computational complexity. Accuracy is the ratio
of correct predictions to total predictions. F-Score is the harmonic mean of precision and recall.
Precision is the ratio of true positives (TPs) to the sum of Ts and false positives (FPs). Recall is
the ratio of TPs to the sum of TPs and false negatives (FNs). The F-score is used because accu-
racy might not provide a complete understanding on how the FPs and FNs are distributed in the
outcome of the classification results. Since the problem addressed in this paper is a multi-class
problem with balanced data sets (DATASET1 and DATASET2), we have implemented the F-score
by macro-averaging and taking all the classes as equally important.

In addition we compute the confusion matrices, where the results of the predicted values
are compared with the true values. In this paper we use the notation that the predicted values
are on the x-axis and the true values are on the y-axis. The execution time in seconds is used as
a metric to evaluate the speed of the different approaches. The same computing platform was
used to calculate the execution time. The computing platform was described in the previous
subsection 4.2.

6.2 Comparison of the approaches with different FSAs
with optimized parameters

As described before, seven different FSAs were used to evaluate the approach on the two data sets
across different levels of SNR expressed in dB.

Regarding DATASET1, Figure 6 shows the comparison among the selected approaches once
the optimization is performed in relation to the choice of KR for ReliefF and the specific HLF (e.g.,
standard deviation) used for the application of the FSA. Figure 6 shows that all FSAs except DG
and USOBC provide better accuracy than the baseline in the range of SNR values from −25 to 20
dB, with ReliefF and GF higher than the baseline at −30 dB. It should be noted that both the DG
and USOBC FSAs are not robust in the presence of noise. This may be due to the specific char-
acteristics of the data set and the algorithm for that data set. At extreme noise levels (SNR <=
−35 dB), most approaches perform worse than the baseline because the signal is too noisy for the
FSA to be able to select the optimal segments of the spectral domain. On the other hand, even the
baseline is not able to achieve accuracy when the SNR values are too low. These results at very
low SNR values are consistent with the results from the literature on RFF,3,5,6 where the accu-
racy decreases significantly at low SNR values because the presence of noise eventually obscures
the RF fingerprints. These results show that the choice of FSA is important to achieve optimal
performance, but each algorithm is more-or-less robust for different values of SNR.
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748 BALDINI et al.

F I G U R E 6 DATASET1. Accuracy comparison of the proposed approach based on the application of
different FSAs with optimal features and hyperparameters against the baseline for different values of SNR.

The numerical details of the accuracy of results presented in Figure 6 for DATASET1 are
shown in Table 2 for specific values of SNR in addition to the corresponding values of the F-score.
The best results for each value of SNR are shown in bold. In general, the values of F-score are
consistent with the values of the accuracy for the same FSA and the same level of SNR. From
the analysis of Table 2 it is clear that ReliefF, SGO, GF, mRMR and MI have better performance
than the baseline in terms of accuracy and F-score in presence of low and medium levels of noise
(SNR from−30 to−10). At SNR=−10 dB, the difference in accuracy between the best-performing
FSA (GF) and the baseline is almost 6%. For values of SNR greater than −10 dB, the accuracy is
near ideal for all the algorithms and the differences are minor among the approaches. Both the
GF and SGO FSAs have slightly better performance (in terms of accuracy and F-score) than the
ReliefF, mRMR, and MI-FSAs in this DATASET1, although performance remains high in abso-
lute terms. It should be noted that the GF and SGO FSAs were introduced more recently than
ReliefF, which is much older. Therefore, these two algorithms are more advanced and theoreti-
cally better performing than the ReliefF algorithm, which is used for historical reasons. Moreover,
an additional advantage of the GF and SGO algorithms is that they do not require the tuning of
hyper-parameters like ReliefF.

The results for DATASET2 are shown in Figure 7 and the related detailed values are shown
in Table 3. In this second data set the approach partially confirms the results obtained in the first
DATASET1, as most FSAs perform better than the baseline for medium and low noise levels (for
this data set the range is between 20 and 45 dB). DATASET2 is more challenging than DATASET1
from a classification point of view, as the accuracy decreases significantly at higher SNR values
in DATASET1 than in DATASET2. One of the most striking differences is the relatively poor per-
formance of the SGO FSA in the presence of noise, as the accuracy drops significantly below SNR
= 30 dB, while all other FSAs perform better than the baseline. One possible reason for the rel-
atively poor performance of the SGO FSA is that the sample space and number of segments in
DATASET1 (150) are smaller than DATASET 2 (26). Another difference is that most FSAs (with
the exception of SGO) in DATASET2 perform better than the baseline across all the values of SNR,
while in DATASET1 this was not in case.
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BALDINI et al. 749

T A B L E 2 DATASET1.

SNR value (dB) Baseline ReliefF GF SGO DG mRMR USOBC MI

Accuracy

−30 0.6893 0.7120 0.7280 0.6497 0.3893 0.5364 0.3893 0.551

−20 0.8746 0.9004 0.8942 0.9164 0.508 0.9271 0.3996 0.9324

−10 0.9253 0.9528 0.9848 0.9751 0.655 0.9560 0.3902 0.9404

0 0.9822 0.9964 0.9928 0.9973 0.9937 0.9836 0.3929 0.9747

10 0.9982 0.9955 0.9946 0.9983 0.9973 0.9982 0.4218 0.9973

F-score

−30 0.6755 0.7091 0.7280 0.6463 0.3912 0.5426 0.3858 0.5575

−20 0.8655 0.8961 0.8877 0.9164 0.501 0.9217 0.3899 0.9300

−10 0.9219 0.9515 0.9848 0.9748 0.648 0.9613 0.3784 0.9427

0 0.9821 0.9964 0.9929 0.9973 0.9937 0.9883 0.3742 0.9694

10 0.9982 0.9955 0.9940 0.9983 0.9983 0.9973 0.4007 0.9982

Note: Identification accuracy and F-score for different values of SNR in dB. The optimal accuracy and F-score for each value of
SNR in dB are highlighted in bold.

F I G U R E 7 DATASET2. Accuracy comparison of the proposed approach based on the application of
different feature-selection algorithms with optimal features and hyperparameters against the baseline for
different values of SNR.

As shown in Table 3, the relative improvement in accuracy of the approach proposed in this
paper for specific FSAs in DATASET2 is even greater than in DATASET1. For example, with an
SNR of 35 dB, the approach with GF FSA leads to an 8.6% higher accuracy.

A Wilcoxon rank-sum test was implemented to evaluate the statistical significance test. Exam-
ples of the comparison between one FSA and the baseline are shown in the following Table 4 for
different values of SNR in dB. A low p-value (less than 0.05) provides evidence to reject the null
hypothesis (i.e., that both populations’ results are the same) is true.
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750 BALDINI et al.

T A B L E 3 DATASET2.

SNR value (dB) Baseline ReliefF GF SGO DG mRMR USOBC MI

Accuracy

0 0.125 0.126 0.127 0.082 0.122 0.134 0.082 0.116

15 0.440 0.456 0.459 0.085 0.443 0.440 0.432 0.447

35 0.754 0.808 0.840 0.817 0.804 0.831 0.772 0.808

55 0.892 0.922 0.885 0.901 0.894 0.892 0.896 0.906

F-score

0 0.133 0.123 0.120 0.084 0.116 0.133 0.083 0.107

15 0.432 0.455 0.447 0.080 0.438 0.426 0.430 0.437

35 0.727 0.788 0.843 0.825 0.789 0.830 0.795 0.801

55 0.885 0.921 0.882 0.900 0.896 0.897 0.900 0.914

Note: Identification accuracy and F-score for different values of SNR in dB. The optimal accuracy and F-score for each value of
SNR in dB are highlighted in bold.

T A B L E 4 Wilcoxon rank-sum test between one FSA and the baseline for both data sets.

DATASET1 (ReliefF against baseline) SNR = −20 dB SNR = 0 dB

p-value 0.0018 0.000036

DATASET2 (mRMR against baseline) SNR = 30 dB SNR = 40 dB

p-value 0.0000364 0.000097

Apart from better identification accuracy, the main achievement of the proposed approach
is the computational efficiency, even taking into account that the feature matrix has to be com-
puted and the FSA applied to it (this computation is not present in the baseline approach). As
described in the previous sections of this paper, this was the main goal of the approach, which
was successfully achieved.

Table 5 shows the computation times using the optimal HLF for each FSA (e.g., mean for SGO)
for DATASET1 and DATASET2. For DATASET1 the values are reported at SNR= 20 dB, while for
DATASET2 the values are reported at SNR = 45 dB (similar results were obtained for other SNR
values, but they are not presented here because of space limitations).

The reported time given in the column ’Time (s) to generate the feature matrix’ is specific to
the HLF with the best performance, as shown in Table 5. The calculation of the feature matrices
FMj is independent of the application of the FSA. The other Table 6 gives a complete overview of
all the computations for all the HLFs and FSAs for both DATASET1 and DATASET2. The gain in
computation time is given in parentheses in the last column of Table 5. The gain is calculated as
(TBaseline − TFSA)∕TBaseline and given in percentages (i.e., %).

Table 5 indicates that while most of the computation time is still due to the application of the
CNN, the dimensionality reduction manages to achieve a reduction of the computational time
on the computing platform used in this study (e.g., 176 s against 567 s for the application of the
baseline approach) especially for DATASET1. It is possible to achieve around 70% gain for most
of the FSAs. The optimal computing time gain is achieved with MI FSA. For DATASET2, the gain
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BALDINI et al. 751

T A B L E 5 Computation times of the different approaches.

DATASET1: Approach
(SNR = 20 dB)

Time (s) for
feature matrix
creation

Time (s) for
FSA execution

Time (s)
for CNN

Total execution
time (s) and
(Gain in %)

This approach (GF) 57 1 101 159 (+72)

This approach (ReliefF) 58 16 102 176 (+69)

This approach (SGO) 32 40 104 176 (+69)

This approach (DG) 32 43 103 178 (+68.6)

This approach (mRMR) 46 5 102 153 (+72)

This approach (USOBC) 58 82 103 243 (+57.1)

This approach (MI) 46 4 102 152 (+73.2)

Baseline 0 0 567 567

DATASET2: Approach
(SNR = 55 dB)

Time (s) for
feature matrix
creation

Time (s) for
FSA execution

Time (s)
for CNN

Total execution
time (s) and
(Gain in %)

This approach (GF) 11 1 123 134 (+20.2)

This approach (ReliefF) 6 15 123 144 (+14.3)

This approach (SGO) 5 163 123 291 (−73.2)

This approach (DG) 6 132 124 262 (−56.0)

This approach (mRMR) 6 3 122 131 (+22.0)

This approach (USOBC) 11 232 123 366 (−117.9)

This approach (MI) 11 3 123 137 (+18.5)

Baseline 0 0 168 168

T A B L E 6 Computation times in seconds for the creation of the feature matrices FMj.

HLF DATASET1 DATASET2

Mean 32 4

Standard deviation 40 5

Shannon entropy 46 6

Skewness 57 11

Kurtosis 58 11

in computing time is less than the one reported in DATASET1, but it is still significant, as it is
possible to achieve a gain in computing time of around 20%. This is probably because the spectral
domain representation SDAR is much larger in DATASET1 (15,000) than DATASET2 (1300). The
optimal computing time is achieved with mRMR FSA. In general, both mRMR and MI (which
are based on a similar design) are efficient in computing terms. Taking into consideration the
reported accuracy and F-score values from Tables 2 and 3, which are generally superior to the
baseline, mRMR and MI are to be preferred regarding the objective of computing efficiency. In
this data set it should also noted that some FSAs are slow to converge to the optimal set of features.
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752 BALDINI et al.

F I G U R E 8 DATASET1. Confusion matrices using the SGO approach with HLF = mean (Figure 8A,B) and
the baseline (Figure 8C,D) at SNR = −30 dB and SNR = 0 dB. The true values are on the y-axis and the predicted
values are on the x-axis.

In particular, we record a very long computing time for the application of SGO, DG and USOBC
for this specific data set, which practically excludes them from their application in this data set
as the time gain is negative: the sum of the computing times in the pre-processing steps is greater
than the baseline case.

To complement the reported values of accuracy and F-score, we also present in the follow-
ing figures, examples of confusion matrices obtained for both s for the baseline and a specific
FSA. Figure 8 shows the confusion matrices obtained with the SGO FSA and the baseline for
DATASET1, where the device (i.e., a drone controller) is represented with the term DX (x= 1… 9).
Figure 9 shows the confusion matrices obtained with the ReliefF FSA and the baseline approach
for DATASET2, where the device (i.e., a GSM mobile phone) is represented by the term GX (x
= 1… 12). In both figures the true values are on the y-axis while the predicted values are on the
x-axis.

Figure 8 shows that the confusion matrices at SNR=−30 dB indicate a large number of errors
(e.g., FPs and FNs) because the approach has difficulty in discriminating the fingerprints of the
drone controllers in the presence of noise. On the other hand, the confusion matrix obtained
with the SGO FSA has fewer errors (i.e., values outside the diagonals) than the confusion matrix
obtained with the baseline approach, suggesting that the approach proposed in this paper is supe-
rior to the baseline approach in terms of prediction accuracy. Similar results (although less clear
since the overall accuracy is higher) are shown for the confusion matrices at SNR = 0 dB.

Additionally, it can be seen that RF fingerprints in some data sets are easier to recognize than
others: D7, D8, and D9. This is due to the fact that D7, D8, and D9 are different models and the clas-
sification between models (i.e., inter-model classification) is easier than the classification within
a model (i.e., intra-model classification).1,2 The reason is that different models of wireless devices
(i.e., inter-model set), which are still conformal to the same wireless standard are designed and
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BALDINI et al. 753

F I G U R E 9 DATASET2. Confusion matrices using the ReliefF approach with KR = 10 with HLF =
Shannon entroy (Figure 9A,B) and the baseline (Figure 9C,D) at SNR = 15 dB and SNR = 35 dB. The true values
are on the y-axis and the predicted values are on the x-axis.

manufactured in different design and production environments, which generates differences in
their structure, which translates to different RF fingerprints. On the other hand, wireless devices
of the same model (i.e., intra-model set) but different serial numbers have the same design and
minor differences in their structure due to the manufacturing process and materials. Because
the physical differences among wireless devices of the same model are minor in comparison to
wireless devices of different models, the CNN has more difficulty in distinguishing intra-model
wireless devices.

In a similar way, we present in Figure 9 the confusion matrices obtained with the DATA SET2
using the ReliefF (KR = 10 and Shannon entropy) obtained at SNR = 15 dB and SNR = 35 dB.
The aspect related to the intra-model classification is even more evident in Figure 9, because it is
clear that for SNR = 15 dB the approach has some difficulties in identifying the mobile phones
belonging to the same model.

6.3 Evaluation of the impact of parameters

In summary, the proposed approach can be based on a number of parameters: (1) the type of
HLF (e.g., mean, standard deviation) used to generate the feature matrix FMi on which the FSA
is applied, (2) the number of highest-ranking segment features NF obtained from the FSA, (3) the
type of FSA algorithm and (4) other hyper-parameters present in the definition of the FSA. In this
study, only the ReliefF algorithm has the hyperparameter KR to be investigated. In this section
we evaluate the impact of parameters 1,2, and 4 with the ReliefF FSA and the next subsection
will present the results of the evaluation of the different FSAs in comparison to the baseline. The
baseline is the approach where the entire spectral domain representation is given as an input to
the CNN without the application of the FSA.
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754 BALDINI et al.

F I G U R E 10 Comparison of the proposed approach based on the application of the ReliefF algorithm
against the baseline for different values of SNR in dB and values of the ReliefF hyperparameter KR.

F I G U R E 11 Comparison of the proposed approach based on the application of the reliefF algorithm for
different HLFs.

In the case of the ReliefF approach, KR is also a hyperparameter. A grid approach with KR
ranging from 1 to 20 was used to estimate the optimal value of the hyperparameter using accu-
racy as a metric. Each FSA was tuned for the use of the features and the ReliefF algorithm was
optimized for the value of KR. The results of the optimization of the approach based on the Reli-
efF algorithms are shown in Figure 10A for DATASET1 (HLF is kurtosis) and in Figure 10B for
DATASET2 (HLF is Shannon entropy). The proposed approach is able to outperform the baseline
for the majority of the values of SNR in dB apart from SNR = −35 dB when the noise is too high
for the ReliefF algorithm to be able to select the appropriate segments for classification. It is clear
from Figure 10 that both the values of KR = 12 and KR = 16 achieve the optimal performance at
different values of SNR in dB.

Based on the results above, we also evaluated the impact of the choice of the HLF. The
Figure 11 of the bar type shows the effects of the choice of HLF in the case of FSA ReliefF with
the specific value KR = 12 and for different values of SNR in dB. It can be seen that for the ReliefF
FSA, the kurtosis HLF provides the optimal accuracy for most of the values of SNR in dB, with the
HLF skewness also achieving a relatively good performance. This is not unusual because the kur-
tosis feature in the spectral domain has been used in radio-frequency signal processing literature
to detect specific patterns, in particular in the transient portions of the signal.37

The number of the highest-ranking segment features NF obtained from the FSA is another
parameter to optimize. This parameter is also important for the proposed approach: if the value of
NF is too large, the overall approach would not be time-efficient because the CNN has samples that
are too large as the input. Moreover, segments with low discriminative value could be included

 14678640, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/coin.12592 by C

ochraneItalia, W
iley O

nline L
ibrary on [23/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BALDINI et al. 755

F I G U R E 12 Weight ranking of the segment features using ReliefF with KR = 12 for values of SNR = 0 dB
and SNR = 10 dB. Only the highest-ranking 50 segment features are shown for readability.

in the model DL. If NF is too small, the approach might not be able to select the segments with
the highest discrimination value, resulting in a worse overall classification. The term ’too small’
depends on the data set’s properties. There are different potential approaches to determine the
optimal value of NF . One possibility would be to use a similar approach to the other parameters
(e.g., the choice of the FSA) where the classification using the CNN is performed for each value
of the parameter (e.g., the specific FSA algorithm), but this would be time consuming. In this
case a more efficient approach is to evaluate the weights of the ranked segment features provided
directly by the application of the FSA, which can provide not only the ranking of the features but
also their relative weights. Then, we can use this information to select the optimal value of NF .

Figure 12 shows the relative weights of the ranking of the segment features for two different
values of SNR = 0 dB and SNR = 10 dB calculated with the ReliefF algorithm and KR = 12 for
DATASET1. A limit of 50 was set in the figures instead of the full size of the spectral domain
for readability (in the current study there are 150 segment features with the maximum possible
value of NF = 150). A threshold of NF = 20 includes most of the relevant segment features and
that it is not necessary to increase this value. In fact, the number of high-rank features decreases
with the lower values of SNR = 0 dB. Similar results are obtained with the other FSAs. A similar
approach and result was obtained for DATASET2 with NF = 10 but is not shown here because of
space limitations.

7 CONCLUSIONS

This paper describes a novel approach to improving the computational efficiency and accuracy in
RFF based on a pre-processing step prior to applying a CNN to the spectral domain representation
of the digital signal emitted by wireless devices. The approach is based on two main hypotheses:
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756 BALDINI et al.

(a) that not all parts of the spectral domain have the same discriminating value because the RF
fingerprints are located in certain parts of the spectral domain and (b) that such discriminating
parts can be identified with a feature-selection approach that is more time efficient than using a
CNN for the same purpose. In practice the approach proposes a combination of feature selection
and deep learning (CNN), where feature selection is used to support a dimensionality reduction
of the input data for the benefit of the CNN. The approach is evaluated on two different public
data sets and achieves a significant improvement over using a CNN directly, both in terms of
classification (measured by accuracy and F-score) and computational time. The trade-off is the
selection of the appropriate FSA, as differences in the application of FSAs were found.

Future developments of this study could take several directions. One direction would be to
study in more detail the parameters associated with data segmentation; another direction would
be to study the application of transforms other than the fast Fourier transform. A third direction
would be to investigate this unsupervised learning approach with an open data set of wireless
devices.
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10. Ślęzak D, Grzegorowski M, Janusz A, et al. A framework for learning and embedding multi-sensor forecast-
ing models into a decision support system: a case study of methane concentration in coal mines. Inform Sci.
2018;451:112-133.

11. Tc F. A review on time series data mining. Eng Appl Artif Intel. 2011;24(1):164-181.
12. Guyon I, Gunn S, Nikravesh M, Zadeh LA. Feature Extraction: Foundations and Applications. Vol 207.

Springer; 2008.
13. Nie F, Zhu W, Li X. Unsupervised feature selection with structured graph optimization. Proceedings of the

AAAI Conference on Artificial Intelligence. 2016 30(1).
14. Robnik-Šikonja M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn.

2003;53(1):23-69.
15. Gu Q, Li Z, Han J. Generalized fisher score for feature selection. Proceedings of the Twenty-Seventh

Conference on Uncertainty in Artificial Intelligence. 2011 266–273.
16. Guo J, Zhu W. Dependence guided unsupervised feature selection. Proceedings of the AAAI Conference on

Artificial Intelligence. 2018 32(1).
17. Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency,

max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005;27(8):1226-1238.
18. Nguyen XV, Chan J, Romano S, Bailey J. Effective global approaches for mutual information based feature

selection. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 2014 512–521.

19. Han D, Kim J. Unsupervised simultaneous orthogonal basis clustering feature selection. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2015 5016–5023.

20. Herman G, Zhang B, Wang Y, Ye G, Chen F. Mutual information-based method for selecting informative
feature sets. Pattern Recognit. 2013;46(12):3315-3327.

21. Zhang Z, Liang X, Qin W, Yu S, Xie Y. matFR: a MATLAB toolbox for feature ranking. Bioinformatics.
2020;36(19):4968-4969.

22. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis, applications, and
prospects. IEEE Trans Neural Netw Learn Syst. 2021;33(12):6999-7019.

23. Chen J, Ran X. Deep learning with edge computing: a review. Proc IEEE. 2019;107(8):1655-1674.
24. Nebauer C. Evaluation of convolutional neural networks for visual recognition. IEEE Trans Neural Netw.

1998;9(4):685-696.
25. Soltanieh N, Norouzi Y, Yang Y, Karmakar NC. A review of radio frequency fingerprinting techniques. IEEE

J Radio Frequen Identif . 2020;4(3):222-233.
26. Scanlon P, Kennedy IO, Liu Y. Feature extraction approaches to RF fingerprinting for device identification in

femtocells. Bell Labs Techn J. 2010;15(3):141-151. doi:10.1002/bltj.20462
27. Zhang J, Wang Q, Guo X, Zheng X, Liu D. Radio frequency fingerprint identification based on logarithmic

power cosine spectrum. IEEE Access. 2022;10:79165-79179.
28. Kennedy IO, Scanlon P, Mullany FJ, Buddhikot MM, Nolan KE, Rondeau TW. Radio transmitter fingerprint-

ing: a steady state frequency domain approach. Vehicular Technology Conference, 2008. VTC 2008-Fall. IEEE
68th. 2008 1–5.

29. Riyaz S, Sankhe K, Ioannidis S, Chowdhury K. Deep learning convolutional neural networks for radio
identification. IEEE Commun Mag. 2018;56(9):146-152.

30. Jian T, Gong Y, Zhan Z, et al. Radio frequency fingerprinting on the edge. IEEE Trans Mob Comput.
2022;21(11):4078-4093.

31. Asgharzadeh-Bonab A, Amirani MC, Mehri A. Spectral entropy and deep convolutional neural network for
ECG beat classification. Biocybern Biomed Eng. 2020;40(2):691-700.

32. Ezuma M, Erden F, Anjinappa CK, Ozdemir O, Guvenc I. Drone Remote Controller RF Signal Dataset. 2020.
doi:10.21227/ss99-8d56

 14678640, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/coin.12592 by C

ochraneItalia, W
iley O

nline L
ibrary on [23/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://info:doi/10.1109/ICCNC.2012.6167534
http://info:doi/10.1002/bltj.20462
http://info:doi/10.21227/ss99-8d56


758 BALDINI et al.

33. Ezuma M, Erden F, Anjinappa CK, Ozdemir O, Guvenc I. Micro-UAV detection and classification from RF
fingerprints using machine learning techniques. Paper presented at: 2019 IEEE Aerospace Conference. 2019
1–13.

34. Baldini G, Gentile C. Transient-based internet of things emitter identification using convolutional neural
networks and optimized general linear chirplet transform. IEEE Commun Lett. 2020;24(7):1482-1486.
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