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Abstract4

We introduce a Hamiltonian approach to study the stability of three-dimensional spatiotemporal solitons in graded-
index multimode optical fibers. Nonlinear light bullet propagation in these fibers can be described by means of a
Gross-Pitaevskii equation with a two-dimensional parabolic potential. We apply a variational approach, based on
the Ritz optimization method, and compare its predictions with extensive numerical simulations. We analytically
find that, in fibers with a pure Kerr self-focusing non-linearity, spatiotemporal solitons are stable for low energies, in
perfect agreement with numerical simulations. However, above a certain energy threshold, simulations reveal that the
spatiotemporal solitons undergo a wave collapse, which is not captured by the variational approach.
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1. Introduction6

Since the seminal paper by Zabuski and Kruskal that coined the word of soliton in 1965 [1], the emergence7

and dynamics of solitons in different domains of science and technology continue to attract tremendous attention.8

Solitons or solitary waves are localized in time or space, which propagate without suffering any shape modification.9

Solitons result from the interplay between linear and nonlinear processes, which acting separately would cause the10

wave to decay. Solitary waves arise in a plethora of different natural contexts, including hydrodynamics, plasma11

and condensed matter physics, biology, and nonlinear optics, to cite a few [2, 3, 4]. In the optics context, solitons12

are particle-like waves which may emerge in nonlinear media owing to a balance between dispersive or diffractive13

effects and nonlinear pulse confinement in either time or space, leading to temporal or spatial solitons, respectively14

[5]. Nonlinearity-induced light confinement is due to the dependence of the refractive index upon intensity of light15

(optical Kerr effect), which yields spatial self-(de)focusing or temporal self-phase modulation. In nonlinear dispersive16

media, such as single-mode optical fibers, self-phase modulation counteracts temporal broadening due to anomalous17

dispersion, leading to the formation of temporal solitons along the propagation direction of light. In contrast, spatial18

solitons form through a balance between natural diffraction-induced spreading on the one hand, and spatial self-19

focusing on the other hand, and form in transverse plane with respect to the propagation direction. Notably, spatial20

and temporal effects can couple and act simultaneously, so that dispersion and diffraction counteract Kerr nonlinearity21

at once, leading to light confinement in space-time. This originates the formation of a large variety of coherent22

spatiotemporal states, such as spatiotemporal solitons (STSs), also known as light bullets [6].23

Unfortunately, fundamental Kerr STSs (i.e., solitons not carrying vorticity) are subject to a propagation instability24

in more than one dimension, leading to spatiotemporal wave collapse [6, 7, 8]. Wave collapse is a fundamental25

phenomenon in the context of nonlinear waves: it occurs whenever strong wave compression leads to a catastrophic26

blow-up of its amplitude after a finite propagation distance [7, 8]. The compression suffered by the wave needs two27

or more dimensions to be strong enough in order to generate the collapse. Therefore, it is absent in 1D geometries.28
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This phenomenon not only arises in nonlinear optics [9], but it also appears in different contexts, ranging from Bose-29

Einstein condensates (BECs) to astrophysics [10, 11, 12]. A central challenge in the scientific community remains30

open: namely, finding robust mechanisms which may be able to arrest the destructive wave collapse mechanisms.31

In this work, we study the formation and stability of three-dimensional (3D) STSs in the context of nonlinear32

multimode fiber optics. Specifically, we consider the formation of STSs in fibers with a parabolic decrease of the33

refractive index in the transverse radial coordinate, when moving away from the center of the core [13, 14]. These34

fibers are known as graded-index (GRIN) fibers [15]: the parabolic refractive index variation permits to cancel, to35

first order, the effects of modal dispersion. In addition, the parabolic refractive index profile acts as a spatial guiding36

potential, which may arrest spatiotemporal wave collapse, as experimentally demonstrated by Renninger and Wise37

[16].38

The variational approach (VA) permits to compute approximate STS solutions; moreover, it may also lead to as-39

sessing their propagation stability, by exploiting different criteria. Most of the time, the VA is based on a Lagrangian40

description of nonlinear wave propagation [13, 14]. In this work, we introduce a different VA, based on the Hamil-41

tonian formulation. In this way, we find static solutions, and determine their stability by using the Lyapunov theory.42

Moreover, we test our findings by performing full 3D numerical simulations of the original model, and find that an-43

alytical predictions match well with numerical results for low values of STS energy. However, when the STS energy44

grows larger, this agreement worsens, until eventually the STSs undergo a full collapse, which is not predicted by the45

analytical theory.46

This paper is organized as follows. In Section 2 we present the model that we will use in our analysis. After47

that, in Section 3 we introduce Lagrangian and Hamiltonian formulations of the model, and the Ritz optimization48

method. In Section 4 we obtain, by means of a Hamiltonian formulation, a reduced dynamical system containing the49

effective dynamics of the STSs; In Section 5 we analyze their stability. In Section 6 we test our analytical results by50

performing full 3D numerical simulations. Finally, in Section 7 we present our discussion or the results, and draw our51

conclusions.52

2. The Gross-Pitaevskii equation describing graded-index multimode fibers53

Electromagnetic waves propagating in GRIN waveguides can be described by the dimensionless 3D+1 Gross-54

Pitaevskii equation (GPE) [15]55

∂zu =
i
2
∇2
⊥u + i

δ

2
∂2

t u + i
ρ

2
(x2 + y2)u + iν|u|2u, (1)

where u = u(x, y, t, z) represents the normalized electric field component of the wave propagating along the z-direction,56

∇2
⊥ ≡ ∂

2
x + ∂

2
y represents material diffraction, ∂2

t corresponds to the material group velocity dispersion (GVD), with57

the coefficient δ = ±1 for anomalous/normal dispersion, ν = ±1 for self-focusing/self-defocusing Kerr nonlinearity;58

ρ(x2 + y2)/2 is a 2D parabolic potential, describing the transverse spatial profile of the refractive index. Here, ρ = −159

(ρ = 1) is chosen for guiding (antiguiding) materials. The same equation can be used in the context of BECs in order60

to describe nearly 1D condensates, with a cigar-shaped trapping potential (ρ < 0) if we change the z coordinate by t61

[17, 18]. In this context, ν = 1 models a self-attractive nonlinearity [4].62

3. Variational formulation of the Gross-Pitaevskii equation and the Ritz optimization method63

Equation (1) possesses the Lagrangian density64

L = −
1
2

(
|ux|

2 + |uy|
2
)
−
δ

2
|ut |

2 +
ν

2
|u|4 +

ρ

2
(x2 + y2)|u|2 +

i
2

(
u∗uz − uu∗z

)
, (2)

where we have rewritten the derivatives as uξ ≡ ∂ξu, with ξ being any variable x, y, z and t. This Lagrangian density65

contains all relevant information about the dynamics of the solutions to Eq. (1), including its conservation laws [19].66

By defining the generalized field momenta P ≡ ∂u∗zL = −iu/2 and P∗ ≡ ∂uzL = iu∗/2, our system can also be67

described by using the Hamiltonian density, which is obtained from the Legendre transform H = Pu∗z + P
∗uz − L,68

namely69

H =
1
2

(
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2 + |uy|
2
)
+
δ

2
|ut |

2 −
ν

2
|u|4 −

ρ

2

(
x2 + y2

)
|u|2. (3)
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The Ritz optimization method [20, 21, 22, 23] allows us to compute approximate analytical solutions of Eq. (1)70

by applying the principle of least action to a parameter-dependent solution ansatz. This method was utilized to predict71

the existence of STSs in inhomogeneous Kerr nonlinear media in terms of the Lagrangian formulation [13, 14].72

The starting point of this method is to propose an approximate ansatz solution, or trial function, which captures73

the main features and shape of the state that we want to compute. This solution ansatz has the form u = u[x, y, t; q(z)],74

and depends on z through a number of parameters q(z) = {q1(z), · · · , qn(z)},. These parameters are the generalized75

coordinates of the system. Next, we calculate the effective Lagrangian function, defined as76

L[q(z)] ≡
∫

IR3
L{u, u2

t ,∇
2
⊥; u[x, y, t, q(z)]}dxdydt. (4)

The effective Hamiltonian is then obtained through the Legendre transform77

H =
n∑

m=1

pmq̇m − L (5)

or directly from Eq. (3), that is78

H[q(z), p(z)] ≡
∫

IR3
H{u, u2

t ,∇
2
⊥; u[x, y, t, q(z)]}dxdydt, (6)

where p(z) = {p1, · · · , pn} are the generalized momenta, defined as pm = ∂L/∂q̇m. After that, we study the dynamics79

emerging from the Hamiltonian equations of motion80

q̇m =
∂H
∂pm
, ṗm = −

∂H
∂qm
, m = 1, · · · , n (7)

where q̇ ≡ dq/dz, and rebuild the desired solution through the initial ansatz.81

4. Effective dynamics reduction in the Hamiltonian formalism82

In order to study the formation of STSs, following [13, 14], we consider the ansatz83

u(z, x, y, t) ≡ v[x, y, t; qA(z)]exp (iC[x, y, t; qB(z)]) , (8)

with84

v[x, y, t; qA(z)] = Asech (η(z)t) exp
(
−

x2 + y2

2a(z)2

)
, (9)

and85

C[x, y, t; qB(z)] ≡ t2θ(z) +
(
x2 + y2

)
α(z) + ϕ(z), (10)

where q(z) = {qA(z), qB(z)}, qA = {A(z), a(z)}, and qB = {θ(z), α(z), ϕ(z)}. The different parameters correspond to the86

width of the spatial Gaussian profile a > 0, the inverse of the temporal width η > 0, the amplitude of the pulse A > 0,87

the spatial chirp α, the temporal chirp θ, and the phase ϕ, respectively. By using the definition of the pulse energy88

E ≡
∫

IR3
|u(x, y, t)|2dxdydt =

∫
IR3

v(x, y, t)2dxdydt, (11)

we obtain that89

A =

√
ηE

2πa2 , (12)

so that we can make our ansatz [i.e., Eq. (9)] energy dependent. In this way, the pulse energy becomes the most90

important control parameter for the STS solutions. Our ansatz leads to the Lagrangian91

L(z) = −E
[
ϕz +

π2θz

12η2 + a2αz +
δ

6
η2 +

π2δθ2

6η2 +
a2

2
(4α2 − ρ) +

1
2a2

(
1 −
νEη
6π

)]
, (13)
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where q(z) = {η(z), a(z), θ(z), α(z), ϕ(z)}. Here we want to follow the Hamiltonian formalism: therefore, we need to92

introduce the generalized momenta p = (pη, pa, pθ, pα, pϕ), canonically conjugate of q = (η, a, θ, α, ϕ):93

pη =
∂L
∂η̇
, pa =

∂L
∂ȧ
, pθ =

∂L
∂θ̇
, pα =

∂L
∂α̇
, pϕ =

∂L
∂ϕ̇
. (14)

By using the Lagrangian function defined by Eq. (13), the momenta read as94

pη = 0, pa = 0, pθ = −
Eπ2

12η2 , pα = −Ea2, pϕ = −E. (15)

As previously mentioned, the Hamiltonian can be computed by considering two different approaches. One of them95

uses Eq. (6) with the Hamiltonian density (3) and the chirp-dependent ansatz (8); whereas the second approach applies96

the Legendre transform (5). In any case, we obtain the effective Hamiltonian97

H = E
[
δη2

6
+
π2δθ2

6η2 +
a2

2
(4α2 − ρ) +

1
2a2

(
1 −

Eνη
6π

)]
, (16)

which, written in terms of the generalized momenta, reads as98

H(θ, α, pθ, pα) = −E

δEπ2

72pθ
+

2δθ2 pθ
E

+
pα
2E

(4α2 − ρ) +
E

2pα

1 − Eν
6

√
−

E
12pθ


 , (17)

where we have kept E as control parameter, instead of replacing it by −pϕ. In this case, the Hamiltonian equations of99

motion [see Eqs. (7)] describing the dynamics of the system become100

dpθ
dz
= −
∂H
∂θ
= 4δθpθ, (18)

101

dpα
dz
= −
∂H
∂α
= 4αpα, (19)

102

dθ
dz
=
∂H
∂pθ
= −2δθ2 +

E2

72p2
θ

δπ2 +
E2ν

4pα

√
−

12pθ
E

 , (20)

103

dα
dz
=
∂H
∂pα
=

1
2

(ρ − 4α2) +
E2

2p2
α

1 − Eν
6π

√
−

Eπ2

12pθ

 . (21)

In this way, we could reduce the original Eq. (1) to a 4D dynamical system, defined in the phase space (pθ, pα, θ, α),104

which contains all information about the dynamics of the STS ansatz (8). Note that dpϕ
dz = −

∂H
∂ϕ
= 0, which implies105

that pϕ remains constant during the propagation, and therefore E is conserved.106

5. Spatiotemporal soliton solutions107

In the Hamiltonian formulation, the steady-state solutions or STSs are represented as the equilibria of the reduced108

system. These are obtained from the nullity of the gradient of H evaluated at q = qe = (θe, αe, pe
θ, p

e
α) [19], namely109

DH|qe ≡ (∂θH, ∂αH, ∂pθH, ∂pαH)(qe,pe) = 0. (22)

The first two conditions yield the nullity of the temporal and spatial chirp (θe = αe = 0), which means that our STS110

must be chirp-free. These, once combined with Eqs. (20) and Eqs. (21), lead to111

δπ2 +
E2ν

4pe
α

√
−

12pe
θ

E
= 0,

ρ

2
+

E2

2pe
α

2

1 − Eν
6π

√
−

Eπ2

12pe
θ

 = 0, (23)
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Figure 1: Bifurcation diagrams for the STS states as a function of E. Left column: self-focusing/anomalous GVD. (a) shows the width of the STS
(a = ae) as a function of E, (b) shows the inverse of the temporal width η = ηe, (c) the STS peak intensity Ipeak . The branch of solutions Ba is
plotted in solid, while Bb uses a dashed line. The black dot (•) in panel (a) corresponds to the STS shown on the right.

respectively. By inserting the expressions for pα and pθ in the previous equations, we obtain112

Eν
a2

e
− 4πδηe = 0, Eνηe − 6π(1 + ρa4

e) = 0, (24)

providing that ae > 0. By combining these expressions, one finally obtains that the static soliton parameters satisfy113

E = 2πae

√
6δ(1 + ρa4

e) (25)

114

ηe =
Eν

4πδa2
e
=
ν

2δae

√
6δ(1 + ρa4

e), (26)

and115

Ipeak = |A|2 =
Eη

2πa2 =
3ν
a2

e
(1 + ρa4

e). (27)

From Eqs. (25) and (26), we find that δ(1 + ρa4
e) > 0. When 1 + ρa4

e = 0 (i.e., a4
e = −1/ρ), E and ηe become zero.116

This means that as E → 0, the temporal width of the state η−1
e → ∞, and the STS reduces to the continuous-wave117

solution of the system. Furthermore, from Eq. (26) we can see that δ and ν must have the same sign, in order for ηe to118

be positive. Equation (25) can also be written in the form119

ρa6
e + a2

e −
1
6δ

( E
2π

)2

= 0, (28)

and it may have one or two positive real roots, depending on the signs of ν, δ, and ρ. In what follows, we will consider120

guiding media: therefore, we may take ρ < 0. Furthermore, we focus on the case of a self-focusing nonlinear material121

(ν = 1) with anomalous GVD (δ = 1). In this case, Eqs. (25), (26), and (27) simplify to122

E = 2πae

√
6(1 + ρa4

e), ηe =
1

2ae

√
6(1 + ρa4

e), Ipeak =
3
a2

e
(1 + ρa4

e).
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(a) (b)

e

e

Figure 2: Lyapunov stability of STSs. Panel (a) shows the dependence of the Hessian of H with E for the self-focusing/anomalous GVD regime,
where we have multiply the vertical axis by a factor 10−3. Panel (b) shows the He versus E diagram.

Figures 1(a)-(c) show the modification of these quantities as a function of E for ρ = −1. In this regime, Eq. (28)123

has, for a fixed value of E, two real solutions, which lead to the solution branches Ba (solid red line), and Bb (dashed124

red line). These two solution branches coexist between E = E0 ≡ 0 and the fold, or turning point, which takes place at125

E = E f (see red dots in Fig. 1). The fold position can be calculated analytically, by solving the equation dE/dae = 0,126

which leads to 1 + 3ρa4
e = 0, providing that 1 + ρa4

e > 0. The solution of this equation yields the fold parameters127

a f = (−3ρ)−1/4, η f = (−3ρ)1/4, E f = 4πa f , I f =
2
a2

f

.

In the right column of Fig. 1 we show an example of a stable STS, reconstructed by using Eq. (8) for E = 8 (see top128

figure). To represent the bullets, we plot iso-surfaces for different fixed-intensity values. The bottom panel represents129

the wave-function intensity cross-sections at the plane t = 0, i.e. I(x, y = 0, τ). Increasing E, the STSs on Ba decrease130

their spatial and temporal width, while simultaneously increasing their intensity (i.e., Ipeak).131

6. Lyapunov stability criterion for light bullets132

An important question that one could ask at this stage is if the STS states are stable or not. To answer this, different133

methods can be considered, including the Vakhitov-Kolokolov criteria [24], or the spectral stability [14]. Here, we134

consider a different approach to determine STS stability, based on Eq. (17). The Hamiltonian provides information135

about the stability of the fixed points in terms of the Lyapunov stability criterion [25, 26]. The Lyapunov stability136

criterion establishes that if an equilibrium qe minimizes (maximizes) H, such a state is stable (unstable). When137

evaluated at the STS equilibria qe, the Hamiltonian reads138

He ≡ H(0, 0, pe
θ, p

e
α) = −E

δEπ2

72pe
θ

−
ρpe
α

2E
+

E
2pe
α

1 − Eν
6

√
−

E
12pe

θ


 , (29)

or, in terms of the generalized coordinates,139

He ≡ H(qe) = E
[
δη2

e

6
−
ρa2

e

2
+

1
2a2

(
1 −

Eνηe

6π

)]
. (30)

The way of determining if He is a maximum or a minimum is by studying the determinant of the Hessian matrix140

associated with H, once it is evaluated at qe. By definition, the components of the Hessian matrix of H, evaluated at141

qe, read as142

D2H(qe)(i, j) ≡

(
∂2H
∂qi∂q j

)
(qe), (31)

where the subindex i, j = 1, · · · , 4 scans the four STSs parameters (q1, q2, q3, q4) = (η, a, θ, α). The determinant of this143

matrix, known as the Hessian of H, reduces to144

Hess(H)e ≡ det
(
D2H(qe)

)
= −
δE4

(
12δρπ2a6

e + 6δπa2
e(ηeνE − 6π) + E2

)
27a4

eη
2
e

. (32)
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Now, if Hess(H)e > 0, H reaches the minimum value He = H(qe) at q = qe, and thus qe is a stable equilibrium.145

However, when Hess(H)e < 0, H has a maximum at q = qe which is therefore unstable. The transition between these146

two situations occurs when Hess(H)e = 0, which leads to the instability threshold.147

Figure 2(a) shows Hess(H)e as a function of E for the case of a self-focusing/anomalous GVD regime. The solid148

red part of this curve (i.e., Hess(H)e > 0) corresponds to the stable STS branch Ba, which extends from a = 0 to149

a = a f [see Fig. 1(a)]. The dashed curve (Hess(H)e < 0) corresponds to Bb, and the condition Hess(H)e = 0 is150

associated with the fold point occurring at E = E f . In Fig. 2(b) we plot the He versus E diagram: such a diagram151

was also used in other works, in order to determine soliton stability [27]. This diagram confirms what was already152

predicted through the diagram shown in Fig. 2(a): the STS equilibria on Ba minimize H, and therefore, correspond to153

stable STSs, while those on Bb are unstable, as they maximize H. The cusp of this graph corresponds to the position154

of the fold point which is shown in Figs. 1(a)-(c) and in Fig. 2(a).155

7. Full three-dimensional numerical simulations156

The aim of this section is to compare the theoretical results obtained by the Hamiltonian approach, with direct157

numerical simulations of the original GPE (1). To solve this initial value problem, we take as the initial condition the158

approximate variational solution defined by Eq. (8) with the parameters corresponding to equilibria of the effective159

dynamical theory. To do so, we utilize a pseudo-spectral split-step algorithm [28] where the differential part of Eq. (1)160

is evaluated via the fast Fourier transform method.161

The z-evolutions of the initial stable chirp-free STS solutions are shown in Figs. 3(a)-(c) for E = 6. Panel (a)162

shows the evolution of the STS intensity with z at its center (see blue curve), as well as the analytically predicted163

intensity value (dashed gray line). The evolution of the STS intensity is not constant, but it fluctuates around a value164

that is a bit larger than what is predicted by the Hamiltonian approach. These fluctuations are depicted in more detail165

in Fig. 3(b) for the interval z ∈ (950, 1000). The evolution of the STS shape is illustrated every propagation distance166

∆z = 10 in Fig. 3(c), by considering two iso-surfaces at intensities I1 = 0.5 and I2 = 0.1, respectively. The discrepancy167

between the analytical intensity value and the average intensity, computed from the full numerical simulations in the168

interval z ∈ (0, 1000) is shown in Fig. 3(d), by using a red line and blue circles, respectively. The agreement is quite169

good for relatively low STS energy values, or E < 6, but it worsens with increasing E. Numerical STSs fluctuate170

more heavily as E increases. Eventually, for energy values above E ≈ 8.5, the STS undergoes a wave collapse (see171

vertical blue lines), much before the threshold at E = E f which is predicted by the theory (see red dot).172

Hence, although it is not predicted by the VA, for high values of energy E the self-focusing of the field leads to its173

collapse in the GPE. To our knowledge, this disagreement between theory and numerical results was not yet described174

in the literature. Wave collapse might be arrested by including higher-order self-defocusing nonlinearities, such as175

quintic-order terms, or by considering high-order dispersive effects. However, a confirmation of these scenarios176

requires further investigations.177

8. Discussions and conclusions178

In this work, we have presented a systematic analysis of three-dimensional spatiotemporal solitons, also known as179

light bullets, appearing in the 3D+1 GPE with a 2D parabolic potential, which can be used to describe light propagation180

in GRIN multimode optical fibers [13, 14, 29, 15, 16]. The GPE possesses a Lagrangian and a Hamiltonian structure,181

that we have introduced in Section 3. There, we showed that analytical approximations for soliton solutions can be182

computed through the Ritz optimization approach, by considering an adequate parameter-dependent solution ansatz.183

This approach, based on the variational method, allows for reducing the GPE to a low-dimensional dynamical system,184

which describes the effective dynamics of spatiotemporal localized solutions. Following a Hamiltonian approach,185

we have obtained such a system in Section 4, by considering the anomalous GVD (or self-focusing) regime. The186

corresponding equilibria of such a system correspond to two families of STSs, Ba and Bb, which coexist for the same187

parameter regime (see Section 5). In Section 6 we have determined the STS stability by using the Lyapunov criterion,188

based on the He vs. E dependence. Finally, in Section 7 we have tested our analytical predictions by performing189

advanced numerical simulations of the initial value problem associated with the full 3D+1 GPE (1). By doing so,190

we demonstrated that, for low E, the agreement between the VA and numerical simulations is excellent, as depicted191
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Figure 3: Evolution along z of a stable LS for E = 6. Panel (a) shows the variation of the intensity within the whole propagation distance. Panel (b)
shows a close-up view of (a) for the interval z ∈ [950, 1000]. Panel (c) shows the evolution of the STSs along the interval shown in (b) by plotting
two iso-surfaces at I1 = 0.5 (red), and I2 = 0.1 (blue). The dashed gray straight lines in (a) and (b) represent the theoretical value of the STS
intensity. (d) Evolution of peak intensity of stable STSs with the energy E. The red line shows the analytical value, while the blue circles and the
error bars represent the average intensity value and the standard deviation for stable states, respectively, which are obtained from full 3D numerical
simulations.

in Figs. 3. When increasing E, however, a disagreement appears, and STSs suffer a wave collapse in an interval of192

energies where they should remain stable, according to the theoretical analysis. The disagreement between theory and193

numerical simulations was left unnoticed in previous works, where the studies either involved a single energy value,194

or considered scenarios restricted to soliton solutions with radial symmetry [13, 14, 29].195

In perspective, further work is necessary in order to explore different mechanisms that can be able of arresting the196

wave collapse. One of the possible paths to follow is to consider higher-order nonlinearities, which may come into197

play for very high E [30, 31]. In particular, one may considder self-defocusing quintic nonlinearities, which could198

counteract the self-focusing Kerr nonlinearity that was studied here. Quintic nonlinear effects have been discussed in199

Ref. [32], but in the absence of a parabolic potential. Hence, our hypothetical stabilization scenario remains so far200

unexplored. A different route for stabilizing spatiotemporal solitons may involve the inclusion of high-order dispersion201

terms.202
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