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ABSTRACT
Audio deepfake detection is emerging as a crucial field in digital
media, as distinguishing real audio from deepfakes becomes increas-
ingly challenging due to the advancement of deepfake technologies.
These methods threaten information authenticity and pose serious
security risks. Addressing this challenge, we propose a novel ar-
chitecture that combines Convolutional Neural Networks (CNN)
and Bidirectional Long Short-Term Memory (BiLSTM) for effective
deepfake audio detection. Our approach is distinguished by the fea-
ture concatenation of a comprehensive set of acoustic features: Mel
Frequency Cepstral Coefficients (MFCC), Mel spectrograms, Con-
stant Q Cepstral Coefficients (CQCC), and Constant-Q Transform
(CQT) vectors. In the proposed architecture, features processed by
a CNN are concatenated into two multi-dimensional features for
comprehensive analysis, then analyzed by a BiLSTM network to
capture temporal dynamics and contextual dependencies in audio
data. This synergistic method ensures an understanding of both
spatial and sequential audio characteristics. We validate our model
on the ASVSpoof 2019 and FoR datasets, using accuracy and Equal
Error Rate (EER) metrics for the evaluation.
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1 INTRODUCTION
As synthetic voice synthesis technology becomes more sophisti-
cated, audio deepfakes have emerged as a significant tool for de-
ception. This advancement makes distinguishing between genuine
and fake audio increasingly complex [11]. Despite advancements in
this field, the existing methodologies are encumbered by significant
demands on computational resources [10]. Optimal methodologies
should, therefore, focus on enhancing feature extraction techniques,
as these are critical in the efficient and effective detection of au-
dio deepfakes. Feature extraction plays a pivotal role in enhancing
the precision and reliability of audio deepfake detection systems
[9]. Techniques such Mel-frequency Cepstral Coefficients (MFCC)
streamline audio into a dense form that highlights crucial speech
features, enhancing its utility in automatic speech recognition. This
concentrated representation is particularly adept at uncovering
inconsistencies inherent to deepfake audio, as it focuses on pho-
netic details pivotal to genuine human speech [4]. The Constant-Q
Cepstral Coefficients (CQCC) feature stands out in the domain of
spoof speech detection, offering a robust representation of audio
data that captures subtle cues often overlooked by other methods
[5]. Additionally, spectrogram features, which provide a visual rep-
resentation of the spectrum of frequencies in a sound signal as they
vary with time, have been acclaimed for their ability to represent
complex audio patterns, thereby enhancing the detection process,
especially when combined with other features like fundamental
ferquency (F0) information and Real Plus Imaginary Spectrogram
features [21]. A notable approach [15], involved the extraction of 60-
dimensional linear filter banks, which serve as critical parameters
in identifying the authenticity of audio samples. These filter banks
capture the essential traits of audio, facilitating a more subtle and
detailed analysis. Furthermore, advancements in the field have led
to the creation of specialised datasets, such as the H-Voice dataset
[2] which was constructed by extracting entropy features from both
real and fake audio. This innovative approach not only enriches
the dataset but also enhances the performance of detection models
by providing a rich ground for training and evaluation.

Recent developments in the area of deepfake technology neces-
sitate a continual advancement in detection methodologies, as the
techniques for creating deepfakes are rapidly evolving. The adop-
tion of deep learning techniques, particularly convolutional neural
networks (CNNs) and recurrent neural networks (RNNs), has revo-
lutionised the process of feature extraction in audio analysis [20]

271

https://doi.org/10.1145/3658664.3659647
https://doi.org/10.1145/3658664.3659647
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3658664.3659647
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3658664.3659647&domain=pdf&date_stamp=2024-06-24


IHMMSec ’24, June 24–26, 2024, Baiona, Spain Taiba Majid Wani, Syed Asif Ahmad Qadri, Danilo Comminiello & Irene Amerini

[6]. These advanced neural network architectures facilitate a more
comprehensive and nuanced understanding of audio data, surpass-
ing traditional methods in their ability to classify complex patterns.
This combination of state-of-the-art deep learning methods with
classical acoustic analysis constructs a formidable and sophisticated
system for detecting deepfake audio [8]. Such a hybrid approach
is instrumental in safeguarding the authenticity of digital media
content, a critical need in an era where the veracity of digital infor-
mation is increasingly challenged. This integrated framework not
only enhances the accuracy of deepfake detection but also fortifies
the reliability of digital media, maintaining its trustworthiness in a
landscape where digital deception is a growing concern.

Now, in this study, we present a novel method for audio deepfake
detection by utilising four distinct feature sets: Mel Frequency Cep-
stral Coefficients (MFCC), Mel spectrograms, Constant Q Cepstral
Coefficients (CQCC), and Constant Q Transform (CQT) features
extracted from two prominent deepfake datasets, Fake or Real (FoR)
[14] and ASVspoof 2019 [16]. The two datasets ensure a diverse
range of real and fake audio samples. Upon the extraction of these
features, they are systematically fed into a Convolutional Neural
Network (CNN) designed for the extraction of hierarchical fea-
tures from the input data. After processing, the feature sets are
concatenated into two multidimensional vectors, one with MFCC,
CQT, and CQCC, and the other with MFCC, Mel spectrograms,
CQT, and CQCC. The first set (MFCC, CQT, CQCC) offers a ro-
bust spectral and temporal analysis and the second set (MFCC,
Mel spectrograms, CQT, CQCC) provides detailed frequency-time
representations along with spectral and temporal analysis. These
concatenated feature sets are then fed into a Bidirectional Long
Short-Term Memory (BiLSTM) network. The BiLSTM, by virtue
of its architecture, analyses the temporal dynamics and contex-
tual dependencies inherent in the sequence of audio data. The
methodology culminates in a series of experiments where each of
the concatenated feature sets is tested using the BiLSTM network
to assess the efficacy of this novel approach in identifying audio
deepfakes.

The rest of the paper is organised as follows: Section 2 explores
some of the prior research on audio deepfake detection. Section 3
details our methodology, while Section 4 presents the experimen-
tal results and analysis. The paper concludes with a summary of
findings in Section 5.

2 RELATEDWORKS
This section explores a wide range of research in the field of audio
deepfake detection, a domain characterised by significant advance-
ments in extracting audio features and leveraging complex models
like CNN and LSTM. The literature reviewed highlights a variety
of methodologies and the extensive analytical work conducted by
researchers in creating effective detection strategies. This includes
detailed analysis of audio features and the sophisticated use of
neural networks.

A. Qais et. al., [13] focused on the feature extraction from syn-
thetic speech signals using Mel-Frequency Cepstral Coefficients
(MFCC), Fast Fourier Transform (FFT), Short Time Fourier Trans-
form (STFT), and Spectrogram parameterization to capture the

distinctive characteristics. These features were used both individ-
ually and in concatenated form to train and test the CNN model
under various configurations.

Hamza et. al., [4] utilised several machine learning algorithms
and deep learning models like LSTM and VGG16 and various fea-
tures, MFCC, spectral (roll-off point, centroid, contrast, bandwidth),
raw signal (zero cross rate), and signal energy for the detection of
audio deepfakes. VGG16 achieved 93% of accuracy on FoR-original
and SVM achieved 98.83% of accuracy on the FoR-rerec dataset of
FoR dataset.

Mittal et. al., [12] utilized both static and dynamic Constant Q
Cepstral Coefficients (CQCC) for feature extraction, employing a
range of classifiers including LSTM, LSTM with Time Distributed
Wrappers, and a two-dimensional Convolutional Neural Network
(2D CNN). The research demonstrated improved performance when
static and dynamic CQCC features were combined, achieving an
Equal Error Rate (EER) of 0.009 on the ASVspoof 2019 dataset.

Krishnan et al., [7] implemented a multi-path strategy, process-
ing three sets of features, MFCC, LFCC, and Chroma-STFT, through
distinct, dedicated convolutional neural network (CNN) paths. This
approachwas designed to learn temporal patterns within the respec-
tive features, effectively capturing both local and global structures.
The outputs from these paths were then integrated, resulting in the
achievement of an Equal Error Rate (EER) of 0.69% on the In-the-
Wild dataset and 0.79% on the FoR dataset, respectively.

Chakravarty et. al., [3] employed a ResNet50 for feature extrac-
tion on audio Mel spectrograms, followed by Linear Discriminant
Analysis (LDA) for dimensionality reduction and several machine
learning algorithms like Random Forest (RF), Naive Bayes (NB),
K-Nearest Neighbour (KNN) and Support Vector Machine (SVM),
for classification of real and fake audios. The proposed method
performed better than the traditional features extraction methods,
Gammatone Cepstral Coefficients (GTCC) and Mel Frequency Cep-
stral Coefficients (MFCC) and achieved an accuracy of 99.7%.

Inspired by previous research, our research introduces a novel
approach to audio deepfake detection, marked by three key contri-
butions: the use of CNN for spatial feature extraction from audio
signals, concatenation of diverse feature sets including MFCC, Mel
spectrograms, CQT, and CQCC using normalization and principal
component analysis (PCA), and the application of BiLSTM for fi-
nal classification. This combination of CNN-based spatial feature
extraction, advanced feature concatenation, and BiLSTM classifi-
cation distinguishes our method from existing techniques, aiming
to enhance detection accuracy and efficiency in identifying audio
deepfakes.

3 PROPOSED METHODOLOGY
In this study, we propose a structured pipeline for detecting audio
deepfakes shown in Figure 1. The proposed approach utilises dif-
ferent techniques for extracting features and employs two neural
network models, CNN and BiLSTM. The methodology is systemati-
cally organised into five main steps explained in this section.

3.1 Preprocessing
Initially several steps were undertaken to prepare the audio data
for subsequent feature extraction and analysis. Noise reduction
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Figure 1: Proposed pipeline for the Audio Deepfake Detection

was implemented using a spectral gating method, which identifies
and attenuates frequencies that fall below a certain threshold. This
method is effective in reducing background noise and enhancing
the clarity of the audio signals. Regarding normalization, the audio
magnitudes were normalized to a consistent range between -1 and
1. This standardization ensures that the amplitude variations across
different recordings do not bias the model’s performance, allowing
for a more accurate assessment of the audio content based on its
features rather than its volume. To address the variability in audio
sample lengths within our dataset, each audio file was segmented
into uniform lengths of 3 seconds. This was achieved by truncating
longer samples and padding shorter samples with zeros at the end.
This approach ensures that each input to our model maintains a
consistent temporal dimension, facilitating more reliable feature
extraction and comparison across samples. The term ’segmentation’
in our context refers specifically to this process of standardizing
audio lengths, which is crucial for maintaining consistency in the
inputs to our neural networks.

3.2 Feature Extraction
Four distinct feature sets are extracted from the preprocessed au-
dio samples: Mel Feature Cepstral Coefficients (MFCC), Mel Spec-
trograms, Constant Q Transform (CQT) and Constant Q Cepstral
Coefficients (CQCC).

3.2.1 Mel Feature Cepstral Coefficients (MFCC). Mel-Frequency
Cepstral Coefficients (MFCC) are a prominent feature in audio anal-
ysis, particularly in speech processing and audio deepfake detection.
Essentially, MFCCs are a representation of the short-term power
spectrum of a sound, capturing its unique timbral qualities. Mathe-
matically, the MFCC is derived by applying a Mel-scale filter bank
to the log magnitude spectrum of the signal and then taking the
discrete cosine transform of the log filterbank energies. The formula
for calculating the 𝑖𝑡ℎ MFCC, 𝐶𝑖 , is given as follows:

𝐶𝑖 =

𝑁∑︁
𝑗=1

log(𝑆 𝑗 ) · cos
(
𝑖 · ( 𝑗 − 0.5) · 𝜋

𝑁

)
where 𝑆 𝑗 is the log energy in the j-th Mel-frequency bin, and N is

the total number ofMel-frequency bins. In audio deepfake detection,
the MFCC features are crucial as they encapsulate the dynamics of

the vocal tract, which is significantly different in synthetic speech
compared to natural human speech and is pivotal in distinguishing
between real and fake audio. Furthermore, incorporating the first
and second derivatives of MFCC ( ΔMFCC and Δ2MFCC ) enhances
the feature set, providing a more dynamic representation and add
information about the rate of change in cepstral features.

3.2.2 Cepstral Q Transform (CQT). The Constant Q Transform
(CQT) is a crucial tool in the field of audio analysis, unlike tra-
ditional Fourier transforms, it provides a time-frequency repre-
sentation where the frequency bins are geometrically spaced, and
the Q-factor (the ratio of the center frequency to the bandwidth)
remains constant [1]. This characteristic makes the CQT excep-
tionally adept at analysing musical and complex audio signals, as
it aligns more closely with human perception of pitch, especially
useful for identifying the nuanced variations in pitch and timbre
that are characteristic of deepfake audio. Mathematically, the CQT
is defined by the equation

𝑋𝑘 (𝑛) =
𝑁−1∑︁
𝑛=0

𝑥 (𝑛)𝑤𝑘 (𝑛)𝑒
− 𝑗2𝜋𝑘𝑛

𝑄 (1)

Here,𝑋𝑘 (𝑛) represents the CQT coefficient for the𝑘-th frequency
bin at time 𝑛. The function 𝑥 (𝑛) denotes the audio signal, 𝑤𝑘 (𝑛)
is the window function applied to the 𝑘-th frequency bin, and 𝑄
is the quality factor, which determines the resolution and spacing

of the frequency bins. The exponential term 𝑒
− 𝑗2𝜋𝑘𝑛

𝑄 is a complex
exponential that facilitates the transformation from the time domain
to the frequency domain, similar to the role played by the Fourier
transform but tailored for the logarithmic spacing of the CQT.

3.2.3 Constant-Q Cepstral Coefficients (CQCC). Constant-Q Cep-
stral Coefficients (CQCC) are a crucial component in the detection
of audio deepfakes, building upon the strengths of the Constant-Q
Transform (CQT) [12]. CQCC are obtained from CQT involving two
key steps: logarithmic transformation and Discrete Cosine Trans-
form (DCT). After computing the CQT as given in equation 1, the
logarithm of the power spectrum is calculated. If 𝑋𝑘 (𝑛) represents
the output of the CQT for the 𝑘-th frequency bin at the 𝑛-th time
frame, the logarithmic transformation is applied as follows:

𝐿𝑘 (𝑛) = log( |𝑋𝑘 (𝑛) |2) (2)

273



IHMMSec ’24, June 24–26, 2024, Baiona, Spain Taiba Majid Wani, Syed Asif Ahmad Qadri, Danilo Comminiello & Irene Amerini

where, |𝑋𝑘 (𝑛) |2 represents the power spectrum of the CQT, and
𝐿𝑘 (𝑛) is the logarithmic power spectrum. The cepstral coefficients
are then derived by applying the DCT to the logarithmic power
spectrum. The DCT transforms the logarithmic power spectrum
into the cepstral domain, capturing the envelope of the speaker’s
vocal tract. The formula for the DCT can be expressed as:

𝐶𝑚 =

𝐾∑︁
𝑘=1

𝐿𝑘 (𝑛) · cos
(𝜋𝑚
𝐾

(𝑘 − 0.5)
)

(3)

In equation 3, 𝐶𝑚 represents the𝑚-th cepstral coefficient, and
𝐾 is the total number of frequency bins in the CQT. The index 𝑘
runs over all the frequency bins, and𝑚 typically ranges from 1 to a
selected upper limit.

Combining these two steps, the CQCC feature set is formed,
providing a robust representation of the audio signal’s spectral
characteristics[23].

3.2.4 Mel spectrograms. Mel spectrograms visually illustrate the
spectrum of frequencies present in an audio recording and their
variation throughout the duration of the file. Initially, the audio
signal is transformed from the time domain to the time-frequency
domain using the STFT represented in equation 4,

𝑆𝑇𝐹𝑇 (𝑥 (𝑡)) = 𝑋 (𝑡, 𝜔) =
∫

𝑥 (𝑡)𝑤 (𝑡 − 𝜏)𝑒− 𝑗𝜔𝑡𝑑𝑡 (4)

where 𝑥 (𝑡) is the audio signal, 𝑤 (𝑡 − 𝜏) is a window function,
and the exponential term 𝑒− 𝑗𝜔𝑡 facilitates the conversion to the
frequency domain. This step provides a detailed analysis of the fre-
quency components within the signal across time. After obtaining
the power spectrum from the STFT, it is mapped onto the Mel scale
using the equation 5

𝑀 (𝑓 ) = 2595 log10 (1 +
𝑓

700
) (5)

The Mel scale is a perceptual scale, designed to reflect the human
ear’s response to pitch, making the Mel Spectrogram especially
adept at highlighting the peculiarities of human speech that are
essential for identifying deepfake manipulations [19].

3.3 Feature Processing with CNN
In our proposed CNN architecture, we employ four convolutional
layers to enhance feature extraction. The first layer uses 32 filters of
size 3x3, followed by layers with 64, 128, and 256 filters of the same
size, respectively. These layers progressively capture more complex
patterns within the audio features like MFCC, Mel spectrograms,
CQCC, and CQT. Each convolutional layer is accompanied by batch
normalization to accelerate training and reduce overfitting, and
ReLU activation functions to introduce non-linearities essential for
deep learning. The dimensionality is reduced through max pooling
operations, spaced after every two convolutional layers, using 2x2
pools to streamline the feature sets. This configuration not only
ensures efficient learning but also helps in building a layered, hier-
archical representation of the data crucial for detecting nuances in
audio deepfakes. The final pooling layer’s output is flattened and
concatenated with other feature sets, preparing it for classification
via the bidirectional LSTM.

3.4 Concatenation of CNN-Processed Features
Concatenation approach provides a comprehensive representation
of audio signals and enhances detection accuracy. The process be-
gins with normalizing the features to ensure equal contribution
from each type and prevent any single feature from dominating the
combined vector. Subsequently, two distinct multi-feature vectors
are created: one combining MFCC, CQT, and CQCC, and the other
additionally incorporatingMel spectrograms. This strategy not only
captures a broad spectrum of audio characteristics, ranging from
spectral details to cepstral features, but also facilitates a more thor-
ough analysis due to the complementary nature of these diverse
features. Principal Component Analysis (PCA) is then employed
for feature selection. This approach effectively reduces the dimen-
sionality of our feature sets while retaining the most significant
features that are critical for deepfake detection. PCA is instrumental
in enhancing model efficiency by focusing computational resources
on the most informative aspects of the audio data. In our concate-
nation procedure, we ensured the temporal alignment of features,
which was essential for accurately representing corresponding au-
dio segments and maintaining the integrity of our analysis. We
also emphasized feature selection to enhance our model’s efficiency
and reduce overfitting, selecting only the most pertinent features.
Acknowledging the high-dimensional nature of this concatenated
feature space, we adopted data augmentation techniques, crucial in
boosting the model’s ability to generalize. Finally, these temporally
aligned features were processed using a BiLSTM model, adept at
identifying temporal inconsistencies indicative of audio deepfakes.

3.5 Analysis with BiLSTM and classification
We utilize a three-layer Bidirectional Long Short-Term Memory
(BiLSTM) network, where each layer consists of 128 hidden units.
This structure allows the BiLSTM to effectively process audio data
in both forward and reverse directions, enhancing its ability to
capture crucial temporal nuances that are characteristic of deepfake
audio. These nuances include inconsistencies like irregular speech
rhythms and sudden shifts in tone that may not be detectable in
the raw audio or through initial feature processing. By integrating
concatenated feature vectors from various audio sources—MFCC,
Mel spectrograms, CQCC, and CQT—the BiLSTM builds a robust
representation of the audio landscape. This comprehensive view
is pivotal for identifying subtle anomalies and temporal patterns
within the audio data. The network’s ability to remember and learn
from long sequences significantly aids in distinguishing between
authentic and fabricated content. Lastly, the classification layer of
the BiLSTM utilizes these nuanced features to accurately classify
audio samples as ’real’ or ’fake’, leveraging the depth of temporal
insights gained through the bidirectional processing.

4 EXPERIMENTAL SETUP AND RESULTS
4.1 Datasets
4.1.1 ASVspoof 2019 dataset. The ASVspoof 2019 dataset [17] con-
siders all three types of spoofing attacks—replay, speech synthesis,
and voice conversion—in a single challenge. This database is di-
vided into two scenarios: logical and physical access control, each
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Table 1: Utterances in ASVspoof 2019 Dataset (LA)

Utterances Training Set Development Set Evaluation Set

Bona fide 2,580 2,548 7,355
Spoofed 22,800 22,296 63,882

with its own distinct dataset. For our study, we have focused ex-
clusively on the Logical Access (LA) scenario. In the LA condition,
Text-to-Speech (TTS) and Voice Conversion (VC) algorithms are
used to generate spoofed utterances. The database is organised
into training, development, and evaluation sets, each encompassing
multiple speakers. Furthermore, each set includes both bona fide
(genuine) and spoofed utterances. The number of samples present
in the LA scenario is detailed in Table 1.

4.1.2 Fake or Real (FoR) dataset. The Fake or Real (FoR) Dataset
[14], essential for synthetic speech detection research, includes over
87,000 synthetic utterances and more than 111,000 real utterances,
making it suitable for training complex deep learning algorithms.
This dataset is available in four distinct versions: 1) The original
version with unaltered speech source files, 2) A normalised ver-
sion, balanced in gender and class and standardised in sample rate,
volume, and channel number, 3) A 2-seconds version derived from
the normalised version with truncated files, and 4) A rerecorded
version designed to simulate scenarios such as phone calls or voice
messages. Each of these versions comprises three sets: training, val-
idation, and testing. For our study, we have merged all versions to
utilise them as a single, comprehensive dataset, consisting of 53,000
real and 41,500 fake utterances, chosen randomly. We designed a
custom split to ensure a balanced representation of real and fake
audio samples. Specifically, the dataset was divided into 70% for
training, 15% for validation, and 15% for testing.

4.2 Experimental Setup
In our deepfake detection study, both the CNN and BiLSTM models
were configured with a batch size of 32, and training was conducted
over 50 epochs. For optimization, the Adam optimizer was used,
renowned for its efficiency in handling sparse gradients and adap-
tive learning rate capabilities. The cross-entropy loss function was
used, a common choice in classification tasks due to its effective-
ness with categorical data. The learning rate was set to 0.0001 for
the CNN and 0.001 for the BiLSTM model, maintained consistently
throughout the training process. Model performance was evaluated
using metrics such as accuracy, Equal Error Rate (EER). To facilitate
an in-depth comparison of the models’ effectiveness, the results
were presented in a tabular format, enabling a clear and concise
comparison across different performance metrics.

4.3 Performance of Concatenated Features
We conducted four distinct experiments leveraging two datasets,
Fake or Real (FoR) and ASVSpoof 2019, employing two different
combinations of concatenated feature sets: one combining MFCC,
CQT, and CQCC (Feature Set 1), and another incorporating MFCC,
Mel spectrograms, CQT, and CQCC (Feature Set 2). From Table 2,
we observe that both concatenated feature sets, offer significant

Table 2: Performance of Concatenated Feature Sets

Dataset Feature Set 1 Feature Set 2

Accuracy EER Accuracy EER

FoR 96.1% 0.042% 97.82% 0.030%
ASVSpoof2019 (LA) 95.50% 0.091% 96.63% 0.074%

advantages in the detection of audio deepfakes, each contributing to
the robustness of our approach. The first set combines the strengths
of MFCC, CQT, and CQCC to provide a comprehensive spectral
and cepstral analysis, achieving accuracy rates of 96.1% on the FoR
dataset and 95.50% on the ASVSpoof 2019 dataset. However, the
inclusion of Mel spectrograms in the second set introduces an addi-
tional layer of time-frequency information, enriching the dataset
with more detailed insights into audio signals. This enhancement
allows for a more nuanced detection of audio deepfakes, resulting
in a testing accuracy of 97.82% on the FoR dataset and 96.63% on
the ASVSpoof 2019. The superior performance of the second set
is attributed to the Mel spectrograms’ capability to capture richer
spectral properties and subtle temporal anomalies, alongside the
complementary integration of features that collectively provide a
more accurate and sensitive detection mechanism against sophisti-
cated deepfake techniques.

The model showed a marginal improvement in performance,
by about 1%, when trained on the FoR dataset compared to the
ASVSpoof 2019 dataset. This improvement is attributed to the FoR
dataset’s broader variety of audio deepfake samples, which likely
contributed to a more effective training process, enhancing the
model’s accuracy in distinguishing between real and fake audio.

4.4 Benchmarking
In the benchmarking analysis detailed in Table 3, our approach
demonstrates promising results in audio deepfake detection, achiev-
ing accuracies of 97.82% and 96.63% on the FoR and ASVSpoof 2019
datasets, respectively. It surpasses the most comparable research
by up to 3.35% in accuracy and achieves a lower EER of 0.030%.
Notably, for the ASVSpoof 2019 dataset, where some studies report
only EER, our method shows a significant improvement with an
EER of 0.074%, compared to the 1.40% [18] and 2.82% [22] EERs
reported in these studies. Such results highlight the efficacy of con-
catenated feature sets and the use of a BiLSTM network, setting a
new benchmark in the field.

5 CONCLUSION
In this paper, we introduced a novel approach by leveraging con-
catenated feature sets including MFCC, Mel spectrograms, CQT,
and CQCC, processed through CNN for spatial feature extraction
and classified using BiLSTM networks. The proposed approach
was tested across two significant datasets, the Fake or Real (FoR)
and ASVSpoof 2019, demonstrating superior performance with
accuracies of 97.82% and 96.63% respectively, significantly outper-
forming existing state-of-the-art methods. The inclusion of Mel
spectrograms alongside MFCC, CQT, and CQCC in the concate-
nated feature set has been identified as a key factor in the enhanced
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Table 3: Comparison with the state-of-the-art (the - represents a value which is not reported in the original paper)

Study Dataset Features Classifier Accuracy EER%

[7] FoR MFCC, LFCC, CromaSTFT CNN 94.47% 0.07%
[18] ASVSpoof 2019 (LA) CQCC, LFCC, Spec Densely connected CNN - 1.40%
[22] ASVSpoof 2019 (LA) CQCC, MFCC, LFCC, Face DenseNet - 2.82%
Proposed Approach FoR MFCC, Mel spectrogram, CQT, CQCC BiLSTM 97.82% 0.030%
Proposed Approach ASVSpoof 2019 (LA) MFCC, Mel spectrogram, CQT, CQCC BiLSTM 96.63% 0.074%

detection accuracy, providing a rich, detailed representation of au-
dio signals that facilitates a more enhanced differentiation between
real and fake audio. Future research could delve into advanced deep
learning techniques for improved feature extraction, explore unsu-
pervised learning for better handling sparse labeled data, and to
enhance model robustness and generalizability.
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