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Abstract. Digital reproductions of historical documents from Late
Antiquity to early medieval Europe contain annotations in handwrit-
ten graphic symbols or signs. The study of such symbols may potentially
reveal essential insights into the social and historical context. However,
finding such symbols in handwritten documents is not an easy task,
requiring the knowledge and skills of expert users, i.e., paleographers.
An AI-based system can be designed, highlighting potential symbols to
be validated and enriched by the experts, whose decisions are used to
improve the detection performance. This paper shows how this task can
benefit from feature auto-encoding, showing how detection performance
improves with respect to trivial template matching.

Keywords: Paleography · Graphic symbol detection · Image
processing · Machine learning

1 Introduction

A huge number of historical documents from Late Antiquity to early medieval
Europe do exist in public databases. The NOTAE project (NOT A writtEn word
but graphic symbols) is meant to study graphic symbols, which were added by
authors of these documents with several different meanings. This task is very
different though from processing words and letters in natural language as the
symbols that we look for can be orthogonal to the content, making contextual
analysis useless.

Labeling document pictures with positions of graphic symbols even in an
unsupervised manner requires the knowledge of domain experts, paleographers
in particular. Unfortunately, this task does not scale up well considering the
high number of documents. This paper proposes a system that helps curators to
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identify potential candidates for different categories of symbols. Researchers are
then allowed to revise the annotations in order to improve the performance of
the tool in the long run.

A method for symbol detection has already been proposed in the context
of the NOTAE project [1]. Here, the authors have created a graphic symbols
database and an identification pipeline to assist the curators. The symbol engine
takes images as input, then uses the database objects as queries. It detects
symbols and reduces noise in the output by clustering the identified symbols.
Before this operation, the user is required to decide the binarization threshold
from a prepared selection.

The approach proposed in this paper has several differences with the original
one. First of all, in this new version of the tool, we rely on OPTICS [2], instead
of DBSCAN [3], for clustering purposes. OPTICS uses the hyper-parameters
MaxEps, and MinPts almost the same way as DBSCAN, but it distinguishes
cluster densities on a more continuous basis. In contrast, DBSCAN considers only
a floor for cluster density and filters noise by identifying those objects that are
not contained in any cluster. In addition, our proposed pipeline implements an
algorithm that sorts the objects of a cluster by confidence scores and selects the
top match. So, the pipeline can control the number of predictions over different
types of graphic symbols.

Moreover, the first tool has shown an high number of false positive, which are
difficult to filter out. Here, we show how automatic detection of symbols can ben-
efit from feature auto-encoding, showing how detection performance improves
with respect to trivial template matching.

The paper is organized as it follows. Section 2 summarizes prior work on
document analysis and digital paleography tools, metric learning, and graphic
symbols spotting. Section 3 present our data cleaning process and image pre-
processing tailored to the specific data domain, i.e., ancient documents. Section 4
covers the inner details of the proposed method. Section 5 show experimental
results. Finally, Sect. 6 concludes the paper with a final discussion.

2 Related Work

In [7], the authors discuss the recent availability of large-scale digital libraries,
where historians and other scientists can find the information they need to help
with answering their research questions. However, as they state, researchers are
still left with their traditional tools and limitations, and that is why they propose
two new tools designed to address the need for document analysis at scale.
Firstly, they consider a tool to match handwritings which is applied to documents
that are fragmented and collected across tens of libraries. They also note the
shortcomings of computer software in recommending matching scores without
providing persuasive and satisfactory reasoning for researchers, as the ground
truth is itself the subject of study and active research. Secondly, they mention
a paleographic classification tool that recommends matching styles and dates
with a given writing fragment. According to them, it seems like paleography
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researchers are interested in the why of recommender systems outputs as much
as they value their accuracy.

Variational auto-encoders (VAE) [8] train a model to generate feature embed-
dings under the assumption that samples of a class should have the same embed-
dings. In [9], given the intra-class variance such as illumination and pose, the
authors challenge that assumption. They believe that minimizing a loss func-
tion risks over-fitting on training data by ignoring each class’s essential features.
Moreover, by minimizing the loss function, the model could learn discrimina-
tive features based on intra-class variances. Also, they illustrate how the model
struggles to generalize as samples from different classes but with the same set of
intra-class variances cluster at the central part of the latent space. In addition to
the KL-divergence [10] and reconstruction loss terms as in prior work, they add
two metric-based loss terms. One of the new terms helps minimize the distance
between samples of the same class in the presence of intra-class variations. The
other new loss term prevents intra-class variances, which different classes might
share, overpower essential features representing representational value.

Their framework, deep variational metric learning (DVML), disentangles
class-specific discriminative features from intra-class variations. Furthermore,
per their claim, it significantly improves the performance of deep metric learning
methods by experimenting on the following datasets: CUB-200-2011, Cars196,
and Stanford Online Products. In this work, we sample from the latent space by
calculating the Kaiming-normal function, also known as He initialization [11],
and we use that as epsilon to relate the mean and variance of the data distribu-
tion.

In [12], the authors focus on the problem of symbol spotting in graphical
documents, architectural drawings in particular. They state the problem in the
form of a paradox, as recognizing symbols requires segmenting the input image.
The segmentation task should be done on a recognized region of interest. Fur-
thermore, they want a model that works on digital schematics and scanned
documents where distortions and blurriness are natural. Moreover, they also
aim to build an indexing system for engineers and designers who might want
to access an old document in an extensive database with a given symbol draw-
ing that could only partially describe the design. Having those considerations in
mind, the authors then propose a vectorization technique that builds symbols
as a hierarchy of more basic geometric shapes. Then, they introduce a method
for tiling the input document picture in a flexible and input-dependent manner.
Their approach approximates arcs with low poly segments [13,14], and puts con-
straints on subsets of line segments such as distance ratios, angles, scales, etc.
This way, they can model slight variations in the way that symbol queries build
full representational graphs.



150 Z. Ziran et al.

Fig. 1. Related tables in the NOTAE database

3 Data Preprocessing

3.1 Scraping Public Databases

With their expertise and knowledge of the domain, the NOTAE curators have
gathered a database to find documents, hands, symbols, and digital reproduc-
tions, among much other useful information. The database tables are connected
as a knowledge graph [15] (see Fig. 1). For example, a symbol present inside a
script has an associated hand. The hand, in turn, comes from a document with
an identification number. Then, we can get the digital reproduction of where the
symbol comes from using the document ID.

3.2 Cleaning Duplicates

One of the implicit assumptions in dataset design is that sample images are
unique. Scraped data is not clean, and it is likely to have duplicates. Web pictures
come from different sources with different sizes and compression algorithms for
encoding/decoding. So, comparing an image against the rest of the dataset to
determine if it is a duplicate will not work most of the time. Using coarser features
instead of raw pixels can destroy many trivial details that are not noticeable
to the human eyes. Moreover, it is observed to be the case that some digital
reproductions of the same picture have been ever so slightly cropped across public
databases. So, the features need to be invariant under minor variations in data
distribution but different enough between two unique pictures. The difference
hash (dHash) algorithm [16] processes images and generates fixed-length hashes
based on visual features. dHash has worked outstanding for our use case. In
particular, generating 256-bit hashes and then using a relative Hamming distance
threshold of 0.25 detects all duplicates. Among duplicate versions of scraped
data, we chose the one with a higher resolution. By comparing image hashes
against each other, we managed to clean the scraped data and thus create two
datasets of unique samples such as graphic symbols and digital reproductions.

Figure 2 in particular shows the difference with respect to the quality of
obtained results.

3.3 Binarization

Digital reproductions contain various supports such as papyrus, wooden tablets,
slate, and parchment. In addition, due to preservation conditions and the pas-
sage of time, parts of the documents have been lost, and we deal with partial
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Fig. 2. The effect of the proposed solution. On the left the result without cleaning
duplicates, on the right after the cleaning operation.

observations of ancient texts and symbols. Accordingly, a pre-processing step
seems necessary to foreground the handwritten parts and clear the background
of harmful features and noise. Then, the issue of what threshold works best for
such a diverse set of documents surfaces. In that regard, we follow the prior work
[1] and hand-pick one value out of the five prepared threshold values that are
input dependent. We find the first two of the threshold values by performing K-
means clustering on the input image and then choosing the red channel, which is
the most indicative value. Next, we calculate the other three thresholds as linear
functions of the first two (taking the average, for example).

Template matching works on each color channel (RGB) separately, and so
it returns three normalized correlation values. Consequently, the proper peak-
finding function should take the average of them in order to find the location
of the most probable box (see further in Sect. 4.2 for more on peak-finding in
template matching). However, since document pictures have a wide range of sup-
ports with various colors and materials, using color images is optimal, whereas
binary images work the best. First, we remove the background using the selected
threshold value. Next, we apply the erosion operator to remove noise and the
marginal parts further. Finally, we fill the foreground with the black color to get
the binary image. In our experiments, the binarization step has proven to be at
least an order of magnitude more effective in reducing false positives, compared
to when we tried color images.

3.4 Dataset Design

The simple baseline begins with the binarization of document pictures and tem-
plate matching using the NOTAE graphic symbols database. These two steps
make for an end-to-end pipeline already and identify graphic symbols with a
given picture (see Fig. 3.) Next, we split our preferred set of unique binarized
digital reproductions into three different subsets: train, validation, and test. The
partitioning ratio is 80% training data and 10% for each test and validation
subsets.
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Fig. 3. Identification pipeline

3.5 Initial Symbol Clustering

As discussed in the introduction, in this new version of the annotation tool
we moved from DBSCAN to OPTICS for symbol clustering. A description of
how OPTICS forms denser clusters follows. First, it defines core-distance as
the minimum distance within the Eps-neighborhood of an object such that it
satisfies the MaxEps condition. In general, core-distance is less than MaxEps,
and that is why there is a MaxEps rather than a fixed Eps in OPTICS. Then,
it uses core-distance to define the reachability score as a function of one object
concerning another. The reachability of object o with respect to a different object
p is defined to be the maximum between either of two values: the core-distance
of o or the distance between o and p. Reachability is instead not defined if
objects o and p are not connected. Using a cluster expansion loop with the given
core distances, OPTICS can reorder database objects between subclusters and
superclusters where cluster cores come earlier and noise later. Object ordering
plus reachability values prove to be much more flexible than a naive cluster-
density condition in the way DBSCAN works.

4 Modeling Approach

Our target is to determine very particular graphic symbols in a digital repro-
duction and find their positions as smaller rectangles inside the picture frame.
The NOTAE database supplies the templates we look for, so the simplest pos-
sible model can be a template matching algorithm. It takes a picture and a
set of templates as inputs and returns a set of bounding boxes and the confi-
dence scores assigned to each one of them as outputs. Then, one could select the
final predictions from the top of the boxes sorted based on their scores. How-
ever, in practice, we observed that the simple model also returns too many false
positives, bounding boxes with relatively high confidence scores but contain non-
symbols. Moreover, the rate of false positives increases as a linear function of
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the database size. This inefficiency in naive template matching poses a problem
since the NOTAE system design relies on the growth of the database for making
its suggestions brighter. So, template matching is a simple and fast model for
identifying graphic symbols in a document picture, but it has relatively limited
precision.

In the identification pipeline, the template matching step is done for every
graphic symbols database object. For one object (template), the algorithm
returns a field of correlation densities over the input document picture, as many
as the number of pixels in the given picture. So we select the one with the max-
imum score as the final match. Also, template matching uses five different sizes
of each object. The scales range from 5% of the picture width up to 20% because
that is about the size of the symbols in documents. Hence, the first step of the
pipeline produces five bounding boxes per database object.

After template matching is over, we can recover some precision by way of
updating confidence scores. Fast template matching is possible by transforming
visual data from the spatial dimension to the frequency dimension. One can
ignore some high-frequency features to speed up the process and then transform
the results back to the spatial dimension. In [17] Fourier transform does so
to reduce computation complexity. However, once the algorithm has queried the
database and is done with its prediction process, then we can afford to update the
confidence scores using a more computationally complex approach that would be
quite infeasible right from the beginning. We engineer visual features for both
database objects and regions of interest (ROI) for that purpose, as template
matching predicts. Suppose u and v are two such features extracted using a
method of our choice (u represents a template while v represents an identification
ROI, for example.) If we find the lengths of these feature vectors then it becomes
easy to see how similar they are:

correlation =
< u, v >

|u| · |v| ,

< ·, · > denotes the inner product on the vector space of features, | · | denotes
the length of a vector and the correlation is in the closed interval [−1, 1].

Due to reasons that will be discussed later in this section, we can build
features in a particular latent space to preserve the save the same metric from
the previous step. In fact, we propose to build a discriminator that uses the
correlation between features to update the prediction probabilities and prune
away false positives.

We already identified potential candidates for graphic symbols in a document
picture, then discriminated against some of them based on engineered features,
and finally, filtered outliers based on size. However, all those steps pertain to
more individual and local symmetries rather than considering what an ensem-
ble of identifications has in common. That is where clustering and unsupervised
classification comes into play and further reduce false positives. Using the same
engineered features, be it histogram of oriented gradients (HOG) or learned
embeddings, a clustering algorithm can group the identified symbols into one
cluster and label the rest of the identifications as noise. In this last major step
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to improve the results, global symmetries are the main deciding factor as to
whether a bounding box should be in the graphic symbols group or not. In the
clustering step, individual boxes relate to each other via a distance function. Set-
ting a minimum neighborhood threshold, clusters of specific densities can form,
as discussed in the previous section. At the end of every promising identifica-
tion pipeline, they apply a non-maximum suppression algorithm. In overlapping
bounding boxes, those with lower confidence scores are removed in favor of the
top match. See Fig. 3 for a representation of our identification pipeline.

4.1 Updating Identification Probabilities

Suppose T , F , M and D be events: T as the event that a box is true positive, F as
the event that a box is false positive, M as the event that the template Matching
model labels a box as true positive, and D is the event that the Discriminator
model labels a box as true positive. Also, suppose MD be the event that both
the template Matching and Discriminator models label a box as true positive.

Please note that the sum of prior probabilities should be equal to one.

P (T ) + P (F ) = 1.

Next, let’s appeal to the Bayes theorem. In the symbol identification task,
write down the posterior probabilities of such events occurring:

P (T |MD) =
P (MD|T ) · P (T )

P (MD|T ) · P (T ) + P (MD|F ) · P (F )
,

or, in an equivalent way:

P (T |MD) =
P (MD|T ) · P (T )

P (MD)
.

First, the template matching model acts on the graphics symbols database.
The input document picture is implicit here as it stays constant throughout the
pipeline. Then, the template matching model returns one match per pixel in the
document picture. A suitable cut-off threshold as a hyper-parameter will reduce
the number of symbols based on the confidence scores. So, we only select the top
match for each database object (template). Next, the discriminator model acts
on the top matches. Furthermore, thus the template-matching model and the
discriminator model participate in a function composition at two different levels
of abstraction. In this composition, template matching works with raw pixels,
whereas discrimination works with high-level embedding vectors.

updated scores = Discriminate ◦ Match(database),

where ◦ denotes the function composition by first applying Match and then
Discriminate on the database, object by object.

If we assume that events M and D are independent (or slightly correlated),
then we can say that they are conditionally independent given T .
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P (MD|T ) = P (M |T ) · P (D|T )

Therefore the updated probability will be:

P (T |MD) =
P (M |T ) · P (D|T ) · P (T )

P (MD)

Performing some computation to simplify the posterior probability:

P (T |MD) =
P (M |T ) · P (DT )

P (MD)

P (T |MD) =
P (M |T ) · P (T |D) · P (D)

P (MD)

P (T |MD) =
P (M |T ) · P (T |D)

Q(1, 2)
,

where Q(1, 2) = P (MD)
P (D) .

Since 1 = P (T |MD) + P (F |MD), therefore:

1 =
P (M |T ) · P (T |D) + P (M |F ) · P (F |D)

Q(1, 2)
.

Now, it is obvious that

Q(1, 2) = P (M |T ) · P (T |D) + P (M |F ) · P (F |D)

And that conclusion implies that the updated probability is as follows:

P (T |MD) =
P (M |T ) · P (T |D)

P (M |T ) · P (T |D) + P (M |F ) · P (F |D)
(1)

Q: Where do we get the value P (M |T ) from? A: The Average Recall (AR) of
the template matching function gives the value for P (M |T ). It is the probability
that the fast template matching algorithm identifies a symbol given that it is
a true symbol. Q: Where do we get the value P (T |D) from? A: The Average
Precision (AP) of the discriminator function gives the value for P (T |D). It is
the probability that a symbol is true given that the discriminator model has
labeled it positive. Q: What does P (M |F ) mean? A: It is the probability that
the template-matching model identifies a symbol given that it is negative. Q:
What does P (F |D) mean? A: It is the probability that a symbol is false given
that the discriminator model has labeled it positive.

The template matching model produces potential bounding boxes in a digital
reproduction with the graphic symbols database. Next in the pipeline, we use
an attention mechanism to discriminate for the boxes that are more likely to be
true with the given digital reproduction. The discriminator is indifferent to the
location of the query symbol and only cares about whether the matching box is
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Fig. 4. Filtering noise with low overhead as the inference has lower latency.

Fig. 5. Identifications on the left side and ground truth on the right.

similar to it or not. Therefore, the discrimination step is an image classification
task in essence. Figure 4 shows how the two steps, symbol matching, and classi-
fication, share the same database objects. The discrimination model, step 5 in
Fig. 3, introduces a posterior probability function P (T |D) and assigns to every
box a value from −1 to 1. The sequential update of information now changes
first to consider event M and then update with event D.

Finally, we can normalize the discrimination confidence score by adding one
unit and dividing it by 2 to get a correct probability value in [0, 1], formally
known as an affine transformation. Next, we use it to replace the score from the
template matching step. The posterior probability P (T |MD) is correlated to the
scores coming from both steps: template matching and discrimination. The rest
of the pipeline will work the same (see Fig. 5). In the following subsection, we
are going to use this result to focus on the feature engineering that maximizes
P (T |D), that is, the true positive rate has given the second event, discrimination.

4.2 Latent Clustering

By now, we have established the probability that a graphic symbol is true given
that the discriminator model has labeled it positive works based on a correlation
between the source symbol and the target identification. As indicated, we need
to look more closely at the choice of metric and distance functions. Because the
more accurate we are in determining the actual distance between two objects,
the better we can reason about if the two objects in question are related and
why.

Suppose the distribution of the graphic symbols database is described by
manifold M. Here, we do not assume any structure beyond that there is a prob-
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ability p(x) that we discover a given object x in it. Except for maybe a smooth
frame at x for applying convolutional filters. Since it is a complex manifold,
as is the case with most objects in the real world, it could be intractable to
explain with a reasonable amount of information. Therefore, we defer to a latent
manifold M̃ which is finite-dimensional and could potentially explain the most
important aspects that we care about in objects from M . What we need here
is a map, such as φ, from manifold M into manifold M̃ such that our choice of
metric in the latent manifold M̃ results in a predictable corresponding metric in
the original manifold M .

Accordingly, we could reason unseen objects knowing that for every input in
the domain of graphic symbols manifold, there will be a predictable output in
the co-domain of the latent manifold. Predictable in the sense that our metric
in the latent space would work as expected. In this context, the encoder model
plays the part of the inverse of a smooth map. It maps objects from the pixel
space onto the latent space.

Encode : pixel space �→ latent space

Suppose that p and v are vector representations of an ROI (inside a document
picture) and a graphic symbol, respectively. Next, we define a few smooth maps
for computing the probabilities of our modeling approach.

P (M |T ) := arg max
i,j

Match(pi,j , v),

given by
Match(pi,j , v) = pi,j ∗ v = < ˆpi,j , v̂>,

The inner product between normalized elements from the template matching
sliding window at (i, j) of the input picture and normalized database elements
makes sense if both vector spaces are of the same actual dimension. Here i and j
are the maximum arguments of the term on the right, which reflect our process
of selecting the top match based on confidence scores. We take the maximum
value among the inner products so that it corresponds to the most probable
location in the document picture.

Discriminate(pi,j , v) := P (T |D),

given by
Discriminate(pi,j , v) = <Encode(pi,j), Encode(v)>.

For taking symbols from the pixel space to the latent space (embeddings), we
can use the encoder part of a variational auto-encoder (VAE) model. We trained
a VAE model on the graphic symbols database in a self-supervised manner to get
the embeddings of unseen symbols. The model uses a deep residual architecture
(ResNet18 in Fig. 6) [18] and the bottleneck in this neural network would be the
latent layer where the features are sampled from.
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Fig. 6. The VAE encodes graphic symbols, upper row, and decodes them, lower row.

4.3 Optimization Objective

The loss function should look like the following equation since according to equa-
tion (1) from earlier in this section, we want the training objective to minimize
P (M |F ) and P (F |D) while maximizing P (M |T ) and P (T |D) (up to a proxy
function.)

L = α · reconstruction + β · [KL divergence],

where, α and β are hyper-parameters in R. The reconstruction loss term above
is the mean square error of the input image and its decoded counterpart. A point
in the latent space should be similar to a sample from the normal distribution if
we want the model to learn a smooth manifold. When the latent distribution and
the normal distribution are the most alike, the KL-divergence loss term should
be approximately equal to zero. Adding the relative entropy loss term to the loss
function justifies our assumption on the learned manifold being a smooth one.

5 Quantifying Model Performance

In order to perform evaluation, it is helpful to imagine the annotation tool as
a generic function that maps elements from an input domain to the output. In
our case, in particular, we want to map tuples of the form (document picture,
symbol) to a bounding box array. As evaluation method, we employed mean
Average Precision (mAP) [5], which outputs the ratio of true symbols over all
of the identified symbols.

Additionally, we annotated the dataset using the Pascal VOC [6] format in
order to evaluate the system using well-established tools.

We used an object detection model by the moniker CenterNet ResNet50 V2
512 × 512 [19], which was pre-trained on the MS COCO 17 dataset [20]. It is a
single-stage detector that has achieved 29.5% mAP with COCO evaluation tools.
In order to repurpose it for our work, we generated annotations for 183 unique
digital reproductions using our pipeline and then fine-tuned the object detection
model on the annotated data. It is not so easy to measure how helpful our
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Fig. 7. Improvements in mAP validate the pipeline. The horizontal line is the baseline.

approach is using offline training as the model outputs have to be first justified
by the model and then interpreted and validated by domain experts. Therefore,
the evaluation protocol in this section merely focuses on the coherency and
accuracy of the results. The different variants of the identified symbols datasets
are partitioned with different ratios and random seeds, so they also serve as a
multi-fold testing apparatus. This section considers improvements in precision
since it is normal for symbol spotting methods to perform well in terms of recall.

In the spirit of an iterative pipeline design, we generated seven different
identified symbols datasets. Using roughly the identical digital reproductions and
graphic symbols validated our data and modeling approach. For the baseline, we
bypassed steps 3 and 5 in the pipeline (Fig. 3) and also used HOG features to
have a model as close as possible to prior work [1]. Next, we used the encoder
with a binary classifier and generated mark 3. This modification puts steps 3 and
5 of the pipeline into effect. We have compared the evaluation results of MK3
with that of the baseline model, which is about double the precision, suggesting
the effectiveness of the discrimination step in improving the true positive rate.
Mark 5 follows the same architecture as mark 3. However, it adds discrimination
based on bounding box area and foreground density after discrimination with
posterior probability, which further improved the results (compare the third and
the fourth columns in Table 1).

Then, we modified the pipeline by training the encoder and hard-wiring a
discriminator function to calculate posterior probabilities using cosine similar-
ity. The object detection model trained on the identified symbols mark 6 dataset
yielded new evaluation results. MK6 annotations look much better than their
predecessors in a qualitative way. Interestingly, MK6 annotations seem to gen-
eralize well over different scales (see the bottom image in Fig. 5), as it is the first
dataset among the series to identify small symbols as well.

The evaluation of MK3 was when we picked up on the trend that we could
gain model performance by focusing more on the data rather than the model.
By manually labeling the binarized version of the graphic symbols database, we
excluded almost half of the objects as non-symbols to get to a dataset of 722
graphic symbols. So, we should attribute some of the improvements over the
baseline model to the data cleaning process. That process called for training the
auto-encoder model again with the clean data. Table 2 brings the final improve-
ment rates over the baseline with MK3, MK5, and MK6. We added the validation
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Table 1. Symbol identification performance results related to the identified symbols
datasets: the baseline, mark 3, mark 5 and mark 6 (all evaluated on their respective
test sets at training step 2000.)

Metric Baseline MK3 MK5 MK6 Comment

AP 0.011 0.022 0.048 0.028 AP at IoU = .50:.05:.95 (primary metric)

AP@IoU = .50 0.047 0.101 0.148 0.102 AP at IoU = .50 (PASCAL VOC metric)

AP@IoU = .75 0.000 0.003 0.015 0.012 AP at IoU = .75 (strict metric)

AP@small 0.009 0.000 0.000 0.022 AP for small objects: area < 322

AP@medium 0.016 0.021 0.028 0.033 AP for medium objects: 322 < area < 962

AP@large 0.000 0.051 0.083 0.025 AP for large objects: area > 962

AR@max=1 0.003 0.008 0.019 0.006 AR given 1 detection per image

AR@max=10 0.024 0.053 0.071 0.033 AR given 10 detections per image

AR@max=100 0.083 0.126 0.158 0.085 AR given 100 detections per image

AR@small 0.075 0.000 0.000 0.021 AR for small objects: area < 322

AR@medium 0.102 0.130 0.094 0.088 AR for medium objects: 322 < area < 962

AR@large 0.000 0.076 0.246 0.086 AR for large objects: area > 962

Table 2. Guiding the identification pipeline design by measuring the relative change
in mAP, dataset to dataset.

Identified symbols
dataset

mAP relative change
(valid.)

mAP relative change
(test)

Mark 3 69% 51%

Mark 5 102% 119%

Mark 6 80% 86%

set to Table 2 and Fig. 7 in order to show that our approach is not sensitive to
the choice of hyper-parameters. Because test results are strongly correlated with
validation. MK5 performs at least twice better than the baseline, and so it is a
good candidate to replace it as a new baseline. So, we expect it to perform as
well on unseen data. The following relation allows us to calculate the relative
change in mAP:

relative change in mAP =
proposed mAP − baseline mAP

baseline mAP
· 100%.

Table 2 presents the relative change in mAP while Table 1 puts the main
challenge metric into its proper context. As an illustration, mark 5 outperforms
the baseline by 102% and 119% in the validation and test subsets, respectively.
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6 Conclusions

In this paper, we have shown how the detection scores provided by fast template
matching can be the key to annotate extensive databases in an efficient way.
In previous work, the idea is that the bigger the database grows, the more
brilliant the symbol engine gets. However, more significant databases also cause
more false positives due to inefficiencies in template matching. In this work, we
first removed duplicates and then hand-picked binarized versions of the scraped
images. Then, a series of identified graphic symbols datasets to validate our
hypotheses on data and modeling was designed. The confidence scores of symbol
matching using a binary classifier where the discriminative features sampled
from the latent space as an approximation of the original space updated. Next,
we justified our assumptions about the effectiveness of our distance function in
providing a metric for filtering false positives. Not only we managed to recover
results from the baseline model, but also there was a significant improvement
in model performance across validation and test subsets. Even though many
false positives make it through the final stage of the pipeline, we illustrated how
a trained detection model generalizes well on the annotated data and why it
solves the paradox of segmenting for spotting or spotting for segmentation. Our
approach applies to intelligent assistants for database curators and researchers.
In a domain where labeled data is scarce, we have adopted evaluation metrics
that enable researchers to quantify model performance with weakly labeled data.

The fact that modifications to the pipeline have a clear impact on model
performance regarding the relative change in mAP helps define a reward func-
tion. Based on the behavior of model performance, we believe that the relative
change in mAP could introduce a new term to the loss function. In future work,
we would like to see agents that can use this metric to fill in the gaps between
sparse learning signals from domain experts during interactive training sessions.
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