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Abstract: Acheta domesticus (house cricket) has been recently introduced into the official European
list of novel foods, representing an alternative and sustainable food source. Up to now, the chemical
characterization of this edible insect has been focused only on specific classes of compounds. Here,
three production batches of an A. domesticus powder were investigated by means of a multimethod-
ological approach based on NMR, FT-ICR MS, and GC-MS methodologies. The applied analytical
protocol, proposed for the first time in the study of an edible insect, allowed us to identify and quan-
tify compounds not previously reported in crickets. In particular, methyl-branched hydrocarbons,
previously identified in other insects, together with other compounds such as citrulline, formate,
γ-terpinene, p-cymene, α-thujene, β-thujene, and 4-carene were detected. Amino acids, organic
acids, and fatty acids were also identified and quantified. The improved knowledge of the chemical
profile of this novel food opens new horizons both for the use of crickets as a food ingredient and
for the use of extracts for the production of new formulations. In order to achieve this objective,
studies regarding safety, biological activity, bioaccessibility, and bioavailability are needed as future
perspectives in this field.

Keywords: A. domesticus powder; chemical characterization; NMR spectroscopy; FT-ICR MS; SPME-GC-MS

1. Introduction

There is an ever-growing need for research into new and innovative food sources, con-
sidering the expected large population increase and the necessity of reducing the ecological
problems related to intensive food production [1]. The importance of this focus has also
been highlighted in the United Nations 2030 Agenda, whose goals include zero hunger,
good health and well-being, responsible consumption and production, climate action, and
life on land [2]. In this context, edible insects represent an important potential food source
capable of satisfying both sustainability and nutritional demands. Several sustainability
advantages have been related to edible insect production, such as low water consump-
tion, with an average expenditure of 1 L/Kg of insect proteins respect to 1.500 L/Kg of
cattle proteins, lower feed consumption per Kg of obtained proteins, the generation of less
greenhouse gases and ammonia, and the need for smaller spaces for farming [3,4]. At the
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same time, edible insects are a good source of many essential nutrients such as proteins,
fatty acids, minerals, and, in some cases, vitamins [5]. Entomophagy is a common practice
in several cultures such as in Latin America, Asia, and Africa, with beetles, caterpillars,
bees, wasps, and ants being the most-consumed insects [6]. Conversely, in Europe, the
use of edible insects as food represents a niche practice. Nevertheless, in recent years, the
environmental and nutritional advantages of edible insects have encouraged their gradual
recognition as novel foods. Among them, Acheta domesticus (house cricket) represents
the last edible insect added to the official European list of novel foods, in frozen, dried
and powder forms, through the Commission Implementing Regulation (EU) 2022/188 of
10 February 2022 [7]. To date, its chemical investigations reported in the literature have
been focused on specific classes of compounds determined using appropriate targeted
methodologies. The amino acid profile of cricket powder [8–10] as well as the fatty acid
contents of cricket extracts [8–12] and their elemental profile [9,12] have been reported.
Moreover, phenolic acids and flavonoids have been measured in organic and commercial
A. domesticus [13].

Considering the increasing interest in and use of this edible insect, it is important to
further develop the knowledge regarding its chemical composition. For this purpose, the
simultaneous application of several advanced methodologies could be an effective strategy,
as demonstrated in previous studies [14,15].

On the basis of these premises, in the present study, a spray-dried A. domesticus powder
was investigated, for the first time, through a multimethodological approach including both
untargeted nuclear magnetic resonance (NMR) spectroscopy and Fourier transform ion cy-
clotron resonance mass spectrometry (FT-ICR MS) and targeted gas chromatography–mass
spectrometry (GC-MS) analyses to obtain a comprehensive chemical profile. In particular,
the NMR and FT-ICR MS methodologies are recognized as the two main powerful untar-
geted approaches to achieve the metabolomic profiling of natural matrix extracts [16], since
these techniques are able to identify, with a single analysis, several classes of compound
present in a complex matrix. On the other hand, GC-MS is a targeted methodology useful
for identifying and quantifying specific classes of compounds. Altogether, these comple-
mentary methodologies can be useful for obtaining the most co-exhaustive chemical profile
of the product possible.

2. Materials and Methods
2.1. Sampling

In order to preserve the chemical composition of crickets and obtain a homogeneous
fine powder to optimize the extractions, a production approach previously described [17],
based on spray-drying, was used. Spray-drying is a pulverization approach that has been
shown to be efficient and appropriate when applied to edible insects [18]. This drying
method is characterized by a very short heat exposure time (a few seconds) with respect
to the classic oven-drying method, which is several hours long. As a consequence, the
Maillard reaction is strongly reduced, as are the “roasted” color and flavor typical of oven-
dried insects. For powder production, insects 35–42 days old (one or two stages before the
complete adult stage) were pasteurized and then mixed into the same volume of water to
obtain a homogeneous slurry after mining and milling. The mixture was spray-dried at
200 ◦C (inlet temperature), producing a fine powder. The powder was preserved in sealed
bag kept away from light and heat sources until analysis. Three batches were produced,
and 50 g from each one was sampled and analyzed.

2.2. Chemicals and Reagents

Gradient-grade water, chloroform, and methanol were purchased from Merck Life
Science (Milano, Italy). Deuterated water (D2O), 99.97 atom% of deuterium, and 3-
(trimethylsilyl)-propionic-2,2,3,3-d4 acid sodium salt (TSP) were purchased from Euriso-Top
(Saclay, France). Potassium phosphate monobasic (KH2PO4) and potassium phosphate
dibasic (K2HPO4) were purchased from Merck Life Science (Milano, Italy).
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2.3. NMR Analysis

Sample extraction for NMR analysis was carried out by modifying a previously de-
scribed protocol [19]. In detail, 100 mg of the sample was added to 3 mL of a CH3OH/CHCl3
2:1 v/v mixture and 0.8 mL of bidistilled water. The obtained system was sonicated at
room temperature for 10 min, followed by the addition of 1 mL of chloroform and 1 mL of
bidistilled water. The hydroalcoholic phase was finally separated after centrifugation for
15 min (25 ◦C, 7200× g) and dried with a soft N2 flux. The entire procedure was repeated
two more times on the sample residue, guaranteeing a quantitative metabolite extraction.

The dried hydroalcoholic phase was dissolved in 700 µL of 200 mM phosphate
buffer/D2O containing 0.4 mM TSP (3-(trimethylsilyl)propionic acid sodium salt) as the
internal standard for metabolite quantification. NMR analyses were carried out on a Jeol
JNM-ECZ 600R (JEOL Ltd., Tokyo, Japan) operating at a proton frequency of 600.17 MHz
and equipped with a Jeol 5 mm FG/RO DIGITAL AUTOTUNE probe. 1H NMR experi-
ments were carried out using the following parameters: 298 K, 128 scans, residual water
signal suppression with a presaturation pulse, 7.7 s relaxation delay, 90◦ pulse of 8.3 µs, 64 K
data points, and 9000 Hz spectral width. 1H spectra were referenced to methyl group sig-
nals of TSP (δH = 0.00 ppm) in D2O. A homonuclear 1H-1H TOCSY experiment was carried
out with 52 scans, 8 K data points in f 2 and 128 in f 1, 50 ms mixing time, 2 s relaxation delay,
and 9000 Hz spectral width in both dimensions. A heteronuclear 1H-13C HSQC experiment
was carried out with 76 scans, 8 K data points in f 2 and 256 in f 1, 3 s relaxation delay, and
a spectral width of 9000 Hz and 33,000 Hz for f 2 and f 1, respectively. A heteronuclear
1H-13C HMBC experiment was carried out with 64 scans, 8 K data points in f 2 and 165
in f 1, 2 s relaxation delay, and a spectral width of 9000 Hz and 37,500 Hz for f 2 and f 1,
respectively Spectrum processing and signal integration were carried out with JEOL Delta
software (v5.3.1). For metabolite quantification, the integrals of the corresponding selected
resonances in the 1H-NMR spectra were measured with respect to TSP. Three replicates
were made for each batch, and the results are expressed as mg/100 g of sample ± SD by
applying the following equations:

CX = (IX/ITSP) * (NTSP/NX) * CTSP (1)

PX = CX * V * MWX (2)

where CX is the mM concentration of the quantified metabolite, IX is the area of the
metabolite integrated signal, ITSP is the area of the internal standard TSP signal, NTSP is
the proton number corresponding to the internal standard TSP signal, NX is the proton
number corresponding to the metabolite signal, CTSP is the mM concentration of the internal
standard TSP, PX is the mg amount of the metabolite in 100 mg of the sample, V is the
volume of deuterated solvent used to solubilize the dried extract, and MWX is the molecular
weight of the selected metabolite.

2.4. FT-ICR MS Analysis

Stock solutions (1 mg/mL) of Bligh–Dyer hydroalcoholic and organic extracts of
cricket powder were filtered through 0.45 µm hydrophobic polypropylene Acrodisc (Sigma-
Aldrich, St. Louis, MO, USA) to eliminate debris and then diluted to a final concentration
of 0.1–0.2 mg/L in methanol. Formic acid (1% v/v) and ammonia solution (24% v/v, 2 µL)
were added to all replicates to assist (de)protonation in the positive (ESI (+)) and negative
(ESI (−)) polarity mode analyses, respectively, whereas 0.5 µg L−1 leucine enkephalin
(YGGFL, C28H37N5O7) was used as an internal calibrant revealed at m/z 556.27657 (M+H+).
Further assessment of precision and mass accuracy was achieved by referring to ubiquitous
metabolites, such as amino acids and fatty acids, so achieving a maximum mass deviation
lower than 0.1 ppm. For each extract, three solutions were prepared as described above and
directly infused with a flow rate of 120 mL h−1 in an electrospray ionization (ESI) source.

Preliminary ESI (+) MS analyses were performed with a Bruker BioApex Fourier
transform ion cyclotron resonance (FT-ICR) mass spectrometer (Bruker Daltonics GmbH,
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Bremen, Germany) coupled with an Apollo I ESI source and a 4.7 T superconducting
magnet (FT-ICR lab, Sapienza Università di Roma). Complementary information for the
determination of fatty acids was gathered by using ESI (−) coupled to a linear ion trap
mass spectrometer (LTQ XL, Thermo Fisher Scientific, Waltham, MA, USA). Ultrahigh-
resolution mass analyses were carried out on a Bruker SolariX XR FT-ICR equipped with
a 7 T superconducting magnet (Magnex Scientific Inc., Yarnton, UK), a ParaCell (Bruker
Daltonics GmbH, Bremen, Germany), and an APOLLO II ESI source operated at the
Universidade de Lisboa. Spectral analyses, compound identification, and annotation
were achieved as already reported [20]. MS spectra were acquired in absorption mode
considering a mass range of 100–1000 (resolution of 650,000 at m/z 400), whereas 200 scans
with an acquisition size of 4M were co-added to collect the time domain data. Analyses
were carried out in triplicate for each batch.

2.5. SPME-GC-MS Analysis of Volatile Compounds

To characterize the volatile chemical profile of A. domesticus powder, sampling was
carried out using the SPME technique. A small amount of powder (~1 g) was placed in a
7 mL glass vial with a PTFE-coated silicone septum. With the aim of extracting the volatile
compounds, a DVB/CAR/PDMS (divinylbenzene/carboxen/polydimethylsiloxane) SPME
device was used.

The fiber was conditioned at 270 ◦C for 30 min. Sample equilibration was carried out
at 40 ◦C for 20 min before sampling. The fiber was then exposed to the headspace of the
sample for 30 min at 40 ◦C and inserted into the GC injector at 250 ◦C in splitless mode.

The gas chromatographic analyses were carried out on a Clarus 500 model Perkin
Elmer (Waltham, MA, USA) coupled with a mass spectrometer equipped with an FID
detector and a Varian Factor Four VF-1 capillary column. The temperature of the oven was
initially programmed at 60 ◦C, increased to 220 ◦C with a rate of 6◦/min, and maintained
for 15 min. A carrier helium flow of 1 mL/min was used. Mass acquisitions were carried
out at 70 eV (EI) in scan mode, considering a 40–400 m/z range at 220 ◦C.

The Wiley 2.2 and Nist 02 mass spectra libraries were used for volatile compound
identification, together with the linear retention index (LRIs) calculation using alkane
standards analyzed in the same conditions. The relative concentrations, expressed as
percentage, were calculated using the FID signal peak areas. For each batch, analyses were
carried out in triplicate.

2.6. GC-MS Analysis of Hexane Extract

Apolar fraction was extracted by adding 3 mL of hexane to 100 mg of the sample,
leaving the system under stirring for 3 h. After extraction, 1 µL of extract was manually
injected at 270 ◦C using a split ratio of 1:20. Analyses started at 60 ◦C, reaching 170 ◦C at
4◦/min followed by an increase to 250 ◦C for 3 min at a rate of 5◦/min and finally being
maintained for 15 min. The mass spectrometer operated in the same conditions reported in
Section 2.5, as well as metabolite identification and quantification. Analyses were carried
out in triplicate for each batch.

2.7. GC-MS Determination of Fatty Acid Content

FA content was determined after a derivatization process [21]. GC-MS analyses were
carried out on the same apparatus reported above. In this case, the GC oven was equipped
with a Restek Stabilwax polar capillary column. A carrier helium flow of 1 mL/min
was used. The injector temperature was set at 280 ◦C and the oven temperature was
programmed from 170 ◦C at a rate of 3 ◦C/min to 260 ◦C for 10 min. A volume of 2 µL was
injected into the column in splitless mode; the mass spectra were recorded at 70 eV (EI)
and were scanned in the range of 40–500 m/z. The ion source and the connection parts’
temperatures were 220 ◦C.
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The mass spectrometer operated in the same conditions reported in Section 2.5, as well
as metabolite identification and quantification. Analyses were carried out in triplicate for
each batch.

3. Results

A metabolomics investigation of the analyzed Acheta domesticus powder is described
here, reporting the results obtained using each methodology (NMR, FT-ICR MS, GC-MS)
and then discussing the metabolite profile for the class of compounds.

3.1. NMR Analysis

The 1H NMR spectrum of the hydroalcoholic extracts of cricket powder is presented
in Figure 1. The metabolite assignment was obtained by means of 2D experiments and
literature data regarding other biological matrices analyzed in the same NMR experimental
conditions [14,19]. Moreover, when spin correlations in the 2D experiments were not
adequate for confirming the presence of the metabolites, standard compound addition was
carried out.
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Figure 1. The 600 MHz 1H NMR spectrum of A. domesticus hydroalcoholic extract in a 200 mM
phosphate buffer (pH 7.4)/D2O mixture with 0.4 mM of 3-(trimethylsilyl)-propionic-2,2,3,3-d4 acid
sodium salt (TSP).

The following compounds, reported in Table 1, were assigned and quantified: nineteen
amino acids and derivatives (alanine, aspartate, betaine, citrulline, glycine, glutamate,
glutamine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, taurine,
threonine, tryptophan, tyrosine, valine), five organic acids (acetate, formate, fumarate,
lactate, succinate), and other compounds, namely choline and glycerol.
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Table 1. Metabolites identified in the 600.17 MHz 1H-NMR spectra of spray-dried A. domesticus
Bligh–Dyer hydroalcoholic extracts dissolved in 100 mM phosphate buffer/D2O containing TSP
0.4 mM. Quantitative results of the three analyzed batches are expressed as mg/100 g of sample ±SD.

Metabolite Assignment 1H (ppm)
Multiplicity

[J(Hz)]

13C
(ppm)

mg/100 g of
Sample

Amino acids and derivatives

Alanine
COO- 176.8 931.43 ± 18.06
α-CH 3.80 q [7.3] 51.5
β-CH3 1.49 * d [7.3] 17.2

Aspartate α-CH 3.92 52.4 78.00 ± 2.69
β, β’-CH2 2.70; 2.82 * dd [17.4; 3.8] 37.7

Betaine
N(CH3)3

+ 3.27 * s 54.6 100.16 ± 1.44
α-CH2 67.7

Citrulline
α-CH 3.14 * m 397.96 ± 8.38
β-CH2 1.89
γ-CH2 1.60

Glycine COO- 175.0 631.41 ± 35.29
α-CH2 3.57 * s 42.6

Glutamate

α-CH 3.78 55.6 464.30 ± 19.24
β, β’-CH2 2.07; 2.14 28.0
γ-CH2 2.36 * m 34.8
δ-COO- 182.6

Glutamine
α-CH 3.81 265.74 ± 11.73

β, β’-CH2 2.15
γ-CH2 2.46 * m 31.8

Histidine
CH-3, ring 8.04 * s 120.36 ± 6.88
CH-5, ring 7.15 s

Isoleucine

α-CH 3.69 60.7 189.50 ± 9.24
β-CH 1.99 37.0
γ-CH3 1.02 * d [7.1] 15.8
γ’-CH 1.29 25.6
δ-CH3 0.94 t [7.4] 12.3

Leucine
α-CH 3.74 54.4 417.98 ± 3.21
β-CH2 1.72 40.8
δ, δ’-CH3 0.96; 097 * d [6.2] 23.0

Lysine

α-CH 3.74 54.5 351.05 ± 9.41
β-CH2 1.91 30.9
γ -CH2 1.48 21.2
δ-CH2 1.75 27.5
ε-CH2 3.02 * t [7.3] 40.2

Methionine

α-CH 3.74 55.0 23.69 ± 1.58
β-CH2 2.25 m 30.5
γ-CH2 2.65 * t [7.4] 30.0
S-CH3 2.16 s 14.9
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Table 1. Cont.

Metabolite Assignment 1H (ppm)
Multiplicity

[J(Hz)]

13C
(ppm)

mg/100 g of
Sample

Phenylalanine
CH-2,6 ring 7.32 m 130.5 167.43 ± 5.08
CH-3,5 ring 7.42 * m 130.1
CH-4 ring 7.37 m 128.7

Proline

α-CH 4.15 977.76 ± 17.27
β, β’-CH2 2.06; 2.35 m
γ-CH2 2.01 * m 25.3
δ, δ’-CH2 3.35; 3.43 m

Taurine
S-CH2 3.28 t [6.5] 48.4 259.83 ± 13.73
N-CH2 3.44 * t [6.5] 36.3

Threonine
α-CH 3.60 61.4 88.89 ± 6.86
β-CH 4.27 67.1
γ-CH3 1.34 * d [6.6] 21.2

Tryptophan

CH-4, ring 7.72 d [8.1] 73.10 ± 2.54
CH-5, ring 7.20
CH-6, ring 7.27
CH-7, ring 7.51 * d [8.1]

Tyrosine
CH-2,6 ring 6.89 * d [8.6] 116.9 537.32 ± 4.82
CH-3,5 ring 7.20 d [8.6] 129.5

C-4 ring 155.5

Valine

α-CH 3.63 61.6 390.18 ± 17.35
β-CH 2.30 30.3
γ-CH3 0.99 d [7.06] 18.0
γ’-CH3 1.05 d [7.06] 19.1

Organic
acids

Acetate
COO- 182.5 359.64 ± 16.25
CH3 1.92 * s 24.4

Formate HCOO- 8.47 * s 22.80 ± 0.42

Fumarate α, β-CH=CH 6.53 * s 1.87 ± 0.09

Lactate
COO- 183.5 730.94 ± 11.40
α-CH 4.12 69.6
β-CH3 1.33 * d [6.6] 22.6

Succinate
COO- 183.7 411.96 ± 8.59

α, β-CH2 2.41 * s 35.1
Other metabolites

Choline
N(CH3)3

+ 3.21 * s 55.2 153.21 ± 1.54
α-CH2 68.9

Glycerol
CH-1,3 3.56 * dd [11.7; 6.5] 63.6 1175.31 ± 23.08
CH2-2 3.79 m 55.4

CH-1′,3′ 3.66 dd [11.7; 4.3] 63.6
Asterisks (*) indicate signals selected for integration.

3.2. FT-ICR MS Analysis

FT-ICR MS analysis applied to hydroalcoholic and organic Bligh–Dyer extracts allowed
us to simultaneously detect many compounds based on their accurate mass and specific
isotope pattern. Different metabolomic databases enabled the identification of more than
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500 molecular formulas, as shown in Table S1, spread between hydroalcoholic and organic
Bligh–Dyer extracts. Among these, about 350 molecular formulas were attributed using
the free tool MassTRIX [22]. Similarities and differences between the hydroalcoholic and
organic extracts are underlined in a two-way Venn diagram; around 39% of the molecular
formulas were revealed to be common to both hydroalcoholic and organic extracts, as
shown in Figure 2.
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Considering the high number of molecular formulas, van Krevelen diagrams (vKds)
were built to provide a visual distribution of the main identified molecular classes [23]. In
particular, elemental formulas from each sample were inserted into the diagrams, where the
molar hydrogen to carbon ratio (H/C) is plotted against the molar ratio of oxygen to carbon
(O/C), thus affording an overview of the molecular families. The hydroalcoholic extract
presented a high density of metabolites in the region of lipids, terpenoids, and polyketides,
followed by amino acids, whereas the organic portion displays a higher number of entries
in the lipid and terpenoid areas, as shown in Figure 3A,B.

Along the trend lines in the corresponding diagrams in Figure 3C,D, it is possible to
identify structural relationships due to chemical reactions among groups of compounds. For
instance, hits along vertical green A lines, associated with (de)hydrogenation processes, com-
prise decenedioic/sebacic acids (C10H16O4/C10H18O4), linoleamide/oleamide/stereamide
(C18H33NO/C18H35NO/C18H37NO), and hydroxy-octadecenoylcarnitine/hydroxy-octadecano-
ylcarnitine (C25H47NO5/C25H49NO5). Items along horizontal red B lines, related to oxida-
tion and reduction reactions, include vitamin D3/calcidiol/calcitriol (C27H44O/C27H44O2/
C27H44O3) and palmitoleic/keto-palmitic acids (C16H30O2/C16H30O3). Entries along bisector
yellow C lines, due to hydration and condensation paths, encompassα-tocopheronolactone/α-
tocopheronic acid (C16H22O4/C16H24O5). Peaks on blue D lines with intercept = 2 in-
clude arginine/homoarginine (C6H14N4O2/C7H16N4O2) and stearic/methyl-stearic acids
(C18H36O2/C19H38O2).

The averaged relative frequency distribution is also displayed in the histograms
of CHO, CHNO, CHN, CHNOS, CHOP, CHNOP, CHNOPS, CHNS, CH, and CHOS
elemental composition (Figure 4). Both extracts are largely populated by CHO and CHNO
components, with more hits in the organic portion, followed by CHNOS and CHOP species,
with more entries in the hydroalcoholic extract. A small number of CH compounds are
present only in the organic phase.
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Figure 3. van Krevelen diagrams (elemental plots) obtained from the molecular formulas achieved
through ESI FT-ICR MS analysis of hydroalcoholic (panel (A)) and organic phases (panel (B)) of
cricket powder. Homology series along dashed lines, related to the following chemical reactions:
(de)hydrogenation (A lines); oxidation or reduction (B lines); (de)hydration and condensation pro-
cesses (C lines); (de)methylation (D lines), are displayed in panels (C,D) (hydroalcoholic and organic
extracts, respectively).
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3.3. GC-MS Analysis

GC-MS methodologies allowed us to determine volatile compounds, alkanes, and
fatty acids, and these are listed in Tables 2–4.

Table 2. Volatile profile (percentage mean value of the three batches ±SD) of A. domesticus powder.

N◦ Component 1 LRI 2 LRI 3 (%)

1 α-thujene 820 823 0.9 ± 0.02
2 β-thujene 962 968 0.7 ± 0.03
3 β-myrcene 985 983 3.5 ± 0.08
4 4-carene 1008 1001 1.5 ± 0.02
5 p-cymene 1015 1013 17.2 ± 0.02
6 1,2-dipropenyl-cyclobutane 1021 * 1.5 ± 0.02
7 γ-terpinene 1051 1054 16.8 ± 0.03
8 6-ethyl-2-methyl-decane 1351 * 2.5 ± 0.03
9 linalyl butyrate 1406 1402 0.8 ± 0.02
10 hexadecanoic acid 1968 1973 54.6 ± 0.02

SUM 100.0
1 The components are reported according to their elution order on a polar column; 2 linear retention indices
measured on a polar column; 3 linear retention indices from the literature; * LRI not available.

Table 3. Chemical composition (percentage mean value of the three batches ±SD) of A. domesticus
hexane extract.

N◦ Component 1 LRI 2 LRI 3 (%)

1 methylcyclopentane 635 629 62.9 ± 0.04
2 4-methyl-heptane 771 768 0.2 ± 0.02
3 octane 810 * 0.1 ± 0.02
4 2,4-dimethyl-1-heptane 822 821 0.2 ± 0.02
5 2,3,4-trimethyl-hexane 854 850 0.1 ± 0.02
6 3,3-dimethyl-octane 930 935 0.2 ± 0.01
7 2,3,6,7-tetramethyl-octane 928 935.5 0.3 ± 0.02
8 decane 1010 * 0.3 ± 0.01
9 4,7-dimethyl-undecane 1121 * 0.2 ± 0.02

10 4-methyl-undecane 1167 1160 0.6 ± 0.02
11 2,5-dimethyl-benzaldehyde 1215 1208 0.2 ± 0.02
12 4,6-dimethyl-dodecane 1335 1325* 0.7 ± 0.02
13 2,4-di-tert-butylphenol 1529 1521 0.7 ± 0.02
14 hexadecanoic acid 1980 1973 32.8 ± 0.04

SUM 99.5
1 The components are reported according to their elution order on a polar column; 2 linear retention indices
measured on a polar column; 3 linear retention indices from the literature; * LRI not available.

Table 4. Fatty acid composition (percentage mean value of the three batches ±SD) of A. domesticus.

N◦ Component 1 LRI 2 LRI 3 (%)

1 pentanoic acid 1758 1762 0.2 ± 0.03
2 palmitic acid 2941 2946 27.8 ± 0.05
3 stearic acid 3183 3181 10.4 ± 0.03
4 oleic acid 3190 3184 21.0 ± 0.07
5 linoleic acid 3217 * 38.1 ± 0.06
6 linolenic acid 3289 3292 2.5 ± 0.02

SUM 100.0
1 The components are reported according to their elution order on a polar column; 2 linear retention indices
measured on a polar column; 3 linear retention indices from the literature; * LRI not available.

The SPME approach for the GC-MS analysis was a robust and effective method for
detecting volatile metabolites in the untreated matrix, whereas the analysis of hexane extract
allowed us to identify a class of molecules peculiar to insects, namely methyl-branched
hydrocarbons (MBCHs).
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The GC-MS technique allowed us to identify six fatty acids: linoleic acid (38.1%) and
palmitic acid (27.8%) were the most abundant, followed by oleic acid (21.0%), stearic acid
(10.4%), and linolenic acid (2.5%), and, with a much lower percentage value, pentanoic
acid (0.2%).

4. Discussion

The metabolite profile obtained using the proposed analytical protocol is described and
discussed for this class of compounds, combining the results obtained using the different
methodologies and carrying out, when possible, a comparison with reported literature data.

Amino acids and derivatives: Among the nineteen amino acids identified and quantified
by means of NMR, alanine and proline were shown to be the main amino acids, whereas
methionine was present in the lowest concentration. All the nine essential amino acids
were present, confirming the important nutritional value of edible crickets. Moreover, it
is noteworthy that the NMR amino acid quantification here refers to the free amino acids
naturally present in the matrix, without any protein hydrolysis. In contrast, previous
studies carried out on A. domesticus powder [8,9] have reported the amino acid content
obtained after protein hydrolysis, making a direct data comparison not possible. FT-ICR
MS allowed us to also detect arginine and to reveal the presence of dipeptides (cysteinyl-
methionine, methionyl-methionine, methionyl-tyrosine) and tripeptides (valyl-arginyl-
tyrosine, methionyl-leucyl-phenylalanine, arginyl-prolyl-proline).

Organic acids: Acetate, formate, fumarate, lactate, and succinate were identified and
quantified by means of NMR spectroscopy, with formate being identified in house crick-
ets for the first time. From a quantitative point of view, lactate was the most abundant
metabolite of the series, whereas fumarate was measured in the lowest concentration
(365 times lower than lactate). Comparing these data with the results previously obtained
for A. domesticus powder [12] using GC-MS analysis, it is possible to observe both sim-
ilarities and differences. In particular, succinate and lactate were present in the same
concentration range in both studies, whereas fumarate and acetate were shown to have
different behavior. In the case reported here, fumarate was the organic acid present at the
lowest acid concentration (1.87 mg/100 g), whereas in the cited paper, fumarate has been
reported as the more representative acid, with a concentration 685 times higher than the
one reported here, with acetate being present at the lowest concentration. Moreover, in the
A. domesticus powder investigated here, formate was also detected, whereas Beldean at al.
reported the presence of ascorbate. FT-ICR MS analysis allowed the detection of ethyl-
malate, a derivate of succinic acid, and sebacic acid in the hydroalcoholic extract, whereas
gluconic acid was revealed in both extracts.

Fatty acids: Lipids in household crickets are found in the form of triglycerides stored
in adipocytes, which, along with glycogen, are a relevant energy reserve and represent a
largely studied class of molecules in this matrix. The GC-MS analysis of the derivatized
sample of cricket powder allowed us to determine the fatty acid content, with linoleic acid
and palmitic as the most abundant, followed by oleic, stearic, linolenic, and pentanoic acids.
Our results are in accordance with the literature data [8,11].

The same fatty acids were also detected by means of FT-ICR MS analysis. Moreover,
considering the higher sensitivity of this technique, further putative formulas of fatty
acids were identified, namely lauric, myristic, and palmitoleic. Several classes of fatty acid
derivatives, namely amide (palmitamide, oleamide, linoleamide, stearamide) and ester
(palmitoylcarnitine and stearoylcarnitine) derivatives, were also revealed, together with
some hydroxy fatty acids (hydroxy-linoleic and hydroxy-linolenic acids), well known for
their anti-inflammatory, antioxidant, and anti-diabetic properties [24].

Due to a possible ion-suppression effect and variations in the signal response, ESI
MS is not able to offer an accurate quantitative analysis. However, a quantification of
isomeric groups of wax esters [25] and fatty acids [16] has recently been reported, since
their relative ionization response depends only on lipid family and saturation degree and
is not affected by carbon chain length. A similar approach was employed here, as shown



Foods 2023, 12, 2331 12 of 16

in Figure 5, wherein the lipids’ molecular formulas were extrapolated from the mass list
obtained through ESI (−) MS analyses of the organic extract. Then, they were summarized
in two main families based on their saturation degree and carbon chain length to obtain
their relative extent. Notably, in the C18 series (18:0–18:3) shown in Figure 6, linoleic acid
(18:2) is the most abundant species (ca. 50%), followed by oleic (18:1) and stearic (18:0)
acids, ca. 27% and 17%, respectively, whereas linolenic (18:3) acid amounts to ca. 6%.
Figure 7 displays the relative abundance of EFAs (essential fatty acids), with linoleic acid
(ω-6) found to be ca. ninefold more abundant than linolenic (ω-3) acid.
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Terpenes: It has been demonstrated that insects can be a source of terpenes through
both specific biosynthetic pathways that occur in insects and the accumulation of these
molecules from plants [26]. In a previous study, [12] two terpenes, p-cymene and β-myrcene,
were identified in A. domesticus powder by means of an in-tube extraction technique (ITEX)
coupled with GC-MS. Here, a further characterization of house crickets’ terpene profile was
carried out by means of SPME-GC-MS. Specifically, together with the previously identified
β-myrcene and p-cymene, γ-terpinene, α-thujene, β-thujene, and 4-carene were detected
for the first time. Among them, γ-terpinene (16.8%) and p-cymene (17.2%) were the most
abundant terpenes, whereas the other metabolites were present with percentage mean
values ranging from 0.7% to 3.5%. Since terpenes are a class of compounds characterized by
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several biological activities, it will be interesting to correlate the presence of these molecules
with the potential influence of cricket extracts on human health.

Alkanes: The GC-MS analysis of hexane extracts allowed us to identify lipophilic
compounds present in spray-dried A. domesticus powder, namely hexadecenoic acid and
alkanes. It is noteworthy that a previous GC-MS study on A. domesticus PLE (pressurized
liquid extraction) extract already detected a series of lipophilic compounds indicated to be
“alkane”, without identifying their precise structure [10].
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Here, for the first time, the elucidation of the alkane compounds present in house
crickets was carried out. Specifically, thirteen alkanes were identified, namely octane,
decane, and eleven methyl-branched hydrocarbons (MBCHs). MBCHs are a particular
class of compounds naturally produced by insects for their inter- and intraspecific com-
munication [27]. Among them, methylcyclopentane was the main compound present in a
percentage (62.9%) at least 100 times higher than the other detected molecules. The relevant
presence of methylcyclopentane has also been reported in other insects, namely Azteca
ants and A. dichotoma [28,29]. The presence of this compound in a new food matrix such
as in crickets or other edible insects will be the object of interesting research regarding the
potential biological activity of these molecules, since the reported presence of this chemical
class in other food sources is limited to a few studies regarding the cuticular composition
of crustacea [30].

Other metabolites: NMR analysis allowed us to identify and quantify other metabolites
belonging to different chemical classes. Among them, glycerol was the most abundant
compound in the hydroalcoholic extract, with a concentration of more than 1 g/100 g of the
sample. The presence of glycerol in A. domesticus has been previously demonstrated [31],
and it represents a common metabolite of insects since this molecule has been shown
to have an important role as both a cryoprotective and energy source agent. Choline
was also identified by means of NMR spectroscopy and quantified at a concentration
of ca. 153 mg/100 g. In addition, several vitamins were identified through FT-ICR MS
analysis, including calcitriol, vitamin D3, and tocopherol. Moreover, as indicated in the
van Krevelen diagrams reported in Figure 3, some hits are revealed in the area of carbo-
hydrates. According to the putative annotations presented in Table S1, these include a
disaccharide (C12H22O11), arabinopyranobiose (C10H18O9), and gluconic acid (C6H12O7).
As expected, only a very limited number of compounds populate the CHO component,
mainly corresponding to lipid and terpenoid species.

The multimethodological approach described here allowed us to obtain a rich chemical
profiling of the novel food A. domesticus, including the identification of metabolites that
had never been detected in this matrix before. These first results could represent the
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beginning of a new research field based on the application of advanced techniques for the
characterization of edible insects and, more generally, other innovative food matrices that
need to be characterized and investigated in depth. However, it is noteworthy that several
issues related to edible insect safety must be clarified and studied in depth, namely the
presence of aerobic bacteria, other microbial pathogens, antinutritional molecules, allergens,
and heavy metals [32]. Moreover, the investigation of several practices in cricket feeding,
farming, and processing could be useful for a better understanding of their influence on
the insect chemical profile and, thus, its nutritional properties.

5. Conclusions

In this study, a complete metabolite characterization of spray-dried A. domesticus
powder was carried out. The application of several analysis methodologies, namely NMR,
FT-ICR MS, and GC-MS, allowed us to define a very rich chemical profile of this novel
food. The obtained results confirmed that edible insects represent a very precious source
in the perspective of having an innovative food source with a low environmental impact.
The results obtained here confirmed the previously demonstrated presence of compounds
important from a nutritional point of view, such as essential amino acids, organic acids, and
polyunsaturated fatty acids. Moreover, two further classes of compounds, namely terpenes
and methyl-branched hydrocarbons, were identified in the analyzed powder. The study
of the biological activity of cricket extracts, as well as bioaccessibility and bioavailability
studies, could open up new fields regarding their potential effect on human health and,
thus, their use in producing new formulations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods12122331/s1, Table S1: Untargeted metabolic profiling of hy-
droalcoholic and organic extracts of A. domesticus powder.
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