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Abstract: Numerous natural antioxidants commonly found in our daily diet have demonstrated
significant benefits for human health and various diseases by counteracting the impact of reactive
oxygen and nitrogen species. Their chemical properties enable a range of biological actions, including
antihypertensive, antimicrobial, anti-inflammatory, anti-fibrotic, and anticancer effects. Despite
promising outcomes from preclinical studies, ongoing debate persists regarding their reproducibility
in human clinical models. This controversy largely stems from a lack of understanding of the phar-
macokinetic properties of these compounds, coupled with the predominant focus on monotherapies
in research, neglecting potential synergistic effects arising from combining different antioxidants.
This study aims to provide an updated overview of natural antioxidants, operating under the hypoth-
esis that a multitherapeutic approach surpasses monotherapy in efficacy. Additionally, this study
underscores the importance of integrating these antioxidants into the daily diet, as they have the
potential to prevent the onset and progression of various diseases. To reinforce this perspective,
clinical findings pertaining to the treatment and prevention of non-alcoholic fatty liver disease and
conditions associated with ischemia and reperfusion phenomena, including myocardial infarction,
postoperative atrial fibrillation, and stroke, are presented as key references.

Keywords: natural antioxidants; protective mechanisms; oxidative stress; ischemia–reperfusion
injury; non-alcoholic fatty liver disease; polyphenols; vitamins

1. Introduction

Nature offers a rich array of antioxidant compounds, including polyphenols, carotenoids,
and vitamins, many of which are abundant in our daily diets. These natural products serve
as vital reservoirs of therapeutic agents, deeply ingrained in both traditional and modern
medicine due to their ability to combat diseases and promote overall well-being. Recognized
for their importance, they are invaluable resources for developing innovative medications and
addressing various health challenges.

Numerous physiological, biochemical, and molecular processes underlie the action
of natural products in promoting health or contributing to pathological conditions, as
demonstrated by both in vitro and in vivo studies. These products notably modulate path-
ways associated with oxidative stress, inflammation, and apoptosis, which are inherently
interconnected [1].

Oxidative stress denotes an imbalance between the production of reactive oxygen
species (ROS) and the body’s antioxidant defense mechanisms, leading to cellular dys-
function and damage. In contrast, inflammation represents an immune system response
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to harmful stimuli, characterized by the mobilization of immune cells and the release of
inflammatory mediators [1]. Furthermore, inflammation can exacerbate oxidative stress,
and both oxidative stress and inflammation can activate pro-apoptotic pathways, resulting
in cell death. Apoptosis, or programmed cell death, is a crucial mechanism for maintaining
tissue homeostasis and eliminating damaged or abnormal cells [1]. The disruption of
these processes can contribute to the onset and progression of various diseases, including
metabolic disorders, immune-related diseases, and cancers. Therefore, understanding the
mechanisms underlying these processes and identifying potential therapeutic targets for
their regulation is crucial for the prevention and treatment of these diseases [1].

In the realm of nutritional and medicinal research, natural medicinal foods have
emerged as a subject of significant interest. These foods, which blend nutritional and
medicinal properties, offer extracts with unique qualities that contribute to disease pre-
vention and treatment, along with a myriad of health benefits, including polyphenols,
flavonoids, terpenes, and alkaloids [1]. Indeed, there has been a noticeable trend towards
the preference for natural food ingredients in recent years, owing to their perceived safety
and widespread availability [2]. Researchers are increasingly exploring how these natural
foods can complement conventional treatments, improve overall health outcomes, and
contribute to the development of functional foods and nutraceuticals [3]. However, despite
promising findings from preclinical studies, there remains a lack of adequate replication of
these results in human clinical models, leading to ongoing debate regarding the suitability
of their clinical application.

Against this background, one of the objectives of the present study is to provide an
updated overview of data demonstrating the beneficial effects and limitations of studies
involving natural antioxidants. These compounds, found in various diets around the world,
have established themselves as fundamental components of a balanced diet. Additionally,
we aim to explore the hypothesis that a combination of these compounds, as part of
a multi-therapy approach, may yield greater benefits when combined based on their
physicochemical properties and mechanisms of antioxidant action. This strategy could
mitigate the adverse effects associated with conventional therapies, thereby reducing
patient morbidity and mortality.

Supporting this perspective, this study presents findings from clinical models of spe-
cific human diseases mediated by oxidative stress. Conditions such as non-alcoholic fatty
liver disease and ischemia–reperfusion injury are prevalent worldwide and impose a sub-
stantial economic burden, particularly given the aging population [4,5]. These pathologies
have been focal points for exploring synergistic approaches with natural antioxidants,
leading to the development of therapies that have shown promising results in both pre-
clinical and clinical trials [6,7]. These findings serve to underscore the potential of natural
antioxidants as integral components of dietary interventions aimed at promoting overall
health and combating disease.

2. Oxidative Stress and Antioxidant Defense System

Oxidative stress has been identified as a deterioration process involved in various
pathological conditions, characterized by an imbalance between the generation of prooxi-
dant substances and the antioxidant potential. This imbalance leads to alterations in redox
homeostasis and damage to macromolecules [8]. Among the most relevant pro-oxidant
substances are free radicals, which, in adequate concentrations, play vital roles in the cell
and the organism, such as defense against microorganisms, the activation of transcription
factors, and protein phosphorylation, among others. However, when produced in excess,
these radicals can cause damage, as they are highly reactive molecules due to the presence
of unpaired electrons in their outer orbit, allowing them to interact with other molecules
and modify their configuration and function, as occurs with biomolecules [9,10].

The main free radicals include reactive oxygen species (ROS) and reactive nitrogen
species (RNS), which can sometimes combine to form even more reactive species known
as reactive oxygen and nitrogen species (RONS) [11]. The generation of free radicals in
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cells occurs due to the action of different enzymes and cellular processes. For example,
among the most important sources of free radicals is oxidative phosphorylation in the
inner membrane of mitochondria (OXPHOS), NADPH oxidase (NOX) activity present in
activated leukocytes during the respiratory burst process, as well as the action of other
enzymes such as myeloperoxidase (MPO) and uncoupled nitric oxide synthase (NOS) [12,
13]. Additionally, free radicals can be generated spontaneously, as in the presence of
transition metals. For example, iron in its free form reacts with hydrogen peroxide (H2O2)
to form hydroxyl radicals [14].

Since an excess of free radicals can cause damage, cells have developed various defense
mechanisms to counteract them. These mechanisms are divided into enzymatic and non-
enzymatic antioxidants. The latter can, in turn, be categorized based on whether they are
synthesized naturally in the body or must be ingested through the diet, as is the case with
the natural antioxidants mentioned in the previous section. Antioxidant enzymes include
superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), thioredoxin
(TRx), and others [12] (Figure 1). The expression of these enzymes is largely controlled by
the nuclear erythroid 2-related factor (Nrf2)/Keap1 system, which constitutes one of the
most studied adaptive response systems to oxidative stress [15].
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3. Natural Antioxidant

In this section, we will discuss the main families of natural antioxidants present
in a standard Mediterranean diet rich in fruits and vegetables, which are grouped into
polyphenols, carotenoids, and vitamins. Polyphenols, abundant in fruits, vegetables, and
other plant-based foods, encompass a diverse range of compounds such as flavonoids,
phenolic acids, lignans, and stilbenes, each offering unique health benefits. Carotenoids,
found primarily in colorful fruits and vegetables, play a crucial role in maintaining eye
health and supporting immune function. Lastly, vitamins, including vitamins C and E, are
essential micronutrients with powerful antioxidant properties that contribute to overall
health and well-being. Together, these natural antioxidants form an integral part of a
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balanced diet, offering protection against oxidative stress and reducing the risk of chronic
diseases.

3.1. Polyphenols

Polyphenols are secondary metabolites produced by various parts of plants, including
fruits, flowers, leaves, and barks [16]. Widely distributed in plant-based foods, they
contribute to their color, flavor, and pharmacological activities [2].

Polyphenols are classified based on their chemical structure, characterized by one or
more phenolic rings in their molecular composition [17]. They are broadly categorized
into four main groups: flavonoids, phenolic acids, lignans, and stilbenes. Flavonoids, the
most abundant class, can be further subdivided into subgroups such as anthocyanins,
flavanols, flavanones, flavones, flavonols, and isoflavones. Phenolic acids are the second
most common, followed by lignans and stilbenes [17].

The specific polyphenol content of foods varies widely depending on factors such as
plant variety, ripeness, processing methods, and cooking techniques [18]. During digestion,
some polyphenols, like anthocyanins, are absorbed in the small intestine, while others, like
flavonoids, require hydroxylation by digestive enzymes before absorption by epithelial
cells [2].

Polyphenols possess antioxidant properties and can modulate the expression of var-
ious proinflammatory genes, contributing to the regulation of inflammatory signaling.
They exert anti-inflammatory effects through radical scavenging, metal chelation, NOX
inhibition, the modulation of the mitochondrial respiratory chain, the inhibition of enzymes
involved in ROS production (e.g., xanthine oxidase), and the augmentation of endogenous
antioxidant enzymes [2].

This section will delve deeper into the actions of three specific polyphenols: resveratrol,
curcumin, and quercetin. Extensively researched for their potential health benefits, these
compounds offer insight into how polyphenols influence human physiology and contribute
to disease prevention. We will explore their roles in modulating inflammatory pathways,
protecting against oxidative stress, and other mechanisms contributing to their beneficial
effects on health. Additionally, we will examine the emerging significance of the phenolic
acid ferulic acid, known for its potent antioxidant properties and its ability to modulate
various biological pathways, thereby enhancing its potential therapeutic applications.

3.1.1. Resveratrol

Resveratrol, known chemically as 3,5,4′-trans-trihydroxystilbene, belongs to the stil-
bene family and is primarily found in grapes, red wine, and various plant-based foods
like peanuts, berries, and tea. Produced by over 70 plant species in response to infection,
stress, injury, bacteria, fungal infections, and UV radiation [19], resveratrol has shown a
wide range of bioactivities in vitro studies. These include antioxidant, anti-inflammatory,
immunomodulatory, hypotensive, and hypolipidemic properties, demonstrating efficacy in
preventing and treating diseases such as cancer, cardiovascular disease, neurodegenerative
diseases, and obesity [20]. In this context, the so-called “French paradox,” which refers
to the low incidence of cardiovascular disease among the French despite a diet rich in
saturated fats, especially in the form of cheese and butter, makes sense. However, the
consumption of red wine, which is characterized by being rich in polyphenols such as
resveratrol, is also high [21].

The molecular mechanisms underlying resveratrol’s biological function include its
ability to actively scavenge free radicals, chelate metals, and modulate signaling pathways
associated with phosphoprotein kinase B (Akt) and phosphoprotein kinase C, as well as
activating AMPK and NRF-2 [19]. However, while these observations stem mainly from
in vitro studies, in vivo research has struggled to effectively demonstrate the major benefits
of resveratrol. This is largely due to its limited oral bioavailability, influenced by hepatic
metabolism and variable absorption [22]. Moreover, the presence of hydroxyl groups in
resveratrol allows it to associate with carbohydrates and proteins in the diet, reducing its
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absorption [22]. Furthermore, there is significant interindividual variability in polyphenol
metabolism. Various studies have shown that factors such as age, sex, genotype, and, most
importantly, gut microbiota, play a crucial role in determining these differences [23,24].
These factors lead to variations among individuals in the metabolism and bioavailability
of resveratrol, resulting in a heterogeneous response to its consumption. This variability
represents a key aspect that must be considered in research and therapeutic applications.

Regarding its safety profile, resveratrol has been associated with various adverse
effects, which depend on the type of clinical study. Common side effects include dizziness
and headache, with less frequent occurrences of epididymitis. However, safety has been
reported across varying doses of the compound (e.g., 0.5, 1.0, 2.5, and 5.0 g) [25]. Higher
doses, such as 2.5 and 5.0 g, have been linked to side effects like diarrhea, nausea, and
abdominal discomfort [25]. Despite these adverse effects, resveratrol’s side effects are
generally considered mild compared to its potential health benefits in various pathologies.

3.1.2. Quercetin

Quercetin, with a chemical structure of 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-
1-benzopyran-4-one, stands out as a prominent member of the non-toxic natural flavonoid
family. It is abundantly present in fruits such as grapes and peaches, as well as in vegetables
like onions and garlic [26,27]. Moreover, owing to its lipophilic nature, quercetin easily
crosses the intestinal membrane through simple diffusion [26]. Additionally, quercetin
is often found alongside other phytochemicals, vitamins, and minerals in whole foods,
leading to potential synergistic effects that enhance their individual benefits. For instance,
consuming quercetin-rich foods with those containing vitamin C may boost quercetin
absorption due to their possible synergistic interaction [28,29].

Quercetin possesses remarkable anti-aging properties attributed to its antioxidant,
anti-apoptotic, and anti-inflammatory attributes. It actively participates in enhancing
mitochondrial function and exhibits iron-chelating abilities, rendering it effective against
a process known as ferroptosis [2]. However, it is important to note that the clinical
application of quercetin faces limitations due to its low bioavailability and solubility [26,30].

Numerous research studies have unequivocally demonstrated that quercetin treatment
effectively suppresses ROS generation and ameliorates mitochondrial dysfunction, thereby
contributing to the preservation of normal mitochondrial balance and function [26]. These
effects are closely linked to changes in the electron cloud within the aromatic ring. When
quercetin interacts with a free radical, it either donates electrons or provides hydrogen,
resulting in the formation of a new stable group through the orchestrated spin action of
the aromatic nucleus. Consequently, this interrupts or delays the oxidation reaction of the
substance, highlighting the positive correlation between quercetin’s antioxidant capacities
and the stability of the formed group [27].

Furthermore, quercetin has been shown to exert neuroprotective effects against chronic
aging-related diseases. This is achieved by targeting the SIRT1 pathway, which regulates cel-
lular senescence and several aging-related cellular processes, including SIRT1/Keap1/Nrf2/
HO-1- and PI3K/Akt/GSK-3b-mediated oxidative stress, SIRT1/NF-κB-mediated inflam-
matory responses, SIRT1/PGC1alpha/eIF2alpha/ATF4/CHOP-mediated mitochondrial
damage, and SIRT1/FoxO-mediated autophagy (Figure 2) [26].
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Like other polyphenols, quercetin faces significant limitations for pharmaceutical use
due to its poor solubility and low bioavailability. Studies indicate that the total bioavail-
ability of quercetin is merely 2% following oral administration [31]. To overcome these
barriers, the pharmaceutical industry has advanced the development of nanoformulations.
These nanoformulations have been shown to enhance the bioavailability and stability of
quercetin, as well as improve its antioxidant capacity. Consequently, they have recently
been widely utilized as complementary therapies in the treatment of various cancers [32].

Regarding the safety of quercetin in humans, results from a phase I clinical trial by
Ferry et al. (1996), in which different doses of the flavonoid were administered intra-
venously, are currently available [33]. The results showed that patients who received doses
up to 10.8 mg/kg experienced no adverse effects, while those treated with a higher dose
(51.3 mg/kg) suffered from injection site pain, emesis, dyspnea, and nephrotoxicity. How-
ever, these results cannot be directly compared to those obtained from oral administration,
where few studies have reported adverse effects. For instance, quercetin supplementation
(1000 mg/day for 1 month) reported mild adverse effects such as nausea, headache, and
tingling in the extremities [34]. Similarly, in vitro studies have suggested that potential
safety issues may arise if mega doses of flavonoids are consumed daily [35]. However,
the exact threshold for what constitutes a megadose of quercetin has not been defined.
Therefore, until a tolerable upper limit is established, the consumption of large amounts
of flavonoids in concentrated supplement form cannot be considered safe, and the safety
potential of higher doses needs to be assessed in vivo.
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3.1.3. Curcumin

Turmeric (Curcuma longa), a traditional Chinese spice and medicinal herb, holds
a rich history of application in managing various health conditions, particularly those
associated with inflammation [36,37]. Turmeric comprises a trio of curcuminoids (curcumin,
demethoxycurcumin, and bisdemethoxycurcumin), alongside volatile oils (natlantone,
tumerone, and zingiberone), proteins, sugars, and resins [36]. A key component of this
versatile herb is curcumin, a bioactive compound chemically known as (1E-6E)-1,7-bis(4-
hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione. Curcumin emerges as a remarkable
molecule with far-reaching impact, targeting numerous molecular pathways associated
with inflammatory processes. It exhibits a multifaceted character, offering antioxidative,
anti-inflammatory, hepatoprotective, anticancer, and other valuable properties [37].

Curcumin holds significant promise as a pharmacological agent due to its pivotal
roles in addressing oxidative stress, managing inflammatory responses, and influencing
apoptosis. It demonstrates favorable outcomes in conditions encompassing metabolic
disorders, immune-related ailments, and various cancers [1]. Notably, curcumin showcases
its ability to scavenge ROS, diminish the production of proinflammatory cytokines, and
modulate diverse signaling pathways associated with apoptosis. Even at high doses,
curcumin maintains a favorable safety profile with no significant adverse effects reported [1].
Moreover, pre-treatment with curcumin stands out for its capacity to regulate the expression
of antioxidant enzymes via the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling
pathways, thereby stabilizing ROS levels (Figure 2). The transcription factor Nrf2 plays
a pivotal role in the cellular response to oxidative stress by regulating the expression of
genes encoding antioxidant enzymes and detoxifying proteins. Recent research indicates
that curcumin can alleviate intestinal barrier injury and mitigate mitochondrial damage
induced by oxidative stress through the activation of the AMP-activated protein kinase
(AMPK) pathway [1].

Regarding its role in managing inflammatory responses, curcumin’s effectiveness
lies in its ability to obstruct the nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB) pathway—a crucial element in the oxidative and inflammatory process [1].
Furthermore, it has been observed that curcumin exerts influence over multiple apop-
totic pathways, including the death receptor and endoplasmic reticulum stress-induced
apoptosis pathways [1].

Expounding on its pharmacological attributes, curcumin is a powerhouse, endowed
with properties spanning antioxidant, anti-inflammatory, hepatoprotective, anticancer, antidi-
abetic, cardiovascular protective, neuroprotective, immune regulatory, metabolic syndrome
protective, and even eye-protective effects. It serves as a versatile solution applied in the man-
agement of various conditions, including intervertebral disk issues, herniation, cancer-related
pain, arthritis, delayed-onset muscle soreness, burn pain, mental stress, hypochondriac pain,
mania, visceral pain, and musculoskeletal pain. In essence, curcumin’s multifaceted benefits
encompass its antioxidant potential through AMPK/Nrf2/ARE/Keap1 pathway activation,
its anti-inflammatory attributes via NF-κB/AP-1/MAPK pathway inhibition, and its ability to
counteract apoptosis through the suppression of JAK/STAT and ER stress-induced pathways,
while simultaneously activating PI3K/AKT/mTOR pathways, especially in noncancerous
ailments [1].

The safety profile of curcumin is generally acceptable, as it has not been shown
to cause serious adverse effects. Studies with oral curcumin formulations indicate that
doses between 1 and 4 g/day are well tolerated, with the most common side effects being
gastrointestinal discomfort, such as nausea, vomiting, or diarrhea [38–40]. However, a
challenge with oral formulations is their low bioavailability. To address this, liposomal
formulations for intravenous administration have been developed, which have also been
found to be safe up to doses of 120 mg/m2, with changes in red blood cell morphology
being a sign of dose-limiting toxicity [41].

Despite its acceptable safety profile, curcumin has been shown to interact with
enzymes that metabolize other drugs [42]. Therefore, it should be used with caution
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when combined with antidepressants, antibiotics, cardiovascular drugs, anticoagulants, or
chemotherapeutics.

3.1.4. Ferulic Acid

Ferulic acid (FA) is a phenolic compound with the molecular structure of 4-hydroxy-
3-methoxycinnamic acid (C10H10O4), which is part of the plant cell wall and is widely
distributed in nature. However, its main food sources are legumes and cereals. This
compound has been shown to possess various pharmacological properties, including
antioxidant and anti-inflammatory effects, as well as beneficial effects on parameters
related to diabetes and hyperlipidemia [43,44].

In terms of its antioxidant mechanism of action, FA inhibits ROS production and
aldose reductase activity, while simultaneously activating the PI3K/Akt signaling path-
way to perform its antioxidant function [40]. Furthermore, activation of the Nrf2/HO-1
pathway enhances the antioxidant effect of FA by promoting the nuclear translocation of
HO-1 [40]. At the endothelial level, FA negatively regulates the expression of NO/ET-1
and factors related to vascular endothelial function, such as VEGF, PDGF, and HIF-1alpha,
thereby protecting endothelial cells and enhancing angiogenesis, which is crucial for main-
taining normal vascular endothelial function [40]. Additionally, FA interferes with the
proinflammatory activity of macrophages, reducing the secretion of cytokines such as
TNF-alpha, IL-6, and IL-1β [44,45].

The safety profile of ferulic acid is favorable. For example, daily supplementation of
1 g/day for 6 weeks has not been associated with any adverse effects, indicating that this
dose appears to be safe [46]. Other formulations, such as sodium ferulate for intravenous
administration, have also been found to be safe. Clinical trials evaluating the efficacy
of sodium ferulate have reported only minor adverse events, which were related to the
infusion rate and allergic reactions [47].

3.2. Carotenoids

Carotenoids constitute a group of natural pigments abundant in many fruits, vegeta-
bles, and plants. These fat-soluble compounds are responsible for the vibrant red, orange,
and yellow hues observed in various foods, including fruits, vegetables, and fish [48]. Upon
ingestion, they are released from the food matrix and absorbed in the intestine, incorpo-
rating into micelles that diffuse into the plasma membrane of enterocytes. Subsequently,
they are transported into circulation via high-density lipoproteins (HDLs) and low-density
lipoproteins (LDLs) [49]. Depending on their chemical structure, carotenoids can be catego-
rized into carotenes and xanthophylls. Carotenes, such as alpha-carotene, beta-carotene,
and lycopene, are non-oxygenated, whereas xanthophylls, such as zeaxanthin, astaxanthin,
and canthaxanthin, are oxygenated derivatives [50].

Carotenoids exhibit various biological activities, including provitamin A activity,
immune response stimulation, the modulation of gap junction communication, and the
regulation of cell cycle apoptosis [50]. Their primary antioxidant activity arises from their
capacity to scavenge reactive oxygen species (ROS) through processes like electron transfer
(oxidation and reduction), hydrogen abstraction, and addition reactions [48]. Carotenoids
are further classified into three classes based on their antioxidant capacity: the first class
demonstrates minimal antioxidant activity; the second class, comprising beta-carotene and
lycopene, shows significant antioxidant activity but may also exhibit pro-oxidant properties;
and the third class, represented by astaxanthin, exhibits robust antioxidant capacity devoid
of any pro-oxidant nature [51].

Astaxanthin (AX), a xanthophyll, has garnered significant attention in recent years.
This orange-red compound is abundant in many aquatic animals, such as salmon and
shrimp, primarily synthesized by the microalgae consumed by these fish, where it ac-
cumulates. Among microalgae, Haematococcus pluvialis stands out for its remarkable
ability to concentrate astaxanthin [52]. AX possesses the capacity to neutralize various
reactive oxygen species (ROS) and nitrogen species (NOS), with its exceptionally potent
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superoxide anion scavenging activity being particularly noteworthy. Additionally, owing to
its lipophilic nature, it can inhibit lipid peroxidation, thereby safeguarding mitochondrial
membranes against oxidative damage [53,54]. The beneficial effects of AX encompass
protection against UV damage, anti-inflammatory and immunomodulatory activities, car-
dioprotective effects, and anticancer properties, among others [53]. Regarding the safety
of its use, several studies report an excellent safety profile for short-term daily doses of
100 mg and long-term doses of 8–12 mg [55–58]. Only a few mild adverse effects have been
reported, such as a change in stool color or an increase in the number of stools.

Another natural compound found abundantly in many red fruits and vegetables is
lycopene. Studies have shown that it reaches its highest concentrations in tomato powder and
sun-dried tomatoes compared to fresh tomatoes or other forms of this fruit [59]. Lycopene
exhibits antioxidant activity, playing a role in conditions such as cardiovascular diseases
and cancer. It functions as a scavenger for singlet oxygen and peroxyl radicals, while also
targeting other free radicals like hydrogen peroxide, nitrogen dioxide, and hydroxyl radicals.
Additionally, lycopene is believed to enhance the cellular antioxidant defense system by
regenerating non-enzymatic antioxidants such as vitamins C and E [59,60].

3.3. Vitamins
3.3.1. Vitamin C

Ascorbic acid (L-ascorbic acid or L-ascorbate), commonly known as vitamin C, is a
water-soluble vitamin essential for the proper functioning of the human body. In most
mammals, it can be produced in a multi-step pathway from glucose, but humans are the
exception, as they lack the enzyme L-gulonolactone oxidase, an enzyme necessary for the
synthesis of ascorbic acid, so it must be ingested in the diet [61,62]. Deficiency of this
vitamin has been associated with the development of scurvy disease, which manifests itself
as general weakness, fatigue, myalgia, arthralgia, lack of appetite, decreased immunity, ten-
dency to bruise, and inflammation of the gums and bleeding, demonstrating the diversity
of processes in which vitamin C is involved [63]. The main sources of vitamin C in the diet
are fruit and vegetables, as animal products have a relatively low vitamin C content, with
the exception of cattle liver and some fish eggs. Among the foods richest in ascorbic acid in
fruits are carambola, guava, blackcurrant, kiwi, and strawberries, while among vegetables,
broccoli, cabbage, and peppers stand out [64,65].

The biological functions of vitamin C are the result of its ability to act as a reducing
agent. In this way, vitamin C is capable of reducing oxidizing agents by donating electrons,
which gives it its name as an antioxidant, but this does not always occur, given that when
reducing elements such as transition metals like copper or iron, they are capable of generat-
ing reactive oxidizing species such as superoxide anion and hydrogen peroxide through the
Fenton reaction [66,67]. When ascorbic acid is oxidized, it gives rise to dehydroascorbic acid
(DHA), which is a more stable species and has a certain affinity for glucose transporters,
through which, it can be taken up and reduced to ascorbic acid inside the cell or metabolize
to 2,3-dichetogulonic acid to form different metabolites, including oxalate [61,68,69]. In this
context, some functions related to its ability to donate electrons include its participation
as an enzymatic cofactor, participating in various reactions such as the hydroxylation
of procollagen or HIF-1, histone demethylation, and norepinephrine synthesis, among
others [70,71]. In terms of its role as an antioxidant, vitamin C acts directly as a potent
scavenger of reactive oxygen species (ROS) and in parallel generates indirect effects on the
redox state, by recycling other antioxidant molecules such as vitamin E or reducing Nf κB
levels or preventing BH4 oxidation [72]. It is precisely this great versatility of vitamin C
that has motivated the development of different studies aimed at better understanding its
physiology, as well as its participation in different pathophysiological processes, in order to
implement its clinical use in the treatment of different diseases.

The safety of ascorbic acid has been studied in various settings for the treatment
of different pathologies, and most studies have shown it to have a good safety profile.
A Cochrane review investigating the use of vitamin C for the prevention and treatment
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of the common cold concluded that ascorbic acid is safe when supplemented at doses
between 0.25 and 2 g/day [73]. In more extreme cases, a review by Böttger et al. examined
the efficacy and safety of high-dose vitamin C treatment (up to 3 g/kg) administered
intravenously as monotherapy for various types of malignancies [74]. The results indicated
that this treatment is safe and has no significant toxicity. The most common adverse
effects observed with the use of high-dose vitamin C include hypokalemia, hypernatremia,
hypertension, and anemia [74]. However, the most serious events, such as pulmonary
embolism and pneumonia, were associated with the underlying disease rather than the
treatment itself [74].

3.3.2. Vitamin A

Vitamin A is an essential micronutrient for our body, which is associated with the
proper functioning of our body, participating in various processes such as reproduction,
embryogenesis, vision, cell growth and differentiation, and immune function, among
others [75–77]. Thus, vitamin A deficiency is associated with the development of night
blindness, xerophthalmia, xeroderma, and frequent infections, among other disorders [75,
78]. The term vitamin A includes a large number of fat-soluble compounds grouped
under the term retinoids. These compounds can be divided into two groups depending
on whether they are of animal or vegetable origin. The group of animal origin is mainly
composed of retinol, also known as preformed vitamin A, since it is a substance that acts as
a precursor of the most active form of vitamin A, which is retinoic acid [79]. On the other
hand, plant-derived retinoids are categorized as provitamin A compounds, which include
some carotenoids that can be metabolized to retinol in our body, including alpha-carotene,
beta-carotene, and beta-cryptoxanthin, since they are the only ones found in significant
quantities in the human diet [80,81].

When it comes to dietary sources of vitamin A, preformed vitamin A in the form
of retinol found in animal-based foods plays a significant role. Noteworthy sources in-
clude meat, milk, eggs, and fish [82]. Regarding the consumption of carotenes, as it was
mentioned previously, products such as red and orange fruits and vegetables are rich
in beta-carotene and beta-cryptoxanthin; thus, some foods rich in provitamin A are car-
rots, tomatoes, tangerines, persimmons, red peppers, papaya, mango, and loquat, among
others [83,84].

Vitamin A is mainly obtained orally through the diet, but it can also be used as a drug,
with different routes of administration such as intramuscular or topical use. In order for
retinol to be used by target cells, it must be oxidized to retinoic acid, which corresponds to
the active form of vitamin A [85].

As for the antioxidant function of vitamin A, it is a controversial function, given that it
does not exercise its function directly as vitamin C or carotenoids do, nor is its antioxidant
role so clear, given that at certain concentrations, it can act as a pro-oxidant [86]. In this
sense, it is postulated that its function in the redox balance would be mediated mainly by
the transcriptional regulator retinoic acid, which has the ability to exert genomic actions that
affect the antioxidant response. In this context, for example, a study with human airway
epithelial cells showed that the antioxidant enzyme thioredoxin (TRX) gene contains several
elements sensitive to retinoic acid (RARE), which would indicate that retinoic acid, together
with its receptor, interacts with the gene, participating in the transcription of the thioredoxin
enzyme at least in the respiratory epithelium [87]. In addition, studies have linked retinoic
acid to the modulation of Nrf2 signaling (Figure 2), which is a transcription factor that
promotes the expression of antioxidant enzymes in response to increased oxidative stress.
One study with rat intestinal cells found that retinoic acid decreased Nrf2-driven gene
expression [88], but another study reported that at pharmacological doses, retinoic acid in
mice and cultured cells increased the expression of Nrf2-responsive genes, contradicting
the previous study [89]. In addition to these studies, there is the finding reported by
researchers studying diabetic nephropathy demonstrating that rats treated with retinoic
acid attenuated ROS production and lipid peroxidation and, in parallel, increased Nrf2
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levels [90]. This suggests that the action of vitamin A as an antioxidant is unclear and that
its function should not be confused with carotenoids, whose antioxidant function, as seen
previously, is better documented.

Research on the safety profile of vitamin A has been challenging due to the potential
adverse health effects associated with both hypovitaminosis and hypervitaminosis A, and
thus, the available evidence is limited. One study in non-pregnant women found that oral
supplementation with vitamin A at various doses (4000, 10,000, and 30,000 IU) over a three-
day period maintained plasma concentrations within or slightly above the physiological
range, suggesting that these doses were not teratogenic [91]. Additionally, studies have
been conducted with trans-retinoic acid, a natural derivative of vitamin A, which has been
used as an adjunctive therapy to chemotherapy in certain malignancies. For example, the
recommended dose of trans-retinoic acid for the treatment of acute promyelocytic leukemia
is 45 mg/m2 daily for 15 days, and this regimen has shown an acceptable toxicity and
side-effect profile [92].

3.3.3. Vitamin E

Vitamin E is a micronutrient which, like vitamin A, is a fat-soluble vitamin. The term
vitamin E groups eight different compounds, corresponding to alpha-, beta-, gamma-,
and delta-tocotrienol and alpha-, beta-, and gamma-tocopherol [93]. These compounds
are only synthesized by organisms performing photosynthesis, so we must acquire them
through our diet [94]. Vitamin E deficiency is rare, as it is unlikely to be due to a diet
low in vitamin E, but it is rather related to diseases affecting lipid absorption. Symptoms
of deficiency include ataxia, peripheral neuropathy, skeletal myopathy, retinopathy, and
impaired immune response, among others [95]. The main sources of vitamin E are nuts
such as peanuts or walnuts, seeds, and vegetable oils. Among vegetable oils, wheat germ
oil, olive oil, and sunflower oil have the highest proportion of alpha-tocopherol compared
to other vegetable oils, such as sesame or soybean oil, where gamma-tocopherol has the
highest concentration [96,97].

At the physiological level, it is recognized that it is primarily alpha-tocopherol that
meets most of the body’s vitamin E requirements, as it is the form that the liver is able
to secrete via the alpha-tocopherol hepatic transfer protein (alpha-TTP) [98]. The other
vitamin E congeners are postulated to be metabolized to water-soluble carboxyethylhydrox-
ychromanol (CEHC) compounds and eliminated via bile and urine [99]. Among the dietary
factors affecting vitamin E absorption, alpha-tocopherol has been shown to compete with
the absorption of cholesterol, gamma-tocopherol, carotenoids, and the other fat-soluble
vitamins (A, D, and K) [100,101].

As a fat-soluble vitamin, vitamin E is usually deposited in the plasma membranes of
various cells, and it is at this site that it performs two main functions, acting as a mem-
brane stabilizer and as an antioxidant [102]. It exerts its antioxidant function by limiting
the lipid peroxidation of polyunsaturated fatty acids (PUFAs) (Figure 2), intervening di-
rectly in propagation reactions by scavenging lipid peroxyl radicals [103]. This reaction
involves alpha-tocopherol being oxidized to form the alpha-tocopheroxyl radical, which is
significantly more stable than peroxyl radicals. This reaction is maintained by a network
of antioxidants that aims to reduce the tocopheryl radical and recycle tocopherol. This
network actively involves vitamin C, glutathione (GSH), and NADPH as substrates and
glutathione peroxidase (GPx) and glutathione reductase as enzymes [104]. This ability of
vitamin E to limit lipid peroxidation has led to its current position as a vitamin with the
capacity to prevent ferroptosis, which is cell death involving iron-mediated phospholipid
peroxidation that has been found to occur in various pathophysiological processes [105]. In
addition to the antioxidant activity recently described, another field of research that has
motivated the attention paid to vitamin E is its relationship with gene expression, where
different studies have postulated that vitamin E indirectly modulates genes linked to the
cell cycle, as well as genes involved in cholesterol and steroid metabolism, among many
others [106].
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Safety studies of alpha-tocopherol have shown controversial results. In 2005, Miller
et al. published a meta-analysis concluding that supplementation above 400 IU increased
all-cause mortality, primarily associated with increased bleeding, heart failure, hemorrhagic
stroke, and an increased risk of prostate cancer [107]. However, subsequent studies have
refuted this theory, as the trials produced mixed results and an overall effect could not be
conclusively determined [108,109]. One mechanism associated with the adverse effects of
long-term alpha-tocopherol use is its interaction with vitamin K. Excessive supplementa-
tion has been proposed to lead to vitamin K depletion in tissues, potentially promoting
alterations in blood clotting, vascular calcification, and cancer prevention [110]. Although
the exact mechanism by which excess alpha-tocopherol interferes with vitamin K levels is
unknown, a prudent recommendation for users of vitamin E supplements is to consume a
diet rich in green leafy vegetables to ensure adequate vitamin K intake.

4. Diseases Associated with Oxidative Stress in Humans

In this section, we will provide a concise overview of the role of oxidative stress
in various pathologies, aiming to elucidate potential therapeutic targets that could be
effectively addressed by natural antioxidants.

4.1. Non-Alcoholic Fatty Liver Disease

Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of
lipids in the liver. This condition spans a spectrum from benign forms, such as non-
alcoholic fatty liver disease, to non-alcoholic steatohepatitis, which can progress to fibrosis
and cirrhosis. Worldwide, the prevalence of NAFLD is around 25%, with a marked increase
in Western countries and becoming more frequent in patients suffering from chronic
non-communicable diseases, such as obesity, type 2 diabetes mellitus, dyslipidemia, and
metabolic syndrome, and it is expected to be the main indication for liver transplantation
within the next 10 years [111,112].

Regarding its pathogenesis, although the mechanisms driving the development of
NAFLD are not yet fully understood, two crucial stages in the progression of the disease
have been identified. The first is related to lipid accumulation in hepatocytes, leading
to insulin resistance. On the other hand, the second stage involves molecular changes
closely linked to oxidative stress. In this context, it has been observed that lipid peroxide
levels are markedly higher in patients with steatosis and metabolic syndrome compared to
healthy patients. In addition, reduced levels of antioxidants such as glutathione, superoxide
dismutase, and catalase have been observed [111,112].

In this context, oxidative stress, resulting from ROS generation, is considered a de-
terminant factor in the progression to non-alcoholic steatohepatitis (NASH). In addition,
the overproduction of ROS promotes lipid peroxidation, resulting in the formation of
aldehyde products and increased levels of various cytokines (such as TNF-alpha, TGF-β,
Fas ligand, and IL-8). Likewise, increased TNF-alpha signaling causes the activation of
Jun-N-terminal kinase and other oxidative stress-sensitive transcription factors, such as
NF-κB, thus generating a vicious cycle, as this amplifies the production of inflammatory
cytokines such as IL-6 and IL-1β, promoting the development of pathology [112].

4.2. Ischemia–Reperfusion Injury

Injury resulting from the combination of ischemia followed by reperfusion (ischemia–
reperfusion injury, IRI) is a serious and pressing condition that threatens both the function
and integrity of any organ or tissue. Particularly, ROS are major factors mediating this
damage.

4.2.1. Coronary Artery Disease

The combination of this alteration along with recanalization therapy has emerged
as a significant global health concern, marked by a high prevalence that ranks it among
the primary contributors to morbidity and mortality. It is important to highlight that
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its incidence is constantly increasing, especially among the young population [113]. In
the context of the treatment of this condition, the sudden restoration of oxygen supply to
myocardial cells as a result of recanalization creates a detrimental environment for the tissue
due to the formation of oxygen-generated free radicals. This leads mainly to alterations
such as lipid peroxidation, especially those present in cell membranes, triggering a series
of side effects associated with this therapeutic approach [114]. Along the same lines, but
in the field of surgery, the injury caused by the combination of ischemia and reperfusion
also poses a significant challenge, especially in procedures such as liver resections and any
organ transplantation [115].

The pathophysiological mechanisms underlying these conditions have in common
the arrest of blood flow, especially in the heart, either due to atherosclerosis or myocardial
infarction, which generates a series of changes that alter various cellular functions, such
as the induction of anaerobic metabolism causing a decrease in ATP and antioxidant
agents, the retention of lactic acid-producing acidosis, the failure of sodium–potassium
or calcium pumps causing an accumulation of sodium inside the cell and potassium
outside it, and the detachment of ribosomes from the nuclear chromatin, among others.
Simultaneously to the mentioned processes, the generation of ROS increases due to the
decrease in antioxidant agents, causing oxidative stress and all the alterations that its
appearance entails, such as endothelial dysfunction, DNA damage, and inflammation,
finally resulting in cell death [116]. Undoubtedly, the pathophysiology of IRI has been
shown to involve a significant perturbation in the regulation of the cellular redox state.
As a result, several studies have explored various prophylaxis strategies, such as the
administration of antioxidants, including vitamin C and E. However, despite the conduction
of numerous clinical trials with various compounds, no particular therapy capable of
reducing reperfusion injury has been identified so far [117,118].

There are multiple mechanisms by which reactive oxygen species (ROS) are gener-
ated. Some of these include the electron transport chain, the enzyme NADPH oxidase,
the xanthine oxidase (XO) system, uncoupled nitric oxide synthase (uncNOS), and the
arachidonic acid reaction catalyzed by cyclooxygenase-2, among others. Of all these mecha-
nisms, the electron transport chain, NADPH oxidase, and xanthine oxidase are involved in
postischemic oxidative stress in various organs such as the heart, liver, brain, and intestine,
while NOS is particularly related to the heart, liver, and aortic endothelial cells [116]. The
mechanism of production via the electron transport chain in mitochondria is predominantly
the escape of electrons from complexes I, II, and III to cause the reduction of oxygen to
superoxide anion, which can dismute to hydrogen peroxide [119]. On the other hand, the
NADPH oxidase system consists of enzyme complexes whose sole function is the genera-
tion of reactive oxygen species (ROS). These complexes are responsible for the production of
superoxide anions or hydrogen peroxide through the reduction of molecular oxygen, using
NADPH as electron donor. This process occurs ubiquitously in all cells of the organism
(Figure 3) [120].
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4.2.2. Post Operative Atrial Fibrillation

Atrial fibrillation is the most common arrhythmia in the adult population and repre-
sents a major challenge for the medical community to treat, prevent, or cure [121]. This
is largely because the underlying mechanisms leading to the onset and persistence of the
arrhythmia are unknown. Acute or new-onset AF following cardiac surgery corresponds to
postoperative AF (POAF), a much-feared complication, as it is associated with an increased
length of hospital stay, readmission to the intensive care unit, persistent congestive heart
failure, an increased risk of stroke, increased overall costs, and mortality [122,123]. This
complication occurs in 20–50% of patients after cardiac surgery, with a higher prevalence in
valve replacement surgery and cardiopulmonary bypass procedures [124].

The underlying pathophysiology and mechanism of POAF are multifactorial and
poorly understood; however, oxidative stress and inflammation have been the main mecha-
nisms of damage related to POAF. In this regard, surgical manipulation of the heart and
pericardium, as well as the systemic injury associated with surgery, drive an immuno-
logical process characterized by both local and systemic inflammation [125,126]. To this
acute inflammatory process is added the inflammatory state prior to surgery, which is
mainly given by pre-existing comorbidities, such as different pathologies like hyperten-
sion, diabetes, atherosclerosis, or others, which are related to endothelial dysfunction that
generates a chronic low-grade inflammatory state [127]. In this sense, the detrimental
action of different inflammatory mediators on cardiac function has been well studied. For
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example, interleukin-6 (IL-6) induces cardiac remodeling and alters the beta-adrenergic
response of the heart, while interleukin-8 (IL-8) exacerbates cardiac injury by enhancing
leukocyte activation and accumulation [128,129]. This inflammatory state is compounded
by oxidative stress linked to a decrease in antioxidant defenses and an increase in free
radicals, with reperfusion injury being the main source of ROS. After a period of ischemia
where there is a decrease in ATP production, causing changes in Na, Ca, and intracellular
pH, the restoration of perfusion causes an explosive increase in ROS that generates signif-
icant cellular damage [130]. In this context, some findings regarding molecular markers
supporting this process are the preoperative transcriptome analysis of atrial tissue from
patients developing POAF, which revealed increased levels of tumor necrosis factor alpha,
interleukin (IL) 6, and nuclear factor of light polypeptide kappa gene enhancer of B-cell
mRNA (NF-κB), with decreased antioxidant defenses with lower mRNA levels of GSH
synthetase, GSH reductase, and mitochondrial superoxide dismutase 2 (SOD2), as well as
studies of pericardial fluid in patients developing POAF demonstrating increased IL-6 and
myeloperoxidase (MPO) [131–133].

4.2.3. Ischemic Stroke

This setting accounts for approximately 87% of all strokes [134]. It initiates with the
blockage of cerebral arteries, diminishing blood flow to the brain. This reduction results in
inadequate supplies of blood glucose and oxygen, triggering metabolic alterations, cellular
demise, and damage to the brain [135].

In the case of ischemic stroke, there is also ischemia–reperfusion damage caused by an
imbalance between free radicals and the antioxidant defense system. However, the brain
consumes approximately 20% of the total blood flow with high oxygen demand, making it
less tolerant to hypoxia and damage from reactive oxygen species (ROS) compared to the
heart, with relatively lower antioxidant activity [136,137].

Neuronal function relies on ATP; thus, in this situation, the maintenance of the trans-
membrane gradient and neuronal signaling is disrupted. The activity of the Na/K ATPase
pump is blocked, leading to increased intracellular calcium influx and elevated ROS pro-
duction. Initially, during the hypoxia phase, ROS are primarily generated by mitochondria,
while during reperfusion, they are more associated with increased activity of xanthine
oxidase and NADPH oxidase [136,138].

Excessive reactive oxygen species (ROS) not only lead to cellular destruction, lipid
peroxidation, and the oxidation of proteins, but also impact vascular tone, platelet activity,
and endothelial permeability. This imbalance can facilitate leukocyte infiltration and edema
and the accumulation of amyloid proteins in the brain, triggering a neurodegenerative
response and neuronal dysfunction [139]. The mechanisms of neuronal death are diverse,
such as apoptosis, necrosis, necroptosis, ferroptosis, and more [140].

5. Multitherapeutic Approaches Using Natural Antioxidants in Oxidative Stress-Related
Diseases
5.1. Non-Alcoholic Fatty Liver Disease

Weight loss is currently recognized as the most effective approach to treating
NAFLD [106]. However, studies indicate that weight loss alone may not suffice. For
instance, diets promoting rapid weight reduction with low carbohydrate or high fat content
may prove inadequate. This suggests that the composition of the diet itself plays a crucial
role, pointing towards a potential contribution of antioxidants [141].

Xie et al. found that elevated levels of vitamin C correlate with a reduced risk of
NAFLD [142]. Similarly, a study showed that 12 weeks of vitamin C supplementation
improved liver health and glucose metabolism in individuals with NAFLD [143]. Nobili
et al. demonstrated that interventions involving dietary modifications and increased
physical activity led to weight loss and notably improved liver histology and laboratory
results in pediatric NAFLD patients. However, supplementation with alpha-tocopherol
and ascorbic acid did not enhance the effectiveness of these lifestyle changes alone [144].
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A randomized controlled trial (RCT) found no statistically significant difference in
liver fat content among subjects supplemented with resveratrol, although it was deemed
safe and well tolerated [145]. In another study, resveratrol showed improvements in various
parameters in NAFLD patients, including AST, glucose, and LDL cholesterol levels [146].

A meta-analysis revealed that curcumin reduced BMI, lowered ALT and AST levels,
and decreased triglycerides without significant adverse effects. However, there was no
significant difference in LDL-C compared to the placebo group. Conversely, resveratrol
supplementation did not result in differences in BMI, ALT, AST, triglyceride, or LDL-
C levels, nor did it cause significant adverse effects [147]. Yang et al. demonstrated a
reduction in serum transaminase levels and an improvement in histological abnormalities
with quercetin supplementation. Additionally, it restored superoxide dismutase, catalase,
and glutathione levels [148].

Regarding astaxanthin, an RCT indicated significant improvements in oxidative
stress markers and total antioxidant capacity, with promising results observed in rat
studies [149,150]. Moreover, increased serum carotenoids were associated with NAFLD
improvement [151]. Lycopene prevented NAFLD development in rats fed a high-fat and/or
cholesterol diet [152]. Another study concluded that the combination of rosuvastatin and
beta-carotene was more beneficial than rosuvastatin alone in rats with NAFLD [153].

Thus, dietary intervention stands as a cornerstone in preventing and managing
NAFLD, offering a cost-effective, non-invasive, and low-risk strategy. In this regard, one
dietary pattern supported by ample scientific evidence is the Mediterranean diet, which
includes a diverse array of natural antioxidants and anti-inflammatory agents, particularly
polyphenols, carotenoids, and vitamins. Robust adherence to this diet has demonstrated,
in various clinical trials, a reduction in the incidence and progression of fatty liver disease
compared to conventional low-fat diets [154] (Table 1).

5.2. Ischemia–Reperfusion Injury
5.2.1. Acute Myocardial Infarction

After blood flow is restored, specific antioxidant enzymes decrease in activity, and
markers of oxidative stress increase. Nevertheless, vitamin C supplementation has been
observed to normalize or nearly normalize these levels and has shown promising clinical
outcomes [155–157]. However, in the study of Ramos et al., the administration of vitamin
C did not reduce the infarct size, which makes the results still not entirely satisfactory [118]
(Table 1).

Resveratrol has demonstrated the ability to decrease oxidative stress levels in both
in vivo and in vitro experiments, improving cardiac function, decreasing infarct size, and
enhancing the activity of antioxidant enzymes such as superoxide dismutase (SOD) and
glutathione peroxidase (GSH-PX) in rats [158,159]. However, more clinical studies are
needed. Quercetin preconditioning was found to enhance heart function, decrease MDA
levels, and increase the activity of antioxidant enzymes in rats [160]. Nevertheless, similar
to resveratrol, further studies are essential to comprehensively explore its impact.

A curcumin analog reduced the size of the infarct and myocardial apoptosis [161]. A
meta-analysis of preclinical studies in animals suggested that curcumin could be beneficial
for myocardial ischemia–reperfusion injury, improving oxidative stress parameters, As-
taxanthin has exhibited potential benefits in this same context in both in vitro and ex vivo
models (Figure 3) [162–164].

5.2.2. Postoperative Atrial Fibrillation

As mentioned previously, oxidative stress plays a pivotal role in the development
of postoperative atrial fibrillation (POAF). In this context, the investigation of natural
antioxidant therapies to prevent the occurrence of POAF has gained importance. These
therapies have primarily focused on the use of polyunsaturated fatty acids (PUFAs) and
vitamins.
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Omega-3 PUFAs (n-3 PUFAs), such as eicosapentaenoic acid (EPA) and docosahex-
aenoic acid (DHA), which are naturally present in fish, have been among the antioxidant
treatments proposed for preventing POAF. The potential of n-3 PUFAs as a therapy is
grounded in their capacity, demonstrated primarily in animal models, to generate a con-
trolled increase in oxidative stress due to their susceptibility to lipid peroxidation. This
controlled oxidative stress amplifies and positively modulates the cell’s antioxidant defense
system. Additionally, n-3 PUFAs can electrically stabilize cardiac cell membranes and,
concurrently, regulate calcium (Ca+) currents [165,166].

Regarding clinical trials that have sought to establish clinical efficacy in preventing
POAF, the results have shown significant heterogeneity and contradictions. Some studies
dismiss the protective role of PUFAs due to a neutral or even adverse effect, while others
successfully demonstrate the anti-arrhythmic benefits of PUFAs [167]. This diversity
in outcomes can be attributed to variations in the underlying oxidative burden of each
patient and the method of administration. All randomized placebo-controlled studies
using a formulation containing PUFAs in a 1:24 EPA:DHA ratio failed to demonstrate a
beneficial effect [168–171]. Conversely, trials performed with this ratio equal to 0.5 reported
a beneficial effect in POAF prevention [172–174]. Moreover, a metaregression analysis
showed a trend toward a benefit of an EPA:DHA ratio of 0.5 [175] (Table 1).

Concerning the use of vitamins, the utilization of vitamin C and vitamin E stands
out. Clinical trials supporting the use of vitamin C include a meta-analysis that reviewed
28 controlled clinical trials where vitamin C was employed to prevent POAF in cardiac
surgery. This meta-analysis demonstrated a reduction in the incidence of POAF, as well
as a decrease in the duration of ICU stays and overall hospitalization [176]. On the other
hand, the use of vitamin E by itself has not been extensively investigated, as it has not
shown the potential to reduce oxidative stress at the cardiovascular level. High doses of
vitamin E may displace other fat-soluble antioxidants, increasing susceptibility to oxidative
damage [177]. However, synergistic therapy involving vitamin C, vitamin E, and n-3
PUFAs has demonstrated the best potential benefit in preventing POAF, as evident in a
meta-analysis showing a 68% reduction in the incidence of POAF compared to the control
group [167] (Table 1).

Another pivotal study in this field emphasizes the role of diet as a factor that modifies
our baseline antioxidant levels before surgery. For instance, a study evaluating the connec-
tion between adherence to a Mediterranean diet, rich in antioxidants, and the development
of POAF, revealed that the prolonged consumption of antioxidant-rich foods is associated
with a reduced incidence of postoperative atrial fibrillation in patients undergoing cardiac
surgery [178]. This confirms that the consumption of multiple antioxidants with diverse
properties can act synergistically in preventing POAF.

5.2.3. Stroke

Lower plasma levels of vitamin C have been observed in patients with stroke; how-
ever, the administration of vitamin C post-stroke has not necessarily resulted in clinical
improvement in those individuals [179,180]. In another study, a combination of aspirin
and vitamin C was administered, resulting in elevated vitamin C levels and reduced lipid
peroxidation compared to individuals treated solely with aspirin [181] (Table 1).

Resveratrol has demonstrated therapeutic potential in rats by decreasing oxidative
stress markers and showing improvement in neurological function, as well as a decrease
in infarct size in a study [182,183]. On the other hand, curcumin has also shown potential
benefits in ischemic stroke in rats, reducing neurological deficit score and infarct size,
increasing antioxidant enzymes, and decreasing markers of oxidative stress [184]. In a
study in rats, quercetin demonstrated a reduction in infarct size and an upregulation of
antioxidant status [185].

In a study, it was revealed that the plasma levels of various carotenoids tend to decrease
immediately after an ischemic stroke [186]. In addition, a reduction in alpha- and beta-
carotene levels has been observed in stroke patients compared to healthy individuals [187].
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Table 1. Summary of clinical studies mentioned above.

Disease Study Details “n” Main Findings Reference

NAFLD

Vitamin C measurement in patients
with NAFLD 4.494 Inverse association between serum VC

levels and NAFLD [142]

12 weeks of oral treatment with
low/medium/high doses of VC 84

VC supplementation, specially
medium dose (1000 mg/day),
improved liver health and glucose
metabolism

[143]

Lifestyle intervention with or without
antioxidant therapy (alpha-tocopherol
and vitamin C)

53

Antioxidant therapy plus lifestyle did
not have better results than lifestyle
alone in liver histology and laboratory
abnormalities

[144]

Resveratrol supplementation in
overweight, obese, and
insulin-resistant patients.

112
Resveratrol was well tolerated, but it
did not significantly impact liver fat
content and cardiometabolic risk

[145]

Subjects with NAFLD were given
resveratrol daily for 3 months versus a
placebo

60

In the resveratrol group, there was a
reduction in different parameters,
showing beneficial effects in
comparison to the placebo group

[146]

Obese patients were given low (5 mg)
versus high (20 mg) doses of
astaxanthin

23
Astaxanthin supplementation was
associated with an improvement in OS
markers

[150]

Baseline serum concentrations of
carotenoids, followed by abdominal
US at 3 and 6 years

2687
Higher serum carotenoid
concentration was associated with
NAFLD improvement

[151]

Acute myocardial
infarction

Effect of intravenous and
intracoronary vitamin C in patients
undergoing PCI

252
Patients with VC had significantly
lower troponin T and CK MB levels at
12 and 6 h

[155]

VC administration prior to PCI
followed by oral VC + vitamin E for 84
days

53

Left ventricular ejection fraction was
significantly higher in the high
ascorbate group than in the low
ascorbate group

[156]

VC in patients after thrombolysis in
AMI for 5 days 65

OS markers were restored almost back
to normal values after VC
administration

[157]

POAF

Meta-analysis of PUFA and vitamin
C/E in the incidence of POAF 3137

PUFA alone did not reduce the
incidence of POAF, but PUFA plus
vitamin C and E had a significant
effect in preventing POAF

[167]

Perioperative addition of PUFAs in
patients scheduled for cardiac surgery 1516 The risk of developing POAF was not

reduced with the addition of PUFAs [168]

Patients undergoing coronary artery
bypass graft surgery treated with oral
PUFAs before surgery

260
Oral supplementation of PUFAs
before surgery did not reduce the risk
of POAF

[169]

Patients with cardiac surgery were
given PUFAs 5–7 days before the
procedure and after until hospital
discharge

168
There was not beneficial effect in the
incidence of POAF in patients
supplemented with PUFAs

[170]

Patients undergoing cardiac surgery
were given PUFAs for at least 5 days
before

108
Omega-3 PUFA did not reduce the
risk of AF after coronary artery bypass
graft surgery

[171]

Preoperative PUFA therapy in patients
undergoing cardiac surgery 530

Preoperative PUFA therapy is
associated with a decreased incidence
of early AF after cardiac surgery but
not late AF

[172]
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Table 1. Cont.

Disease Study Details “n” Main Findings Reference

Pre- and postoperative treatment with
PUFAs at least 5 days before elective
cardiac surgery

160

PUFA administration substantially
reduced the incidence of POAF
(54.4%) and was associated with a
shorter hospital stay

[173]

Pre- and postoperative administration
of PUFAs in patients undergoing
elective cardiac surgery

201 There was a significant reduction in
POAF in patients treated with PUFAs [174]

Long-term intake of antioxidant-rich
foods in patients undergoing cardiac
surgery

217

Long-term consumption of
antioxidant-rich foods was associated
with a reduced risk of developing
POAF

[178]

Stroke

Nutritional status and plasma levels
of vitamin C and E in patients
2–5 days after stroke onset

15
Stroke patients had significantly lower
plasma levels of vitamin C and higher
oxidative stress markers

[179]

Vitamin C therapy for 10 days after
stroke onset 60

Vitamin C elevated serum antioxidant
levels, but it did not improve the
clinical and functional status of the
patient after 3 months

[180]

Vitamin C plus aspirin vs. aspirin
alone in patients after ischemic stroke 59 Vitamin C plus aspirin significantly

decreases lipid peroxidation [181]

Over-time changes in a number of
carotenoids during the first hours after
the occurrence of ischemic stroke

28
The majority of plasma carotenoids
are lowered immediately after an
ischemic stroke

[186]

Plasma levels of lipophilic antioxidant
vitamins and neurological deficits
after 48 h of stroke onset

68

Plasma levels of alpha- and
beta-carotene were lower in patients
with stroke. There was a negative
association between neurologic deficit
and plasma levels of carotenoids

[187]

6. In Silico Studies on Natural Antioxidants

In silico studies on antioxidants are now a crucial aspect of modern research, pro-
viding insights into the molecular mechanisms and potential therapeutic applications of
these compounds. These studies use computational methods to simulate and analyze the
interactions between antioxidants and biological targets.

One key area is molecular docking and dynamic simulations, which predict the bind-
ing affinity and interaction of antioxidants with specific target proteins, such as enzymes
involved in oxidative stress pathways [188]. For instance, studies have investigated phyto-
chemicals and natural compounds with antioxidant activity interacting with enzymes like
NADPH oxidase and superoxide dismutase [189–191].

Another important approach is quantitative structure–activity relationship (QSAR)
analysis, which relates the chemical structure of antioxidants to their biological activity.
These models help predict the antioxidant activity of new compounds based on their
molecular descriptors, such as the QSAR analysis of flavonoids [192].

Moreover, molecular dynamics (MD) simulations provide insights into the stability
and dynamics of antioxidant–protein complexes over time. These simulations help us
understand the conformational changes and binding stability of antioxidants. For example,
MD simulations have been used to study vitamin E interacting with lipid membranes,
revealing its protective effects against lipid peroxidation [193,194].

Furthermore, a virtual screening study by Lavecchia and Giovanni identified several
potential antioxidant compounds from a library of natural products. The top hits were
further validated using docking and MD simulations, highlighting the effectiveness of
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virtual screening in discovering new antioxidants [195]. These data can also contribute to
pharmacophore modeling, which helps in designing new compounds by identifying the
essential features required for antioxidant activity [196]

Computational approaches are powerful and versatile tools in modern scientific re-
search for understanding and manipulating biological and chemical systems. They comple-
ment traditional experimental methods by providing valuable insights and accelerating
the pace of discovery and development across various fields. This is particularly useful
in the clinical setting for developing treatment strategies for prevalent diseases. However,
it is important to note that in silico studies have limitations. Virtual models of biological
systems inherently possess a margin of error, as they are based on digital representations
rather than real products [197]. Consequently, in silico studies are not intended to replace
the classical approach of molecular discovery and design, but to complement it. Another
drawback is that only a small percentage of drugs developed through these methods
demonstrate efficacy in clinical settings, a situation exacerbated by the lack of standard-
ized validation [198,199]. To enhance confidence in these models, it has been proposed
to combine conventional clinical trials with modeling tools, comparing the predictions
of computational models with clinical decisions [199]. This strategy can build stronger
evidence, offsetting the limitations of each method and improving the understanding of
computational modeling.

7. Concluding Remarks and Future Perspectives

Current knowledge about natural antioxidants and their mechanisms of action re-
mains incomplete. Consequently, many clinical studies have not yielded satisfactory results,
hindering the development of alternative therapies for diseases where oxidative stress
is a key factor in their pathogenesis. However, this review shows that in specific con-
texts, antioxidants used in a reasoned manner based on their properties can be beneficial.
Nonetheless, the hypothesis that combining these compounds as part of a multitherapeutic
approach yields better outcomes has not been fully validated due to limited evidence in
this area. Future studies are expected to explore the potential synergistic effects of these
compounds.

In the case of non-alcoholic fatty liver disease (NAFLD), although weight loss remains
the most effective treatment, the inclusion of antioxidants in the diet plays a crucial role.
Adding vitamins such as C and E; polyphenols such as resveratrol, curcumin, and quercetin;
and carotenoids like astaxanthin and lycopene holds significant potential for improving
liver health and metabolic parameters.

Furthermore, natural antioxidants have shown promise in the context of ischemia–
reperfusion, particularly in acute myocardial infarction and postoperative atrial fibrillation
(POAF). Vitamin C, resveratrol, and quercetin have been effective in reducing oxidative
stress markers and improving cardiac function in animal models and clinical studies of
acute myocardial infarction. Additionally, combining vitamins C and E with PUFAs appears
to offer consistent benefits in preventing POAF, suggesting that a synergistic approach may
be more effective for this condition.

Regarding stroke studies, although lower plasma levels of antioxidants such as vitamin
C and carotenoids are associated with stroke patients, supplementation has not consistently
resulted in clinical improvement. Preclinical studies with resveratrol, curcumin, and
quercetin show potential benefits, but these results have yet to be confirmed in clinical
trials with patients.

A crucial aspect of using natural antioxidants is their integration into the daily diet,
which could be fundamental for preventing various diseases, especially cardiovascular
and metabolic diseases where oxidative stress plays an essential role. Promoting dietary
patterns that incorporate a wide range of natural antioxidants offers a cost-effective and
low-risk intervention strategy with potential health benefits, with the Mediterranean diet
being one of the most studied and supported by evidence.
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Finally, an important development is the emergence of in silico studies, which use
computational methods to understand the molecular interactions and stability of antioxi-
dant compounds. This technology will enhance our understanding of the properties of each
natural antioxidant, facilitating the creation of specific therapies for various pathologies in
the future.
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