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The Exact Regularised Point Particle (ERPP) method is used to characterise the
turbulence modulation in two-way momentum-coupled Direct Numerical Simula-
tions (DNS) of a turbulent pipe flow. The turbulence modification is parametrised
by the particle Stokes number, the mass loading, and the particle-to-fluid density
ratio. The data show that in the wide region of the parameter space addressed
in the present paper, the overall friction drag is either increased or unaltered by
the particles with respect to the uncoupled case. In the cases where the wall fric-
tion is enhanced, the fluid velocity fluctuations show a substantial modification in
the viscous sub-layer and in the bu↵er layer. These e↵ects are associated with a
modified turbulent momentum flux towards the wall. The particles suppress the
turbulent fluctuations in the bu↵er region and concurrently provide extra stress in
the viscous sub-layer. The sum of the turbulent stress and the extra stress is larger
than the Newtonian turbulent stress thus explaining the drag increase. The non-
trivial turbulence/particles interaction turns out in a clear alteration of the near
wall flow structures. The streamwise velocity streaks lose their spatial coherence
when two-way coupling e↵ects are predominant. This is associated with a shift
of the streamwise vortices towards the centre of the pipe and with the concurrent
presence of small-scale and relatively more intense vortical structures near the wall.

PACS numbers: PACS

a)
francesco.battista@uniroma1.it

1

mailto:francesco.battista@uniroma1.it


I. INTRODUCTION

Particle-laden turbulent flows are ubiquitous in many technological applications and
natural phenomena. Among them there are the transport of sediments in rivers1, the dy-
namics of ashes and plumes in the atmosphere2, the particle turbulent transport, and their
deposition and entrainment in turbulent boundary layer3, chemical plants’ applications4,
or the genesis and evolution of small droplets5.

Given the complex interaction between the carrier and the disperse phase, a multi-scale
and multi-physics approach is necessary to model the particle/turbulence interaction6–9.
The presence of flow confinement introduces additional complexity. The preferential seg-
regation of the particles near the walls10–12 leads the particles to a↵ect the turbulence in
the bu↵er-layer13. It follows a modification of the regeneration cycle of the vortical struc-
tures, and of the flow topology14–17, which ultimately manifests, at least for finite-size
neutrally buoyant particles, in a modification of the well-known law of the wall18.

In the context of Eulerian-Lagrangian approaches – for Eulerian-Eulerian simulations
the reader is referred to Ref.19 –, multiphase flows are simulated with two main ap-
proaches20: i) the resolved particle simulations that resolve the particle length-scale, e.g.
diameter, on the computational grid21–26, and ii) the point-particle simulations that model
the particles as material points. The former approach, even though is based on first princi-
ples, can not be pursued when the particles are relatively small with respect to the smallest
hydrodynamical length-scale, or when the particle number is large, due to its tremendous
computational cost. However, when the particle diameter dp is comparable with the small-
est hydrodynamical length-scale `∗, it is reasonable to adopt the point-particle method27.
Given the small value of the particle Reynolds number, the hydrodynamic force can be
parametrised in terms of the Stokes drag28,29. In conditions where the particle volume frac-
tion �V (ratio between the particle volume and the fluid volume) is small, the fluid simply
carries the disperse phase and it is not a↵ected by the presence of the particles (one-way
coupling regime). However, when the particle-to-fluid density ratio ⇢p�⇢f is large, there
exist conditions where the volume fraction is still small to neglect inter-particles collisions,
but the mass loading � = (⇢p�⇢f)�V is not negligible30. In these conditions, the disperse
phase a↵ects the momentum dynamics of the carrier phase (two-way coupling regime).

Within the point-particle approximation, the force of the particles on the fluid is con-
centrated at the actual particle position by a Dirac delta function and needs to be reg-
ularised. The simplest regularisation is provided by the Particle-source In Cell (PIC)
method27. The approach, however, has several drawbacks, mainly: i) the solution is not
grid convergent depending on how many particles per computational cell are available,
and ii) it is not possible to evaluate the unperturbed fluid velocity at the particle position
(needed to evaluate the Stokes drag) since every single particle locally modifies the fluid
velocity31,32. Results based on the PIC approach are quite scattered. In turbulent chan-
nel flows, both drag reduction and turbulent fluctuation attenuation are observed33 with
⇢p�⇢f = 1024, St+ = 30 and � = 0.96, see also Ref.34 where the mass loading is changed
from 0 to 0.96. Other simulations 35 show an overall increase in the turbulent fluctuations
for relatively small particles and a decrease for large particles, here the particle Stokes
number St+ spans the range 0.5÷125 and the density ratio varies from 35 to 8650 at fixed
mass loading � = 0.3. Variable outcomes are obtained depending on the mass loading of
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the suspension and on the particle Stokes number in Ref.36 (� = 0.2,0.4,2, St+ = 60,190,
and ⇢p�⇢f = 2083,7333). Turbulent pipe flow simulations37,38 with � = 0.22,0.44,0.89,
St+ = 14,29,58, and ⇢p�⇢f = 500,1000,2000, provide similar results as those observed
in the channel flow, while in turbulent boundary layers, an increase of the skin friction
coe�cient is observed39.

In the context of the Euler-Lagrangian approaches, many techniques have been devel-
oped from the numerical point of view to get rid of the particle self-disturbance40–47. In
the Exact Regularised Point Particle method (ERPP)46, the inter-phase momentum cou-
pling occurs by a mechanism of vorticity generation by the particles and its di↵usion by
viscosity. This mechanism allows a physically consistent description of the disturbances
produced by the particles in the framework of the unsteady Stokes flows. Moreover, the
particle self-disturbance is known and can be removed from the background fluid velocity
when the Stokes drag is evaluated. The approach which provides convergent turbulent
statistics48,49, has been generalised to deal with wall bounded flows50. Recently it has
also been used in di↵erent contexts, e.g. polymer-laden flows51, and to model several
multi-physical phenomena, e.g. evaporating droplets in shear flows52, in isotropic regions
of turbulent sprays53, and in reacting flows54. Concerning evaporating droplets, Ref.55

would be a valuable benchmark to compare the point-particle approach with a finite-size
droplet simulation.

Experimentally, the motion, deposition, entrainment and spatial distribution of the
particles in boundary layers and channel flows have been addressed in Refs.56,57. The
study reports larger velocity gradients close to the wall, which corresponds to a larger
wall shear stress with respect to the unladen case. The augmentation of the turbulent
velocity fluctuations close to the wall is also observed. Other experimental measurements
show an increase in friction and in turbulent fluctuations at the wall58–61. In the pipe
flow, an increase in the wall shear stress as well as of the turbulent fluctuations near the
wall is also observed62–65.

The scattering in the results is unavoidably due to the complex multi-scale interaction
between the carrier and the disperse phase which is controlled by many parameters, e.g.
the turbulence Reynolds number, the particle Stokes number, the particle-to-fluid density
ratio, the mass loading (or volume fraction) of the suspension, and the particle Reynolds
number. In any case, both resolved particle Direct Numerical Simulations and the exper-
imental results seem to agree on the fact that the addition of the particles increases the
wall shear stress with respect to the unladen case (drag increase) and that the turbulent
fluctuations are augmented in the near-wall region.

The present paper investigates the modification of wall turbulence in a turbulent pipe
flow laden with inertial particles. The analysis aims at exploring a wide range of the phase
space parametrised by the particle Stokes number, the mass-loading, and the particle-
to-fluid density ratio, at fixed turbulence Reynolds number. This work is a continua-
tion/extension of a previous study50 with a deeper and more extensive analysis, of both
fluid and particle velocity fluctuations statistics. The impact of the particles’ feedback
on the flow structures of wall-bounded flows, i.e. the velocity streaks and the coherent
quasi-streamwise vortices, is also addressed. The inter-phase momentum coupling is ex-
ploited by the generalised ERPP approach46,50. The issue of whether the particle feedback
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produces an overall increase or decrease of the friction drag and whether the turbulent
fluctuations are augmented or reduced by the particles is discussed. In the region of the
parameter space covered by the present simulations, the data shows that the particles
always increase or at most leave unaltered the friction drag and that the fluid velocity
fluctuations are augmented in the viscous sub-layer. The statistics of the dispersed phase
in terms of velocity fluctuations follow the same behaviour as the fluid phase. The non-
trivial turbulence/particle interaction turns out in a clear alteration of the streamwise
velocity streaks that lose their spatial coherence due to two-way coupling e↵ects. Con-
currently, the streamwise vortices are shifted towards the centre of the pipe, and new
small-scale and relatively intense vortical structures appear in the near wall region.

The paper is organised as follows: section §II briefly summarises the generalised ERPP
approach and reports the simulation setup and parameters for the turbulent pipe flow.
Section §III discusses the turbulence modification and the particle statistics in the two-way
coupling regime. Section IV draws the conclusions of this work.

II. PARTICLE LADEN TURBULENT PIPE FLOW

The particle-laden turbulent pipe flow in the two-way coupling regime is simulated by
a mixed Eulerian-Lagrangian approach. The dimensionless incompressible Navier-Stokes
equations, �������������

∇ ⋅ u = 0
@u

@t
+∇ ⋅ (u⊗ u) = −∇p + 1

Reb,0
∇2u − dp

dz
�
0
ez + f ,

(1)

are solved in the cylindrical domain D = [0 ∶ 2⇡]× [0 ∶ 1]× [0 ∶ 2⇡], where the azimuthal ✓,
radial r, and axial z dimensions are normalised with the pipe radius R. Periodic bound-
ary conditions are applied in the axial and azimuthal direction and impermeability and
no-slip conditions are enforced at the walls. In equations (1), Reb,0 = ⇢fUb,0R�µ is the
bulk Reynolds number, Ub,0 = Q0�(⇡R2) is the bulk velocity, and Q0 is the flow rate of the
reference uncoupled case (no particle back-reaction). As usual, µ is the dynamic viscosity,
⇢f the fluid density and ⌫ = µ�⇢f is the kinematic viscosity. The flow is sustained by a
constant mean pressure gradient that is applied in the direction of the axial unit vector
ez. The dimensionless pressure is expressed as P = dp�dz�0(z−z0)+p(✓, r, z, t). Equations
(1) are solved in cylindrical coordinates exploiting a second-order finite di↵erence discreti-
sation on a staggered grid. The classical Chorin’s projection method66 is used to enforce
the divergence-free constraint imposed by the mass balance. Both convective and di↵u-
sive terms are explicitly integrated in time using a third-order low-storage Runge-Kutta
method. In the context of the Exact Regularised Point Particle method, the inter-phase
momentum coupling is given by the field f(x, t) in eq.(1),

f(x, t) = − Np�
p=1

Dp(t − ✏) g [x − xp(t − ✏), ✏] + D̃p(t − ✏) g [x − x̃p(t − ✏), ✏] . (2)

Briefly, the Gaussian function in eq. (2) is related to the process of vorticity generation by
the particles and its di↵usion on the time-scale ✏ that regularises the particles’ feedback.
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The tilde denotes the particle image to account for the presence of the wall, andDp denotes
the hydrodynamic force, i.e. the Stokes drag. The reader is referred to the original papers
46,50 for the complete, thorough derivation of the feedback term.

The disperse phase is described by the (dimensionless) Newton equations,

�����������������

dxp

dt
= vp

dvp

dt
= 1

Stb
�û�p + d2p

24
∇2û�p − vp� ,

(3)

where Stb = ⌧pUb�R = ⇢p�(18⇢f)Rebd2p, is the bulk Stokes number, ⌧p is the particle relax-
ation time. When the particle Reynolds number is small and the particle-to-fluid density
ratio is large, the hydrodynamic force reduces to the Stokes drag and the related Faxen
correction28,29. A purely elastic collision model is used to manage the particle/wall inter-
action. In the expression of the hydrodynamic force, the hat denotes the fluid velocity
evaluated at the particle position in absence of the p-th particle, i.e. it is the undisturbed

velocity field. This field is evaluated by subtracting from the background flow field the
particle self-disturbance that is known in a closed form in the ERPP approach. Equations
(3) are integrated in time with the same Runge-Kutta method employed for the carrier
phase.

In wall turbulence, it is usual to consider inner or wall units, i.e. the friction velocity
u∗ =�⌧w�⇢f , where ⌧w is the average wall shear stress, the viscous length `∗ = ⌫�u∗ and the
viscous time-scale ⌧∗ = `∗�u∗. The distance from the pipe wall in inner units is denoted by
y+ = (1−r�R)Re∗, where Re∗ = u∗R�⌫ is the friction Reynolds number. The same distance
in external units is denoted by y = 1 − r�R. All the simulations are performed with the
same friction Reynolds number Re∗ = 180, corresponding to a bulk Reynolds number of
Reb,0 = 2650 in the uncoupled case. The grid resolution is N✓ ×Nr ×Nz = 576×129×576 in
the azimuthal, wall-normal, and axial directions, respectively. In the radial direction, the
grid is clustered near the wall with a minimum spacing of �r+�w = 0.5 which gradually

increases towards the centreline reaching �r+�0 = 2. The grid resolution in the azimuthal
and axial directions is (R�✓)+ = 3 and �z+ = 3, respectively.

The disperse phase is characterised by the inner-scale Stokes number defined as St+ =
⌧p�⌧∗ = StbRe2∗�Reb,0. The mass loading of the suspension is the ratio between the total
mass of the disperse and carrier phases, that is, � = (⇢p�⇢f)�V , where �V = Np Vp�Vf is
the volume fraction, where Vp is the volume of the single particle, and Vf the volume of
the fluid domain D.

In summary, the dynamics of the suspension is controlled by a set of four dimensionless
parameters, {Re∗; St+; �; ⇢p�⇢f} that corresponds to the following physical assumptions:
i) the volume fraction is small (dilute suspension) to neglect particle-particle interactions,
ii) the particle diameter d+p is of the order of the viscous length and the particle Reynolds
number is small, iii) the density ratio ⇢p�⇢f is su�ciently large to allow non-negligible mass
loading at small volume fractions. The parameters of the di↵erent cases are summarised
in table I. The simulations are grouped into three sets. In the first set, the mass loading
� is changed keeping the Stokes number and density ratio fixed. The second set addresses
the e↵ects of the Stokes number at fixed mass loading and density ratio. Finally, the
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� ⇢p�⇢f St+ Stb d+p Np

0 - - - - -

0.2 180 10 0.82 1 244290

0.4 180 10 0.82 1 488580

0.6 180 10 0.82 1 732870

0.4 180 15 1.23 1.23 265950

0.4 180 20 1.64 1.41 172739

0.4 180 80 6.54 2.82 21592

0.4 90 10 0.82 1.41 345479

0.4 360 10 0.82 0.70 690957

0.4 560 10 0.82 0.57 861775

Table I. Simulations’ list. All the runs are performed with the same mean pressure gradient

corresponding to a friction Reynolds number of Re∗ = u∗R�⌫ = 180. The bulk Reynolds number

for the reference uncoupled case (one-way coupling) is Reb,0 = 2650. The fluid domain D = [0 ∶
2⇡] × [0 ∶ R] × [0 ∶ Lz] (Lz = 2⇡R is the pipe axial length and R its radius) is discretised by

means of N✓ ×Nr ×Nz = 576 × 129 × 576 points, corresponding to a resolution of �r+�w = 0.5

at the wall and �r+�0 = 2 at the centre of the pipe. The resolution in the azimuthal and axial

directions is (R�✓)+ = 3 and �z+ = 3, respectively. The mass loading is � = (⇢p�⇢f)�V where

⇢p�⇢f is the particle-to-fluid density ratio and �V = Np Vp�Vf is the volume fraction. Np denotes

the number of particles, Vp is the volume of one particle, and Vf the volume of the fluid domain

D. St+ = ⌧p�⌧∗ (⌧∗ = `∗�u∗) is the Stokes number in internal units and Stb = ⌧p�⌧f is the Stokes

number in external units (⌧f = R�Ub,0, where Ub,0 is the bulk velocity in the uncoupled case).

The column labelled d+p reports the particle diameter in wall units. The simulations are grouped

into three sets. The top set addresses the e↵ect of the mass loading, the middle set addresses

the e↵ect of the Stokes number and the bottom set addresses the e↵ect of the density ratio, or

equivalently the number of particles Np.

density ratio is changed at fixed mass loading and Stokes number.

III. RESULTS

A. Fluid statistics: mean velocity and velocity fluctuations profiles

Figure 1 shows the mean velocity profiles in semi-logarithmic scale in internal units (left
column) and in linear scale in external units (right column). Panels a) and b) show the
e↵ect of the mass loading, panels c) and d) the e↵ect of the Stokes number, and panels e)
and f) the e↵ect of the density ratio. The drag increase manifests as a decrease in the flow
speed since the pressure gradient is the same in all the studied cases. When rescaled in
internal units, the velocity profile in the viscous sub-layer is not modified by the inter-phase
momentum coupling, whilst the bu↵er and logarithmic regions are significantly altered,
especially when a notable drag increase occurs. The present results, obtained with a point-
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a) b)

c) d)

e) f)

Figure 1. Mean velocity Uz = �uz� against the wall-normal distance y = (R − r). Panels a), c)

and e): data normalised with internal units, U+z = Uz�u∗ against y+ = y�`∗. Panels b), d) and

f): data normalised with external units, Uz�Ub,0 against y�R, where Ub,0 is the bulk velocity of

the reference uncoupled case. Panels a) and b): data for St+ = 10 and ⇢p�⇢f = 180 at di↵erent

mass loads. Panels c) and d): data at fixed mass load � = 0.4 and density ratio ⇢p�⇢f = 180 at

di↵erent Stokes numbers. Panels e) and f): data at fixed mass load � = 0.4 and Stokes number

St+ = 10 at di↵erent density ratios. In all the panels the solid black line is the mean velocity

profile in the uncoupled case. In panels a), c) and e) the straight dashed lines sketch the mean

velocity profile in the logarithmic region U+z = 1�k ln y+ +A with k = 0.41 and A = 6. The curved

dashed line corresponds to U+z = y+ in the viscous sub-layer.
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Figure 2. Bulk velocity Ub normalised with the corresponding bulk velocity of the uncoupled

case Ub0. The data are plotted as a function of the the mass loading � (red circles) at fixed

St+ = 10 and ⇢p�⇢f = 180, as a function of the Stokes number St+ (green circles) at fixed � = 0.4
and ⇢p�⇢f = 180, and as a function of the particle-to-fluid density ratio ⇢p�⇢f (blue circles) at

fixed � = 0.4 and St+ = 10.
particle approach, are capturing the important physical behaviour of a particle-laden flow,
that is, the increase of the overall drag. Previously, similar results have only been achieved
via resolved particle simulations23,67,68 or by exploiting the volume-filtered Navier-Stokes
approach to account for excluded volume e↵ects42,69. Similar behaviour also occurs at
low (order one) particle-to-fluid density ratio, as documented both numerically22,24 and
experimentally58–60,62. The present results document that the increase of the drag is also
present at higher values of the particle-to-fluid density ratios and at small values of the
Stokes number.

The increase of the friction drag manifests as a depletion of the mass flow rate. Figure 2
shows the bulk velocity for all the simulations and summarises at a glance the e↵ect that
the di↵erent parameters have on the bulk velocity modification. The increase of the drag
is observed when the mass loading is increased, when the Stokes number is relatively
small, or when the density ratio is order 100. This latter circumstance is not trivial and
roughly corresponds to actual cases such as, for example, when medicinal powders are
used for inhalable drug delivery, when carbon dust is transported, in the food industry
when powders result from the processing of cereals and when sawdust is produced in wood
manufacturing. Additionally, when the carrier fluid is water or a relatively dense fluid,
common materials turn out to have a relatively small density ratio. Note that Ub is a
function of [Re∗, St+,�,⇢p�⇢f ] and figure 2 provides only three one-dimensional views at
fixed Re∗ of this four-variable phase space.

The characterisation of the turbulence modulation is completed by addressing the
mean profiles of velocity variances and Reynolds shear stresses. The axial and radial
mean velocity variance plotted against the wall-normal distance are shown in figures 3
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a) b)

c)

Figure 3. Mean axial velocity fluctuation �u′2z �+ = �u′2z ��u2∗ against normal distance y+ = y�`∗.
Panel a): St+ = 10, ⇢p�⇢f = 180, and di↵erent mass loading. Panel b): � = 0.4, ⇢p�⇢f = 180, and
di↵erent Stokes numbers. Panel c): St+ = 10, � = 0.4, and di↵erent density ratios. In all panels,

the solid black line is the mean profile in the uncoupled case (no back-reaction on the fluid).

and 4, respectively. The largest e↵ects on the flow are seen in the viscous sub-layer and
in the bu↵er layer. In the bulk, a substantial modification is also observed for the radial
(wall normal) velocity component. In the bu↵er region, two-way coupling e↵ects decrease
the peak of velocity variances and lead to an augmentation of the variances in the viscous
sub-layer (2 < y+ < 5). This scenario corresponds to cases where a substantial drag increase
is observed. The e↵ect of the mass loading is significant since the peak in the bu↵er region
is attenuated and a new peak appears in the viscous sub-layer. The departure from the
classical Newtonian behaviour is attenuated when the Stokes number or the density ratio
are increased. At larger Stokes numbers and/or density ratios, the viscous sub-layer is
una↵ected even though the depletion of the peak in the bu↵er region is still present.

Figure 5 completes the analysis of velocity variances by showing the Reynolds shear
stress. By increasing the mass loading, the peak of the Reynolds stresses in the bu↵er
region is attenuated whilst an increase appears in the viscous sub-layer. The same occurs
at a relatively small Stokes number whilst, when the Stokes number is progressively in-
creased, the shear stress profile recovers the behaviour of the one-way coupled simulation
except for the intensity of the peak in the bu↵er region which is still below the uncoupled
case. A similar e↵ect is observed by increasing the density ratio.

The physical mechanisms that are at the origin of the drag increase can be explained in
terms of an alteration of the turbulent stresses. The mean streamwise momentum balance
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a) b)

c)

Figure 4. Mean radial velocity fluctuation �u′2r �+ = �u′2r ��u2∗ against normal distance y+ = y�`∗.
Panel a): St+ = 10, ⇢p�⇢f = 180, and di↵erent mass loading. Panel b): � = 0.4, ⇢p�⇢f = 180, and
di↵erent Stokes numbers. Panel c): St+ = 10, � = 0.4, and di↵erent density ratios. In all panels,

the solid black line is the mean profile in the uncoupled case (no back-reaction on the fluid).

can be integrated a first time in the generic interval [0; r] and a second time across the
entire pipe section70. The result is a balance equation that relates the pressure drop to
the flow rate via the turbulent stress and the particles’ extra stress which takes part in
the budget because of two-way coupling e↵ects. The budget reads

µR2Ub −� R

0
r2 (⌧t + ⌧e) dr = −1

8

dp

dz
�
0
R4 , (4)

where the turbulent Reynolds stress is ⌧t = ⇢f �u′zu′r�, and the particles’ extra stress is
⌧e = (1�r) ∫ r

0 ⌘�fz�d⌘, where �fz� is the mean axial component of the force feedback
on the fluid. The extra stress can be interpreted as an alternative way for the axial
momentum to be transferred from the bulk of the flow towards the wall by the particles.
The interpretation of eq. (4) is straightforward. In the laminar case, the entire pressure
drop is converted in the flow rate Ub. In the turbulent case, the presence of the Reynolds
shear stress results in a reduced flow rate for a given pressure drop. In the two-way
coupling regime, the extra stress also plays a role in determining the flow rate – together
with the (modified) turbulent stress – since it can absorb part of the available pressure
drop. Note that both the turbulent stress, ⌧t, and the extra-stress, ⌧e, enter in the budget
through the weight factor r2. It follows that any slight modification of the stresses in
the near-wall region has a striking e↵ect on the flow rate. The budget (4) suggests the
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analysis of the weighted stress profiles, r2⌧t and r2⌧e, see figure 6. In the case at � = 0.4,
St+ = 10, and ⇢p�⇢f = 180, panel a), the augmentation of the Reynolds shear stress in the
near-wall region and the presence of the extra stress explains the change in the profile
of the cumulative turbulent stress r2 (⌧t + ⌧e), that overall follows almost everywhere the
data of the one-way coupling regime r2⌧t��=0, except in the near-wall region where it is
strongly augmented. In contrast, for the particle population at � = 0.4, St+ = 80, and
⇢p�⇢f = 180 shown in panel b), both the profiles of r2⌧t and r2⌧e are modified by the
backreaction but their sum meets the profile r2⌧t��=0 of the uncoupled case. This explains
why the drag is not modified even though particles carry significant extra stress. Finally,
in the case at � = 0.4, St+ = 10, and ⇢p�⇢f = 560, panel c), the absence of drag increase is
related to the almost absent extra stress and a negligible modification of the turbulence
Reynolds stress. In general, a lower peak of the Reynolds shear stresses in the bu↵er layer
would result in drag reduction. However, the increase in Reynolds stress in the viscous
sub-layer combined with the particle extra stress close to the wall largely overwhelms
this e↵ect, since the contribution of the viscous sub-layer, see the weighting factor r2, is
dominant. This leads to an overall increase in drag, associated with a higher compound
turbulent stress.

A similar behaviour, obtained here by modelling particles as concentrated masses, re-
produces a turbulence regime that has been observed only in resolved particle simulations,
see e.g. Ref.68. This indicates that the drag increase is not related to the particle’s finite
size but to the feedback itself, as long as it is modelled in a physically consistent way.

B. Particle statistics: mean velocity and velocity variances

The e↵ect of the particle feedback on wall turbulence is expected to be larger where
the particles tend to accumulate in space. The phenomenon of preferential segregation
near a solid wall is known as turbophoresis and is clearly observed in the one-way coupled
regime71–73. In the two-way coupling regime, the phenomena still occur as discussed in
Ref.50. In the following, we extend the analysis to the particle mean velocity and velocity
fluctuations.

Figure 7 shows the particle mean velocity compared to the fluid mean velocity. In
panel a), the mass loading is changed whilst the other parameters are fixed. At low
mass loading, two-way coupling e↵ects are small and both the fluid and the particle mean
velocity match the behaviour of the one-way coupled simulations. When � is increased,
both fluid and particle velocity are substantially modified. Note that the particles share
the same fluid mean velocity away from the wall whilst, when close to the bu↵er layer, the
particle velocity lags behind the fluid velocity, indicating that the fluid is faster than the
particles on average. Panel b) addresses the e↵ect of the Stokes number. The population
with the higher Stokes number addressed, St+ = 80, shows that the particle velocity lags
behind the fluid velocity almost everywhere. Finally, panel c) shows the e↵ect of the
density ratio where similar observations hold.

Figure 8 reports the particles’ (symbols) and fluid (only for the one-way coupled case,
solid line) velocity fluctuations. The plots in the left column address the axial velocity
component whilst the plots in the right column address the radial (wall-normal) velocity

11



a) b)

c)

Figure 5. Reynolds shear stresses �u′ru′z�+ = �u′ru′z��u2∗ against normal distance y+ = y�`∗. Panel
a): St+ = 10, ⇢p�⇢f = 180, and di↵erent mass loading. Panel b): � = 0.4, ⇢p�⇢f = 180, and

di↵erent Stokes numbers. Panel c): St+ = 10, � = 0.4, and di↵erent density ratios. In all panels,

the solid black line is the mean profile in the uncoupled case (no back-reaction on the fluid).

component. Panels a) and b) demonstrate the e↵ect of mass loading. As � increases,
the peak in the bu↵er region is progressively attenuated and velocity fluctuations corre-
spondingly increase in the viscous-sub layer. This behaviour is generic for both velocity
components. Panels c) and d) demonstrate the e↵ect of the Stokes number at fixed mass
loading and density ratio. Concerning the axial particle velocity variance, the popula-
tion with St+ = 10 shows relatively intense fluctuations in the viscous sub-layer and a
relatively small peak in the bu↵er region. When St+ increases, the particle velocity vari-
ance activates throughout the flow domain whilst the radial velocity fluctuations show
a depletion. Finally, panels e) and f) address the e↵ect of the density ratio and show
how relatively light particle populations have large variances near the wall. In contrast,
at higher particle-to-fluid density ratios, variances are particularly intense in the bu↵er
region. The peak of the radial velocity fluctuations can be associated with particles that
travel towards/away from the walls. Moreover, since the particles’ and fluid mean ve-
locity profiles are similar, the axial velocity fluctuations can be interpreted as a proxy
of the momentum exchange between the two phases. The particles’ shear stresses better
illustrate this point.

Figure 9 shows the particle streamwise/wall-normal cross-correlation, referred to as
the particle Reynolds shear stresses. In the three panels of the figure, the Reynolds shear
stresses of the fluid in the one-way coupling regime is also shown for comparison. Panel a)
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a) b)

c)

Figure 6. Weighted stresses profile as a function of the radial coordinate (bottom x-axis) and

as a function of the wall-normal distance in wall units (top x-axis). Panel a): St+ = 10 � = 0.4
and ⇢p�⇢f = 180. Panel b): St+ = 80 � = 0.4 and ⇢p�⇢f = 180. Panel c):St+ = 10 � = 0.4 and

⇢p�⇢f = 560. In all panels, the solid black line is the turbulent stress (Reynolds stress) in the

uncoupled case (no back-reaction on the fluid).

addresses the e↵ect of the mass loading and shows that at relatively small values of �, the
particle Reynolds shear stresses are particularly active in the bu↵er region. At increasing
mass loading, the peak of the stresses is progressively eroded where particles’ shear stress
becomes more active in the viscous sub-layer. The e↵ect of the Stokes number is addressed
in panel b) which shows that increasing St+, the stresses are progressively attenuated in
the viscous sub-layer whilst a definite peak appears in the bu↵er region. At the higher
Stokes number, the peak is slightly shifted towards the outer part of the bu↵er layer
and the overall intensity is depleted. Panel c) presents the e↵ect of the particle-to-fluid
density ratio and shows that at increasing ⇢p�⇢f , the peak of the particles’ shear stresses
in the bu↵er region is increasingly more pronounced and the curve always lays above the
corresponding fluid Reynolds shear stresses. The particle shear stress is related to a simple
mechanism that involves the particles that come from the bulk of the flow and approach
the walls (or vice-versa). The shear is positive since the particle radial velocity fluctuations
are positive (particles approach the wall) and they generate a positive streamwise velocity
fluctuation since they bring a higher streamwise momentum. Close to the wall the particle
and the fluid mean velocity profile is similar, it follows that the e↵ect of this dynamics
is to transfer positive streamwise momentum to the fluid (the particles push the fluid)
hence generating high-velocity gradients at the wall, i.e. drag increase. Note that also
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a) b)

c)

Figure 7. Mean fluid velocity U+z = Uz�u∗ (solid lines) and mean particle velocity V +z = Vz�u∗
(symbols, colour-matched) against the wall-normal distance y+. Panel a): e↵ect of the mass

loading at St+ = 10 and ⇢p�⇢f = 180. Panel b): e↵ect of the Stokes number at � = 0.4 and

⇢p�⇢f = 180. Panel c): e↵ect of the density ratio at St+ = 10 and � = 0.4.
for a particle travelling away from the wall, the shear stress is positive and results in
a momentum exchange that goes from the fluid to the particles (the fluid pushes the
particles). This generates a loop where the particle absorbs streamwise momentum from
the fluid in the bulk and releases it near the wall, giving an alternative way of momentum
transfer that ultimately increases the drag.

C. Instantaneous near-wall structures

Turbulence and particle statistics are mostly a↵ected with respect to the one-way cou-
pling regime in the bu↵er layer and viscous sub-layer. This suggests analyzing the typical
turbulence structures of this flow region, i.e. the streaks visualized by the instantaneous
axial velocity fluctuations u′z. The streaks are shown in fig. 10 and the instantaneous
particle configuration is superimposed below. Among the many cases addressed in this
paper, only the cases corresponding to extreme values of the parameters of figure 2 are
shown. The one-way coupled visualisation is reported in panel a) for comparison. When
the particles’ e↵ect is negligible, that is at a high Stokes number, St+ = 80 in panel c) and
high density ratio, ⇢p�⇢f = 560 in panel e), the streaks show the same qualitative structure
of the classical wall turbulence. Indeed, in these cases, the particles tend to segregate into
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a) b)

c) d)

e) f)

Figure 8. Axial �u′2z �+ and radial �u′2r �+ fluid velocity variance (lines) and particle axial �v′2z �+
and radial �v′2r �+ velocity variance (symbols, colour-matched) against the wall normal distance

y+. Panels a) and b): e↵ect of the mass loading at St+ = 10 and ⇢p�⇢f = 180. Panels c) and d):

e↵ect of the Stokes number at � = 0.4 and ⇢p�⇢f = 180. Panels e) and f): e↵ect of the density

ratio at St+ = 10 and � = 0.4. In panels c), d), e) and f), fluid velocity variance in the one-way

coupling regime (black dashed line).

high-speed streaks. However, when the momentum coupling is significant, that is for case
� = 0.6 in panel b), St+ = 10 in panel d) and ⇢p�⇢f = 90 in panel f), the streaks are less
evident. Their streamwise coherence appears to be lost, and the flow is characterised by
large regions of negative velocity fluctuations and very confined regions of positive intense
velocity fluctuations, see the red spots in the panels. The spots of positive velocity fluctu-
ations correspond to the localised particle agglomerates whose concentration correlates at
glance with the velocity fluctuations peaks. Outside these regions, the particle distribu-
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a) b)

c)

Figure 9. Fluid Reynolds shear stress �u′ru′z�+ (lines) and particle Reynolds shear stress �v′rv′z�+
(symbols, colour-matched) against the wall-normal distance y+. Panels a): e↵ect of the mass

loading at St+ = 10 and ⇢p�⇢f = 180. Panels b): e↵ect of the Stokes number at � = 0.4 and

⇢p�⇢f = 180. Panels c): e↵ect of the density ratio at St+ = 10 and � = 0.4. In panels a), b), and

c), fluid Reynolds shear stresses in the one-way coupling regime (black dashed line).

tion appears more uniform with respect to the other cases even though the instantaneous
snapshots suggest that the particles’ e↵ect is more intense in the regions where clusters of
particles form. The streaks are typically associated with the presence of coherent vortical
structures. Figure 11 shows the iso-contours of the well-established Q-criterion, where
Q = 0.5(��⌦��2 − ��S��2), ⌦ = 0.5(∇u −∇uT ), and S = 0.5(∇u +∇uT ). A positive value of Q
corresponds to regions of the flow field in which vorticity dominates the strain, i.e. the
coherent vortical structures. The one-way coupling case is shown in panel a) for com-
parison. Panel b) corresponds to the case at St+ = 80 where no substantial alteration
of the drag is measured. Panels c) and d) report the structures for the case at � = 0.6
where, instead, the e↵ect of the particle on the drag is significant. In all the panels, the
isosurfaces of the Q-criterion are coloured with the wall-normal distance. The case at
St = 80 shows vortical structures qualitatively similar to the one-way coupling simulation,
for the same value of the isosurface Q = 2. The same isosurface Q = 2 at � = 0.6 (panel c),
shows that the coherent structures are moved in the centre of the pipe and that a lawn
of relatively small structures appears near the wall. These are highlighted by addressing
the isosurface Q = 20, see panel d, and surprisingly their wall normal distance matches
the peak position in fluid velocity fluctuations. These small structures are very intense
and are associated with the loss of spacial order of the near-wall streaks which has been
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previously discussed.

IV. FINAL REMARKS

The wall turbulence modulation due to small inertial particles has been investigated
in a fully developed pipe flow exploiting the Exact Regularised Point Particle (ERPP)
method to model the inter-phase momentum coupling.

Even though the results have been obtained with the drastic simplification of particles
taken as point masses, it appears that in specific regions of the parameter space, the
overall friction drag is increased by two-way coupling e↵ects. In these cases, the fluid
and the particle velocities show high-intensity fluctuations in the viscous sub-layer and an
attenuation in the bu↵er region. Friction drag and fluctuations increase for the particle
populations at relatively small Stokes numbers St+ = 10 − 20 and for the mass loading of
� = 0.4 − 0.6. The carrier and the disperse phase alteration is attenuated as the Stokes
number increases beyond St+ = 80. The particle-to-fluid density ratio also plays an im-
portant role. The turbulence modification is explained in terms of the alteration of the
turbulent stresses. The particles provide extra stress in the viscous sub-layer. The sum
of the turbulent stress and the extra stress is larger than the Newtonian turbulent stress
thus explaining the drag increase in terms of an alteration of the streamwise momentum
flux towards the wall. The turbulence alteration is visualised at glance by the modifica-
tion of the near wall streamwise velocity streaks that appear somehow destroyed in their
streamwise coherence in cases where a significant drag increase is observed. This is asso-
ciated with a shift of the streamwise vortices towards the centre of the pipe and with the
concurrent presence of small-scale and relatively more intense vortical structures near the
wall.
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