
applied
sciences

Article

A Universal Malicious Documents Static Detection Framework
Based on Feature Generalization

Xiaofeng Lu 1,* , Fei Wang 1, Cheng Jiang 1 and Pietro Lio 2

����������
�������

Citation: Lu, X.; Wang, F.; Jiang, C.;

Lio, P. A Universal Malicious

Documents Static Detection

Framework Based on Feature

Generalization. Appl. Sci. 2021, 11,

12134. https://doi.org/10.3390/

app112412134

Academic Editors: Andrea Prati,

Carlos A. Iglesias, Vincent A. Cicirello

and Luis Javier García Villalba

Received: 4 November 2021

Accepted: 12 December 2021

Published: 20 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China;
wf751620780@gmail.com (F.W.); JC@bupt.edu.cn (C.J.)

2 Computer Laboratory, University of Cambridge, Cambridge CB3 0FD, UK; PL219@cam.ac.uk
* Correspondence: Luxf@bupt.edu.cn

Abstract: In this study, Portable Document Format (PDF), Word, Excel, Rich Test format (RTF) and
image documents are taken as the research objects to study a static and fast method by which to detect
malicious documents. Malicious PDF and Word document features are abstracted and extended,
which can be used to detect other types of documents. A universal static detection framework for
malicious documents based on feature generalization is then proposed. The generalized features
include specification check errors, the structure path, code keywords, and the number of objects. The
proposed method is verified on two datasets, and is compared with Kaspersky, NOD32, and McAfee
antivirus software. The experimental results demonstrate that the proposed method achieves good
performance in terms of the detection accuracy, runtime, and scalability. The average F1-score of all
types of documents is found to be 0.99, and the average detection time of a document is 0.5926 s,
which is at the same level as the compared antivirus software.

Keywords: malicious document detection; static detection; feature generalization; machine learning

1. Introduction

Documents are efficient, convenient, and safe information carriers. However, via
some deliberate designs, an attacker can run malicious code on a document, or can use
the vulnerabilities of document parsing software to invade the operating system; these
documents are called malicious documents. According to statistics, malicious documents
are mainly Portable Document Format (PDF), Word, Excel, Rich Test format (RTF), Pow-
erPoint, Graphics Interchange Format (GIF), Joint Photographic Experts Group (JPEG),
and Portable Network Graphic Format (PNG) documents. Among them, PDF and Word
documents respectively account for 60.1% and 38.7% of malicious documents [1], which
is mainly because these documents are more widely used for information transmission.
Moreover, PDF and Word documents can contain almost any type of document as the
document content, and script programs can be inserted to increase the specific functions of
the document.

In January 2014, an attacker launched an attack by disguising a malicious PDF doc-
ument as a document of the Israeli Ministry of Defense, and then sending the PDF as an
attachment to an email [2]. In some kinds of malicious PDF attacks, the PDF reader itself
contains a vulnerability or flaw that allows a file to execute malicious code [3]. Many attacks
try to abuse this flaw via the use of social engineering or by hosting malicious PDF files on
the Internet. Attackers can induce people to open malicious documents by sending emails
with malicious attachments. Just opening the PDF file could exploit a vulnerability [4]. In
December 2018, a threat report from the security company MalwareBytes warned that the
banking Trojan/download/botnet and its common complicity, Trickbot, mainly use email
to distribute malicious Office documents that use PowerShell to download malware [5].
Malicious document attacks not only bring huge risks to individuals, but also seriously
threaten the security of enterprises [6].

Appl. Sci. 2021, 11, 12134. https://doi.org/10.3390/app112412134 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1033-164X
https://doi.org/10.3390/app112412134
https://doi.org/10.3390/app112412134
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112412134
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112412134?type=check_update&version=1

Appl. Sci. 2021, 11, 12134 2 of 23

To date, there has been some research on the detection of malicious documents. This
research includes the detection of malicious code based on image processing using deep
learning [7], the detection of malicious documents for business process management based
on a multi-layer abstract model [8], the detection of unknown malicious Microsoft Office
documents via the use of designated active learning methods based on a new structural
feature extraction methodology [9], the detection of malicious PDF documents based on
mixed features [10], and the improvement of the detection of malicious Office documents
using one-side classifiers [11].

Currently, the research on malicious document detection basically only involves one
certain type of malicious document, and related research has rarely investigated whether
the detection features proposed for one type of document can be used to detect other types
of documents. Because the types of documents are rich and diverse, it is inefficient to study
the detection features and design classifiers for each type of document. For this reason,
in the present study, the common features of malicious PDF and Word documents are
extracted to detect multiple types of malicious documents, and this technology is defined
as feature generalization.

A universal static detection framework for malicious documents based on feature
generalization is developed in this research. The framework uses four feature dimensions,
namely specification check errors, the structure path of the document, document code anal-
ysis, and the number of objects. By combining these four types of features, the decision tree
and random forest models are used for classification. Through experimental comparisons
with antivirus software and other research, the effectiveness of the proposed universal static
detection framework for malicious documents based on feature generalization is proven.

The main contributions of this work are as follows:

1. In this research, document specification check errors are innovatively utilized as a
component of feature engineering;

2. A feature generalization method, which extends the features of the structural path
dimension used in PDFs to other types of documents, is proposed. The application of
various software to obtain various features of documents is explained in detail;

3. The proposed method is verified on two datasets, and is compared with Kaspersky,
NOD32, and McAfee antivirus software. The experimental results demonstrate that
the proposed method achieves superior performance.

The remainder of this paper is structured as follows. Section 2 discusses related
work. Section 3 introduces attack forms of malicious documents. Section 4 presents the
feature engineering based on feature generalization, including specification check errors,
the structure path of the document, document code analysis, and the number of objects.
Section 5 introduces the static detection framework. Section 6 presents our experiment and
result. Section 7 discusses the shortcoming of our method. Section 8 concludes the paper
and discusses the future work.

2. Related Work
2.1. Static Analysis Method

Malicious document detection methods are mainly divided into static analysis and
dynamic analysis. The main idea of dynamic analysis is to perform security analysis by
using virtual machines to execute suspicious targets [12–15]. Compared with static analysis
methods, dynamic analysis has lower accuracy and lower detection efficiency.

Early detection of malicious PDF documents mainly focused on JavaScript [16–18].
The detection system PDFRate was based on content metadata [19]. Later, Srndic and
Laskov designed a malicious PDF detection method based on structured path [20]. The
structural path is used as the detection feature to deal with unknown security threats.

Nissim et al. [21,22] proposed using active learning, which performs heuristic teaching
detection and usability detection on PDF documents. They built a structure-based detection
model, and performed detection and relearning. The main advantage of the model was the

Appl. Sci. 2021, 11, 12134 3 of 23

reduction of the workload of manual analysis of PDF documents, but the detection process
was more complicated and the efficiency was low.

Young-Seob Jeong et al. [23] designed a convolutional neural network (CNN), which
takes a byte sequence of an inexecutable stream as input and predicts whether the input
sequence contains malicious operations. However, only the PDF was tested and the
training time of the CNN model largely depends on the performance of the GPU (Graphic
Processing Unit). Du Xuehui et al. [10] selected seven important features as universal
features and used a random forest algorithm to detect malicious PDFs. These features were
extracted through the structural feature extraction algorithm.

2.2. Features of Static Analysis

At present, most researches extract features from structural paths or code keywords
and perform malicious document detection. Benign samples are usually generated by
documentation tools and have high compliance. Attackers usually deliberately design the
content of the document or embed malicious code, which will make the structure of the
document different from a benign document [24].

Many researches focus on the detection of malicious PDF documents, such as the re-
search of Nissim et al. [24]. We refer to the PDF detection method and found that structural
paths or code keywords can achieve good results in the selection of document features.

Keywords are the features of the code embedded in the document. Malicious samples
of VBA (Visual Basic for Applications) programs embedded in Word documents usually
use keywords such as “URLDownloadToFile” and “AutoExec”. The former is used to
download bits from the Internet and save them in a document. The latter is used to
automatically execute batch commands. These two keywords rarely appear in ordinary
samples, but they usually appear in malicious samples. Therefore, the VBA code can be
used to detect the maliciousness of Word documents.

PDF documents allow JavaScript code to be embedded in. Some PDF readers contain
some vulnerabilities or flaws that allow a file to execute malicious code [3]. The keywords
in the JavaScript code and the keywords in the PDF document are used in the malicious
PDF detection, and good results have been achieved [25,26].

Li and Shafiq et al. proposed the “format agnostic theory” to detect malicious docu-
ment content [27]. In recent years, the detection of malicious PDF documents has achieved
better results by document structure. Srndic and Laskov proposed the concept of a struc-
tured path that had a good detection effect and a strong ability to respond to unknown
security threats. Maiorca et al. [25] proposed a detection scheme based on structure and
content. Chen et al. [28] extracted the structural path features, and the input features have
3514 dimensions; however, its robustness is weak. Maiorca et al. [18] proposed a bypass
method based on structure detection for this scheme, which is called “reverse mimicry”,
and it proved the feasibility and simplicity of this attack.

Some researchers applied the structure path of the PDF to the docx document. Nissim
et al. [9] trained the xml tag of the docx based on Open-xml and the document path of
the compressed package as the structure feature of the docx document, and this method
obtained a high detection rate. Lu et al. [29] proposed a malicious word document detection
method based on multi-view features learning. They analyzed Word documents from four
independent views: VBA functional words, Ole file object formats, structure paths, and
specification errors. The method of analysing malicious documents from independent
different views is helpful.

Generally, the detection methods based on one-dimensional features are easily by-
passed. The content of the malicious document or embed malicious code makes the
structure of the document, specification compliance, structural order, number of objects,
and malicious code inserted in the document different from a benign document. In this
paper, we will combine multiple features to improve detection performance.

Appl. Sci. 2021, 11, 12134 4 of 23

3. Attack Forms of Malicious Documents

Attackers can use documents to launch attacks in a variety of ways. Some documents
can contain specific scripts and execute external commands, and some can use document
parsing vulnerabilities on websites to launch web attacks. This brings great difficulties for
security personnel to analyze document security. Therefore, understanding the document
structure and the common attack methods by which attackers exploit documents can help
defenders more effectively diagnose the security of documents. In this section, the main
attack forms of PDF and Office documents are introduced.

3.1. Main Attack Forms of PDF Documents

PDF documents allow for the embedding of JavaScript code. JavaScript code is usually
used for form filling and office automation, while embedded documents can present a
richer content display for PDFs. JavaScript code attack and embedded file attack are
common forms of PDF attack [30–32].

3.1.1. JavaScript Code Attack

Some PDF readers contain some vulnerabilities or flaws that allow a file to execute
malicious code. The vulnerabilities exist in the character parser and JavaScript engine.
The contents of PDF documents are stored in stream objects, which generally utilize
compression technology to reduce the file size. During the parsing process, the relevant
dynamic library will be called. During this process, some functions might be not secure
(for example, if there is an overflow vulnerability), which will become the source of attacks.
Attackers can exploit the related vulnerabilities and JavaScript codes of PDF readers, and
can use heap-spraying technology to achieve attacks [30].

3.1.2. Embedded File Attack

Some types of documents, such as executable file (EXE), Small Web Format (SWF),
Flash, and other file types, can be embedded in PDF documents [31]. These types of
files may also have some vulnerabilities that can be exploited by attackers. For example,
attackers can use Flash vulnerabilities to launch attacks [32].

3.2. Main Attack Forms of Office Documents

According to an analysis of the Word samples used in this study with Visual Basic
for Applications (VBA) codes, the proportion of malicious documents was found to be
98.13%. The malicious samples without VBA codes were analyzed, and it was found that
the causes of malicious behavior were malicious images (JPEG, GIF, PNG), malicious Object
Linking and Embedding (OLE) objects, remote requests (Uniform Resource Locator (URL),
domain name, Internet Protocol (IP) address), Dynamic Data Exchange (DDE) commands,
Common Vulnerabilities and Exposures (CVE) exploits, and other reasons.

According to the literatures, we summarize five important attack methods: embedded
VBA malicious code [33], embedded OLE objects [9], program vulnerabilities caused by
incomplete detection based on specifications [34], DDE [35], and the malicious images,
malicious flash and other multimedia documents inserted in the body of the document [36].

3.2.1. VBA Malicious Code

VBA is a high-level macro language. Word documents embedded with malicious
VBA code usually automatically run VBA programs at startup, perform remote download
tasks, modify the registry, and destroy important file data on the computer [33]. The
function words appearing in the VBA code can imply the possible functions of the program;
thus, extracting the function words from the VBA code can help analyze the security of
the document.

Appl. Sci. 2021, 11, 12134 5 of 23

3.2.2. OLE Objects

OLE is an object-oriented technology that users can use to develop reusable com-
ponents. OLE objects embedded in malicious documents are usually executable files,
registries, and other files. The executable files include Portable Executable (PE) files, OLE
Control Extension (OCX) libraries, JAVA Archives (JAR) packages, 16-bit Disk Operating
System (DOS) files, and Link (LNK) files. Command-line code can implement remote
download commands or start external processes to do more things or implement file en-
cryption ransomware. For example, CVE-2018-8174, also known as “Double Kill,” is a
member of a family of exploits that leverages the OLE functionality of Microsoft Office to
download a web page containing a custom VBScript and immediately run it [37].

3.2.3. Document Specification Vulnerabilities

Normally, the document reader will perform a specification check according to the
items specified in the document specification, while ignoring the inspection of other
data parts. This is mainly because a too-thorough specification check will reduce the
operating efficiency, and normal documents also include irregular data. The strategy of
ignoring errors and performing simple specification checks gives attackers an opportunity
to attack. Therefore, attackers use document readers to parse the documents, search for
vulnerabilities, design the contents of the documents, and ultimately achieve the purpose
of the attack. Figure 1 presents a case of a malicious DOCX document using the CVE-
2017-0199 vulnerability. The vulnerability is that the document reader does not check the
word/_rels/webSettings.xml.rels file, and attackers exploit this vulnerability to download
files from a remote server [38].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 24

3.2.1. VBA Malicious Code
VBA is a high-level macro language. Word documents embedded with malicious

VBA code usually automatically run VBA programs at startup, perform remote download
tasks, modify the registry, and destroy important file data on the computer [33]. The func-
tion words appearing in the VBA code can imply the possible functions of the program;
thus, extracting the function words from the VBA code can help analyze the security of
the document.

3.2.2. OLE Objects
OLE is an object-oriented technology that users can use to develop reusable compo-

nents. OLE objects embedded in malicious documents are usually executable files, regis-
tries, and other files. The executable files include Portable Executable (PE) files, OLE Con-
trol Extension (OCX) libraries, JAVA Archives (JAR) packages, 16-bit Disk Operating Sys-
tem (DOS) files, and Link (LNK) files. Command-line code can implement remote down-
load commands or start external processes to do more things or implement file encryption
ransomware. For example, CVE-2018-8174, also known as “Double Kill,” is a member of
a family of exploits that leverages the OLE functionality of Microsoft Office to download
a web page containing a custom VBScript and immediately run it [37].

3.2.3. Document Specification Vulnerabilities
Normally, the document reader will perform a specification check according to the

items specified in the document specification, while ignoring the inspection of other data
parts. This is mainly because a too-thorough specification check will reduce the operating
efficiency, and normal documents also include irregular data. The strategy of ignoring
errors and performing simple specification checks gives attackers an opportunity to at-
tack. Therefore, attackers use document readers to parse the documents, search for vul-
nerabilities, design the contents of the documents, and ultimately achieve the purpose of
the attack. Figure 1 presents a case of a malicious DOCX document using the CVE-2017-
0199 vulnerability. The vulnerability is that the document reader does not check the
word/_rels/webSettings.xml.rels file, and attackers exploit this vulnerability to download
files from a remote server [38].

Figure 1. Example content of word/_rels/webSettings.xml.rels.

3.2.4. DDE Commands
In October 2017, SensePost released an article that explained how it is possible for

arbitrary code to be executed from a Microsoft Word document without using any macros
or scripts [39]; this technique is called dynamic data exchange (DDE). This attack is very
effective, and is therefore widely used in malware campaigns and red team assessments
[35]. DDE is a legitimate Microsoft Office functionality, and the DDE protocol is a set of
messages and guidelines. Malicious Word documents usually include the insertion of
DDE commands, which will pop up a dialog box when the program starts to ask the user
whether to execute them.

3.2.5. Pictures and Other Media Files

Figure 1. Example content of word/_rels/webSettings.xml.rels.

3.2.4. DDE Commands

In October 2017, SensePost released an article that explained how it is possible for
arbitrary code to be executed from a Microsoft Word document without using any macros
or scripts [39]; this technique is called dynamic data exchange (DDE). This attack is very ef-
fective, and is therefore widely used in malware campaigns and red team assessments [35].
DDE is a legitimate Microsoft Office functionality, and the DDE protocol is a set of messages
and guidelines. Malicious Word documents usually include the insertion of DDE com-
mands, which will pop up a dialog box when the program starts to ask the user whether to
execute them.

3.2.5. Pictures and Other Media Files

Some Word documents are inserted malicious images or flash files, which cause the
document reader to run abnormally, so that Shellcodes can be executed [40]. Advanced
Persistent Threat (APT) groups widely exploit the new Adobe flash 0-day vulnerability
that is inserted into Microsoft (MS) word documents. Attackers can execute the malicious
flash object via MS word documents into the victims machine [41].

3.3. Malicious Forms of Image Documents

As one of the most common forms of information exchange, tens of thousands of
images are generated every day. Images are often embedded in ordinary documents to
convey more information. The most commonly used image formats on the Internet are GIF,

Appl. Sci. 2021, 11, 12134 6 of 23

PNG, and JPEG. GIF is widely used for web browsing, while JPEG and PNG are not only
used for web browsing, but most often used in the main body of the document content.

The malicious behaviors of images mainly include the following aspects: forge file
headers [42], CVE vulnerabilities [43], inserted codes [44], embedding HTML codes, and
hiding malicious data [45]. More information about malicious forms of image is included
in the Appendix A.

3.4. Malicious Forms of RTF Documents

RTF (Rich Text Format) is a rich text format document, which is similar to a DOC
format (Word document), but the content of the document can be opened and edited with
notepad like a PDF document. An RTF document is composed of a file header and a
file body. Both are composed of text, control words, control characters and groups. The
control character is composed of “\” and non-alphanumeric characters, and the control
word is composed of “\letter control sequence <delimiter>“, which is a special format
command. The group is surrounded by curly braces ({}), and there are texts, control words
or control symbols in curly braces. The information in each group describes the text and
text attributes that it modifies.

RTF attacks mainly include array overflow vulnerabilities [46] and OLE object vulner-
abilities [47]. More information about malicious forms of RTF documents is included in the
Appendix B.

4. Feature Engineering

For this study, 290,542 files from Contagio, VirusTotal, and VirusShare were collected,
and the benign samples were mainly sourced from Baidu Library and academic sharing for
academic purposes [48]. Through the analysis of the 290,542 files, three kinds of malicious
document attacks were identified, namely (1) using the code execution function of the
document itself to execute the malicious code, (2) using the vulnerability of the document
reading software to run the shellcode when parsing the document, and (3) realizing the
embedding of malicious documents via the extended content of the document (such as OLE
objects). This provides a solution for feature engineering for document security detection.

4.1. Specification Check Error

Each type of document has its own document specification standard. The formulation
of the document specification standard enables the document to be opened and read by
more software, and guarantees the security of the document.

On the one hand, when opening a document for parsing, ordinary software or docu-
ment readers usually do not perform integrity checks on the document in accordance with
the document specification standards. This is because if a specification check is conducted,
the document analysis time will be increased and the software operation efficiency will
be reduced. The common method is to parse the document, capture abnormal behavior
of the software during document analysis, and report document corruption only when a
fatal error occurs. When there is a small error in the document, to give the user a good
experience, the software usually ignores the erroneous document areas and continues to
parse the document.

On the other hand, it is not safe to directly use software, such as the reader, to
directly parse the document, and this operation is a form of dynamic operation. For
malicious documents, the direct use of software to parse and wait for errors to be reported
is equivalent to executing malicious documents without any protection. Therefore, it is
not safe to use the document parsing function of the reader, whereas the performance of a
static specification check on the sample is a very safe method.

Appl. Sci. 2021, 11, 12134 7 of 23

4.1.1. Office Document Error

The OffVis tool proposed by Microsoft can complete the specification inspection of
Office documents. It can detect a small number of publicly exploited vulnerabilities when
reading documents.

Because the OffVis tool does not have a command operation version, and because the
code of the project is written in Python, the OffVis tool is processed as follows:

1. The open-source tool ILSpy is used to decompile cases.dll and GUT Architecture.dll;
2. The code is modified to retain the parsing module and the XML serialization interface

of the object;
3. The functions in it are called through the Python CLR module.

Although the OffVis tool can logically judge the data in the specified data field for
some CVE vulnerabilities, the sample analysis revealed that some benign documents still
have CVE vulnerability detection reports. This indicates that the CVE vulnerability report
cannot be used as the error message of the document to participate in the feature selection.

Table 1 presents the proportion distribution of the files verified by OffVis specification
in MicroSoft DOC documents among the malicious and benign samples. It can be seen
from the table that a large number of samples in malicious DOC documents have specifi-
cation errors, while most benign DOC samples do not have detected specification errors.
Therefore, specification errors can be considered as a candidate feature.

Table 1. The proportion distribution of normative inspections of MS-DOC documents.

DOC No Errors Specification Errors

Malicious 5.67% 94.33%
Benign 67.69% 32.31%

4.1.2. PDF Document Error

PeePDF is an open-source tool written in Python for the analysis of the security of PDF
documents. For PDF document detection, the PeePDF tool can first be used to complete the
analysis of the PDF document, from which document error information, object information,
object flow, and other information can be obtained. Then, relevant features can be extracted
from this information.

The PeePDF tool performs non-mandatory scanning. If the tool considers PDFs to be
suspicious, it means that they may contain suspicious elements, such as code execution,
format errors, incorrect X-ref tables, and corrupted titles. It is worth noting that these
elements may also be present in legal samples. Therefore, PeePDF cannot be used as a
malicious detector because it generates too many false positives.

The following four types of error-related information were extracted as candidate
features:

1. Errors in each part: the origin of the error information is three-fold, namely (1) the er-
ror of the document object, (2) the error of the X-ref table, and (3) the location and infor-
mation of the exception caused by the PeePDF tool when parsing the PDF document;

2. The number of error objects;
3. Keywords that do not meet the PDF specification; and
4. Code with known vulnerabilities.

4.1.3. Image Specification Error

The types of images studied include GIF, JPEG, and PNG images. Because the structure
of the image document is relatively simple, an image analysis tool is manually written in
the detection system to analyze the image content and object information. Moreover, the
wrong data and data outside the document specification during the parsing process are
recorded. When data are encountered outside the document specification, this portion of
the data will be analyzed.

Appl. Sci. 2021, 11, 12134 8 of 23

According to statistics, the types of data outside the document specification mainly
include the following: PE documents, import tables of PE documents, iframe tags, HTML
codes, JavaScript codes, image documents, JAR packages, compressed packages (Roshal
Archive (RAR), Phil Katz’s Compressed File (ZIP), 7-Zip (7Z)), Executable and Linking
Format (ELF) documents, and PDF documents. Table 2 presents the distribution of the
specification check results of GIF documents, which reveals that the vast majority of
malicious GIF documents do not meet the GIF document specification, whereas most of
the benign samples meet the GIF document specification.

Table 2. The proportion distribution of normative inspections of GIF documents.

GIF No Errors Specification Errors

Malicious 5.31% 94.69%
Benign 98.93% 1.07%

4.2. Structure Path

In recent years, scholars have applied structured paths to PDF documents, and the
experimental results demonstrate that structured paths can be effectively used as the mali-
cious features of classified documents; however, such features also have certain limitations,
i.e., they can easily be used to avoid detection by attackers [18].

In this study, a new structure path extraction scheme is proposed, namely that the
sequence of objects appearing in the document is taken as the structure path.

The object structure of a benign document is not intentionally constructed, whereas
the document structure of a malicious document will be deliberately disguised to trig-
ger loopholes and deceive users about the object structure. Therefore, there are many
differences in the order of the object structure.

When directly obtaining the structure path of the object in the document, the path
explosion problem will occur due to the excessive length of the path; thus, the structure
path of the object should be truncated by the n-gram method.

4.2.1. Office Document Structure Path

In this section, the structure path of a Word document is taken as an example to
illustrate the process of structure path extraction. For DOC documents, as reported in
Section 4.1, the OffVis tool is used to obtain the result of serializing objects generated
after DOC document parsing into XML. The DOCX document itself is a compressed ZIP
document based on XML. When the DOC document object is serialized into XML, it can be
processed uniformly like a DOCX document.

To obtain the structure paths of DOC and DOCX documents, the path of the tags must
be obtained from the XML document, and for other non-XML documents, such as DOCX
documents, the relative path of the document is used as the structure path. For example,
the VBA program in the DOCX document will be packaged by using the vbaProject.bin
document, and an image document will be placed under the “word\media” path and
denoted as imagexxx.jpg. Thus, the paths of these documents are recorded, and the tag of
each XML document is recorded as the path. For example, Figure 2 presents the content of
a sample of “word\webSettings.xml.” According to the tags in the XML document, eight
structure paths will be generated:

word\webSettings.xml-w:webSettings-w:frameset-w:framesetSplitbar-w:noBorder
word\webSettings.xml-w:webSettings-w:allowPNG
word\webSettings.xml-w:webSettings-w:frameset-w:frameset-w:frame-w:linkedToFile
word\webSettings.xml-w:webSettings-w:frameset-w:frameset-w:frame-w:sourceFileName
word\webSettings.xml-w:webSettings-w:optimizeForBrowser
word\webSettings.xml-w:webSettings-w:frameset-w:framesetSplitbar-w:color
word\webSettings.xml-w:webSettings-w:frameset-w:frameset-w:frame-w:name
word\webSettings.xml-w:webSettings-w:frameset-w:framesetSplitbar-w:w

Appl. Sci. 2021, 11, 12134 9 of 23

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 24

example, the VBA program in the DOCX document will be packaged by using the vbaPro-
ject.bin document, and an image document will be placed under the “word\media” path
and denoted as imagexxx.jpg. Thus, the paths of these documents are recorded, and the
tag of each XML document is recorded as the path. For example, Figure 2 presents the
content of a sample of “word\webSettings.xml.” According to the tags in the XML docu-
ment, eight structure paths will be generated:
word\webSettings.xml-w:webSettings-w:frameset-w:framesetSplitbar-w:noBorder
word\webSettings.xml-w:webSettings-w:allowPNG
word\webSettings.xml-w:webSettings-w:frameset-w:frameset-w:frame-w:linkedToFile
word\webSettings.xml-w:webSettings-w:frameset-w:frameset-w:frame-

w:sourceFileName
word\webSettings.xml-w:webSettings-w:optimizeForBrowser
word\webSettings.xml-w:webSettings-w:frameset-w:framesetSplitbar-w:color
word\webSettings.xml-w:webSettings-w:frameset-w:frameset-w:frame-w:name
word\webSettings.xml-w:webSettings-w:frameset-w:framesetSplitbar-w:w

Figure 2. The content of the “word\webSettings.xml” in a DOCX document.

4.2.2. Image Document Structure Path
After the image document passes through the document parser corresponding to the

image, the order of appearance of each object in the document relative to the byte order
of the document is obtained. According to this object order, the n-gram method is used to
count the object structure paths with the most malicious images in the image document,
and the term frequency–inverse document frequency (TF-IDF) algorithm is then used for
feature selection.

4.3. Code Keywords
Word documents often contain macros or VBA modules for automated office tasks.

PDF documents often contain JavaScript code, which can support advanced functions
such as form filling, URL requests, and starting external processes. Therefore, it is partic-
ularly important to correctly identify the security of the code embedded in the document.

Before embedding the JavaScript code, attackers generally obfuscate the code to in-
crease the difficulty of analysis by security personnel. The readability of the code is re-
duced after obfuscation, and it is difficult to restore the obfuscated code to the original
code. In particular, it is very difficult to extract the features of JavaScript code from PDF
documents, which has been confirmed by previous work. Therefore, the extraction of
code-related features from PDF documents was not considered in the present work.

Figure 2. The content of the “word\webSettings.xml” in a DOCX document.

4.2.2. Image Document Structure Path

After the image document passes through the document parser corresponding to the
image, the order of appearance of each object in the document relative to the byte order of
the document is obtained. According to this object order, the n-gram method is used to
count the object structure paths with the most malicious images in the image document,
and the term frequency–inverse document frequency (TF-IDF) algorithm is then used for
feature selection.

4.3. Code Keywords

Word documents often contain macros or VBA modules for automated office tasks.
PDF documents often contain JavaScript code, which can support advanced functions such
as form filling, URL requests, and starting external processes. Therefore, it is particularly
important to correctly identify the security of the code embedded in the document.

Before embedding the JavaScript code, attackers generally obfuscate the code to
increase the difficulty of analysis by security personnel. The readability of the code is
reduced after obfuscation, and it is difficult to restore the obfuscated code to the original
code. In particular, it is very difficult to extract the features of JavaScript code from PDF
documents, which has been confirmed by previous work. Therefore, the extraction of
code-related features from PDF documents was not considered in the present work.

The code obfuscation problem also exists in Office documents, and the code of the
VBA program will increase the difficulty of analysis after obfuscation [49,50].

It is challenging to directly de-obfuscate the code; moreover, it will increase the
analysis time, and the de-obfuscation effect will greatly affect the extraction of features
in subsequent code. Therefore, research on the code itself should be avoided as much as
possible during the document analysis.

4.3.1. Office Document Code Keywords

The keywords in the VBA code can indicate the behavior of the VBA code. The
meanings of commonly used VBA keywords are provided in Table 3.

Appl. Sci. 2021, 11, 12134 10 of 23

Table 3. The functions of some VBA keywords.

Keywords Description

VirtualAllocEx May inject code into external processes
new object May inject code into external processes
ScriptBlock May run a PowerShell command

xxx.exe May run an external program
Xor May try to obfuscate special strings

FindWindow May enumerate all windows
AutoOpen Run code automatically when the document is opened
user-agent May download files from the website

xxx.lnk May execute malicious scripts to collect and upload
sensitive files of users on the computer

base64 string May have confused the string
vmware May have confused the string

popen May run an executable file or execute system commands
on a MAC computer

Oletools can be used to extract the VBA code in Office documents. Furthermore, it
is also possible to directly extract code keywords appearing in Office documents without
de-obfuscating and analyzing the VBA code. This can significantly reduce the document
processing time while abandoning the de-obfuscating analysis of the VBA code. Moreover,
although the keyword features of the obfuscated VBA code are hidden, obfuscation tech-
niques are used in the code; thus, keywords such as XOR and Base64 String also exist in
the code.

The keywords originally extracted from Oletools require further processing. Irrelevant
keywords (such as “print”) are filtered, and the keywords with URL and IP addresses are
organized in a unified way to reduce the types of keywords. For example, the VBA codes
containing IP addresses will be tagged with “ipv4,” and the VBA codes containing “xx.exe”
will be tagged with “.exe.”

Aiming at the code keyword characteristics of the macro-virus of the XLS document,
19 code keywords distributed in the workbook and book documents after decompressing
the XLS documents were manually extracted as candidate features. These keywords were
as follows: Save It, Comma_laroux, Internat.exe, Application.StartupPath, Auto_Close,
Classic.Poppy, Document_array, Auto_ouvrir, _VBA_PROJECT, Antivirus, Excel.Sheet,
Normal_tabe, Tabelle2\x85\x00, Foglio1\x85\x00, Milliers results\x85\x00, Comma_Exec,
Sayfa1\x85\x00, and LOMHNMKQKDY\x85\x00.

4.3.2. Image Code Keywords

The image parser correctly recognizes the data that do not meet the specification,
but there remain data that do not meet the specification in benign images. This portion
of the data also includes iframe tags, HTML codes, and JavaScript codes. This indicates
that the appearance of code outside the specification does not necessarily increase the
suspiciousness of the document, and the specific reason lies in the content of the code.
Thus, representative keywords must be extracted from the code to characterize the degree
of maliciousness of the code. The code processing includes three stages, namely code
extraction, code preprocessing, and code n-gram analysis.

Code extraction: In this stage, the code characteristics of the bytecode of the data
outside the specification are analyzed, and the bytecode range of possible code fragments
is searched by traversal. The bytecode length of the code can be set to a minimum of
18 bytes, and the chardet module in Python can then be passed to detect the character
string encoding method of the bytecode. Finally, the bytecode decode is converted into a
character string to obtain the initial code.

Code preprocessing: The code will contain special symbols such as URLs, binary-
coded strings starting with “#,” and newline and tab characters. The operations include
the following:

Appl. Sci. 2021, 11, 12134 11 of 23

1. The characters are converted to lowercase;
2. The specific content of the URL is ignored;
3. The specific content of the binary code string is ignored; and
4. Special symbols, such as tabs and line breaks, are deleted.

The preprocessing of the code is completed via these four steps, and the code text is
obtained after simplifying the volume and content.

Code n-gram analysis: The n-gram algorithm is applied to the code text obtained in
the previous step to obtain code features within a certain fragment length range. In the
later stage, relevant feature extraction algorithms can be used to extract the keywords of
the key code as features.

4.4. Number of Objects

The number of objects in the document will also be significantly different, whether
they are stream objects, OLE objects, or compressed objects. Maiorca et al. [25] obtained
a high detection rate by training the number of various objects in a PDF document as a
feature. It was found that there are significant differences between the numbers of objects
in malicious and benign documents.

Based on this theory, in the proposed framework, the numbers of objects generated
after document parsing are also trained as features.

4.4.1. Number of PDF Document Objects

Ten object quantity characteristics were obtained from the data parsed by the PeePDF
tool, including the following: (1) the size of the document, (2) the number of document
versions, (3) the number of streams, (4) the number of compressed objects, (5) the number
of object streams, (6) the number of X-ref streams, (7) the number of objects containing
JavaScript, (8) the compression filter algorithm used, (9) the number of URLs, and (10) the
algorithm used.

Although these features are weak for judging the maliciousness of documents when
used alone, together they provide a good overview of the entire PDF structure. For example,
in the authors’ experience, the size of a malicious PDF document (and the number of objects
or streams) is usually smaller than the size of a benign PDF document, and this statement
is reasonable. A malicious PDF may not contain text, because the smaller the document
size, the less time it takes to infect a new victim. Similarly, objects and X-ref streams are
usually used to hide malicious objects in documents, while compressed objects can include
embedded content, such as script code or other EXE/PDF documents.

4.4.2. Number of Office Document Objects

In the Word document detection process, the type of OLE document, the number of
malicious images, and the number of malicious URLs are used as features to enhance the
detection rate of malicious Word documents.

(1) Number of OLE document types

It is troublesome to directly analyze an embedded OLE document. Based on the
analysis of the types of OLE documents embedded in the samples, it was found that the
benign samples contained only documents with bytecodes of all 0 × 00 and some binary
documents with unknown document types. Numerous types of documents were found in
the malicious samples, such as HTML, PE, DOS, JavaScript, and JAR documents.

This indicates that Word documents with OLE object embedding are likely to be
embedded with programs containing malicious code or media documents containing
vulnerabilities, while OLE objects similar to the executable programs are rarely seen in
normal samples; thus, this will be beneficial for the detection of malicious documents.

Oletools is an open-source security analysis tool developed in the Python language
for the analysis of OLE objects, VBA code extraction, and the VBA code analysis of Office
documents. The OLE objects contained in each sample can be extracted and saved as

Appl. Sci. 2021, 11, 12134 12 of 23

documents via the command line, after which Exiftool can be used to identify the type of
the extracted document. The use of the OLE document type as a feature not only relies
on the result of Exiftool, but also combines the document suffixes corresponding to the
extracted OLE objects as features, as malicious documents usually disguise malicious OLE
objects to reduce user suspicion.

(2) Number of malicious images

Images usually exist in Word documents, and malicious images usually have potential
vulnerabilities. Attackers often use Office tools to parse the potential vulnerabilities of
images to launch attacks. Therefore, it is particularly important to analyze the security
of images. The proposed static detection framework is used to detect the security of the
images in a Word document after completing the image security test. For each document, a
numerical value is used to record the number of malicious images in the document.

(3) Number of malicious URLs

A malicious URL request will automatically download the malicious document and
open the website. The content that can initiate a URL request in DOCX is mainly determined
by the “Target” attribute of the “Relationship” tag in the “.rels” document, excluding the
“document.xml.rels” document in the “word/_rels” directory of the ZIP document. If the
value of “Target” is a URL link and the link ends with the document name (the document
download link), the danger of the DOCX document is significantly enhanced.

Therefore, in the DOCX document detection process, the URL will be extracted from
the “.rels” described in the previous paragraph, and the number of URLs will be used as
a feature.

4.4.3. Number of Image Objects

Via the image document parser, the number of each type of object in the document is
obtained after parsing the document, and the sum of the number of each type of object is
used as a feature.

4.4.4. Number of RTF Objects

The content analysis of RTF documents is realized by writing an RTF document parser.
The sequence and the number of occurrences of each type of object and each type of
keyword in the document are obtained from the analysis result.

The RTF document contains many kinds of keywords, and the latter portion of the
keywords usually contains numbers, which significantly increases the number of types of
keywords. To avoid the problem of keyword expansion, the numbers in the latter part of
the keywords are ignored when parsing RTF documents.

Some keywords are selected from the set of keywords that appear in the RTF doc-
uments, and the number of times that they appear in the document is used as a feature.
Via the statistics of the samples, some substantial differences were found between the
keywords of the malicious and benign samples.

In addition, the quantitative characteristics of OLE objects embedded in RTF doc-
uments are also analyzed. Here, Oletools is used to extract OLE objects embedded in
RTF documents.

5. A Universal Static Detection Framework for Malicious Documents based on
Feature Generalization

This paper proposes a universal static detection framework for malicious documents
based on feature generalization. The framework mainly detects the maliciousness of
documents from four aspects, namely specification check errors, the document object
structure, document code analysis, and the number of document objects.

Appl. Sci. 2021, 11, 12134 13 of 23

5.1. Composition of the Detection Framework

The universal static detection framework for malicious documents based on feature
generalization is composed of document parsing, feature extraction, feature selection,
parameter tuning, classifier, and detection report modules. The composition is presented
in Figure 3.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 24

Figure 3. The framework of the proposed malicious document static detection system.

5.2. Feature Selection Algorithm
In the feature selection method, the TF-IDF model is used to select features. This

model was mainly used for information retrieval in the early days. If word i has a high
frequency of occurrence in article j but low frequency in other articles, it means that word
i has a good ability to distinguish articles; therefore, it is suitable to use i to distinguish
article j from other articles. TF-IDF can also be used for keyword extraction, which is used
to extract features under this framework. The TF-IDF model is shown in Equation (1). For
word i in document j: 𝑊, ൌ 𝑡𝑓, ൈ log ൬ 𝑁d𝑓൰ (1)

where the 𝑡𝑓, is the number of times the word i appears in the article j, 𝑑𝑓 is the number
of words i in the article, and N is the total number of articles.

The feature selection process conducted in the experiments carried out in the present
study was as follows. First, the features of the benign and malicious documents were ex-
tracted to generate the benign document candidate feature set and the malicious docu-
ment candidate feature set, and the distribution number of each feature was then sepa-
rately counted. Finally, feature selection was performed for each feature, and the ratio of
the number of this feature in the benign samples to its number in the malicious samples
was calculated. If the ratio was greater than the threshold, the feature was selected as the
final feature.

Figure 3. The framework of the proposed malicious document static detection system.

The document parsing module uses the corresponding static document parsing tool
to parse the document into document objects according to the document type, and records
error information and error locations during the parsing process.

The feature extraction module extracts the structure path information of the document,
the quantity information of various objects, the specification document error information,
and the information of the code embedded in the document according to the document
analysis result.

The feature selection module uses feature extraction algorithms to extract the most
effective features after obtaining various types of information about the document.

The parameter tuning module uses the GridSearchCV method to train the best param-
eters for the classifier.

The classifier uses artificial intelligence algorithms to make judgments on the mali-
ciousness of documents. The pythonsklearn module is used to further develop the classifier.
The classifier includes two classification algorithms, namely the decision tree and random
forest algorithms, both of which are characterized by a fast speed and high accuracy. More-
over, they can both process high-dimensional data, and they are suitable for the static
detection of malicious documents.

The detection report module generates detection reports.

5.2. Feature Selection Algorithm

In the feature selection method, the TF-IDF model is used to select features. This
model was mainly used for information retrieval in the early days. If word i has a high
frequency of occurrence in article j but low frequency in other articles, it means that word

Appl. Sci. 2021, 11, 12134 14 of 23

i has a good ability to distinguish articles; therefore, it is suitable to use i to distinguish
article j from other articles. TF-IDF can also be used for keyword extraction, which is used
to extract features under this framework. The TF-IDF model is shown in Equation (1). For
word i in document j:

Wi,j = t fi,j × log
(

N
d fi

)
(1)

where the tfi,j is the number of times the word i appears in the article j, dfi is the number of
words i in the article, and N is the total number of articles.

The feature selection process conducted in the experiments carried out in the present
study was as follows. First, the features of the benign and malicious documents were ex-
tracted to generate the benign document candidate feature set and the malicious document
candidate feature set, and the distribution number of each feature was then separately
counted. Finally, feature selection was performed for each feature, and the ratio of the
number of this feature in the benign samples to its number in the malicious samples was
calculated. If the ratio was greater than the threshold, the feature was selected as the
final feature.

6. Experiments and Results
6.1. Data Set

To collect extensive samples and maintain the representativeness and randomness
of the distribution, malicious samples were collected from Contagio, VirusTotal, and
VirusShare, and benign samples were mainly sourced from Google, Baidu Library, and
academic sharing for academic purposes [48]. Ultimately, two datasets were obtained.
Dataset1 included 290,542 files and was collected from Contagio, VirusTotal, VirusShare,
Baidu, and academic sharing for academic purposes, while Dataset2 included 2918 files
and was collected from Contagio and Google. Dataset1 and Dataset2 were collected at
different times from different sources.

Contagio is a well-known blog that collects malicious samples for observation, analysis,
and threat observation. VirusShare is an online sample submission website and has the
function of sharing samples among members of the site. Each sample uploaded to the
VirusShare website is monitored online on the VirusTotal website. Each sample is detected
online by using more than 70 antivirus scanners to jointly detect a sample to evaluate
the degree of maliciousness. If two or more antivirus programs detect a virus in the
detection results of a sample, it is judged as a malicious sample; otherwise, it is judged as a
benign sample.

The distributions of the two datasets are respectively presented in Tables 4 and 5. In
addition, malicious document attacks usually do not use PPTX and Excel documents as the
source of the attack. Therefore, malicious detection experiments were not conducted on
these document types.

Table 4. The distribution of Dataset1.

Type Total Benign Malicious

PDF 114,142 29,454 84,688
DOC/DOCX 49,066 15,341 33,645
XLS/XLSX 11,503 4430 7073

GIF 67,388 17,168 50,220
JPEG 33,825 18,585 15,240
PNG 7943 3983 3960
RTF 6675 3357 3318

Appl. Sci. 2021, 11, 12134 15 of 23

Table 5. The distribution of Dataset2.

Type Total Benign Malicious

PDF 500 250 250
DOC/DOCX 200 100 100
XLS/XLSX 400 200 200

GIF 250 200 50
JPEG 606 300 306
PNG 562 262 300
RTF 400 200 200

6.2. Experimental Environment and Parameters

This experiment was carried out on the Windows 10 platform, the Python version was
3.5.2, and the hardware parameters of the machine were an Intel® Core™ i7-8700 CPU @
3.2 GHz with 16 GB RAM.

Because the decision tree and random forest models are characterized by the advan-
tages of being able to process large data sets, balancing the error of unbalanced data sets, a
fast training speed, and good performance, these models were ultimately chosen for use
in the experiments. For the decision tree classifier, the default parameters provided by
Sklearn were used to modify criterion = “entropy.”

The parameters of the random forest were obtained by automatic tuning via the use
of the GridSearchCV method provided by Sklearn; GridSearchCV generates all candidate
parameters from the grid parameter values determined by the parameter (param_grid),
and finally selects the set of parameters with the highest score.

The default parameters of the decision tree and random forest models are reported in
Table 6.

Table 6. The default parameters of decision tree and random forest models.

Decision Tree Random Forest

Criterion = “gini” n_estimators = 100
Splitter = “best” Criterion = “gini”

max_depth = None max_depth = None
min_samples_split = 2 min_samples_split = 2
min_samples_lea f = 1 min_samples_leaf = 1

min_weight_fraction_leaf = 0.0 min_weight_fraction_leaf = 0.0
max_features = None max_features = “auto”
random_state = None max_leaf_nodes = None

max_leaf_nodes = None min_impurity_decrease = 0.0
min_impurity_decrease = 0.0 min_impurity_split = None
min_impurity_split = None Bootstrap = True

class_weight = None oob_score = False
Presort = ‘deprecated’ n_jobs = None

ccp_alpha = 0.0 random_state = None
Verbose = 0

warm_start = False
class_weight = None

ccp_alpha = 0.0
max_samples = None

6.3. Experimental Results
6.3.1. Experiment based on Feature Generalization

The experimental dataset was divided into a training set (about 80%) and a test set
(about 20%), and ten-fold cross-validation was conducted to obtain the average accuracy
on the test dataset. The metrics for dichotomous problems are represented by the detection
rate (TPR), the false positive rate (FPR), the accuracy rate (ACC), and the F1-score. The
experimental results of various documents are reported in Table 7.

Appl. Sci. 2021, 11, 12134 16 of 23

Table 7. The experimental results of various documents under the proposed static detection frame-
work for malicious documents based on feature generalization.

Type Method ACC (%) TPR (%) FPR (%)

PDF
Decision Tree 99.11 99.43 1.83

Random Forest 99.37 99.40 0.78

DOC
Decision Tree 97.16 97.11 2.40

Random Forest 97.40 97.23 0.82

DOCX
Decision Tree 98.28 95.71 0.67

Random Forest 99.04 97.36 0.27

XLS
Decision Tree 93.89 92.91 2.12

Random Forest 94.66 93.64 1.17

GIF
Decision Tree 99.50 99.58 0.73

Random Forest 99.88 99.89 0.17

JPEG
Decision Tree 96.57 94.12 1.39

Random Forest 96.76 94.54 1.34

PNG
Decision Tree 98.63 98.63 1.37

Random Forest 98.50 97.64 0.615

RTF
Decision Tree 97.81 95.93 0.43

Random Forest 98.68 97.59 0.28

Based on the experimental results, it is evident that the proposed static detection
framework for malicious documents based on feature generalization achieved a higher
TPR and a lower FPR in the malicious detection experiments of various documents. The
TPR of malicious samples and the FPR of benign samples of the classifier obtained by the
random forest were found to be better than those of the classifier obtained by the decision
tree. It was only in the detection of malicious PNG documents that the detection rate
declined. The overall performance of benign sample detection was good, but the FPRs of
JPEG and XLS documents were somewhat high.

In the subsequent experiment, the random forest was used as the classifier. Table 8
reports the detection accuracies of different types of files on Dataset2. The experimental
results verify that the proposed method exhibited good scalability performance.

Table 8. The detection accuracies of different documents.

Type ACC (%) TPR (%) FPR (%) F1-Score

PDF 99.2 98.4 0 0.9919
DOC/DOCX 98 99 0.03 0.9802
XLS/XLSX 97.25 97 0.025 0.9724

GIF 100 100 0 1
JPEG 97.69 95.42 0 0.9766
PNG 99.47 99 0 0.995
RTF 99.25 98.5 0 0.9924

6.3.2. Comparison with Antivirus Software

The proposed method was compared with commonly used antivirus software, includ-
ing Kaspersky, NOD32, and McAfee. The virus database was updated in October 2021.

As shown in Table 9, compared with Kaspersky, NOD32, and McAfee, the proposed
static detection framework for malicious documents achieved superior accuracy and recall
rates for the detection of various types of documents; however, the FPR of benign samples
was slightly increased. The main reasons for this are as follows:

1. To reduce the detection time, the number of features selected in the experiment was
small. For example, seven important features can be selected as regular features for

Appl. Sci. 2021, 11, 12134 17 of 23

PDF document detection [10], but only four important features were selected in this
experiment;

2. The antivirus software has a huge virus database, and the sample size of this system
is not sufficiently large; this led to a slight increase in the FPR.

Table 9. The experimental results of the detection of different types of malicious documents by
different antivirus software.

Type Software ACC (%) TPR (%) FPR (%) F1-Score

PDF

Kaspersky 97.47 96.59 0.0102 0.9827
McAfee 89.92 86.43 0.0407 0.9271
NOD32 95.22 93.57 0.0204 0.9667

Ours 99.37 99.40 0.78 0.9956

DOC

Kaspersky 46.17 26.74 0 0.4219
McAfee 84.46 78.86 0.0086 0.8818
NOD32 55.54 39.51 0.0344 0.5663

Ours 97.40 97.23 0.82 0.9845

DOCX

Kaspersky 94.33 80.45 0 0.8917
McAfee 96.30 87.25 0 0.9319
NOD32 96.44 87.85 0.0540 0.9346

Ours 99.40 97.36 0.27 0.9834

XLS

Kaspersky 42.03 6.06 0 0.1143
McAfee 86.63 78.33 0 0.8785
NOD32 48.81 17.05 0 0.2913

Ours 94.66 93.64 1.17 0.9635

GIF

Kaspersky 53.74 37.93 0.0349 0.5500
McAfee 27.13 2.23 0.0233 0.0436
NOD32 26.34 1.15 0.0058 0.0228

Ours 99.88 99.89 0.17 0.9992

JPEG

Kaspersky 76.50 49.10 0.0107 0.6586
McAfee 78.40 53.33 0.1017 0.6951
NOD32 58.99 11.15 0 0.2007

Ours 96.76 94.54 1.34 0.9638

PNG

Kaspersky 81.60 63.32 0 0.7754
McAfee 50.48 1.27 0 0.0250
NOD32 49.86 0.02 0 0.0005

Ours 98.50 97.64 0.615 0.9850

RTF

Kaspersky 99.28 98.64 0.0894 0.9927
McAfee 94.83 89.63 0.0298 0.9452
NOD32 96.30 92.59 0.0298 0.9614

Ours 98.68 97.59 0.28 0.9864

As shown in Table 9, the FPRs of Kaspersky, NOD32, and McAfee may have been zero.
The main reasons for this situation are as follows:

1. If the antivirus software mistakenly reports a benign document as a malicious docu-
ment, this will cause serious consequences; the antivirus software will try to reduce
the FPR;

2. Antivirus software may not be perfect for this type of document detection. Although
the FPR was 0, the ACC was also low;

3. The number of samples in the comparison experiment may not have been sufficient,
and there were no samples that could have caused the antivirus software to falsely
report; and

4. Some types of documents have fewer vulnerabilities that can be used for virus em-
bedding, and antivirus software is characterized by more complete detection for this
type of document; thus, there also occurred the situation in which the FPR was 0 and
the accuracy rate was also high.

Appl. Sci. 2021, 11, 12134 18 of 23

As shown in Figure 4, in most cases, the F1-score of the proposed static detection
framework for malicious documents was higher than those of the compared antivirus
software. This proves that the proposed framework achieved good performance in the
detection of various types of documents.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 19 of 24

Figure 4. The F1-scores of various types of documents.

6.3.3. Comparison of Detection Time
Table 10 reports the average detection times of different antivirus software and the

proposed system. The average detection time is the average detection time for all types of
files. It can be seen from Table 10 that the average detection time of the proposed method
was very close to those of Kaspersky and McAfee. The average detection time of the pro-
posed method even exceeded that of the Kaspersky software. Although the average de-
tection time of NOD32 was shorter than that of the proposed method, the F1-score of the
proposed method was higher than those of all three compared antivirus software. These
time gaps are acceptable in reality.

Table 10. The average detection times of different antivirus software.

Method Average Detection Time (s) Average F1-score
Kaspersky 0.7214 0.7462

McAfee 0.4887 0.743
NOD32 0.152 0.6662

Our method 0.5926 0.9902

7. Discussion
Through the analysis of different types of samples in the experimental results, the

proposed static detection framework for malicious documents based on feature generali-
zation was found to have the following shortcomings.
(1) Some dynamic behavior characteristics appear only when the document reader

software opens the document. It is difficult for the proposed method to obtain these
behavioral characteristics of documents. The further analysis of undetected mali-
cious PDF samples revealed that these samples had dynamic behaviors, including
autorun, autoform, and autoaction;

(2) Obtaining only the number of OLE objects in Word documents cannot lead to the
effective classification of the maliciousness of word documents; thus, additional
tools are needed to further analyze the maliciousness of OLE objects;

(3) When judging the maliciousness of documents with only code embedded, the se-
lected code keywords must be optimized to improve the accuracy of the code key-
words. When using JavaScript code to detect samples, the detection rate of the pro-
posed method will be reduced due to the low keyword coverage.
In practical applications, the proposed method can be combined with dynamic de-

tection. After suspicious documents are found, dynamic detection methods can be used

Figure 4. The F1-scores of various types of documents.

6.3.3. Comparison of Detection Time

Table 10 reports the average detection times of different antivirus software and the
proposed system. The average detection time is the average detection time for all types of
files. It can be seen from Table 10 that the average detection time of the proposed method
was very close to those of Kaspersky and McAfee. The average detection time of the
proposed method even exceeded that of the Kaspersky software. Although the average
detection time of NOD32 was shorter than that of the proposed method, the F1-score of the
proposed method was higher than those of all three compared antivirus software. These
time gaps are acceptable in reality.

Table 10. The average detection times of different antivirus software.

Method Average Detection Time (s) Average F1-Score

Kaspersky 0.7214 0.7462
McAfee 0.4887 0.743
NOD32 0.152 0.6662

Our method 0.5926 0.9902

7. Discussion

Through the analysis of different types of samples in the experimental results, the pro-
posed static detection framework for malicious documents based on feature generalization
was found to have the following shortcomings.

(1) Some dynamic behavior characteristics appear only when the document reader soft-
ware opens the document. It is difficult for the proposed method to obtain these
behavioral characteristics of documents. The further analysis of undetected malicious
PDF samples revealed that these samples had dynamic behaviors, including autorun,
autoform, and autoaction;

(2) Obtaining only the number of OLE objects in Word documents cannot lead to the
effective classification of the maliciousness of word documents; thus, additional tools
are needed to further analyze the maliciousness of OLE objects;

(3) When judging the maliciousness of documents with only code embedded, the selected
code keywords must be optimized to improve the accuracy of the code keywords.
When using JavaScript code to detect samples, the detection rate of the proposed
method will be reduced due to the low keyword coverage.

Appl. Sci. 2021, 11, 12134 19 of 23

In practical applications, the proposed method can be combined with dynamic de-
tection. After suspicious documents are found, dynamic detection methods can be used
for further detection. Moreover, the code keywords extracted from the document require
further optimization. Finally, additional tools can be used to further analyze OLE objects
and discover more effective features for the judgment of maliciousness.

8. Conclusions

Researchers rarely study common types of documents other than PDF and Word
documents. The present research compensates for this deficiency. In this research, the
detection features of a certain type of document were generalized so that the features could
be used to detect other types of documents. Moreover, a static detection framework based
on feature generalization was proposed. The framework uses four feature dimensions,
namely specification check errors, the (object) structure path, code keywords, and the
number of objects.

The proposed method was verified on two datasets, and was compared with Kasper-
sky, NOD32, and McAfee antivirus software. The F1-score of malicious PDF detection of
the proposed method was 0.9956, that of malicious DOC detection was 0.9845, and that of
DOCX detection was 0.9834. Therefore, good detection rates were achieved for the two
main document types of PDF and Word, and the FPR was within 1%. In addition, the
proposed framework was found to achieve better results on other types of documents; the
average F1-score of all these types of documents was 0.9902. The results of experiments
demonstrated that the proposed framework achieved better detection performance than
Kaspersky, NOD32, and McAfee antivirus software. Moreover, the average document
detection time of the proposed method was found to be 0.5926 s, which was very close to
that of McAfee (0.4887 s), and shorter than that of Kaspersky. The experimental results
verify that the proposed method achieved good performance in terms of the detection
accuracy, runtime, and scalability.

However, the proposed method is also characterized by some shortcomings. Some
dynamic behavior characteristics appear only when the document reader software opens
the document, and it is difficult for the proposed method to obtain these behavioral
characteristics of documents. Moreover, the sole reliance on the number of OLE objects in
the Word document is not sufficient. The selected code keywords must be optimized to
improve the accuracy of code keywords.

In the future, the proposed method can be combined with dynamic detection. After
suspicious documents are found, dynamic detection methods can be used for further
detection. Moreover, additional tools can be used to find more effective features, and some
features need to be further optimized as well.

Author Contributions: Conceptualization, X.L. and F.W.; methodology, X.L. and F.W.; software,
F.W.; validation, X.L., F.W. and C.J.; formal analysis, X.L. and F.W.; investigation, X.L. and F.W.;
resources, F.W.; data curation, F.W. and C.J.; writing—original draft preparation, X.L. and F.W.;
writing—review and editing, X.L. and C.J.; visualization, F.W. and C.J.; supervision, X.L. and P.L.;
project administration, X.L., F.W. and C.J. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (Grant No.
62136006), and the National Key R&D Program of China (Grant No. 2020YFB2104700).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2021, 11, 12134 20 of 23

Appendix A. Malicious Forms of Image Files

Appendix A.1. Forging File Header

Forging file header is to compose a file using the file header logo of the image file
and malicious code, and save the file in a specified format. The most commonly used
forging method is to store a piece of Personal Home Page (PHP) code behind the GIF file
header [42]. Its purpose is to attack an insecure Web site that only checks the uploaded file
header (also known as the magic number) and ignores the legality check of the file content,
which result in a file with code being uploaded to the site. Then the attacker accesses the
uploaded file to make the code run. A specific method is to add the magic number “GIF89a”
in front of a PHP file (the magic number is the file header of the GIF file), and modify the
file suffix name to GIF. Then the attacker starts subsequent operations by uploading the
file through the file upload function of the website. Figure A1 is a text display result of a
malicious GIF sample.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 21 of 24

Appendix A. Malicious Forms of Image Files
Appendix A.1. Forging File Header

Forging file header is to compose a file using the file header logo of the image file
and malicious code, and save the file in a specified format. The most commonly used forg-
ing method is to store a piece of Personal Home Page (PHP) code behind the GIF file
header [42]. Its purpose is to attack an insecure Web site that only checks the uploaded
file header (also known as the magic number) and ignores the legality check of the file
content, which result in a file with code being uploaded to the site. Then the attacker ac-
cesses the uploaded file to make the code run. A specific method is to add the magic num-
ber “GIF89a” in front of a PHP file (the magic number is the file header of the GIF file),
and modify the file suffix name to GIF. Then the attacker starts subsequent operations by
uploading the file through the file upload function of the website. Figure A1 is a text dis-
play result of a malicious GIF sample.

Figure A1. A sample of a PHP file that added a GIF file header.

Appendix A.2. CVE Vulnerability
There are many image analysis and editing tools on the market, such as Office soft-

ware and ImageMagick tools. These tools used to have some vulnerability in processing
images. Taking the Office software as an example, the attacker uses the abnormal data in
the JPEG file to trigger the software vulnerability, and then executes the shellcode embed-
ded in the JPEG file to finally realize the attack [43].

Appendix A.3. Insert Code
Commonly, the codes inserted in picture files include JavaScript code, HTML code,

PE file, PE file import table (IAT), etc. [44]. JavaScript codes are most commonly found in
JPEG pictures, GIF and PNG pictures. HTML codes mainly contain some iframe tag.
HTML webpage codes can be attached to the end of picture files. In addition, a PE file and
the import table of the PE file also can be attached to the end of picture files.

Appendix A.4. Malicious Data Hiding
In a GIF file, there is a data segment of the comment extension area, and the picture

creator can add additional information in the comment extension area. Most image anal-
ysis software generally skip the comment extension area directly when analyzing images,
so this area is rarely noticed. Some malicious pictures include some additional infor-
mation in this area, such as URL and encoded data. For JPEG pictures, people can use
steganography to embed malicious code or malicious data in certain areas of the file [45].

In addition to adding malicious data to the internal structure of a picture, the attacker
will also add other file data after the picture data to deceive users to pass the malicious
file. These file types include PE files, RAR compressed files, PDF files, DOC files, PNG
pictures, JPEG pictures, GIF pictures, text, and other types of files.

Appendix B. Malicious Forms of RTF Documents
The forms of RTF attacks mainly include array overflow vulnerabilities and OLE ob-

ject vulnerabilities.

Appendix B.1. Array Overflow Vulnerability
The essential reason of the array overflow vulnerability is caused by the security of

virtual functions in the virtual function table of polymorphic functions in C ++ program-
ming [46]. The memory distribution of objects in C ++ is as shown in Figure A2. Since the
objects in memory are distributed in order, the memory of the member object of the above

Figure A1. A sample of a PHP file that added a GIF file header.

Appendix A.2. CVE Vulnerability

There are many image analysis and editing tools on the market, such as Office software
and ImageMagick tools. These tools used to have some vulnerability in processing images.
Taking the Office software as an example, the attacker uses the abnormal data in the JPEG
file to trigger the software vulnerability, and then executes the shellcode embedded in the
JPEG file to finally realize the attack [43].

Appendix A.3. Insert Code

Commonly, the codes inserted in picture files include JavaScript code, HTML code,
PE file, PE file import table (IAT), etc. [44]. JavaScript codes are most commonly found
in JPEG pictures, GIF and PNG pictures. HTML codes mainly contain some iframe tag.
HTML webpage codes can be attached to the end of picture files. In addition, a PE file and
the import table of the PE file also can be attached to the end of picture files.

Appendix A.4. Malicious Data Hiding

In a GIF file, there is a data segment of the comment extension area, and the picture
creator can add additional information in the comment extension area. Most image analysis
software generally skip the comment extension area directly when analyzing images, so
this area is rarely noticed. Some malicious pictures include some additional information in
this area, such as URL and encoded data. For JPEG pictures, people can use steganography
to embed malicious code or malicious data in certain areas of the file [45].

In addition to adding malicious data to the internal structure of a picture, the attacker
will also add other file data after the picture data to deceive users to pass the malicious file.
These file types include PE files, RAR compressed files, PDF files, DOC files, PNG pictures,
JPEG pictures, GIF pictures, text, and other types of files.

Appendix B. Malicious Forms of RTF Documents

The forms of RTF attacks mainly include array overflow vulnerabilities and OLE
object vulnerabilities.

Appendix B.1. Array Overflow Vulnerability

The essential reason of the array overflow vulnerability is caused by the security of
virtual functions in the virtual function table of polymorphic functions in C ++ program-
ming [46]. The memory distribution of objects in C ++ is as shown in Figure A2. Since
the objects in memory are distributed in order, the memory of the member object of the

Appl. Sci. 2021, 11, 12134 21 of 23

above object is immediately followed by the virtual function table pointer of the next object.
When the data member of the above object writes data and generates an overflow, the
content of the virtual function table pointer of the next object will be overwritten. Then,
when the virtual function is called, the wrong virtual function table is used, causing the
program execution flow to change. When RTF documents are parsed, structures such as
catalog tables may encounter array overflow problems.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 22 of 24

object is immediately followed by the virtual function table pointer of the next object.
When the data member of the above object writes data and generates an overflow, the
content of the virtual function table pointer of the next object will be overwritten. Then,
when the virtual function is called, the wrong virtual function table is used, causing the
program execution flow to change. When RTF documents are parsed, structures such as
catalog tables may encounter array overflow problems.

p Virtual function table pointer

Class member variables

Virtual function pointer of vf1()

Virtual function pointer of vf1()

Object point Memory layout of object data Virtual function table

Figure A2. The general memory model of objects containing virtual table classes in C ++.

Appendix B.2. OLE Object Vulnerability
There are many control words in a RTF document, and different types of OLE objects

can be embedded through different control words. For example, the \objemb control
word can embed other documents, audio files, pictures and other information into RTF
documents.

RTF documents can contain a variety of OLE objects, and the embedded OLE objects
are parsed when the document are opened. Various vulnerabilities might be triggered
when these OLE objects are parsed [47]. The exploit can be used to execute malicious code.
For example, when the OLE object of the TreeView control is embedded in a RTF file, this
control causes a stack overflow problem when parsing the data in the \objdata section.
This vulnerability can be used to trigger problems such as remote code execution. Parsing
the OLE object of the embedded TabStrip control can cause memory corruption.

References
1. Tian, X. Research on Maliciousness Detection Algorithm of Word and PDF Documents. Doctoral Dissertation, Xidian Univer-

sity, Xi’an, China, 2017.
2. Israeli Defence Computer Hacked Via Tainted Email-Cyber Firm|Reuters. Available online: https://www.reuters.com/article/is-

rael-cybersecurity-idUSL5N0L00JR20140126?irpc=932&irpc=932 (accessed on 16 December 2021).
3. Malicious PDFs|Revealing the Techniques behind the Attacks. Available online: https://www.sentinelone.com/blog/malicious-

pdfs-revealing-techniques-behind-attacks/ (accessed on 16 December 2021).
4. Analyzing Malicious PDFs-Infosec Resources. Available online: https://resources.infosecinstitute.com/topic/analyzing-mali-

cious-pdf/ (accessed on 16 December 2021).
5. Trojan.TrickBot|Malwarebytes Labs|Detections. Available online: https://blog.malwarebytes.com/detections/trojan-trickbot/

(accessed on 16 December 2021).
6. FBI: BEC Scams Accounted for Half of the Cyber-Crime Losses in 2019|ZDNet. Available online: https://www.zdnet.com/arti-

cle/fbi-bec-scams-accounted-for-half-of-the-cyber-crime-losses-in-2019/ (accessed on 16 December 2021).
7. Wen, G.; Hu, Y.; Jiang, C.; Cao, N.; Qin, Z. A image texture and BP neural network basec malicious files detection technique for

cloud storage systems. In Proceedings of the IEEE INFOCOM 2017-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), Atlanta, GA, USA, 1–4 May 2017.

8. Yu, M.; Jiang, J.; Li, G.; Lou, C.; Liu, Y.; Liu, C.; Huang, W. Malicious documents detection for business process management
based on multi-layer abstract model. Future Gener. Comput. Syst. 2019, 99, 517–526.

9. Nissim, N.; Cohen, A.; Elovici, Y. ALDOCX: Detection of Unknown Malicious Microsoft Office Documents Using Designated
Active Learning Methods Based on New Structural Feature Extraction Methodology. IEEE Trans. Inf. Forensics Secur. 2017, 12,
631–646.

10. Du, X.; Lin, Y.; Sun, Y. Malicious PDF document detection based on mixed feature. J. Commun. 2019, 40, 118–128.
11. Vitel, S.C.; Balan, G.; Prelipcean, D.B. Improving Detection of Malicious Office Documents Using One-Side Classifiers. In Pro-

ceedings of the 2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC),
Timisoara, Romania, 4–7 September 2019.

12. Toth, T.; Kruegel, C. Accurate buffer overflow detection via abstract payload execution. In International Workshop on Recent
Advances in Intrusion Detection; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2516, pp. 274–291.

13. Akritidis, P.; Markatos, E.P.; Polychronakis, M.; Anagnostakis, K. STRIDE: Polymorphic Sled Detection through Instruction
Sequence Analysis. In Proceedings of the Security and Privacy in the Age of Ubiquitous Computing, Ifip Tc11, International
Conference on Information Security, Chiba, Japan, 30 May–1 June 2005; pp. 375–392.

Figure A2. The general memory model of objects containing virtual table classes in C ++.

Appendix B.2. OLE Object Vulnerability

There are many control words in a RTF document, and different types of OLE ob-
jects can be embedded through different control words. For example, the \objemb con-
trol word can embed other documents, audio files, pictures and other information into
RTF documents.

RTF documents can contain a variety of OLE objects, and the embedded OLE objects
are parsed when the document are opened. Various vulnerabilities might be triggered
when these OLE objects are parsed [47]. The exploit can be used to execute malicious code.
For example, when the OLE object of the TreeView control is embedded in a RTF file, this
control causes a stack overflow problem when parsing the data in the \objdata section.
This vulnerability can be used to trigger problems such as remote code execution. Parsing
the OLE object of the embedded TabStrip control can cause memory corruption.

References
1. Tian, X. Research on Maliciousness Detection Algorithm of Word and PDF Documents. Doctoral Dissertation, Xidian University,

Xi’an, China, 2017.
2. Israeli Defence Computer Hacked Via Tainted Email-Cyber Firm|Reuters. Available online: https://www.reuters.com/article/

israel-cybersecurity-idUSL5N0L00JR20140126?irpc=932&irpc=932 (accessed on 16 December 2021).
3. Malicious PDFs|Revealing the Techniques behind the Attacks. Available online: https://www.sentinelone.com/blog/malicious-

pdfs-revealing-techniques-behind-attacks/ (accessed on 16 December 2021).
4. Analyzing Malicious PDFs-Infosec Resources. Available online: https://resources.infosecinstitute.com/topic/analyzing-

malicious-pdf/ (accessed on 16 December 2021).
5. Trojan.TrickBot|Malwarebytes Labs|Detections. Available online: https://blog.malwarebytes.com/detections/trojan-trickbot/

(accessed on 16 December 2021).
6. FBI: BEC Scams Accounted for Half of the Cyber-Crime Losses in 2019|ZDNet. Available online: https://www.zdnet.com/

article/fbi-bec-scams-accounted-for-half-of-the-cyber-crime-losses-in-2019/ (accessed on 16 December 2021).
7. Wen, G.; Hu, Y.; Jiang, C.; Cao, N.; Qin, Z. A image texture and BP neural network basec malicious files detection technique for

cloud storage systems. In Proceedings of the IEEE INFOCOM 2017-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), Atlanta, GA, USA, 1–4 May 2017.

8. Yu, M.; Jiang, J.; Li, G.; Lou, C.; Liu, Y.; Liu, C.; Huang, W. Malicious documents detection for business process management
based on multi-layer abstract model. Future Gener. Comput. Syst. 2019, 99, 517–526. [CrossRef]

9. Nissim, N.; Cohen, A.; Elovici, Y. ALDOCX: Detection of Unknown Malicious Microsoft Office Documents Using Designated
Active Learning Methods Based on New Structural Feature Extraction Methodology. IEEE Trans. Inf. Forensics Secur. 2017, 12,
631–646. [CrossRef]

10. Du, X.; Lin, Y.; Sun, Y. Malicious PDF document detection based on mixed feature. J. Commun. 2019, 40, 118–128.
11. Vitel, S.C.; Balan, G.; Prelipcean, D.B. Improving Detection of Malicious Office Documents Using One-Side Classifiers. In

Proceedings of the 2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC),
Timisoara, Romania, 4–7 September 2019.

12. Toth, T.; Kruegel, C. Accurate buffer overflow detection via abstract payload execution. In International Workshop on Recent
Advances in Intrusion Detection; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2516, pp. 274–291.

13. Akritidis, P.; Markatos, E.P.; Polychronakis, M.; Anagnostakis, K. STRIDE: Polymorphic Sled Detection through Instruction
Sequence Analysis. In Proceedings of the Security and Privacy in the Age of Ubiquitous Computing, Ifip Tc11, International
Conference on Information Security, Chiba, Japan, 30 May–1 June 2005; pp. 375–392.

https://www.reuters.com/article/israel-cybersecurity-idUSL5N0L00JR20140126?irpc=932&irpc=932
https://www.reuters.com/article/israel-cybersecurity-idUSL5N0L00JR20140126?irpc=932&irpc=932
https://www.sentinelone.com/blog/malicious-pdfs-revealing-techniques-behind-attacks/
https://www.sentinelone.com/blog/malicious-pdfs-revealing-techniques-behind-attacks/
https://resources.infosecinstitute.com/topic/analyzing-malicious-pdf/
https://resources.infosecinstitute.com/topic/analyzing-malicious-pdf/
https://blog.malwarebytes.com/detections/trojan-trickbot/
https://www.zdnet.com/article/fbi-bec-scams-accounted-for-half-of-the-cyber-crime-losses-in-2019/
https://www.zdnet.com/article/fbi-bec-scams-accounted-for-half-of-the-cyber-crime-losses-in-2019/
http://doi.org/10.1016/j.future.2019.04.012
http://doi.org/10.1109/TIFS.2016.2631905

Appl. Sci. 2021, 11, 12134 22 of 23

14. Polychronakis, M.; Anagnostakis, K.G.; Markatos, E.P. Comprehensive Shellcode detection using runtime heuristics. In Pro-
ceedings of the Twenty-Sixth Computer Security Applications Conference, ACSAC 2010, Austin, TX, USA, 6–10 December 2010;
pp. 287–296.

15. Maass, M.; Scherlis, W.L.; Aldrich, J. In-nimbo sandboxing. In Proceedings of the Symposium and Bootcamp on the Science of
Security, Raleigh, NC, USA, 8–9 April 2014; ACM Press: New York, NY, USA, 2014.

16. Laskov, P. Static detection of malicious JavaScript-bearing PDF documents. In Proceedings of the Twenty-Seventh Computer
Security Applications Conference, ACSAC 2011, Orlando, FL, USA, 5–9 December 2011; pp. 373–382.

17. Vatamanu, C.; Gavriluţ, D.; Benchea, R. A practical approach on clustering malicious PDF documents. J. Comput. Virol. 2012, 8,
151–163. [CrossRef]

18. Maiorca, D.; Giacinto, G.; Corona, I. A pattern recognition system for malicious PDF files detection. In Proceedings of the
International Conference on Machine Learning and Data Mining in Pattern Recognition, Berlin, Germany, 13–20 July 2012;
Springer: Berlin/Heidelberg, Germany, 2012; pp. 510–524.

19. Smutz, C.; Stavrou, A. Malicious PDF detection using metadata and structural features. In Proceedings of the Computer Security
Applications Conference, Orlando, FL, USA, 3–7 December 2012; pp. 239–248.

20. Srndic, N.; Laskov, P. Detection of malicious PDF files based on hierarchical document structure. In Proceedings of the 20th
Annual Network & Distributed System Security Symposium, San Diego, CA, USA, 24–27 February 2013.

21. Nissim, N.; Cohen, A.; Moskovitch, R.; Shabtai, A.; Edry, M.; Bar-Ad, O.; Elovici, Y. ALPD: Active Learning Framework
for Enhancing the Detection of Malicious PDF Files. In Proceedings of the Intelligence and Security Informatics Conference,
The Hague, The Netherlands, 24–26 September 2014; pp. 91–98.

22. Nissim, N.; Cohen, A.; Moskovitch, R.; Shabtai, A.; Edri, M.; BarAd, O.; Elovici, Y. Keeping pace with the creation of new
malicious PDF files using an active-learning based detection framework. Secur. Inform. 2016, 5, 1. [CrossRef]

23. Jeong, Y.S.; Woo, J.; Kang, A.R. Malware Detection on Byte Streams of PDF Files Using Convolutional Neural Networks.
Secur. Commun. Netw. 2019, 2019, 8485365. [CrossRef]

24. Nissim, N.; Cohen, A.; Glezer, C.; Elovici, Y. Detection of malicious PDF files and directions for enhancements: A state-of-the art
survey. Comput. Secur. 2015, 48, 246–266. [CrossRef]

25. Maiorca, D.; Ariu, D.; Corona, I.; Giacinto, G. A Structural and Content-Based Approach for a Precise and Robust Detection of
Malicious PDF Files. In Proceedings of the 1st International Conference on Information Systems Security and Privacy (ICISSP
2015), Angers, France, 9–11 February 2015.

26. Lin, J.Y.; Pao, H.K. Multi-view Malicious Document Detection. In Proceedings of the 2013 Conference on Technologies and
Applications of Artificial Intelligence, Taipei, Taiwan, 10–12 November 2013; pp. 170–175. [CrossRef]

27. Li, W.J.; Stolfo, S.; Stavrou, A.; Androulaki, E.; Keromytis, A.D. A Study of Malcode-Bearing Documents. Lect. Notes Comput. Sci.
2007, 4579, 231–250.

28. Chen, Y.; Wang, S.; She, D.; Jana, S. On Training Robust PDF Malware Classifiers. In Proceedings of the 29th {USENIX} Security
Symposium ({USENIX} Security 20, Boston, MA, USA, 12–14 August 2020.

29. Lu, X.; Wang, F.; Shu, Z. Malicious Word Document Detection Based on Multi-View Features Learning. In Proceedings of the 2019
28th International Conference on Computer Communication and Networks (ICCCN), Valencia, Spain, 29 July–1 August 2019;
pp. 1–6. [CrossRef]

30. Chen, Z. Research and Implementation of Malicious PDF Document Detection Technology. Doctoral Dissertation, Beijing
University of Posts and Telecommunications, Beijing, China, 2017.

31. SANS Digital Forensics and Incident Response Blog|How to Extract Flash Objects from Malicious PDF Files|SANS Insti-
tute. Available online: https://www.sans.org/blog/how-to-extract-flash-objects-from-malicious-pdf-files (accessed on 16
December 2021).

32. (PDF) The Malicious and Forensic Uses of Adobe Software. Available online: https://www.researchgate.net/publication/281101
264_The_Malicious_and_Forensic_Uses_of_Adobe_Software (accessed on 16 December 2021).

33. Kim, S.; Hong, S.; Oh, J.; Lee, H. Obfuscated VBA Macro Detection Using Machine Learning. In Proceedings of the 2018 48th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Luxembourg, 25–28 June 2018.

34. Lagadec, P. OpenDocument and Open XML security (OpenOffice.org and MS Office 2007). J. Comput. Virol. 2008, 4, 115–125.
[CrossRef]

35. Microsoft Office–DDE Attacks–Penetration Testing Lab. Available online: https://pentestlab.blog/2018/01/16/microsoft-office-
dde-attacks/ (accessed on 16 December 2021).

36. SANS Digital Forensics and Incident Response Blog|How to Extract Flash Objects From Malicious MS Office Documents|SANS
Institute. Available online: https://www.sans.org/blog/how-to-extract-flash-objects-from-malicious-ms-office-documents/
(accessed on 16 December 2021).

37. The Return of OLE Exploit Delivery: CVE-2018-8174-Security Risk Advisors. Available online: https://sra.io/blog/the-return-
of-ole-exploit-delivery-cve-2018-8174/ (accessed on 16 December 2021).

38. CVE-2017-0199-Security Update Guide-Microsoft-Microsoft Office/WordPad Remote Code Execution Vulnerability w/Windows.
Available online: https://msrc.microsoft.com/update-guide/vulnerability/CVE-2017-0199 (accessed on 16 December 2021).

39. SensePost|Macro-Less Code Exec in Msword. Available online: https://sensepost.com/blog/2017/macro-less-code-exec-in-
msword/ (accessed on 16 December 2021).

http://doi.org/10.1007/s11416-012-0166-z
http://doi.org/10.1186/s13388-016-0026-3
http://doi.org/10.1155/2019/8485365
http://doi.org/10.1016/j.cose.2014.10.014
http://doi.org/10.1109/TAAI.2013.43
http://doi.org/10.1109/ICCCN.2019.8846940
https://www.sans.org/blog/how-to-extract-flash-objects-from-malicious-pdf-files
https://www.researchgate.net/publication/281101264_The_Malicious_and_Forensic_Uses_of_Adobe_Software
https://www.researchgate.net/publication/281101264_The_Malicious_and_Forensic_Uses_of_Adobe_Software
http://doi.org/10.1007/s11416-007-0060-2
https://pentestlab.blog/2018/01/16/microsoft-office-dde-attacks/
https://pentestlab.blog/2018/01/16/microsoft-office-dde-attacks/
https://www.sans.org/blog/how-to-extract-flash-objects-from-malicious-ms-office-documents/
https://sra.io/blog/the-return-of-ole-exploit-delivery-cve-2018-8174/
https://sra.io/blog/the-return-of-ole-exploit-delivery-cve-2018-8174/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2017-0199
https://sensepost.com/blog/2017/macro-less-code-exec-in-msword/
https://sensepost.com/blog/2017/macro-less-code-exec-in-msword/

Appl. Sci. 2021, 11, 12134 23 of 23

40. Adobe Flash, Reader, and Acrobat Vulnerability|CISA. Available online: https://us-cert.cisa.gov/ncas/alerts/TA10-159A
(accessed on 16 December 2021).

41. Hackers Exploiting Adobe Flash 0day via a Microsoft Office Document. Available online: https://gbhackers.com/adobe-flash-
0day-exploit/ (accessed on 16 December 2021).

42. Krasser, S.; Tang, Y.; Gould, J.; Alperovitch, D.; Judge, P. Identifying Image Spam based on Header and File Properties using C4.5
Decision Trees and Support Vector Machine Learning. In Proceedings of the 2007 IEEE SMC Information Assurance and Security
Workshop, West Point, NY, USA, 20–22 June 2007; pp. 255–261. [CrossRef]

43. ImageTragick. Available online: https://imagetragick.com/ (accessed on 16 December 2021).
44. Kunwar, R.; Sharma, P. Framework to detect malicious codes embedded with JPEG images over social networking sites. In

Proceedings of the 2017 International Conference on Innovations in Information, Embedded and Communication Systems
(ICIIECS), Coimbatore, India, 17–18 March 2017; pp. 1–4. [CrossRef]

45. Wu, C. Research on JPEG steganalysis algorithm based on fusion features. Comput. Simul. 2019, 36, 233–239.
46. Le, D.; Gong, S.; Wu, S.; Xu, F.; Liu, W. Research on RTF array overflow vulnerability mining technology. J. Commun. 2017, 38,

96–107.
47. Le, D.G.; Zhang, L.; Gong, S.R.; Zheng, L.X.; Wu, S.G. Research on OLE object vulnerability analysis for RTF. J. Netw. Inf. Secur.

2016, 2, 34–45.
48. Feng, Y.; Liu, B.; Cui, X.; Liu, C.; Kang, X.; Su, J. A Systematic Method on PDF Privacy Leakage Issues. In Proceedings of the 2018

17th IEEE International Conference On Trust, Security and Privacy in Computing and Communications/12th IEEE International
Conference on Big Data Science and Engineering (TrustCom/BigDataSE), New York, NY, USA, 1–3 August 2018; pp. 1020–1029.
[CrossRef]

49. Collberg, C.; Thomborson, C.; Low, D. A Taxonomy of Obfuscating Transformations; Department of Computer Science, The University
of Auckland: Auckland, New Zealand, 1997.

50. Xu, W.; Zhang, F.; Zhu, S. The power of obfuscation techniques in malicious javascript code: A measurement study. In Proceedings
of the 2012 7th International Conference on Malicious and Unwanted Software (MALWARE), Fajardo, PR, USA, 16–18 October
2012; pp. 9–16.

https://us-cert.cisa.gov/ncas/alerts/TA10-159A
https://gbhackers.com/adobe-flash-0day-exploit/
https://gbhackers.com/adobe-flash-0day-exploit/
http://doi.org/10.1109/IAW.2007.381941
https://imagetragick.com/
http://doi.org/10.1109/ICIIECS.2017.8276144
http://doi.org/10.1109/TrustCom/BigDataSE.2018.00144

	Introduction
	Related Work
	Static Analysis Method
	Features of Static Analysis

	Attack Forms of Malicious Documents
	Main Attack Forms of PDF Documents
	JavaScript Code Attack
	Embedded File Attack

	Main Attack Forms of Office Documents
	VBA Malicious Code
	OLE Objects
	Document Specification Vulnerabilities
	DDE Commands
	Pictures and Other Media Files

	Malicious Forms of Image Documents
	Malicious Forms of RTF Documents

	Feature Engineering
	Specification Check Error
	Office Document Error
	PDF Document Error
	Image Specification Error

	Structure Path
	Office Document Structure Path
	Image Document Structure Path

	Code Keywords
	Office Document Code Keywords
	Image Code Keywords

	Number of Objects
	Number of PDF Document Objects
	Number of Office Document Objects
	Number of Image Objects
	Number of RTF Objects

	A Universal Static Detection Framework for Malicious Documents based on Feature Generalization
	Composition of the Detection Framework
	Feature Selection Algorithm

	Experiments and Results
	Data Set
	Experimental Environment and Parameters
	Experimental Results
	Experiment based on Feature Generalization
	Comparison with Antivirus Software
	Comparison of Detection Time

	Discussion
	Conclusions
	Malicious Forms of Image Files
	Forging File Header
	CVE Vulnerability
	Insert Code
	Malicious Data Hiding

	Malicious Forms of RTF Documents
	Array Overflow Vulnerability
	OLE Object Vulnerability

	References

