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A B S T R A C T   

Landslide susceptibility modelling is a crucial tool for implementing effective strategies in landslide risk miti
gation. A plethora of statistical methods is available for generating accurate prediction images; however, the 
reliability of these models in terms of geomorphological adequacy is often overlooked by scholars. This critical 
flaw may result in concealed prediction errors, undermining the trustworthiness of the obtained maps. A key 
aspect of evaluating the geomorphological soundness of these models lies in factor analysis, specifically 
considering the correlation of explanatory variables with the final susceptibility score rather than solely focusing 
on their impact on model accuracy. 

This study delves into research conducted in the Bidente river basin (Italy) that analyes results obtained from 
slide, flow, and complex susceptibility models using Weight of Evidence (WoE) and Multivariate Adaptive 
Regression Splines (MARS) statistical methods. The research critically examines each factor class’s role in 
defining susceptibility scores for different landslide typologies. The comparison between susceptibility maps 
generated by WoE and MARS for each typology (slide = 0.78; flow = 0.85; complex: 0.79) (slide = 0.78; flow =
0.85; complex: 0.79)reveals good to excellent prediction skill, with MARS demonstrating a 5 % higher perfor
mance index. 

The study emphasises the importance of spatial relationships between variables and landslide occurrences, 
highlighting that individual classes of variables influence the final susceptibility score based on their combined 
role with other predictor classes. In particular, in this study, results highlight that lithotecnical and landform 
classification classes delimit the landslide domain, while topographic attributes (steepness, curvatures, SPI and 
TWI) modulate the score inside. The proposed approach offers insights into investigating the geomorphological 
adequacy of landslide prediction images, emphasising the significance of factor analysis in evaluating model 
reliability and uncovering potential errors in susceptibility maps.   

1. Introduction 

Landsliding is a major slope modelling process in response to slope 
gravitational instabilities that contributes to hillslope erosion (Mont
gomery and Dietrich, 1994; Roering et al., 2001) and it constitutes a 
severe environmental hazard with large-scale social, economic, and 
natural impact (Guzzetti et al., 1999; Parise and Jibson, 2000;Pour
ghasemi and Rahmati, 2018, Rouhi et al., 2019, 2022). In this regard, 
landslide susceptibility maps are key tools for land-use planning, 

management, and risk mitigation, since they depict the spatial proba
bility of landslide occurrence, based on local terrain conditions (Brabb, 
1984; Guzzetti et al., 1999, 2005; Mergili et al., 2014; Martinello et al., 
2021, 2022a,b; Bufalini et al., 2021). 

Many different approaches and methods have been proposed to 
ascertain landslide susceptibility. Among them, statistical modelling is 
based on the hypothesis that the same environmental conditions that 
caused landslide occurrence in the past will lead to slope failures also in 
the future. Hence, the generation of a landslide model requires the 

* Corresponding author. 
E-mail address: michele.delchiaro@uniroma1.it (M. Delchiaro).  

Contents lists available at ScienceDirect 

Catena 

journal homepage: www.elsevier.com/locate/catena 

https://doi.org/10.1016/j.catena.2024.107835 
Received 2 August 2023; Received in revised form 6 January 2024; Accepted 16 January 2024   

mailto:michele.delchiaro@uniroma1.it
www.sciencedirect.com/science/journal/03418162
https://www.elsevier.com/locate/catena
https://doi.org/10.1016/j.catena.2024.107835
https://doi.org/10.1016/j.catena.2024.107835
https://doi.org/10.1016/j.catena.2024.107835
http://crossmark.crossref.org/dialog/?doi=10.1016/j.catena.2024.107835&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Catena 238 (2024) 107835

2

definition of explanatory variables that reflect the pre-failure charac
teristics of the slopes (Carrara, 1983; Chacón et al., 2006; Guzzetti et al., 
1999; Huabin et al., 2005; Van Westen et al., 2008). 

According to the review of Reichenbach et al. (2018), the most 
important “explanatory thematic variables”, here after named also “in
dependent variables” or “predictors” or “covariates”, can be grouped in: 
i) morphological (e.g., slope, aspect, elevation, relief, curvature), ii) 
geological (geo-lithological, distance to fault, geo-structural), iii) land 
cover (land use, soil type, vegetation cover, distance to road) and iv) 
other (precipitation, recorded or expected seismic acceleration, 
geotechnical properties etc.). In general, topography (slope, aspect, re
lief, curvature, etc.) and lithology are considered conditioning (prepa
ratory and predisposing, e.g. Delchiaro et al., 2023; Discenza et al., 
2023) factors (e.g., Pourghasemi and Rahmati, 2018; Delchiaro et al., 
2021), while rainfall, earthquakes, and anthropogenic stresses (e.g, road 
undercutting) are known as triggering factors (e.g., Lee et al., 2008; 
Tanyaş et al., 2022a, 2022b). However, as regards rainfall, depending on 
the duration of the time window it can be also considered as a predis
posing variable. 

In general, the inferential study between the dependent and inde
pendent variables can be performed with simple bivariate to sophisti
cated multivariate and machine learning approaches. In detail, in 
bivariate statistical analysis, landslide incidence is computed separately 
on each explanatory variable and then using normalized values (land
slide density per parameter class in relation to the landslide density over 
the whole area), a total susceptibility map can be created by the addition 
of the weights for each individual factor class. The most important 
bivariate methods surely include Frequency Ratio (FR, e. g., Lee and 
Pradhan, 2007; Yilmaz, 2009; Delchiaro et al., 2021) and Weights of 
Evidence (WoE, e.g., Lee and Choi, 2004; Piacentini et al., 2012; Ilia and 
Tsangaratos, 2016) models. Conversely, the multivariate analysis fo
cuses on the relations between multiple variables whose role in 
explaining a given past landslide scenario is examined simultaneously. 
Logistic regression (e.g., Costanzo et al., 2014), Maximum Entropy Al
gorithm (MaxEnt; e.g., Lombardo et al., 2016), Generalized Linear 
Model (GLM; e.g., Atkinson & Massari, 1998), Artificial neural networks 
(ANN; e.g., Ripley, 1996), Support Vector Machine (SVM; e.g., Huang & 
Zhao, 2018), Random Forests (RF; e.g., Sun et al., 2020) and (MARS, e. 
g., Vargas-Cuervo et al., 2019) are among the most exploited multi
variate methods. 

A great number of papers dealing with methods comparison have 
been published in recent years (e.g., Pradhan, 2010; Vorpahl et al., 
2012; Al-Najjar et al., 2021; Pandey et al., 2023). However, in almost all 
the cases, the comparison is limited in indicating best/worst perfor
mances and/or selected/unselected factors with a totally lacking 
geomorphological interpretation of the obtained results (i.e., how do 
different landslide types result in different models and accuracies?). 

At the same time, the importance of the variables and how to 
investigate them is a topic that still deserves further investigation. 

In fact, various methods exist for quantifying the incidence of factors 
in the optimised predictive models, including: Fuzzy-Rough sets (e.g., 
Gorsevski and Jankowski, 2008, 2010); Chi-square (e.g., Kutlug Sahin 
et al., 2017); Fisher (e.g., Kutlug Sahin et al., 2017); Relief (e.g., Kutlug 
Sahin et al., 2017); Information Gain (e.g., Chen et al., 2018); Infor
mation Gain Ratio (Tien Bui et al., 2016; Zhou et al., 2018); the mean 
value of relative contribution (e.g., Huang et al., 2020); permutation- 
based variable accuracy importance methods (e.g., Zhao et al., 2022). 
However, all these methods are focused on estimating the incidence of 
the predictors in controlling the model accuracy, strongly relying their 
results on the statistical evaluation of the model performance. In this 
way, weak attention is given to the geomorphological adequacy of the 
obtained susceptibility classes (i.e., with a focus on the importance of 
the single class of variables in relation to the final susceptibility score). 

This lack of geomorphological adequacy in the evaluation of the 
model performance takes an even more critical impact when mixed 
landslide inventories are used for calibration, without clearly splitting 

the mapped cases according to the landslide typology. This same con
dition has consequences both in terms of the reliability of the obtained 
predictive maps and the subtending variable importance. 

To explore the above-mentioned topics, geomorphological adequacy 
is here investigated for slide, flow and complex landslide types in the 
Bidente river basin, using two statistical methods: Weight of Evidence 
(WoE; Bonham-Carter, 1989) and Multivariate Adaptive Regression 
Splines (MARS; Friedman, 1991). In particular, the model comparison 
for the three different landslide typologies and the two methods was 
performed from a geomorphological perspective by investigating the 
multivariate score distribution inside each factor class. Besides, the 
comparison between the two susceptibility maps obtained for each 
landslide typology by applying the two methods is performed for score 
classes so to estimate the general congruence of the prediction images. 

2. Physical setting of the study area 

The Bidente river basin lies in the Romagna Apennines, spanning 
approximately from 43◦50′00′’ N to 44◦20′00′’N. It encompasses the 
northeastern slope of the mountain range and flows mainly north- 
eastward. Its headwater is located at the Apennines drainage divide 
between Toscana and Emilia Romagna regions. At this point, three 
different rivers are originated, Bidente di Corniolo, Bidente di Ridracoli, 
and Bidente di Pietrapazza, whose join upstream of Santa Sofia village 
generates the Bidente River (Fig. 1). 

The Bidente River ends near Meldola village, where it becomes the 
Ronco River. The Bidente drainage area is about 600 km2, with a dif
ference in height of about 1600 m. Indeed, the study area is essentially 
mountainous and hilly, except for the area downstream of Meldola 
village. 

The region is characterized by a cool temperate climate setting in the 
inner mountainous part of the basin, while the hilly sector proximal to 
the Po Plain is subcontinental (Antolini et al., 2015; Nistor, 2016). The 
mean annual precipitation is 1305 mm in the mountainous sector and 
780 mm in the plain downstream of Meldola, with the highest values in 
autumn and spring; the mean temperature is 11 ◦C in the inner sector 
and 14 ◦C along the plain, with the minimum in January and the 
maximum in July and August (Antolini et al., 2017). 

The selected study area for about 50 % is occupied by woodlands 
upstream of Cusercoli village, while the hilly and valley sector north
eastward holds farming and industrial activities, as well as the highest 
number of settlements (https://geoportale.regione.emilia-romagna. 
it/catalogo/dati-cartografici/pianificazione-e-catasto/uso-del-suolo/ 
layer-9). 

2.1. Geological and geomorphological features 

The Romagna Apennines belongs to the Tertiary fold-and-thrust 
Apennine belt, developed since the Late Cretaceous due to the subduc
tion of Adria beneath Europe (Picotti and Pazzaglia, 2008; Wegmann 
and Pazzaglia, 2009, Ponza et al., 2010; Ghiselli et al., 2011; Carminati 
and Doglioni, 2012; Gunderson et al., 2014). About 4 Ma, the Apennine 
wedge emerged above sea level and its uplift and exhumation increased 
during the Plio-Pleistocene (Bartolini, 2003; Picotti and Pazzaglia, 2008; 
Ponza et al., 2010). The rock uplift is still active as noticed by seismicity 
(Di Bucci and Mazzoli, 2002; Pondrelli et al., 2006; Ponza et al., 2010), 
GPS-geodesy (Serpelloni et al., 2005), and geomorphic evidence of 
growing folds and faults (Picotti and Pazzaglia, 2008). As reported in 
Picotti and Pazzaglia (2008, and reference therein), although the total 
convergence rate is 8–10 mm/yr, the pace of subduction remains rela
tively slow at 4–5 mm/yr, constituting half of the overall convergence 
rate. 

The upper two third of the Bidente basin is mainly constituted by the 
Marnoso-Arenacea Fm (FMA), the Miocene thick siliciclastic turbidite 
complex mainly derived from the Alps and distinguished in numerous 
members (Conti et al., 2020; https://ambiente.regione.emilia-romagna. 
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Fig. 1. The Bidente River basin: Digital Elevation Model with 10 m of spatial resolution and the lithotechnical map with the location of slides, flows and complex 
landslides. Lithotechnical units: Al - Alluvial plain deposits; As - stratified massive rocks; Bl – sandstone(S)/pelitic(P) alternations with S/P > 3; Blp - sandstone/ 
pelitic alternations with 0.3 < S/P < 3; Bp - sandstone/pelitic alternations with S/P < 0.3; Cc - clast-supported conglomerates; Cs – weakly-cemented sands; Da - 
consolidated clays; Dm - marls; Dsc - tectonized clays and argillites; G - gypsums; Gc - gypsums in chaotic deposits (Lithotechnical map of Emilia Romagna 
https://ambiente.regione.emilia-romagna.it/en/geologia/geology/land-instabilities/img/litotecnica.jpg). 
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it/it/geologia/geologia/geologia-emilia-romagna/geologia-dellappen 
nino-emiliano-romagnolo). While, the downstream sector preserves the 
Upper Miocene-Pliocene sequence, mainly consisting of the Colombacci 
Fm (FCO), Argille Azzurre Fm (FAA), and limited outcrops of the Ghioli 
di Letto Fm (GHL), Tetto Fm (GHT), and the Gessoso-Solfifera Fm (GES) 
(Wegmann and Pazzaglia, 2009; Conti et al., 2020; https://ambiente. 
regione.emilia-romagna.it/en/geologia/geology/land-instabilitie 
s/img/). 

The variability in outcropping formations, such as the alternation of 
soft and hard rock types, from thinly layered to massive (Piacentini 
et al., 2018), let us consider the lithotechnical units reported in Fig. 1. In 
detail, twelve lithotechnical units can be distinguished in the Bidente 
basin. Notably, the “Al” unit (alluvial plain deposits) is specifically 
included to classify the alluvial deposits of the Po Plain located down
stream of Meldola. More than 50 % of the study area has been classified 
as “Blp” (massive\pelitic alternations with 0.3 < S\P < 3), followed by 
“Bp” (massive\pelitic alternation with S\P < 0.3; 15 %), “Al” (14 %), 
“Da” (consolidated clays; 8.5 %), and “Bl” (massive\pelitic alternation 
with S\P > 3; 6.5 %). The remaining units (“As”, “Cc”, “Cs”, “Dm”, 
“Dsc”, “G”, and “Gc”) constitute the 5 % of the study area. 

The Bidente basin is oriented parallel to the orogenic slope and 
perpendicular to the main structural grain (Wegmann and Pazzaglia, 
2009). Here, about 13 % of the study area is affected by landslides, 
where the most common type is slides, followed by complex and flow 
types that involve both earth and rock masses (Piacentini et al., 2018). 
Despite large landslides are quite frequent in the Emilia Romagna re
gion, which results as one of the most landslide susceptible regions 
worldwide (Bertolini et al., 2005; Generali and Pizziolo, 2013; Pizziolo 

et al., 2014; Triglia et al., 2015; Piacentini et al., 2018). The most 
frequently recognized landslides are relatively small and shallow (Pia
centini et al., 2018), occurring over near one-fifth of the hilly and 
mountainous sector (Bertolini et al., 2005). As reported in Bertolini et al. 
(2005), although the largest landslides in the Emilia Romagna were 
originated as earthflows after the Last Glacial Maximum (LGM), intense 
and\or long rainfalls, often combined with snowmelt, can play a key role 
as triggering factors for the activation and re-activation of mass move
ments (Bertolini et al., 2005; Montrasio et al., 2012; Pizziolo et al., 2014; 
Piacentini et al., 2018). 

2.2. Landslide inventory 

The dataset used in this study was obtained from the Geological 
Survey of the Emilia Romagna. It includes landslide deposits originating 
from the Quaternary deposits of the Emilia-Romagna Geological Map at 
a scale of 10,000. Additionally, information from the Landslide Histor
ical Archive (https://ambiente.regione.emilia-romagna.it/it/geolog 
ia/geologia/dissesto-idrogeologico/larchivio-storico-dei-movimenti- 
franosi) and the Landslides inventory maps of the Emilia-Romagna Re
gion (https://ambiente.regione.emilia-romagna.it/it/geologia/geologia 
/dissesto-idrogeologico/la-carta-inventario-delle-frane) were also 
incorporated. 

The geological survey for landslide mapping was initially carried out 
between 1980 and 2000, and later revised for the IFFI project (Landslide 
inventories in Italy - Inventario dei Fenomeni Franosi in Italia) 
(https://ambiente.regione.emilia-romagna.it/it/geologia/geologia 
/dissesto-idrogeologico/la-carta-inventario-delle-frane). The field 

Fig. 2. Examples of landslides occurring in the study area: a) Poggio Baldi rockslide (March 18, 2010; Piacentini et al., 2018); b) the roto-translational slide near 
Civitella di Romagna (May 2017; https://ambiente.regione.emilia-romagna.it/en/geologia/geology/land-instabilities/le-caratteristiche-dei-fenomeni-franosi-in 
-emilia-romagna); c and d) the satellite views of several flows near Cusercoli. 
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survey began in 2005 and was further updated until 2018; a new field 
survey started in June 2019, but these new updates have not yet been 
completed by the Geological Survey of the Emilia-Romagna, which 
identifies three different landslide activity states, as active, inactive and 
quiescent. The latter is peculiar of larger landslides with intermittent 
activity, where the slow movements are alternating with long periods of 
quiescence and the return period can be more than a generation 
(https://ambiente.regione.emilia-romagna.it/en/geologia/geology/lan 
d-instabilities/le-caratteristiche-dei-fenomeni-franosi-in-emilia-romag 
na). 

More in detail, 2567 landslides have been recognized in the Bidente 
basin, 1388 of which are active and 1179 are quiescent. Most of the 
active landslides represent the partial or total reactivation of large slope 
instabilities dated to the end of the LGM (Tellini and Chelli, 2003; 
Bertolini et al., 2004; Bertolini et al., 2017; https://ambiente.regione. 
emilia-romagna.it/it/geologia/geologia/dissesto-idrogeologico/le- 
caratteristiche-dei-fenomeni-franosi-in-emilia-romagna), while the new 
activation are less frequent. 

The study area presents 1379 slides, 840 complex, and 348 flows 
(Fig. 2), with very few examples of falls\topples and unclassified cases 
that are not considered in the present work. Starting from the original 
polygon-based inventory, for each recognized phenomenon, the Land
slide Identification Point (LIP), which corresponds to the highest point 
along the landslide crown, has been extracted. The recognition of the 
movement type following Cruden and Varnes (1996) was carried on in 
GIS environment, considering lithological and morphometric parame
ters as area, perimeter, and area-perimeter ratio, length, width, number 
of crowns for each landslide, slope, and circularity (https://ambiente. 
regione.emilia-romagna.it/it/geologia/geologia/dissesto-idrogeologico 
/le-caratteristiche-dei-fenomeni-franosi-in-emilia-romagna). The data
set here presented is available online at the following link: https:// 
ambiente.regione.emilia-romagna.it/it/geologia/cartografia/webgis- 
banchedati/cartografia-dissesto-idrogeologico#consulta-dati-shp. 

3. Material and methods 

3.1. Diagnostic area, mapping units and geo-environmental predictors 

According to previous applications (e.g., Rotigliano et al., 2011; 
Lombardo et al., 2015; Cama et al., 2015, 2017; Rotigliano et al., 2018, 
Martinello et al., 2023a,b,c, Mercurio et al., 2021), LIPs and 10 m-grid 
cells were assumed respectively as diagnostic landforms and mapping 

Table 1 
Codes and description of the classes proposed for each geo-environmental var
iable selected for the study.  

Variable Acronym of the 
class 

Units Description/ Numerical interval 

ELE 1 m (a.s. 
l.) 

<27 
2 >=27 & <371 
3 >=371 & <500 
4 >=500 & <754 
5 >= 754     

PLC 1 rad/m <− 0.10 
2 >=− 0.10 & <− 0.027 
3 >=− 0.027 & <0.027 
4 >=0.027 & <0.10 
5 >=0.10     

PRF 1 rad/m <− 0.002 
2 >=− 0.002 & <− 0.0013 
3 >=− 0.0013 & <0.0013 
4 >=0.0013 & <0.002 
5 >=0.002     

SLO 1 degree <5 
2 >=5 & <10 
3 >=10 & <15 
4 >=15 & <20 
5 >=20 & <25 
6 >=25 & <30 
7 >=30 & <35 
8 >=35 & <40 
9 >=40 & <45 
10 >=45     

SPI 1 kg m2 

s− 3 
<0.4 

2 >=0.4 & <184.8 
3 >=184.8 & <185.7 
4 >=185.7 & <20605.7 
5 >20605.7     

TWI 1 m <5.73 
2 >=5.73 & <7.59 
3 >=7.59 & <8.29 
4 >=8.29 & <10.42 
5 >=10.42     

ASP N degree 0–22.5 & 337.5–360 
NE 22.5–67.5 
E 67.5–112.5 
SE 112.5–157.5 
S 157.5–202.5 

SW 202.5–247.5 
W 247.5–292.5 

NW 292.5–337.5     

LCL Ca  Canyon 
Md Midslope drainage 
Hw Headwater 
Uv U-shaped valley 
Pl Plains 
Os Open slope 
Us Upper slope 
Lr Local ridge 
Mr Midslope ridge 
Mt Mountain tops     

LITO Al  Alluvial plain deposits 
As Stratified massive rocks 
Bl Sandstone/pelitic alternations with 

S/P > 3 
Blp Sandstone/pelitic alternations with 

0.3 < S/P < 3 
Bp Sandstone/pelitic alternations with 

S/P < 0.3 
Cc Clast-supported conglomerates 
Cs Weakly-cemented sands 
Da Consolidated clays  

Table 1 (continued ) 

Variable Acronym of the 
class 

Units Description/ Numerical interval 

Dm Marls 
Dsc Tectonized clays and argillites 
G Gypsums 
Gc Gypsums in chaotic deposits     

USE 11  Urban fabric 
12 Industrial, commercial and transport 

units 
13 Mine, dump and construction sites 
14 Artificial, non-agricultural vegetated 

areas 
21 Arable land 
22 Permanent crops 
23 Pastures 
24 Heterogeneous agricultural areas 
31 Forests 
32 Scrub and/or herbaceous vegetation 

associations 
33 Open spaces with little or no 

vegetation 
41 Inland wetlands 
51 Inland waters  
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units, suitable for expressing and capturing potentially unstable slope 
conditions. 

As regards the controlling factors or covariates, a set of 10 geo- 
environmental variables was first set to express landslide occurrence 
controlling factors in the area, with a direct or proxy role (Costanzo 
et al., 2012; Martinello et al., 2022a,b). In particular: elevation (ELE), is 
here considered as a proxy for the spatial distribution of mean monthly/ 
annual rainfall; plan (PLC) and profile (PRF) curvature, which describe 
the geometry of the slope along the horizontal and vertical planes 
respectively, express the geometry of the slopes and as such were 
considered as proxies for the convergence/divergence both of shallow 
gravitational stresses and surface runoff water (Ohlmacher, 2007); slope 

(SLO) controls the speed of the runoff water and the geometry of po
tential rupture surfaces (Martinello et al., 2022b); stream power index 
(SPI) expresses the intensity of surface water erosion (Martinello et al., 
2022b); the topographic wetness index (TWI) describes the potential 
infiltration and is so considered as a proxy for the potential presence and 
thickness of a saturated soil horizon (Rotigliano et al., 2011; Martinello 
et al., 2022b); aspect (ASP) is considered a proxy for the seasonal wet/ 
dry cycles of soils (Auslander et al., 2003) and strata attitude; landform 
classification (LCL) reflects the geomorphological setting of slopes; the 
lithotechnical outcropping unit (LITO) is considered as a proxy for the 
physical–mechanical properties of rocks (Martinello et al., 2022b); and 
land use (USE) potentially controls the hydrological and runoff water 

Fig. 3. Violin plots of AUC values obtained reiterating one-hundred prediction (a) and global (c) validations for slide, flow and complex landslide types. Corre
sponding bar plots of performance metrics computed in prediction (b) and global (d) validation schemes for slide, flow and complex landslide types. As the modelling 
procedures was based on positive/negative balanced subsets, FP and FN cases are complementary to sensitivity (true positive rate) and specificity (true negative 
rate), respectively. 
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erosion induced disturbances (Martinello et al., 2022b). 
All the variables derived from Digital Elevation Model (DEM) were 

calculated by using tools of SAGA GIS (Conrad et al., 2015). ASP, LCL, 
LITO, and USE were employed as categorical variables (Table 1) while, 
due to the specific requirements of the statistical methods used in this 
research, the DEM-derived variables, which were used as continuous by 
MARS, were re-classified and categorized for WoE analysis. In partic
ular, natural breaks of ELE, SPI, and TWI were employed to discriminate 
five categorical classes of these predictors; for SLO, ten classes were 
defined according to the expected different influence in determining 
slope instability; lastly, for PLC and PRF, five classes of each variable 
were defined using a symmetrical classification around 0 (flat) and 
defining other two classes both for convex (values < 0) and concave 
(values > 0) settings. The categorical classes of the DEM-derived pre
dictors and the relative numerical interval are reported in Table 1. 

For each pixel, the predictors information (as continuous or cate
gorical classes) was first assigned. Then, by overlapping the LIPs with 
the grid cells, each pixel was also classified as stable or unstable with 
respect to each typology of landslide analysed, based on the presence/ 
absence of at least one LIP. 

3.2. Statistical methods 

The goal of the research was carried out through the comparative 
application of Weight of Evidence (WoE) and Multivariate Adaptive 
Regression Splines (MARS) statistical methods aimed at assessing land
slide susceptibility in the Bidente River basin. The analysed landslides 
included slide, flow and complex types. 

3.2.1. Weight of Evidence (WoE) 
Weight of Evidence (WoE) is a statistical method based on the Bayes’ 

theorem. The details are reported in Bonham-Carter (1989). By over
laying landslides with each causal factor, the statistical incidence can be 
measured between them. A pair of weights, W+ and W-, for each class of 
each causal factor is then computed as follows: 

W+ = ln

⎛

⎜
⎜
⎝

A1
A1+A2

A3
A3+A4

⎞

⎟
⎟
⎠ (1)  

and 

W − = ln

⎛

⎜
⎜
⎝

A2
A1+A2

A4
A3+A4

⎞

⎟
⎟
⎠ (2)  

where A1 is the number of the LIPs in a given factor class, A2 is the 
number of LIPs not present in the given factor class, A3 is the number of 
the cells in the given factor class in which no LIPs are present, and A4 is 
the number of cells in which neither LIPs nor the given factor class is 
present. The difference between W+ and W- is called contrast C. The 
overall landslide susceptibility LS for each cell can be computed by 
summing the contrast values of each causal factor: 

LS =
∑n

i=1
Ci,j (3)  

where Ci,j is the contrast value for the class j of factor i and n is the total 
number of factors. 

Differently from what is typically observed, before proceeding to the 
validation of the WoE model, in order to constrain the final score into a 
0–1 range, a score normalization was finally applied by adding the 
minimum (to shift the values in the positive range) and dividing by the 
maximum. 

For this research, WoE analysis was performed by exploiting RStudio 
software. 

Fig. 4. Comparison of the different susceptibility classes derived from the 
application of MARS and WoE methods, related to a) slide, b) flow, c) complex 
landslide types. Main cut-offs are reported with orange (for MARS) and light 
green (for WoE) lines. Values in the light blue box represent the critical two 
classes switch while with red write fill are reported the critical one class cases. 
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3.2.2. Multivariate adaptive regression splines (MARS) 
The Multivariate Adaptive Regression Splines (MARS) is a non- 

parametric regression method that exploits the partitioning of each in
dependent variable into hinge functions to increase the fit based on the 
maximum likelihood of the logistic regression method (Friedman, 
1991), according to the relation: 

y = f (x) = α+
∑n

i=1
βihi(x) (4)  

where y is the dependent variable (the outcome) predicted by the 

function f(x), α is the model intercept, βi are the coefficients of the hi 
basis functions and n is the number of basis functions. MARS analysis 
was here performed by exploiting the “earth” package (Milborrow, 
2021) of RStudio software. The default setting of the “earth” package 
(please refer to the notes on the “earth” package) was used, limiting the 
MARS terms to a range of 20–200 and building a simple additive model 
(no interaction terms). 

In recent years, MARS has been largely adopted for landslide sus
ceptibility modelling (e.g., Vorpahl et al., 2012; Conoscenti et al., 2015; 
Vargas-Cuervo et al., 2019; Martinello et al., 2023a, b; Mercurio et al., 

Fig. 5. Bar plots showing mean contrast and standard deviation of each class of the predisposing factors related to slide, flow and complex types. Covariate classes 
values are explained in Table 1. *Contrast value outlier. 
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2023). 

3.3. Validation and model building strategies 

Both WoE and MARS modelling procedures are based on a pre
sence–absence approach. In fact, to correctly evaluate equations (1) and 
(2), for the WoE method a balanced data frame is necessary; at the same 
time, the MARS method defines positive relationships between (in
tervals of) variables and stable/unstable cases. Therefore, the same 
number of negative and positive cases had to be randomly extracted. To 
test the resolution, precision, and robustness of the models (i.e., the 
independence of the results from the choice of the selected cases), one- 
hundred random extractions of the balanced datasets were performed 
(Martinello et al., 2023c; Mercurio et al., 2021; Rotigliano et al., 2019). 
Each of the one-hundred balanced archives was then randomly split to 
obtain a sub-set exploited for the calibration (75 %) of the model and a 
sub-set for its validation (25 %). According to Chung and Fabbri (2003), 
the prediction skill performance was first evaluated, by testing the recall 
capacity of the validation subset for the model calibrated exploiting the 
complementary 75 %. Then, a global performance was evaluated by 
applying the calibrated model to the whole balanced archive, config
uring a mixed test (success for 75 % + prediction for 25 %). This pro
cedure was implemented for each investigated landslide typology. 

The accuracy of the models was evaluated by the AUC value (Area 
Under Curve) in the ROC (Receiver Operating Characteristics; Fawcett, 
2006; Goodenough et al., 1974; Lasko et al., 2005) plots, referring to 
Hosmer and Lemeshow (2000) thresholds. Moreover, Youden index 

optimised cut-offs (Youden, 1950) were obtained from each ROC plot, to 
prepare cut-off dependent confusion matrices and evaluate binarized 
True Positive (TP), True Negative (TN), False Positive (FP) and False 
Negative (FN) cases. By applying a nested Youden index-based score 
reclassification (Martinello et al., 2021), four landslide susceptibility 
levels (low, moderate, high, and very high by employing the low, me
dium, and high Youden index cut-off, respectively) were discriminated. 
It is worth noting that each model generated a specific pixel score 
assignment, resulting in specific ROC-plot, cut-offs, and confusion 
matrices. 

To investigate the inner structure of the models, the replicates were 
also exploited for evaluating the frequency distribution of the contrast of 
each variable, for WoE models, as well as the variables’ importance, for 
MARS models. In the case of WoE the magnitude of the contrasts which 
the classes of the various factors get in the modelling is directly taken as 
an importance index. Differently, for MARS, the percentage of use of 
each variable by the replicates, which was calculated by using the 
“varImp” function of the Caret (Kuhn, 2016) R-package, was considered. 
However, an a posteriori factor analysis was also carried out, by 
exploring the actual correlation between predicted susceptibility score 
and covariates values. 

4. Results 

4.1. Model performance 

The AUC values of models’ replicates which were obtained for each 
analysed landslide type are shown by violin plots in Fig. 3, both for 
prediction (Fig. 3a) and global (Fig. 3c) validations. 

Largely satisfactory accuracy values were achieved for WoE predic
tion (AUC = 0.69, 0.73, and 0.71 for slide, flow, and complex type, 
respectively) and global (AUC = 0.74, 0.78, and 0.76 for slide, flow, and 
complex type, respectively) validation. Higher performances resulted 
for MARS prediction (0.72, 0.75, and 0.72 for slide, flow, and complex 
type, respectively) and global (0.78, 0.85, and 0.79 for slide, flow, and 
complex type, respectively) ROC plots. Besides, for both methods a 
larger variability of the AUC values for prediction skill were observed 
through the one-hundred replicates, especially for the flow-type models. 

As regards the binarized accuracy evaluation (Fig. 3b and d), similar 
behaviours arose for the prediction validation: sensitivity values are 
good (>0.77) for WoE and even excellent for MARS (over 0.8 for slide 
and complex analysis). Conversely, the sensitivity of all types of models 
suffers for a widely marked FPs production and, consequently, a general 
lower accuracy. 

In the global validation, the sensitivity shows the highest value for 
the complex-type analysis, both using MARS and WoE methods (0.84 
and 0.81, respectively). Sensitivity values, ranging between 0.75 and 
0.81 attests for a good skill of the models in detecting positive cases. On 
the other hand, specificity reaches satisfactory values for MARS (0.71) 
and for WoE (0.68) only for the flow-type model: for all the other 
landslide types, very low (around 0.55) sensitivity values were achieved. 
Obviously, this reveals a high number of FPs, especially produced for 
slide and complex (~40 %) landslide models. Due to the low perfor
mance in detecting TN cases, balanced accuracy produced good values 
employing MARS method (0.71, 0.77 and 0.73 for slide, flow and 
complex, respectively) and lower values for WoE (0.67, 0.71 and 0.7 for 
slide, flow and complex, respectively). 

Fig. 4 shows the accuracy of the landslide susceptibility models for 
the three types of landslides analysed using MARS and WoE methods, 
arranged in four-classes confusion matrices (low, moderate, high, very 
high). The cut-off thresholds separating consecutive classes have been 
obtained through a nested application of the Youden Index criterion cut- 
off. The last column/row of each table, named WoE/MARS, reports the 
percentage of cases included in a specific susceptibility class by the two 
methods. Similar percentages of cases were classified as low, both for 
MARS (37 %, 45 % and 39 % for slide, flow, and complex types, 

Fig. 6. Bar plots showing the variable importance for MARS models calculated 
as the percentage of variable use by each replicated set. Covariate classes values 
are explained in Table 1. 

C. Martinello et al.                                                                                                                                                                                                                             



Catena 238 (2024) 107835

10

respectively) and WoE (41 %, 44 % and 44 % for slide, flow, and com
plex types, respectively). At the same time, similar percentages for all 
the landslide types, ranging between 18 % and 26 %, characterized the 
moderate and high classes. Generally, the very high class is the less 
populated with a percentage ranging between 7 % and 13 %, except for 
those defined by MARS for slide (18 %) and complex (24 %). 

A combined analysis permitted the evaluation of the percentage of 
congruent (reported in the diagonal of each table) and un-congruent 
cases (all the other boxes) classified by the two statistical methods. 
The analysis showed a general congruence of the two methods: 58 %, 59 
% and 60 % for slide, flow, and complex type, respectively. Only a few 
cases are characterized by a critical switch of classes, corresponding to a 
shift across the main cut-off. For slide landslides, 18 % of critical cases 
was observed, with 12 % of cases corresponding to one-class switch. 
Similarly, for flow landslides, 20 % of critical cases was observed, 12 % 
of which corresponding to a one-class switch. Finally, for complex 
landslides, 18 % of critical cases were generated, with 12 % limited to a 
one-class switch, with 15 % of cases classified as high or very high (11 % 
and 4 %, respectively) by MARS, but estimated as low (2 %) or moderate 
(13 %) by WoE and 3 % of cases classified as high by WoE, but low (1 %) 
or moderate (2 %) by MARS. This kind of asymmetry was not recorded 
for flow and slide. 

4.2. Importance of variables 

4.2.1. Contrast values of predictor classes for WoE 
The variable importance for WoE models can be understood by 

examining the bar plots in Fig. 5. These plots show the mean contrast 
and standard deviation through the replicates for each class of predis
posing factors across all landslide types. 

Regarding ELE, the highest positive incidence for slides occurs from 
371 to 500 m a.s.l. (“3”), while for flows and complex landslides, it is 
from 27 to 71 m a.s.l. (“2”). 

PLC shows negative incidence for slides in the very convex, convex, 
concave, and very concave classes (“1”, “2”, “4”, “5”), but positive 
incidence in the flat class (“3”). For flows, positive contrasts are 
observed in the convex and flat classes (“2”, “3”), and negative contrasts 
in the concave and very concave classes (“4”, “5”). Complex landslides 
show a negative impact in the convex and concave classes (“2”, “4”), but 
a positive impact in the flat and very concave classes (“3”, “5”). 

PRF consistently shows positive contrasts for all types of landslides, 
except for the negative incidence in the flat class (“3”). 

In terms of SLO, there is a general agreement among landslide types. 
Negative contrasts are observed up to 10◦ (“3”), beyond which the 
incidence becomes positive up to 45◦ (“9”), with the maximum values 
occurring between 20◦ and 25◦ (“5”). 

The SPI factor also exhibits consistency among landslide types. The 
greatest positive impact is found from 184.8 and 20605.7 kg m2 s− 3 (“3”, 
“4”), while the other classes show negative values. 

The TWI factor shows positive values from 5.73 and 8.29 m (“2”, 
“3”), while negative values are observed for values greater than 10.42 m 
(“5”) and lower than 5.73 m (“1”). 

ASP has a negative or zero impact for azimuths from N to SE and a 
positive impact for azimuths from S to NW for all types of landslides. 
However, complex landslides on NW azimuths show a negative contrast. 

LCL generally agrees with the incidence of classes among different 
landslide types, except for Midslope drainages (“Md”) where only flows 
show positive values, U-shaped valleys (“Uv”) where slides have slightly 
positive values compared to the strongly negative values of other types, 
and Mountain tops (“Mt”) where only complex landslides show positive 
values. 

LITO exhibits wide variability in contrasts among landslide types. 
Positive impacts on slides are observed in classes such as sandstone/ 
pelitic alternations with S/P < 0.3 (“Bp”), stratified massive rocks 
(“As”), gypsums (“G”), tectonized clays and argillites (“Dsc”), and clast- 
supported conglomerates (“Cc”). Similar positive impacts are seen on 
flows and complex landslides with variations in specific classes. Nega
tive values are recorded in alluvial plain deposits (“Al”) for all types, 
particularly for slides, and in other specific classes. 

Finally, for USE, there is concordance in the incidence of classes 
among landslide types. Positive values are observed in classes such as 
shrub and/or herbaceous vegetation associations (“32”), pastures 
(“23”), arable land (“21”), and heterogeneous agricultural areas (“24”). 
Negative values are found in classes such as industrial, commercial, and 
transport units (“12”), urban fabric (“11”), mine, dump, and construc
tion sites (“13”), artificial, non-agricultural vegetated areas (“14”), and 
forest (“31”). 

4.2.2. Predictor importance for MARS 
In Fig. 6 the variables’ importance for the MARS models, calculated 

as the percentage of variable use by each replicated set, is shown. SLO 
and ELE are the most frequently used variables, but if the latter obtain 
high values for all the typologies (84 %, 97 % and 84 % for slide, flow, 
and complex movements, respectively), the former is heavily used only 
by slide (97 %) and complex (90 %). 

Setting a threshold of 30 % of recall, it is possible to discriminate 
between variables employed only for two out of three typologies and 
others whose importance resulted as significant only for one type. 
Among the classes of LCL, large use of U-shaped valleys (“Uv”) and 
Canyons (“Ca”) classes were selected for flow (72 % and 49 %, respec
tively) and complex (74 % and 72, respectively) models. Besides, for 
slide and flow models PLC (42 % and 61 %, respectively) and “Blp” 
(sandstone/pelitic alternations with 0.3 < S/P < 3) of LITO (49 % for 
both) were employed. 

S class of ASP, forest class (“31”) of USE, and TWI were used only for 
complex-type models (30 %, 53 % and 35 %, respectively). Finally, the 
upper slopes (“Us”) class of LCL is used by 31 % of slide models’ 
replicates. 

4.3. Analysis of the correlation between landslide susceptibility score and 
predictors 

According to the aim of this research, a deeper analysis of the cor
relation between the susceptibility score and the variability of the pre
dictors was carried out. In particular, to more directly compare the role 
that the two modelling methods assigned to each covariate, the 

Table 2 
Values associated to the decile classes for each continuous variable.  

ELEV PLC PRF 

Class m (a.s.l.) Class rad/m Class rad/m 

1 0–26 1 <-1.04 1 <-0.0059 
2 26–116 2 -1.04− -0.62 2 -0.0059–-0.0033 
3 116–205 3 -0.62–-0.20 3 -0.0033–-0.0016 
4 205–295 4 -0.20–0.20 4 -0.0016–-0.0008 
5 205–404 5 0.2–0.62 5 -0.0008–0.0008 
6 404–507 6 0.62–1.04 6 0.0008–0.0009 
7 507–609 7 1.04–1.45 7 0.0009–0.0026 
8 609–732 8 1.45–2.29 8 0.0026–0.0043 
9 732–886 9 2.29–4.79 9 0.0043–0.0069 
10 >1650 10 >4.79 10 >0.0069 

SLO SPI TWI 

Class degree Class kg m2/s− 3 Class m 

1 <0.3 1 <3882 1 <5.8 
2 0.3–5.9 2 3882–7764 2 5.8–6.3 
3 5.9–10 3 7764–11647 3 6.3–6.8 
4 10–14 4 11647–15529 4 6.8–7.3 
5 14–18.1 5 15529–23294 5 7.3–7.8 
6 18.1–22.6 6 23294–34941 6 7.8–8.4 
7 22.6–27.1 7 34941–50470 7 8.4–9.2 
8 27.1–31.5 8 50470–81529 8 9.2–10.4 
9 31.5–36.8 9 81529–993885 9 10.4–11.9 
10 >36.8 10 >993885 10 >11.9  
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Fig. 7. Relationship between the classes of variables and δ-score of slide landslides obtained by MARS and WoE models. a - f) Comparison between the deciles of 
continuous variables and the δ-score; g-j) relationship between the classes of categorical variables and the δ-score. 
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Fig. 8. Relationship between the classes of variables and δ-score of flow landslides obtained by MARS and WoE models. a - f) Comparison between the deciles of 
continuous variables and the δ-score; g-j) relationship between the classes of categorical variables and the δ-score. 
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Fig. 9. Relationship between the classes of variables and δ-score of complex landslides obtained by MARS and WoE models. a - f) Comparison between the deciles of 
continuous variables and the δ-score; g-j) relationship between the classes of categorical variables and the δ-score. 
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difference between the susceptibility score and the specific cut-off 
values (δ-score) were plotted for each factor class, for categorial, or 
deciles class, for continuous variables (the values corresponding to each 
decile class are reported in Table 2). In order to simplify the graphs, the 
δ-score were reported (Figs. 7, 8, and 9) by bar. In particular, the bar 
amplitude reflects the potential correlation between each class and the 
associated score, with large bars strongly marking positive or negative 
status prediction. 

In general, very similar factor trends emerged between the two sta
tistical methods with an almost systematic coherence of unstable and 
stable cases prediction, corresponding to positive or negative δ-score, 
respectively. Besides, with some specific exception, similar trends were 
recognized for the three landslide typologies. 

Strong negative coherent correlations arose for one or more class of 
all the factors, whilst less marked and coherent (limited to one or two 
classes for factor) positive correlations resulted, especially for the DEM- 
derived variables. In particular, for the latter, marked negative corre
lations were observed for all the three typologies at: values lower than 
116 m a.s.l. (class “1” and “2” of ELE); from 0.2 to 0.62 rad/m (class “5” 
of PLC); from − 0.0008 and 0.0009 rad/m (class “5” and “6” of PRF); 
values lower than 0.3◦ (class “1” of SLO); values lower than 7764 kg m2/ 
s (class “1” and “2” of SPI); values greater than 10.4 m (class “9” and 
“10” of TWI); plains (“Pl”) LCL class. ASP shows only minor negative 
correlation for NE facing pixels. 

High SLO and TWI values are associated to stable predicted status for 
the three typologies, together with a smoothed decreasing negative 
δ–score for SPI. Negative δ–scores are marked for Local ridges (“Lr”), 
Midslope ridges (“Mr”) and Mountain tops (“Mt”) LCL classes, for Can
yons (“Ca”) and U-shaped valley (“Uv”) classes, limited to flow and 
complex landslides, and Headwaters (“Hw”) class, for slides. On the 
contrary, positive δ–scores were observed for Open slopes (“Os”) and 
Upper slopes (“Us”), for complex landslides, Midslope drainage (“Md”) 
and Headwaters (“Hw”), for flows, and Open slopes (“Os”), for slides. 

As regards the categorial variable, much more discriminated results 
were observed. In facts, for all the three considered typologies, strong or 
smoothed negative correlations arose for the alluvial plain deposits 
(“Al”) class and the consolidated clays (“Da”), sandstone/pelitic alter
nations with S/P > 3 (“Bl”) and sandstone/pelitic alternations with 0.3 
< S/P (“Blp”) LITO classes, respectively. At the same time, strong pos
itive correlations were observed for weakly cemented sands (“Cs”), for 
complex and flows, and marls (“Dm”) and tectonized clays and argillites 
(“Dsc”), for complex. Smoothed positive correlation for any typology 
marked the classes stratified massive rocks (“As”), sandstone/pelitic 
alternations with S/P < 0.3 (“Bp”), clast-supported conglomerates 
(“Cc”), gypsums (“G”) and gypsums in chaotic deposits (“Gs”). 
Regarding the USE, negative δ-scores were observed at the classes: urban 
fabric (“11”), industrial, commercial and transport units (“12”), mine, 
dump and construction sites (“13”), artificial, non-agricultural vege
tated areas (“14”), permanent crops (“22”), inland wetlands (“41”), 
inland waters (“51”), for the three typologies, whilst the classes pastures 
(“23”), scrub and/or herbaceous vegetation associations (“32”) e open 
spaces with little or no vegetation (“33”) featured positive values 
(smoothed for flow). 

5. Discussion 

According to the results, MARS and WoE allowed to obtain per
forming susceptibility models in the Bidente river basin, attested by 
good or excellent ROC_AUC, with high performance indexes for MARS, 
both in the cut-off independent and dependent domains. In particular, 
for all the three typologies, MARS systematically performs with a 
slightly higher accuracy both in negative and positive cases prediction. 
However, when passing to a binarized analysis, such slight differences 
do not produce any marked effects. In facts, a very limited number of 
critical mismatching cases was observed, which configure under versus 
over cut-off estimation of the predicted status between the two methods. 

Among these critical mismatching cases, the largest incidence is due to 
only one-class shift. The critical cases are symmetrically distributed with 
respect to the two methods for slides and flow landslides, whilst for 
complex landslides largely prevails the cases (15 % against 3 %) where 
MARS and WoE predict an over against an under-cut-off status, 
respectively. 

A strong general congruence also arose for the set of explanatory 
variables which MARS and WoE exploited to fit the positive/negative 
spatial distribution. In facts, among both the categorial and numerical 
predictors, the two methods mainly rely their prediction on the same 
lithologic, soil use, topographic and morphologic variables. This has 
been made clear by analysing the pattern of the score through the classes 
of each factor, systematically obtaining very similar trends. 

Regarding the importance of the factors in discriminating landslide 
types, SLO and TWI factors appear to be among the most distinctive. 
Indeed, although slope inclinations between 10◦ and 14◦ (class “4”) are 
predisposing for all three types, flow types begin to be predisposed by 
slopes from 5.9◦ (class “3”), as do complex failures. The latter, however, 
extend up to slopes of 22.6◦ (class “6”), which are also reached by the 
slides. The inclusiveness of the complex typology of both other two ty
pologies shows how this typological attribution is used as an alternative 
to a more specific characterization and is therefore inclusive of both 
kinematisms. Specular is the trend of the TWI factor for which the 
complex typology similarly includes both the trend of flows (6.8 to 8.4 - 
classes “4”, “5”, and “6”) and slides (7.8 to 9.2 - classes “6”, and “7”). 

Among the categorical factors, the most important is the LCL, which 
mainly allows the flow types to be distinguished from the other kine
matisms. In fact, these are more prone in the Headwaters (“Hw”) and 
Midslope drainage “Md”, while the complex landslides in the Upper 
slopes (“Us”) and Open slopes (“Os”) and the slides only in the Open 
slopes (“Os”). LITO also proved to be a discriminating factor. Specif
ically, although an increase in the percentage of pelitic component in the 
alternations (“Bl” to “Bp”) increases the susceptibility of all kinematics, 
complex and slide are the most affected. Weakly-cemented sands (“Cs”) 
and clast-supported conglomerates (“Cc”) predispose the flow and 
complex types the most, while slides generated only from clast- 
supported conglomerates (“Cc”). Finally, marls (“Dm”) and tectonised 
clays and argillites (“Dsc”) characterise the complexes more. The ASP 
factor is distinctive for complex landslides, identifying S, SW, and W 
exposed slopes as predisposing unlike the other kinematisms. 

On the base of the set of predictors which emerged as controlling 
factors, geomorphologically adequate models arose for the three land
slide typologies, with LITO and LCL classes delimiting the landslide 
domains and topographic attributes (steepness, curvatures, SPI, and 
TWI) modulating the score inside. 

6. Conclusions 

In spite of the different approaches MARS and WoE rely on, river 
basinvery similar results have been obtained in terms of prediction skill 
of the derived susceptibility models in the Bidente river vasint . A dif
ference, attesting a more ability of MARS in fitting the observed data 
actually emerged. Nonetheless, this result could depend on the general 
state of activity of the slopes of the Bidente catchments. In fact, the more 
potential instable sites have been triggered and produce TP cases, the 
more multivariate regression and bivariate conditional analysis-based 
methods will furnish similar outputs. At the same time, different 
driven landslide scenarios could stress the models in different ways, with 
a different response in terms of prediction skill. In particular, score 
differences which actually do not produce any change in the binary 
predicted status, could take importance in case of a cut-off variation. 

The comparison between conditional analysis and regression-based 
methods, is out of doubts a very important issue considering the wide 
adoption of such approaches in landslide susceptibility modelling 
studies. Authors are aware that further tests must be carried out to 
include a representative enough case studies set. At the same time, a 
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reference for designing methods (normalized score and optimized cut- 
off) and tools (analysis of critical cases and variables’ congruence) to 
quantitatively compare the results obtained by the two approaches is 
here proposed. 

As regards the general topic of this research, investigating binarized 
susceptibility values inside each factor class seems to be suitable for 
giving any user a tool for applying geomorphological soundness criteria 
in assessing that model adequacy which should be a mandatory 
component of any model validation protocol. 
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Tanyaş, H., Görüm, T., Fadel, I., Yıldırım, C., Lombardo, L., 2022. An open dataset for 
landslides triggered by the 2016 Mw 7.8 Kaikōura earthquake, New Zealand. 
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