
Ecological Indicators 158 (2024) 111498

1470-160X/© 2023 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Assessing the spatial coherence of forest cover indicators from different 
data sources: A contribution to sustainable development reporting 

Alessia D’Agata a, Pavel Cudlin b, Ioannis Vardopoulos a,c, Giuseppe Schinaia a, 
Piermaria Corona d,e, Luca Salvati a,* 

a Department of Methods and Models for Economics, Territory and Finance, Faculty of Economics, Sapienza University of Rome, Via del Castro Laurenziano 9, I-00161 
Rome, Italy 
b Global Change Research Institute of the Czech Academy of Sciences, Lipová 9, CZ-370 05 České Budějovice, Czech Republic 
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A B S T R A C T   

The accuracy of forest area estimates has improved over time as a result of field/cadastral surveys, enhanced 
remote sensing techniques, and the effectiveness of algorithms for automatical recognition of land cover types. 
However, forest statistics seem to be less accurate in disaggregated spatial domains such as small administrative 
units. To evaluate the contribution of different data sources to small-area forest cover estimation in Europe, we 
compared seven indicators with different spatial coverage and resolution. The analysis considered multiple in
formation sources from innovative initiatives, such as the Copernicus Land monitoring scheme, and traditional 
(national) surveys. More specifically, the study examined the spatial coherence of these indicators at the 
municipal scale in Italy to achieve two objectives: (i) assessing the overall precision of forest cover rates and (ii) 
identifying spatial variations in forest cover rates associated with the technical characteristics of each data 
source. A spatial econometric approach was used to identify the sources of spatial divergence in forest cover rates 
and determine the data providers best suited to meet the information requirements of environmental reporting at 
the desired spatial scale. The results reveal that the selected indicators show varying degrees of internal 
coherence, with some indices displaying strong correlations and others delineating heterogeneous spatial pat
terns. Our study highlights the importance of choosing the right information source assessing forest area at the 
municipal level and provides a valuable approach quantifying the coherence and reliability of environmental 
indicators in monitoring key aspects of sustainable development.   

1. Introduction 

Quantifying the extent of forest cover – and its change over time – at 
continental, national, and local scales is critical in sustainability science 
because of the primary services provided by forests to ecosystems and 
human well-being (Becagli et al., 2016). Due to the benefits associated 
with forests, investigating their state and changes is crucial in order to 

highlight inequalities in the spatial distribution of natural resources 
(Zambon et al., 2017). The accuracy of detecting small-scale forest 
changes has increased over time as a result of more precise field and 
cadastral surveys, improved remote sensing techniques, and the 
continued development of new algorithms for automatic recognition of 
land cover types (Cavalli et al., 2023). The launch of global and Euro
pean programmes providing refined satellite data (De Fioravante et al., 
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2021a, 2021b; Cecili et al., 2023) has finally granted the high-resolution 
data sources needed to run innovative procedures and algorithms (e.g. 
Francini et al., 2023). The availability of open-source land cover data 
obtained from global (or regional) earth observation programs allows a 
comprehensive analysis of the spatial distribution of forest resources 
with a relatively high (spatial and temporal) resolution (Ferretti and 
Chiarucci, 2003). One program that assures a continuous land cover 
monitoring in Europe is the Copernicus Land Monitoring initiative 
managed by the European Environment Agency (EEA) and the Joint 
Research Centre (JRC) of the European Commission (EC). This initiative 
has released high spatial resolution data for all land cover and use 
changes in Europe, as well as ancillary biophysical variables (Francini 
and Chirici, 2022). The Corine Land Cover (CLC) initiative, one of the 
program’s datasets, has been providing regular land cover data at a 
relatively detailed spatial scale since the early-1990s (D’Amico et al., 
2021). 

Furthermore, there are other initiatives contributing to land cover 
monitoring in Europe. For instance, the European Space Agency (ESA) 
has developed land cover maps covering different epochs using data 
from Envisat and Sentinel-2 satellites (ESA, 2017). Such programs offer 
key information for land cover monitoring, enabling scholars, policy
makers, and environmentalists, to monitor changes in forest area over 
time (Bonfiglio et al., 2002). This aspect became more and more 
important for science because of the growing demand for accurate (geo- 
spatial and diachronic) data informing policy strategies (Vizzarri et al., 
2015), the definition of which is often complicated due to inherent 
monitoring constraints (Salvati et al., 2016). However, although the 
accuracy of forest cover estimation has increased significantly over time, 
uncertainty in forest cover statistics is still high (Seebach et al., 2011), at 
least at detailed spatial domains (e.g. small administrative units). As a 
matter of fact, the multiple (field and remote) data sources made 
recently available from innovative initiatives and more traditional (na
tional) surveys have given room to very different figures of forest cover 
rates at both regional and local levels (e.g. Schuck et al., 2003). 

Forest cover is a key variable in sustainable development reporting 
(Ferretti and Chiarucci, 2003; Seebach et al., 2011; Bontemps et al., 
2022). More specifically, it represents the base of various indicators that 
quantify planning targets and policy advancements (i) directly related 
with two Sustainable Development Goals (SDG13: ‘Climate Action’; 
SDG15: ‘Life on Land’) or (ii) indirectly related with other goals such as 
‘Responsible Consumption and Production’ (SDG12), ‘Sustainable Cities 
and Communities’ (SDG11), as well as ‘Affordable and Clean Energy’ 
(SDG7). Being only partially reduced in the presence of more precise and 
reliable information sources (Ferrara et al., 2016), spatial uncertainty in 
forest cover rates justifies a comprehensive assessment of the contribu
tion of different data sources to environmental reporting (Salvati and 
Carlucci, 2014), trying to delineate their strengths and weaknesses in a 
comparative perspective (Corona, 2018). 

Based on these assumptions, our study compares the spatial out
comes of a panel of forest cover indicators derived from seven data 
sources with different geographical coverage and resolution in Italy, 
with the aim at assessing their spatial coherence and reliability at a fine- 
grained scale (e.g. municipalities). Spatial econometric techniques (both 
global and local: Salvati et al., 2018) were used to test the internal 
coherence in the combined use of forest cover rates derived from 
different data sources and the potential role of information redundancy 
when using local administrative units as the elementary spatial domain 
for environmental reporting (Sallustio et al., 2016). Thanks to its flexi
bility, this operational framework can be generalized to different so
cioeconomic contexts and ecological processes (Loepfe et al., 2012), 
facilitating the development of coherent indicator dashboards to 
monitor socio-environmental dynamics and inform forest policies. 

2. Methodology 

2.1. Study area 

Italy is a Mediterranean country extending 301.330 km2 of land 
classified into three elevation zones (35 % mountains, 42 % uplands, 23 
% lowlands). Although regional variations exist, the country has a 
temperate climate with dry summers (Salvati et al., 2008). Forests 
extend across both hilly and flat areas (Biasi et al., 2015a), while the 
densest coverage is found in the Alpine mountain range, which runs 
through the north of the country, and the Apennines, from Central to 
Southern Italy (Smiraglia et al., 2015). Alpine forests are basically 
dominated by conifers, such as firs, larches, and pines (Congedo et al., 
2016). Coniferous forests are also found in the Apennines, together with 
mixed and deciduous forests, which include oaks, beech, chestnut, and 
hornbeam (Vizzarri et al., 2015). The Po Valley, the largest lowland in 
Northern Italy, has mainly agricultural areas with poplar plantations 
and some oak and riparial residual forests. The two major islands also 
have distinctive forest ecosystems (Ferretti et al., 2014). Mediterranean 
scrub, which includes mastic, arbutus, and myrtle, among others, con
stitutes the majority of Sardinian woods (Barbati et al., 2007). Sicily in 
turn has a characteristic Mediterranean vegetation, with carobs, holm 
oaks, aleppo pines, and wild olives dominating the rural landscape 
(Bajocco et al., 2015). It is worth noting that air temperature, elevation, 
and geographical features of various places affect the types of forests all 
over Italy (Avitabile and Camia, 2018). This landscape diversity trans
lates into a wide range of plant species and habitats in the Italian forest 
environment (Biasi et al., 2015b), which adds to the country’s biodi
versity, probably the largest in Europe (Barbati et al., 2018). 

2.2. Forest cover indicators 

The present study examined the spatial distribution of seven forest 
cover indicators (COR3, COR4, CBB, HRL, COPG, ESA, FAO), each 
produced from a different data source (i.e. land cover map) dated 2018, 
as follows:  

(i) COR3: a pan-European CLC map with a standard (third-level) 
nomenclature (a total of 44 classes) derived from Copernicus 
Land initiative;  

(ii) COR4: a national CLC map with an enhanced (forth-level) 
nomenclature (92 classes, with a focus on natural areas) pro
duced by ISPRA;  

(iii) CBB: a CLC Backbone raster map disseminated by EEA;  
(iv) HRL: a Copernicus High Resolution Layer of forest cover and 

density, a raster file with 10 m cell resolution;  
(v) COPG: Copernicus Global Land Cover, a raster dataset with a 

specific nomenclature and a spatial resolution of 10 m; 
(vi) ESA Land Cover Map, a raster dataset with a specific nomencla

ture (22 classes) and a spatial resolution of nearly 300 m; 
(vii) FAO Land Cover Map, a raster dataset with a specific nomen

clature (10 classes) and a spatial resolution of 250 m. 

These sources provide freely accessible and fully geo-referenced data 
(Barbati et al., 2014) with different spatial resolutions and heteroge
neous definitions of ‘forest area’ (Quaranta et al., 2023). Additionally, 
these sources provide a representative overview of forest monitoring 
tools (i.e. geo-spatial databases) currently available at both global, 
continental and national scale in Europe (Ferrara et al., 2016). The 
target indicators (i.e. forest cover rates) were made available at the 
spatial scale adopted in this study (7904 municipalities) as the percent 
share of forests in total municipal area (Salvati et al., 2018). Forest cover 
rates were derived from a ‘tabulate area’ procedure run in ArcGis 
(release 10, ESRI, Redwoods, CA) on a shapefile of municipal boundaries 
provided by the Italian National Institute of Statistics (Istat), using the 
forest definition adopted in each map. The technical details of each map 
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(i - vii) are given here below. 

2.2.1. Corine land cover (COR3) 
CLC is a comprehensive dataset disseminated by Copernicus Land 

Monitoring Service, under the coordination of EEA, providing valuable 
information on land cover and land-use patterns across Europe. The 
national teams of participating nations, which include EEA members 
and collaborating countries, undertook the classification of satellite 
imagery to build the CLC datasets. The dataset leverages imagery from a 
multitude of high-resolution optical satellites, including – but not 
limited to – Sentinel-2 from the Copernicus program, and Landsat. These 
satellite sources collectively contribute to the generation of the CLC 
dataset. Subsequently, these datasets are amalgamated into a coherent 
and seamless map of Europe’s land cover and land use status, using 
standardized methodologies and terminology (Bajocco et al., 2012). The 
CLC dataset for the year 2018 is classified into five thematic classes 
(artificial surfaces, agricultural areas, forest and semi-natural areas, 
wetlands, and water bodies). Within these main categories, a hierar
chical three-level nomenclature includes a total of 44 classes (Costa 
et al., 2018). This intricate classification system ensures a granular and 
detailed representation of different land cover and land-use patterns 
across the continent. Three out of 44 classes (Broad-leaved forest, 311; 
Coniferous forest, 312; Mixed forest, 313) were adopted to calculate the 
COR3 indicator. It is worth noting that the Minumum Mapping Unit 
within the CLC dataset is defined at 25 ha (Gschwantner et al., 2022). 
This criterion underlines the commitment to precision and accuracy 
maintained by the Copernicus Land Monitoring Service in its endeavor 
to provide comprehensive and scientifically valuable information 
regarding land cover and land use dynamics in Europe (Copernicus Land 
Monitoring Service, 2021a). 

2.2.2. IV level Corine land cover (COR4) 
The COR4 index derives from an extensive, fourth-level classification 

survey carried out by ISPRA, starting from the third-level classification 
of the CLC map (see above). This classification involves photointerpre
tation and provides data for various reference years including 2018. It 
also includes additional specifications regarding forest cover classes 
(Pekkarinen et al., 2009). Fourteen classes (Broad-leaved forest, 
3111–3117; Coniferous forest, 3121–3125; Mixed forest, 3131–3132) 
depicting different forest types characteristic of Italy out of 67 land-use 
classes were here considered. 

2.2.3. Corine land cover Backbone (CBB) 
The CLC database includes high-resolution maps, offering insights 

into both land cover and land cover changes (Parviainen and Frank, 
2003). The CLC + Backbone represents a key component, providing 
comprehensive European land cover information in the form of a wall- 
to-wall geometric vector reference layer with essential thematic con
tent and a 10-meter spatial resolution raster product referred to the year 
2018. As a complement of the backbone layer, the CLC + Core, a data
base/web application, uses innovative data fusion techniques to enable 
the creation of customized products at 100-meter spatial resolution. This 
integrated CLC + system extends and enhances the existing range of 
technical solutions that may address the evolving requirements for land 
cover and land use assessment and reporting (Copernicus Land Moni
toring Service, 2022). When calculating the CBB indicator, three forest 
types (Woody needle leaved trees, Woody Broadleaved deciduous trees, 
and Woody Broadleaved evergreen trees) out of 11 discrete classes were 
here considered. 

2.2.4. Copernicus high resolution layers (HRLs) 
Copernicus High Resolution Layers provide details on tree cover 

density with high spatial precision for various reference years, including 
2018. These data are available in various resolutions, including dis
aggregated 10-meter and standard 100-meter layers. Reference datasets, 
intermediary layers, and expert-level products are made accessible from 

Copernicus Land Monitoring Service (2021a). 

2.2.5. Copernicus global land cover (COPG) 
Undergoing regular updates, the Copernicus Global Land Cover Map 

is a dynamic dataset constructed using geographical data and satellite 
imagery that offers comprehensive information on land cover types of 
the Earth’s surface (Copernicus Land Monitoring Service, 2021b). Core 
information was derived from several satellite missions, including the 
Sentinel-2 mission, the Landsat program with data from satellites like 
Landsat 8 and Landsat 7, capturing multispectral imagery, and other 
Earth Observation Satellites such as SPOT and MODIS. The map creation 
process involves various steps, including data collection, preprocessing, 
image categorization, validation, post-processing, and map develop
ment (D’Agata et al., 2023). For the calculation of the COPG indicator, 
ten classes of forest density, expressed as a percentage of cover per pixel 
(from 1 % to 10 % to 91 %-100 %), were here considered. 

2.2.6. European Space Agency Climate change initiative (ESA-CCI) 
The ESA-CCI Land Cover Map is a project designed to provide a 

global land cover product tailored to meet the requirements of the 
Global Climate Observing System (GCOS) and the broader climate 
change research community. This map provides a representation of the 
physical materials on the Earth’s surface, including elements such as 
grass, asphalt, trees, bare ground, and water. The project explores the 
use of ESA Synthetic Aperture Radar (SAR) sensors to address specific 
challenges related to land cover assessment. The imagery come from 
Envisat’s MERIS instrument, which boasts a spatial resolution of 300 m, 
as well as Sentinel-2, with the potential to provide a global land cover 
map with a 10-meter resolution. Map classification refers to the LCCS 
developed by FAO (2014). The ESA-CCI database offers an unprece
dented time series of global land cover data spanning from 1992 to 
2020. This dataset was compiled through the reprocessing and inter
pretation of data from five distinct satellite missions (ESA, 2017). Eleven 
forest types were here considered in the calculation of the ESA indicator, 
as follows: tree cover, broadleaved, evergreen, closed to open (>15 % 
coverage), code 50; tree cover, broadleaved, deciduous, closed to open 
(>15 %), code 60; tree cover, broadleaved, deciduous, closed (>40 %); 
62: Tree cover, broadleaved, deciduous, open (15–40 %), code 61; tree 
cover, needleleaved, evergreen, closed to open (>15 %), code 70; tree 
cover, needleleaved, evergreen, closed (>40 %), code 71; tree cover, 
needleleaved, evergreen, open (15–40 %), code 72; tree cover, needle
leaved, deciduous, closed to open (>15 %), code 80; tree cover, nee
dleleaved, deciduous, closed (>40 %), code 81; tree cover, 
needleleaved, deciduous, open (15–40 %), code 82; tree cover, mixed 
leaf type (broadleaved and needleleaved), code 90. 

2.2.7. Global land cover SHARE (FAO) 
The Global Land Cover (GLC-SHARE) database was developed by 

Land and Water Division of FAO. It comprises eleven thematic land 
cover layers with a spatial resolution of 30 arcseconds (equivalent to 1 
km2). In order to provide a comprehensive global view of land cover 
types, this database integrates the high-resolution ‘best available’ in
formation on national, regional, and sub-national land cover. GLC- 
SHARE data is available in GeoTIFF format and follows the LCCS stan
dards. This resource can be freely accessed through the FAO Geonetwork 
site (FAO, 2014). In the calculation of FAO indicator, ten layers (with 
different forest densities) of the general class named ‘tree covered area’ 
were here jointly considered. 

2.3. Statistical analysis 

A statistical framework based on spatial econometrics was used to 
assess the coherence of the seven forest cover indicators (COR3, COR4, 
CBB, HRL, COPG, ESA, FAO) at the municipal scale in Italy (Salvati and 
Carlucci, 2014). The following statistics were considered: (a) the 
average value of forest cover and its variability on a national scale; (b) 
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the internal coherence of (local) forest cover values, considering the 
global correlation between pairs of indicators; (c) the external coherence 
of (local) forest cover values, considering the global (linear or non- 
linear) relationship between pairs of indicators; and (d) the spatial 
coherence of (local) forest cover values, considering the spatial rela
tionship between pairs of indicators (Quaranta et al., 2023). 

This approach was operationalized through six (sequential) steps: (i) 
descriptive statistics were calculated for each indicator to analyze the 
spatial distribution of forest cover rates across Italian municipalities; (ii) 
parametric and non-parametric (pair-wise) correlations were performed 
to examine the internal (absolute and relative) coherence between the 
statistical distributions of forest cover indicators; (iii) global regression 
models were used to test the external coherence across the entire spec
trum of forest cover rates; (iv) quantile regression was used to evaluate 
the precision of each indicator at five levels of forest cover; (v) local 
regression models were applied to identify spatial discrepancies when 
comparing the seven indicators pair-wise, and, finally, (vi) a multivar
iate analysis was performed to discover the latent relationship between 
the indicators, considering them jointly (Salvati et al., 2018). 

2.3.1. Descriptive statistics 
In the first step, 8 descriptive statistics were calculated: mean, me

dian, mean-to-median ratio, coefficient of variation, normalized range 
(max-to-min/mean), quantilic range [(perc75th-to-perc25th)/median], 
skewness, and kurtosis. This analysis identifies the most significant 
characteristics of the statistical distribution of each indicator (COR3, 
COR4, CBB, HRL, COPG, ESA, FAO). These metrics offer a consistent 
evaluation of (i) central tendency, (ii) variability, and (iii) distribution 
shape for the indicators in question at municipal level, outlining the 
overall coherence (or discrepancies) in the assessment of forest cover 
rate at national scale. 

2.3.2. Correlation analysis 
To assess the internal coherence of each forest cover indicator at the 

municipal scale (n = 7904), 21 pairwise correlations were run testing 
the following associations: COR3 vs COR4, COR3 vs CBB, COR3 vs HRL, 
COR3 vs COPG, COR3 vs ESA, COR3 vs FAO, COR4 vs CBB, COR4 vs HRL, 
COR4 vs COPG, COR4 vs ESA, COR4 vs FAO, CBB vs HRL, CBB vs COPG, 
CBB vs ESA, CBB vs FAO, HRL vs COPG, HRL vs ESA, HRL vs FAO, COPG 
vs ESA, COPG vs FAO, ESA vs FAO. We assumed a strong (linear or non- 
linear) relationship as a proof of internal coherence between the sta
tistical distribution of these indicators. Two correlation coefficients 
were used, both parametric (Pearson) and non-parametric (Spearman), 
verifying the internal coherence of the absolute scores (cardinal mea
sures) determined using Pearson coefficients, and the relative scores 
(ordinal measures) determined using Spearman coefficients. Significant 
correlations were assessed at p < 0.05 after Bonferroni’s correction for 
multiple comparisons. If the Spearman coefficient exceeds the corre
sponding Pearson coefficient, it means that ordinal measurements be
tween specific sets of indicators show greater coherence than cardinal 
measures, in turn suggesting the existence of a non-linear relationship 
between variables (Salvati et al., 2018). 

2.3.3. Ordinary least square (OLS) regression models 
OLS (pair-wise) regression models were used to test the external 

coherence of forest cover rates assuming a one-to-one linear relationship 
between each pair of indicators, for the all the pair-wise comparisons 
reported above. The analysis initially identified linear (or more com
plex) relationships between indicators, including second-order 
(quadratic) and third-order (cubic) trends. Key metrics such as 
adjusted-R2 values, regression coefficients, as well as the relative errors 
were considered. Additionally, to check for heteroscedasticity and the 
existence of autocorrelation in the residuals of each tested model, the 
Breusch-Pagan and Durbin-Watson tests were used, respectively. The 
Akaike’s Information Criterion was considered when examining 
quadratic and cubic relationships. 

2.3.4. Quantile regression models 
To further explore the external coherence, i.e. the relationship be

tween indicators at specific loci of the statistical distribution, quantile 
regressions were performed for the 21 pair-wise comparisons described 
above, considering five different percentiles (10th, 25th, 50th, 75th, 
90th). Regression results include estimates of slope coefficients and the 
associated significance levels testing the null hypothesis of non- 
significant regression coefficients via Student t statistics at p < 0.001. 
Slope and intercept similarities between models were also evaluated to 
ascertain a consistent behavior of forest cover indicators at different 
distributional loci as a result of internal and external coherence, 
regardless of the amount of forest area in each municipality. 

2.3.5. Local regression models 
A refined investigation of the spatial coherence (i.e. regional vari

ability and local heterogeneity) of forest cover indicators was obtained 
running Geographically Weighted Regressions (GWRs) that consider the 
spatial pattern at the base of the relationship between each couple of 
variables (Ali et al., 2007). For each of the 21 pair-wise comparisons 
discussed above, GWRs were used to estimate local regression models 
that account for spatial dependency and heterogeneity (Brunsdon et al., 
2002). A GWR specification for a given location, denoted as s = 1 to n, is: 

Y(s) = X(s)B(s)+ e(s) (1)  

where Y(s) and X(s) represent the dependent variable and the predictor 
measured at location s, respectively, B(s) denotes the column vector of 
regression coefficients at location s, and e(s) stands for the random error 
at location s. Weighted least squares were used to estimate the regres
sion parameters at each location, making them spatially explicit as a 
function of s (Anselin, 2001). In particular, when using GWR, potential 
limitations associated with inferential conclusions arising from a small 
sample of data should be considered (Zambon et al., 2017). However, 
such limitations were not encountered in the context of this study. The 
results of the models include (i) a global measure of goodness-of-fit 
(adjusted R2), which was compared with the same index obtained 
from the respective OLS regression, and (ii) local coefficients (R2, 
intercept, slope, standard residuals) illustrated through maps. GWRs 
verified the spatial coherence of forest indicators and shed light on the 
role of regional variability and local heterogeneity when testing various 
sources of land cover information. 

2.3.6. Multivariate analysis 
PCA, a statistical technique that reduces dimensionality and iden

tifies latent patterns in complex datasets (D’Agata et al., 2023), was 
finally used with the aim at summarizing the econometric results illus
trated above. More specifically, the PCA validated the different di
mensions of coherence (see above) of the municipal ranking generated 
from each indicator by a matrix with 7 columns (corresponding to the 
forest cover indicators) and 7904 rows (representing the Italian mu
nicipalities). Identification of the most relevant components was ach
ieved by keeping those with eigenvalues greater than 1. The most 
relevant results of this analysis were visualized using a biplot, which 
established associations between the component loadings (i.e. the cor
relations between input variables and the principal components) and 
scores (i.e. the correlations between geographical units and the principal 
components). 

3. Results 

3.1. Descriptive statistics 

The statistical distribution of the seven indicators shows notable 
heterogeneity (Table 1). A descriptive analysis of the spatial series of 
forest cover indicators at the municipal level in Italy reveals the exis
tence of three groups of indicators with comparable averages (SM. 
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Figure 1). One group includes COR3, COR4, and ESA, with mean values 
between 0.26 and 0.27 (i.e. forests cover, on average, 26 %-27 % of the 
municipal area). Another group consists of HRL, COPG, and FAO, with 
average values between 0.30 and 0.32. Both of these groups differ from 
the average value of CBB (0.41); Similar median values may confirm this 
general pattern. The lack of stability across indicators is evident in the 
coefficient of variationof the forest cover rate across Italian municipal
ities, varying from 65 % (COPG) to 106 % (ESA). COR3, COR4 and ESA 
display the highest spatial variability, followed by FAO. The ratio be
tween the mean and median values ranges from 1.01 to 1.61, revealing a 
moderate asymmetry in the statistical distribution of the seven in
dicators. The normalized range [(max–min)/mean] varies between 2.4 
and 3.8, revealing latent differences in frequency distributions; the 
quantile range [(p75-p25)/median] ranges between 1.2 and 2.9. Skew
ness varies significantly across indicators, ranging between 0.13 and 
0.78; kurtosis takes on relatively high values and is almost homogeneous 
in all statistical distributions. 

3.2. Correlation analysis 

A total of 21 comparisons were performed to assess the level of pair- 
wise association between forest cover indicators in Italian municipalities 
(Table 2). Correlation coefficients derived from these pair-wise com
parisons reveal consistently strong, positive correlations that are highly 
significant, spanning into a range of values between 0.88 and 1. Despite 
a substantial (cross-sectional) heterogeneity due to the large sample size 
investigated (n = 7904 units), these values outline the internal coher
ence of the seven forest indicators. Although there are cases where the 
Spearman coefficient slightly exceeds the Pearson coefficient, both co
efficients consistently show similar values, confirming the appropriate
ness of using linear correlations instead of more complex approaches (e. 

g. polynomial trends). These results highlight that the indicators’ 
ranking maintains a high level of consistency, even if minor (absolute) 
disparities exist between geographical units. 

3.3. Ordinary least Square regression models 

Comparing the adjusted-R2 values measuring the goodness-of-fit 
between the cubic, quadratic, and linear specifications, consensus 
emerges on the performance of these three models across all pairwise 
comparisons (SM.Table 1). These results suggest that the linear speci
fication stands out as the most reliable and (statistically) parsimonious 
option, with adjusted-R2 values ranging between 0.739 and 0.997. In 
any pairwise comparison, the incremental improvement in R2 due to the 
increasing degree of the fitted (polynomial) equation remains relatively 
small. Conversely, regression slopes and intercepts show a slightly 
greater variability, with values ranging between 0.716 and 1.308 and 
between − 0.096 and 0.166, respectively. The Durbin-Watson statistic 
was always close to 2, reflecting a negligible serial autocorrelation. The 
most coherent results were achieved for COR3, COR4, ESA, and FAO 
indicators (adjusted R2 exceeding 0.9 and regression coefficients (slope 
and intercept) approaching 1 and 0, respectively, thus reflecting a one- 
to-one linear relationship). 

3.4. Quantile regression models 

Table 3 shows the results of quantile regressions (10th, 50th, and 
90th percentile) adopting a linear specification for each of the 21 pair
wise comparisons reported in SM.Table 2. Quantiles were used to 
delineate specific loci of the statistical distribution of the seven in
dicators, that correspond to higher levels of the forest cover rate. In 
particular, the pseudo-R2 coefficient shows a slight decline from the first 
to the fourth percentile, indicative of more heterogeneous indicator 
values at higher levels of forest cover, as reflected in the corresponding 
increase of the intercept coefficients. As expected, this decline was more 
evident for indicators derived from high-resolution layers (CBB, HRL, 
COPG) than for those derived from low-resolution layers (COR3, COR4, 
ESA, FAO). 

3.5. Local regression models 

Table 4 provides the results of GWRs testing the spatial congruence 
of the adopted indicators. Local regressions consistently demonstrate 
higher goodness-of-fit than the corresponding OLS regressions for all 
pairwise comparisons. In particular, the global R2 of GWR models 
typically approached 0.9, despite a considerable heterogeneity because 
of the large sample size. GWRs allow visualization of local estimates for 
goodness-of-fit and regression parameters through maps (SM.Figure 2 
and 3). The increase in R2 varies from 0.6 % (COR4 vs FAO) to 12.8 % 
(CBB vs ESA), and is higher for indicators derived from high-resolution 
layers than those derived from low-resolution layers. These results 
indirectly demonstrate a greater spatial coherence (i.e. less local het
erogeneity) of indicators derived from low-resolution map sources. 

Table 1 
Descriptive statistics of the spatial distribution of seven indicators of forest cover in Italy, municipal scale (n = 7904 units), see the methodological section for 
abbreviations.  

Metric COR3 COR4 CBB HRL COPG ESA FAO 

Mean 0.26 0.26 0.41 0.30 0.32 0.27 0.32 
Median 0.19 0.19 0.40 0.28 0.28 0.17 0.26 
Mean/median 1.39 1.39 1.01 1.06 1.13 1.61 1.23 
Coefficient of variation 97.6 98.6 66.3 70.6 65.0 105.9 88.5 
Normalized range 3.80 3.81 2.40 2.92 2.89 3.64 3.11 
Quantile range 2.37 2.42 1.22 1.35 1.25 2.87 1.99 
Skewness 0.66 0.66 0.13 0.26 0.46 0.78 0.47 
Kurtosis − 2155 − 2148 − 1720 − 1810 − 2010 − 2274 − 1856  

Table 2 
Pair-wise correlation analysis (moment-product linear parametric Pearson co
efficient, r; non-linear non-parametric co-graduation Spearman rank coefficient, 
rs) of seven indicators of forest cover in Italy, municipal scale (n = 7904 units); 
bold indicates coefficients > |0.95| reflecting a satisfactory (spatial) coherence 
between indicators; italics indicate coefficients > |0.90| reflecting a sufficient 
(spatial) coherence between indicators (see the methodological section for 
abbreviations).  

Indicators COR3 COR4 CBB HRL COPG ESA 

Pearson coefficient 
COR4  0.998      
CBB  0.880  0.881     
HRL  0.916  0.916  0.974    
COPG  0.942  0.943  0.929  0.958   
ESA  0.936  0.936  0.860  0.900  0.934  
FAO  0.970  0.969  0.886  0.916  0.943  0.927 
Spearman coefficient 
COR4  0.994      
CBB  0.880  0.885     
HRL  0.914  0.918  0.977    
COPG  0.926  0.930  0.933  0.958   
ESA  0.922  0.919  0.860  0.900  0.920  
FAO  0.970  0.967  0.880  0.913  0.928  0.922  
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3.6. Principal Component analysis 

Table 5 shows the results of the PCA, which summarizes the char
acteristics of the seven indicators used in this study to identify latent 
patterns and, possibly, the underlying contextual factors. By decom
posing a matrix of pairwise linear correlations for the seven indicators, 
PCA extracted the first two components that explain together 97 % of the 
total variance. The indicators considered show a homogeneous corre
lation with Component 1 (93.8 %), with positive loadings between 0.38 
and 0.43. In contrast, Component 2 shows variable loadings across 

indicators (ranging between − 0.30 and 0.73). The biplot illustrating the 
relationships between the input variables (SM.Figure 4), reveals two 
distinct groups of indicators in different quadrants. In line with the re
sults illustrated above, the first group includes CBB, HRL, and COPG, 
although their patterns within the quadrant are not completely aligned – 
an indirect evidence of their marked heterogeneity. Meanwhile, the 
remaining indicators in the fourth quadrant (COR3, COR4, ESA, FAO) 
show strong similarity. 

4. Discussion 

Current research addresses the urgent need to quantify forest cover 
and monitor its changes, evaluating the coherence of indicators derived 
from various geo-spatial data sources and their redundancy when 
applied to local administrative units (Barbati et al., 2007; Avitabile and 
Camia, 2018; Bontemps et al., 2022). Quantitative techniques derived 
from sequential econometric methods can be used to assess the reli
ability of a panel of forest cover indicators grounded on a multidimen
sional notion of coherence (Lorenz and Fischer, 2013). The proposed 
framework – which includes various techniques such as correlation 
analysis, regression models and principal component analysis - has 
demonstrated its flexibility to different environmental conditions and 
socioeconomic contexts (Salvati et al., 2018). Furthermore, it assessed 
the precision of a wide range of indicators that quantify a target phe
nomenon from multiple data sources (Quaranta et al., 2023). 

The data collected reveal a recurring challenge in the various phases 
of the statistical analysis process (Francini and Chirici, 2022). The 

Table 3 
Results of quantile regression models comparing pair-wise the spatial outcomes of seven indicators of forest cover in Italy (n = 7904 units) by specification and 
estimation criterion; all models are significant at p < 0.0001; “P-R2” indicates Pseudo-R2 (see the methodological section for abbreviations).  

Pairwise Comparison Quantile-10th Quantile-50th Quantile-90th 

P-R2 Intercept (err) P-R2 P-R2 P-R2 Slope (err) P-R2 Intercept (err) Slope (err) 

COR3 vs COR4  0.988 − 0.001(0.000)  0.978  0.978  0.978 1.000(0.000)  0.976 0.000(0.000) 1.000(0.000) 
COR3 vs CBB  0.749 − 0.047(0.003)  0.853  0.853  0.853 0.856(0.005)  0.552 − 0.059(0.001) 0.856(0.005) 
COR3 vs HRL  0.784 − 0.090(0.001)  0.858  0.858  0.858 1.106(0.006)  0.612 − 0.050(0.001) 1.106(0.006) 
COR3 vs COPG  0.830 − 0.163(0.002)  0.852  0.852  0.852 1.167(0.006)  0.655 − 0.106(0.002) 1.167(0.006) 
COR3 vs ESA  0.848 − 0.011(0.001)  0.820  0.820  0.820 0.887(0.004)  0.667 0.006(0.001) 0.887(0.004) 
COR3 vs FAO  0.874 − 0.042(0.001)  0.915  0.915  0.915 0.862(0.003)  0.778 − 0.004(0.001) 0.862(0.003) 
COR4 vs CBB  0.751 − 0.049(0.003)  0.853  0.853  0.853 0.863(0.005)  0.554 − 0.062(0.001) 0.863(0.005) 
COR4 vs HRL  0.785 − 0.091(0.002)  0.858  0.858  0.858 1.114(0.006)  0.615 − 0.054(0.001) 1.114(0.006) 
COR4 vs COPG  0.831 − 0.163(0.001)  0.852  0.852  0.852 1.176(0.005)  0.659 − 0.110(0.002) 1.176(0.005) 
COR4 vs ESA  0.846 − 0.015(0.001)  0.819  0.819  0.819 0.894(0.004)  0.668 0.002(0.001) 0.894(0.004) 
COR4 vs FAO  0.871 − 0.049(0.001)  0.915  0.915  0.915 0.865(0.003)  0.774 − 0.005(0.001) 0.865(0.003) 
CBB vs HRL  0.918 0.001(0.000)  0.855  0.855  0.855 1.271(0.003)  0.783 0.014(0.001) 1.271(0.003) 
CBB vs COPG  0.852 − 0.084(0.002)  0.756  0.756  0.756 1.239(0.005)  0.597 − 0.008(0.002) 1.239(0.005) 
CBB vs ESA  0.802 0.025(0.001)  0.701  0.701  0.701 0.827(0.006)  0.393 0.155(0.004) 0.827(0.006) 
CBB vs FAO  0.841 0.015(0.001)  0.697  0.697  0.697 0.920(0.004)  0.536 0.079(0.002) 0.920(0.004) 
HRL vs COPG  0.875 − 0.072(0.002)  0.822  0.822  0.822 0.985(0.003)  0.693 − 0.022(0.001) 0.985(0.003) 
HRL vs ESA  0.820 0.014(0.001)  0.756  0.756  0.756 0.684(0.005)  0.482 0.100(0.002) 0.684(0.005) 
HRL vs FAO  0.841 0.007(0.001)  0.754  0.754  0.754 0.739(0.003)  0.586 0.048(0.001) 0.739(0.003) 
COPG vs ESA  0.838 0.049(0.001)  0.813  0.813  0.813 0.683(0.004)  0.599 0.126(0.002) 0.683(0.004) 
COPG vs FAO  0.843 0.034(0.001)  0.825  0.825  0.825 0.706(0.003)  0.650 0.091(0.001) 0.706(0.003) 
ESA vs FAO  0.830 − 0.075(0.001)  0.836  0.836  0.836 0.923(0.006)  0.642 − 0.011(0.001) 0.923(0.006)  

Table 4 
Global results of Geographically Weighted Regressions (GWR) comparing pair- 
wise the spatial outcomes of seven indicators of forest cover in Italy (n =
7904 units) with the results of Ordinary Least Square (OLS) regressions (see SM. 
Table 1); “AIC” indicates the Akaike Information Criterion; “(Δ)R2” indicates the 
absolute ratio between GWR and OLS R2; see the methodological section for 
abbreviations.  

Model/ 
Estimate 

Distance Band 
(km) 

AICc Global R2 

(GWR) 
(Δ)R2 (GWR/ 
OLS) 

COR3 vs 
COR4  

227.1 − 43995  0.997  1.001 

COR3 vs CBB  224.3 − 13615  0.843  1.087 
COR3 vs HRL  224.3 − 15286  0.873  1.040 
COR3 vs 

COPG  
224.4 − 16768  0.894  1.007 

COR3 vs ESA  224.4 − 16265  0.888  1.012 
COR3 vs FAO  224.5 − 22136  0.947  1.006 
COR4 vs CBB  224.3 − 13553  0.843  1.086 
COR4 vs HRL  224.3 − 15203  0.873  1.039 
COR4 vs 

COPG  
224.4 − 16734  0.895  1.007 

COR4 vs ESA  224.4 − 16137  0.887  1.014 
COR4 vs FAO  224.5 − 21801  0.945  1.006 
CBB vs HRL  224.3 − 24485  0.964  1.016 
CBB vs COPG  224.3 − 18440  0.922  1.067 
CBB vs ESA  224.3 − 12430  0.834  1.128 
CBB vs FAO  224.3 − 13455  0.854  1.089 
HRL vs COPG  224.2 − 25213  0.947  1.031 
HRL vs ESA  224.3 − 17739  0.862  1.066 
HRL vs FAO  224.3 − 18192  0.870  1.036 
COPG vs ESA  224.4 − 19911  0.891  1.021 
COPG vs FAO  224.4 − 20437  0.898  1.010 
ESA vs FAO  224.4 − 13350  0.873  1.015  

Table 5 
Results of a Principal Component Analysis (loadings and the proportion of 
extracted variance by axis) of seven indicators of forest cover in Italy (n = 7904 
units).  

Variable Axis 1 Axis 2 

COR3  0.38  − 0.28 
COR4  0.39  − 0.27 
CBB  0.39  0.73 
HRL  0.31  0.40 
COPG  0.30  0.11 
ESA  0.43  − 0.30 
FAO  0.42  − 0.23 
Explained variance (%)  93.8  3.3  
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correlation analysis and the PCA performed on the values of forest cover 
rate at the municipal scale identified two groups of indicators in a non- 
trivial way: (i) a set of internally consistent indicators derived from the 
CLC map (COR3, COR4) or based on ESA and FAO maps, and (ii) a more 
heterogeneous set of indicators derived from adaptations (or thematic 
refinements) of CLC products (i.e. CBB and HRL) and Copernicus 
(COPG) global map. CBB, HRL and CBB reveal peculiar characteristics 
and incoherencies, with the CBB showing more divergent values from 
the others. This led to inconsistent descriptive statistics (Quaranta et al., 
2023), with lowest coefficient of variation, normalized range, quantile 
range and skewness and highest kurtosis (Bajocco et al., 2012). In the 
PCA, the CBB values were significantly different from the others, being 
associated only with Component 2 and showing a high explanatory 
power, probably due to the intrinsic heterogeneity of this indicator 
(Keenan et al., 2015). 

The regression results confirm the linear relationship among forest 
cover indicators and the similarity of forest cover figures derived from 
medium-low resolution maps (CLC3, CLC4, ESA, FAO), regardless of the 
definition of ‘forest area’ adopted (e.g. Ferrara et al., 2016). Descriptive 
statistics from these data sources have comparable mean values (and 
similar median values and coefficients of variation) at the country scale 
(Vega et al., 2021). Quantile regressions confirm the external coherence 
of such figures at multiple loci of the statistical distribution of CLC3, 
CLC4, ESA, and FAO. Finally, local regressions document the greater 
spatial coherence of the forest cover values derived from medium-low 
resolution maps compared with those derived from high-resolution 
maps (Vizzarri et al., 2015), showing an evident local heterogeneity 
which is hardly interpretable (Nesha et al., 2021). 

In this regard, the results of the statistical analysis suggest that there 
is currently no sufficient map capable of offering statistically homoge
nous forest cover values by municipality in Italy, and that it is not 
irrelevant or arbitrary whether one or the other forest map is used for 
assessing forest area in small administrative units, e.g. for environ
mental reporting and/or accounting for sustainable development (Fer
retti and Chiarucci, 2003). Consequently, the development of a single 
recognized and shared georeferenced tool is crucial on a national scale 
(Corona, 2018). Precisely for this purpose, the General Directorate of 
Mountain Economy and Forestry of the Italian Ministry of Agriculture, 
food and forest sovereignty, has launched a new program for the crea
tion of a national forest map with high geometric resolution (D’Amico 
et al., 2023). 

The selection of reference sources for the assessment of forest area at 
a spatially detailed administrative scale should be carried out carefully 
to ensure distinct information (Cavalli et al., 2023). The clustering of the 
indicators here considered is linked to aspects such as spatial resolution, 
the detail of semantic classes, the geometric properties of objects, and 
the various phases of producing maps from different satellite observa
tions (Costa et al., 2018). These aspects allow a meaningful evaluation of 
a panel of indicators to calibrate forest management strategies at local 
and national levels, going beyond the definition of ‘forest’ adopted in 
each source map (e.g. Camarretta et al., 2018). 

The empirical results of this study also highlight that there is no one- 
size-fits-all map for the assessment of forest cover in the European 
context (Seebach et al., 2011). Indeed, low-resolution and high- 
resolution map sources have offered two contrasting views of forest 
cover in Italy (e.g. Smiraglia et al., 2015). This finding is in line with 
earlier research that has noted the challenges of reconciling divergent 
values of forest cover (Salvati et al., 2016). The insights gained from this 
research resonate beyond the boundaries of the study area and have 
broader implications for sustainability monitoring, environmental 
reporting, and forest conservation and valorization efforts worldwide 
(Tomppo et al., 2008). Therefore, this study reinforces the call for 
continued efforts to improve the accuracy of forest cover monitoring and 
to consider the intrinsic characteristics and limitations of different data 
sources (e.g. Ferretti et al., 2014). More specifically, results of spatially 
explicit econometric designs analysing individual indicators or 

composite indexes derived from different data sources – both official 
statistics and other public-domain references – may contribute signifi
cantly to theory and practice of environmental assessment by improving 
monitoring tools and instruments in a context of increased digital in
formation, both proximal and remote (De Fioravante et al., 2021a, 
2021b). 

A deeper integration of proximal and remote sources at the European 
scale will surely contribute to the effective enrichment of official sta
tistics in the field of forestry (Keenan et al., 2015). Additionally, a 
comparative analysis of systematic and non-systematic errors in both 
proximal and remote surveys and how they may affect official statistic 
estimates at various temporal and spatial scales seems particularly 
appropriate in a context of growing demand of geo-spatial information 
for environmental reporting (Quaranta et al., 2023). Future research 
should finally assure a better integration between total (e.g. census) and 
partial (e.g. sampling) data sources, giving more value respectively to 
the wide information stock offered by (Eurostat homogenized) agricul
tural censuses at the country scale and LUCAS (Land Use and Coverage 
Area frame Survey) sampling at the continental level in Europe (e.g. 
Bajocco et al., 2012). While being largely informative for forest 
reporting, maps and geo-spatial databased from LUCAS monitoring 
system (e.g. Smiraglia et al., 2015), the relatively small sampling size of 
this reference allows the provision of official statistics at very aggregated 
spatial domains, basically geographical macro-regions (NUTS-1 level) 
and administrative regions (NUTS-2 level). Small-area estimation of 
LUCAS statistics based on additional information stemming from pop
ulation and agricultural censuses, business and land registers, or similar 
public sources (Ferrara et al., 2016), seems to be an appropriate topic for 
future studies. 

The indirect approach here used to analyse the coherence of a 
dashboard of forest cover indicators promises broader applicability to 
other variables that measure complex environmental processes and so
cioeconomic phenomena (Cavalli et al., 2022). This approach, rooted in 
geographical information systems and exploratory data analysis, will 
benefit from the growing availability of digital geo-referenced data and 
technological advancements (Congedo et al., 2016). Furthermore, there 
is the possibility to expand this approach by exploring time-series 
datasets, allowing comparisons across different indicators for all mu
nicipalities at various time points (Borrelli et al., 2014). Analyzing the 
informativeness of a group of variables within a dashboard of indicators 
is a promising avenue for future research that requires more investiga
tion and practical testing based on advanced statistical approaches. 

5. Conclusions 

Environmental and forest policies, as well as their implementation 
within operative management processes, should be evidence-based 
(Corona, 2018). However, earlier studies have documented how an ac
curate quantification of forest cover rates at a fine-grained scale, such as 
municipal units, poses substantial challenges (Nesha et al., 2021). Our 
study contributes to the body of knowledge by highlighting the opera
tional complexity associated with selecting data sources and subse
quently assessing forest cover figures, particularly in small 
administrative units (Sallustio et al., 2016). The variations observed 
between different forest cover indicators derived from various sources 
stress the need for meticulous consideration when choosing data for 
administrative-scale assessment (Pekkarinen et al., 2009); even seem
ingly similar definitions of forests can produce significantly different 
results due to mapping features, influencing statistical results and, 
consequently, policy recommendations (Parviainen and Frank, 2003). 
For large-scale monitoring programs that rely on indicator dashboards, 
it is imperative to not only ensure internal and external coherence, 
statistical reliability and redundancy, but also to quantify the informa
tive power of the individual components and the stability of results to 
any change in the composing dimensions, basically time and space. The 
proposed approach could improve the effectiveness of such monitoring 
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programs in guiding environmental planning and policy decisions in 
different contexts. 
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