
J
H
E
P
0
3
(
2
0
2
3
)
1
2
3

Published for SISSA by Springer

Received: January 26, 2023
Accepted: March 2, 2023

Published: March 17, 2023

Droplet-mediated long-range interfacial correlations.
Exact field theory for entropic repulsion effects

Alessio Squarcinia and Antonio Tintib
aInstitut für Theoretische Physik, Universität Innsbruck,
Technikerstrasse 21A, A-6020 Innsbruck, Austria

bDipartimento di Ingegneria Meccanica e Aerospaziale,
Sapienza Università di Roma, via Eudossiana 18, 00184 Rome, Italy

E-mail: alessio.squarcini@uibk.ac.at, antonio.tinti@uniroma1.it

Abstract: We consider near-critical two-dimensional statistical systems at phase coex-
istence on the half plane with boundary conditions leading to the formation of a droplet
separating coexisting phases. General low-energy properties of two-dimensional field the-
ories are used in order to find exact analytic results for one- and two-point correlation
functions of both the energy density and order parameter fields. The subleading finite-size
corrections are also computed and interpreted within an exact probabilistic picture in which
interfacial fluctuations are characterized by the probability density of a Brownian excur-
sion. The explicit analysis of the closed-form expression for order parameter correlations
reveals the long-ranged character of interfacial correlations and their confinement within
the interfacial region. The analysis of correlations is then carried out in momentum space
through the notion of interface structure factor, which we extend to the case of systems
bounded by a flat wall. The presence of the wall and its associated entropic repulsion leads
to a specific term in the interface structure factor which we identify.

Keywords: Boundary Quantum Field Theory, Field Theories in Lower Dimensions, In-
tegrable Field Theories, Nonperturbative Effects

ArXiv ePrint: 2106.01945

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP03(2023)123

mailto:alessio.squarcini@uibk.ac.at
mailto:antonio.tinti@uniroma1.it
https://arxiv.org/abs/2106.01945
https://doi.org/10.1007/JHEP03(2023)123


J
H
E
P
0
3
(
2
0
2
3
)
1
2
3

Contents

1 Introduction 1

2 Magnetization profile 3

3 Energy density correlations 9

4 Pair correlation function of the spin field 12
4.1 Spin-spin correlation function at order O(R−1/2) 16
4.2 Parallel and perpendicular correlation functions 19

5 Interface structure factor 20

6 Conclusions 25

A Energy density correlations 27

B Parallel correlation function 28

C Mehler’s decomposition of the spin-spin correlator 30

D Calculation of Ŝ(q) 31
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1 Introduction

The study of interfacial phenomena at boundaries is one of the cornerstones of statistical
mechanics [1–7]. The problem of phase separation and fluctuating interfaces in two dimen-
sions is a particularly interesting one. For long time exact results have been available only
for the Ising model [8]. This fact is originated by the possibility to find exact diagonaliza-
tions of transfer matrices in certain lattice geometries with boundary conditions leading
to the formation of interfaces. In this regard, it has to be mentioned the exact solution
of the wetting transition with a flat boundary [9], a milestone in the field. These exact
results have been crucial for the consolidation of phenomenological interpretations for in-
terfacial behavior in terms of random walks in restricted geometries [10] and coarse-grained
descriptions treated within path-integral techniques [11, 12].

Despite the wealth of results available for interfaces in the Ising model [8], such an ex-
tended degree of knowledge about phase separation for other models has not been achieved
until recent times. The principal reason is the obstruction posed by the difficulty of finding
exact results for most of the lattice models in certain geometries. On the other hand, it
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is known that upon approaching a continuous phase transition point the divergence of the
bulk correlation length leads to universal behavior and that field theory has proven to be
a versatile language for its description in the continuum setting [13, 14]; see [15, 16] for
boundary field theories in near-critical systems. As a result, the systematic investigation of
the tangled scenario of phase separation for arbitrary models must inevitably be formulated
within a language that is able to encompass the different bulk universality classes jointly
with boundary data; this is the language of field theory.

It has been shown how general results for interface profiles and correlation functions
within the interfacial region separating coexisting bulk phases are completely codified by
low-energy properties of field theories [17, 18]. The exact theory of phase separation de-
veloped in [17–22] has provided a unified framework for the study of interfacial phenom-
ena exhibited by general universality classes in various geometries. Among the various
findings, it has been possible to describe boundary wetting transitions [19], wedge filling
transitions [20], interfacial wetting [21, 23], and many-body correlation functions [24–26]
for the scaling limit of those models (and boundary conditions) which are not yet solved on
the lattice. Moreover, the role of bulk and boundary integrability in these exact findings
has been also clarified [17, 21, 22].

The concept of interface and the possibility of conferring to it certain fluctuation prop-
erties is at the core of effective formulations such as the capillary wave model [27, 28],
Weeks’ columnar model [29] and subsequent elaborations thereof [30]. We refer to [31, 32]
for a recent account on the subject. It is known since long time from theory of inhomo-
geneous fluids that density fluctuations within the interfacial region separating coexisting
phases exhibit long-range correlations in the direction parallel to the interface [33]. This
situation happens to be in sharp contrast with the exponential decay of correlations exhib-
ited within pure phases. Going beyond effective formulations, it has been shown [17–22]
how a fundamental description of phase separation and interfacial phenomena has to be
inevitably formulated in terms of the degrees of freedom of the bulk field theory, which are
the asymptotic particle states, as illustrated in this paper.

In this paper, we examine the exact form of correlation functions of both the order
parameter and energy density fields for a system bounded on the half-plane. Suitable
boundary conditions along the wall are used in order to enforce phase separation in the
half-plane through a droplet with pinned endpoints on the wall. Contrary to effective
modelings, the approach presented in this paper does not rely on the introduction of the
notion of interface but rather follows from the fundamental degrees of freedom of the
underlying field theory corresponding to the scaling limit of the statistical system with the
appropriate boundary conditions.

More technically, our approach follows as an amalgamation of the field-theoretic for-
malism developed in [19] for the calculation of interface profiles on the half-plane, with the
techniques developed in [18] for the calculation of two-point correlation functions. One of
the key results of this paper is the analytic expression for the order parameter correlation
function in the presence of the fluctuating droplet. The leading asymptotic behavior of the
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order parameter correlation function in the direction parallel to the interface reads

〈σ(x,y)σ(x,−y)〉Bbab =
(〈σ〉a+〈σ〉b

2

)2
−〈σ〉

2
a−〈σ〉2b

2

[
−1−4x

√
2m
πR

e−
2m
R
x2 +2erf

(√
2m
R
x

)]

+
(〈σ〉a−〈σ〉b

2

)2 [
1− 32mx2

πR

√
2y
R

e−
2m
R
x2
]
+O((y/R)3/2)

(1.1)
for separations ξb � y � R/2. In the above, R is the distance between the interface
endpoints, m = 1/(2ξb), and ξb is the bulk correlation length. The notation 〈· · · 〉Bbab
stands for statistical averages in the half plane (x > 0) with boundary conditions enforcing
a droplet, and 〈· · · 〉a/b stands for expectation values in pure phase a or b.

The interface separating phases a and b is characterized by midpoint fluctuations of
order R1/2 along the x-axis. For R→∞ the result (1.1) reduces to

lim
R→∞

〈σ(x, y)σ(x,−y)〉Bbab = 〈σ〉2a , (1.2)

meaning that unbounded interfacial fluctuations yield an averaging over the phase a en-
closed by the droplet. On the other hand, for finite R the most significant variations are
localized in the region where it is most probable to find the interface. The term pro-
portional to

√
y/R is the characteristic signature of the long-range character of density

correlations within the interfacial region. Moreover, the x-dependent part is amenable of
interpretations. The presence of the quadratic factor x2, which is also responsible of the
entropic repulsion, penalizes correlations in the proximity of the boundary while the Gaus-
sian factor suppresses correlations far away from the boundary. The fact that interfacial
fluctuations are long ranged and confined to the interfacial region — as pointed out by
Wertheim [33] — is neatly realized by inspection of the analytic result (1.1).

Among the various analytic results in real space, we also investigate the long-range
character of interfacial correlations in momentum space by extending the notion of interface
structure factor to bounded systems. This analysis will allow us to identify in the interface
structure factor a specific correction stemming from the entropic repulsion of the interface
from the wall.

This paper is structured as follows. As a warmup, in section 2 the calculation of the
order parameter profile for a droplet is reviewed. In section 3 the field-theoretical method
for the calculation of pair correlation functions is presented in its simplest form, namely
the energy density correlations. The calculation of spin-spin correlations is then addressed
in section 4 and the connection with a probabilistic interpretation is also illustrated. The
interface structure factor for a droplet is defined and calculated in section 5. Concluding
remarks are collected in section 6. A series of appendices collects some mathematical details
involved in the calculations reported in the main body of the paper.

2 Magnetization profile

We begin by reviewing the calculation of the magnetization profile for a statistical system
at a first order phase transition with boundary conditions enforcing a droplet as the one
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(0,−R/2)

(0, R/2)

σ1(x1, y1)

σ2(x2, y2)

Figure 1. The half-plane geometry with boundary conditions Bbab leading to the formation of a
droplet in the halfplane x > 0 with pinning points in (0,±R/2). Green circles indicate the order
parameter fields σ1 and σ2 appearing in correlation functions considered in this paper.

shown in figure 1. The derivation follows closely the original calculation given in [19], which
in the present exposition is extended in order to include finite-size corrections originated
by interface structure. We consider a two-dimensional system on the first order phase
transition line close to a second order phase transition point. The scaling limit in the
near-critical region can be described in terms of a Euclidean field theory obtained by
analytic continuation to imaginary time of a relativistic quantum field theory in a 1 + 1
dimensional space-time. Elementary excitations in 1+1 dimensional quantum field theories
are topological particles (kinks) which interpolate between different ground states and
whose propagation in space-time corresponds to boundaries between different coexisting
phases.

We study phase separation on the half-plane geometry with boundary conditions along
the y-axis leading to the formation of a droplet, as illustrated in figure 1. The system is
considered for temperatures T such that the bulk correlation length ξb is much smaller than
the separation R between interface endpoints; hence, ξb � R. Moreover, we also assume
that ξb is much larger than any microscopic scale,1 i.e., ξb � a0. This last assumption
allows us to adopt a field-theoretical language for the description of the system in the
regime a0 � ξb � R.

The partition function of the system with Bbab boundary conditions can be written as
follows

Z = Bb〈0|µba(0, R/2)µab(0,−R/2)|0〉Bb , (2.1)
1a0 is of the order of the lattice spacing in a Monte Carlo simulation.
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where |0〉Bb is the vacuum state in which the boundary has fixed boundary condition
with spin in state b and µab(0,±R/2) is the boundary condition changing operator which
implements the switch of boundary condition from b to a in the point (0,±R/2). The
matrix element of µba between the vacuum and the single-kink state takes the form

Bb〈0|µba(0, y)|Kab(θ)〉 = e−myFµ(θ) , (2.2)

where m is the kink mass and Fµ(θ) is the form factor of the boundary condition changing
operator µba. Form factors of boundary operators have been studied extensively in the
framework of massive integrable quantum field theories [34–37]. The non-vanishing of the
matrix element of µba with the one-kink state corresponds to the pinning of a single2

domain wall in those points in which the boundary condition switches from a to b [19]. By
inserting a resolution of the identity between the operators µba and µab in (2.1) and using
the normalization of states, it follows that

Z =
∫ ∞

0

dθ
2π |Fµ(θ)|2e−mR cosh θ + O(e−2mR) . (2.3)

The restriction of the integration over positive rapidities is due to the wall. The single-
kink state appearing in the first term in the right hand side of (2.3) gives the dominant
contribution to the partition function in the regime mR � 1, which is the one we are
interested in. In the low-temperature phase, m = 1/(2ξb), with ξb the bulk correlation
length. The aforementioned relationship is a form of Widom’s scaling relation that for the
Ising model is exact for all subcritical temperatures which follows from duality [8, 38, 39];
see also [40, 41]. The regime R� ξb projects the integrand in (2.3) at small rapidities and
the boundary form factor expands as follows

Fµ(θ) = iaθ + bθ2 + O(θ3) , (2.4)

where the model-dependent (real) coefficients a and b are known for boundary integrable
field theories [35, 37]. It has been already noticed how the linear behavior at low rapidities
exhibited by Fµ(θ) is ultimately responsible for the entropic repulsion of the interface from
the wall [19]. By inserting (2.4) into (2.3) a saddle-point calculation yields

Z = a2e−mR√
π(2mR)3/2 + O(R−5/2) . (2.5)

The magnetization profile for |y| < R/2 is defined by

〈σ(x, y)〉Bbab = 1
Z
Bb〈0|µba(0, R/2)σ(x, y)µab(0,−R/2)|0〉Bb , (2.6)

the subscript Bbab stands for the expectation value with the boundary conditions illustrated
in figure 1. For mx� 1 the spin field entering in (2.6) can be treated as a bulk field,3 for
which one can use translation invariance on the plane

σ(x, y) = eixP+yHσ(0, 0)e−ixP−yH (2.7)
2The pinning of a double kink corresponds to the formation of an intermediate phase [21, 22].
3Wall-induced effects extend within a layer of order of the bulk correlation length, affecting the profile

for x = O(1/m); see [42] for the case of Ising interfaces.
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in order to bring the field to the origin; H and P are the Hamiltonian and momentum
operators in field theory. The expectation value (2.6) becomes

〈σ(x, y)〉Bbab = 1
Z

∫
R2

dθ1dθ2
(2π)2 Fµ(θ1)Mσ

ab(θ1|θ2)F∗µ (θ2)U(θ1, θ2) , (2.8)

with Mσ
ab(θ1|θ2) = 〈Kab(θ1)|σ(0, 0)|Kba(θ2)〉 and

U(θ1, θ2) = exp
[
−m

(
R

2 − y
)

cosh θ1 −m
(
R

2 + y

)
cosh θ2 + imx(sinh θ1 − sinh θ2)

]
.

(2.9)
The connected part of the one-point correlation function (2.8), denoted 〈σ(x, y)〉CP

Bbab
, is

determined by the connected part of the matrix element Mσ
ab(θ1|θ2), the latter reads

(Mσ
ab(θ1|θ2))CP = F σaba(θ12 + iπ) , (2.10)

where F σaba(θ12) = 〈0|σ(0, 0)|Kab(θ1)Kba(θ2)〉 is the two-particle (bulk) form factor of the
operator σ [19]. By virtue of relativistic invariance the bulk form factor depends on the
rapidities θ1 and θ2 through the difference θ12 ≡ θ1−θ2 [43]. On the other hand, boundary
form factors do not exhibit such a symmetry [35–37]. The low-rapidity expansion of the
bulk form factor reads

F σaba(θ12 + iπ) =
∞∑

k=−1
ckθ

k
12 . (2.11)

The term with k = −1 is due to the kinematical pole exhibited by the form factor [43].
The above expansion is then combined with the corresponding low-rapidity behavior of
boundary form factors (2.4). Hence, one writes

Fµ(θ1)F σaba(θ12 + iπ)F∗µ (θ2) = c−1a
2
[
θ1θ2
θ12
− iωθ1θ2 + O(θ3)

]
, (2.12)

where ω = b/a + ic0/c−1. The notation O(θ3) stands for homogeneous terms with to-
tal degree 3 in the rapidity variables (e.g., θ2

1θ2). By rescaling rapidities through θi →√
2/(mR)θi and organizing the result in the form of a power series in the small parameter

(mR)−1/2, we find

〈σ(x, y)〉CP
Bbab

= 2c−1
π3/2

[
{{θ1θ2

θ12
}} − i

√
2ω√
mR
{{θ1θ2}}

]
+ O

(
(mR)−1

)
; (2.13)

the notation {{g(θ1, θ2)}} stands for the contribution of g(θ1, θ2) to the magnetization
profile, with g(θ1, θ2) the generic term of the expansion (2.12). The double curly bracket
notation is defined as follows:

{{g(θ1, θ2)}} = −
∫

R2
dθ1dθ2 g(θ1, θ2)Y (θ1, θ2) ,

Y (θ1, θ2) = exp
[
−1− τ

2 θ2
1 −

1 + τ

2 θ2
2 + iηθ12

]
.

(2.14)
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The symbol −
∫
stands for the principal value of the integral, which is actually needed since

spin field matrix elements exhibit a kinematical pole [17]. Then, η and τ are the rescaled
coordinates defined by

η = x/λ , λ =
√
R/(2m) , τ = 2y/R . (2.15)

A simple calculation yields

{{θ1θ2
θ12
}} = iπ3/2

2 D(χ) , {{θ1θ2}} = π3/2λ

2 P1(x, y) , (2.16)

where

D(χ) = − 2√
π
χe−χ2 + erf(χ) , P1(x, y) = 4χ2

√
πκλ

e−χ2
, (2.17)

and

κ =
√

1− τ2 , χ = x/(κλ) . (2.18)

In order to compute {{θ1θ2/θ12}} it is convenient to remove the kinematical pole singularity
1/θ12 by taking the first derivative with respect to η and thus compute {{θ1θ2}}. Then, by
integrating back to η, we find the desired result. The integration constant generated by such
a procedure can be set to zero and eventually it can be reabsorbed into the disconnected
term of the matrix element. Such term originates the offset for the profile which is uniquely
fixed by the asymptotic boundary conditions: 〈σ(x→ +∞, y)〉Bbab = 〈σ〉b.

Thanks to the above results, and using the known expression for the residue of the
two-particle form factor of the spin field, c−1 = i(〈σ〉a − 〈σ〉b) [17, 44], the magnetization
profile (2.13) becomes

〈σ(x, y)〉Bbab = 〈σ〉a−
[
〈σ〉a−〈σ〉b

]
D(χ)+ω

[
〈σ〉a−〈σ〉b

]
P1(x; y)/m+O(R−1) , mx� 1 .

(2.19)
Since the term proportional to ω is of order (ξb/R)1/2, it is a subleading correction to the
magnetization profile. The droplet profile D(χ) is a monotonous function which interpo-
lates between 0 and +1 as x varies from x = 0 to x → +∞ with |y| < R/2. Since the
leading order term in (2.19) depends on x and y through χ, it follows that constant values
of χ give the contour lines of the magnetization profile in the plane. As a result, these
contour lines are arcs of ellipses with implicit equation

x2

cRξb
+ 4y2

R2 = 1 , (2.20)

corresponding to χ = c. The theoretical prediction (2.20), which is known for the Ising
model [9], has been found also within SOS models [11, 12] and tested again numerical
simulations [45]. The result (2.20) implies that the contour line χ = c crosses the horizontal
axis in x =

√
cRξb. The proportionality to

√
R admits a physical interpretation in terms

of a one-dimensional random walk on the half-line, as we are going to show in a while.
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Figure 2. The droplet profiles D(χ) and Υ(χ).

For lather convenience, we also introduce the droplet profile Υ(χ) = 2D(χ)− 1,

Υ(χ) = −1− 4√
π
χe−χ2 + 2erf(χ) , (2.21)

which interpolates between −1 and +1; both the profiles are plotted in figure 2.
It is instructive to specialize the general result (2.19) to the explicit case of the Ising

model. From the known expression of the boundary form factor [35], we extract ωIsing =
−1/2 and therefore

〈σ(x, y)〉B+−+ = MΥ(χ) + 25/2M√
πmRκ

χ2e−χ2 + O(R−1) , (2.22)

where M = 〈σ〉+ = −〈σ〉− > 0 is the spontaneous magnetization. The leading-order term
∝ Υ(χ) shown in (2.22) coincides with scaling limit of exact results obtained for the square
lattice Ising model [8, 9, 46] and from the path-integral formulation of Solid-On-Solid
models [11, 12].

Within a probabilistic interpretation [19, 20] the magnetization profile can be derived
by summing over interfacial configurations weighted with a certain passage probability
density P1(x, y). Thus, the magnetization profile is computed as follows

〈σ(x, y)〉Bbab =
∫ ∞

0
duP1(u, y)σab(x|u) , (2.23)

where
σab(x|u) = 〈σ〉a − (〈σ〉a − 〈σ〉b) θ(x− u) +Aabδ(x− u) + . . . , (2.24)

gives the magnetization at point x when the interface, regarded as a sharp curve, passes
through (u, u+du) at ordinate y. The first two terms in (2.24) corresponds to a description
in which the coexisting phases are sharply separated. The correction to this picture is
achieved by endowing the structureless sharp profile with interface structure effects ∝ Aab
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whose effect is to produce subleading finite-size corrections [17]. The identification of
the passage probability with the expression for P1(x, y) given in (2.17) is established by
matching the probabilistic construction (2.23) with the field-theoretic result (2.19). The
following identities prove to be useful ∫ x

0
duP1(u, y) = D(χ) ,∫ ∞

0
duP1(u, y)sign(x− u) = Υ(χ) ,

(2.25)

jointly with the fact that
∫∞

0 duP1(u, y) = 1, i.e., the passage probability density P1(x, y) is
normalized. The above passage probability characterizes the so called Brownian excursion
and its expression is given by (2.17). By pushing the comparison at the next-to-leading
order, we can identify the structure amplitude

Aab = ω

m

[
〈σ〉a − 〈σ〉b

]
= c0
m

+ b

a

∆〈σ〉
m

.
(2.26)

The application of the above reasoning to the profile of the energy density field on the
half plane follows mutatis mutandis (we refer to [24, 26] for the calculation on the strip
geometry). It is worth noticing that on the strip A(strip)

ab = c0/m vanishes for the Ising model
while the corresponding result for the half-plane geometry given by (2.26) is actually non
zero. Thus, Aab is geometry-dependent.

3 Energy density correlations

The connected part of energy density correlation functions contains information on the
passage probability. More precisely, the connected energy density correlation function is
proportional to the joint passage probability. Such a feature, which has been established
for the strip geometry [26], is valid also for the half-plane, as we are going to show. Let
P2(x1, y1;x2, y2) be the joint passage probability density, therefore P2(x1, y1;x2, y2)dx1dx2
is the probability of the interface to pass through the intervals (x1, x1 + dx1) and (x2, x2 +
dx2) at ordinates y1 and y2, respectively.

In this section, we extract P2(x1, y1;x2, y2) from the two-point correlation function of
the energy density field computed in field theory. The correlation function we are interested
in reads

〈ε(x1, y1)ε(x2, y2)〉CP
Bbab

= 1
Z
Bb〈0|µba(0, R/2)ε(x1, y1)ε(x2, y2)µab(0,−R/2)|0〉CP

Bb
; (3.1)

with y1 − y2 � ξb and both energy density fields far from the boundaries in the following
sense: (R/2)− y1 � ξb and y2 +R/2� ξb. The superscript CP means that we retain the
connected part. By employing the decomposition over intermediate states, (3.1) becomes

〈ε(x1,y1)ε(x2,y2)〉CP
Bbab

= 1
Z

∫ dθ1dθ2dθ3
(2π)3

[
Fµ(θ1)(Mε

ab(θ1|θ2)Mε
ab(θ2|θ3))CPF∗µ (θ3)U+({θ})

+Fµ(θ1)(Mε
ab(θ1|−θ2)Raba(θ2)Mε

ab(θ2|θ3))CPF∗µ (θ3)U−({θ})
]
,

(3.2)
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where

U±({θ}) = exp
[
−m

(
R

2 − y1

)
cosh θ1 −m(y1 − y2) cosh θ2 −m

(
y2 + R

2

)
cosh θ3

+ imx1(sinh θ1 ∓ sinh θ2) + imx2(sinh θ2 − sinh θ3)
]
.

(3.3)

The second term appearing in the right hand side of (3.2) contains the boundary S-matrix4

Raba(θ2) which gives the amplitude for the scattering of a kink state off the vertical wall
with fixed boundary conditions a [47]; the latter admits the pictorial representation of (3.4).

Raba(θ) =

a

a

b

θ

−θ

(3.4)

The two terms appearing in the square brackets of (3.2) admit the diagrammatic represen-
tation provided in (3.5).

Mε,CP
D =

ε

ε

a b

θ1

θ2

θ3

= F εaba(θ12 + iπ)F εaba(θ23 + iπ)

Mε,CP
R =

ε

ε

a

a

b

θ1

θ2

−θ2

θ3

= F εaba(θ̂12 + iπ)Raba(θ2)F εaba(θ23 + iπ) , θ̂ij = θi + θj .

(3.5)
The kink with rapidity θ2 appearing in the diagram Mε,CP

D connects the two energy density
fields in a “direct” (D) fashion while in Mε,CP

R the kink with rapidity θ2 is reflected (R)
off the boundary before being connected to the other field. As a result, Mε,CP

R picks up a
boundary reflection factor Raba. The leading-order form of the correlation function (3.1)
emerges from the behavior of matrix elements at small momenta. Since Raba(θ2) = −1 +

4See [47–49] for boundary S-matrices in integrable field theories.
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O(θ2) for θ2 → 0, the matrix elements in (3.5) tend to ±(F εaba(iπ))2, respectively. The
calculation involved in (3.1) requires the evaluation of Gaussian integrations. Leaving the
details in appendix A and C, we find

〈ε(x1, y1)ε(x2, y2)〉CP
Bbab

= (F εaba(iπ))2

m2 P2(x1, y1;x2, y2) , (3.6)

where

P2(x1, y1;x2, y2) = 8χ1χ2
ρκ1κ2λ2

[
Π2(
√

2χ1,
√

2χ2|ρ)−Π2(
√

2χ1,
√

2χ2| − ρ)
]
; (3.7)

in the above, Π2(u1, u2|ρ) is a normal Gaussian bivariate distribution (see appendix C)
with correlation coefficient

ρ =
√

1− τ1
1 + τ1

1 + τ2
1− τ2

, τj = 2yj/R , (3.8)

and the notation
χj = ηj/κj , ηj = xj/λ , κj =

√
1− τ2

j (3.9)

has been adopted. Notice that 0 < ρ < 1, however, since the two fields are both far from
each other and far from the boundaries the extremal values (ρ = 0 and ρ = 1) are never
reached.

In order to check that (3.7) is indeed the joint passage probability, we primarily observe
that (3.7) satisfies the following properties:∫ ∞

0
dx2 P2(x1, y1;x2, y2) = P1(x1, y1) ,∫ ∞

0
dx1

∫ ∞
0

dx2 P2(x1, y1;x2, y2) = 1 ,
(3.10)

thus, P2 is correctly normalized and its marginal reduces to the passage probability P1, as
consistency requires for passage probabilities. Moreover, by applying the above properties
the result (3.6) for the energy density correlation function follows from the probabilistic
reconstruction

〈ε(x1, y1)ε(x2, y2)〉Bbab =
∫ ∞

0
du1

∫ ∞
0

du2 P2(u1, y1;u2, y2)ε(x1|u1)ε(x2|u2) , (3.11)

with the energy density profile ε(xi|ui) = 〈ε〉+Aεδ(xi−ui)+. . . constructed by following the
same guidelines which lead us to the magnetization profile. By matching the connected
part of (3.11) with the field-theoretical result (3.6), we identify the structure coefficient
Aε = F εaba(iπ)/m. The latter perfectly coincides with the corresponding result already
obtained for n-point point correlation functions on the strip geometry5 [26].

5We refer to [24, 25] for analytical and numerical results for n-point correlation functions with n = 1, 2, 3,
and 4.
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Figure 3. The rescaled passage probability λ2P2(x1, y;x2,−y) as function of the rescaled coordi-
nates η1 = x1/λ, η2 = x2/λ for 2y/R = 0.1.

4 Pair correlation function of the spin field

By following the method illustrated in the previous section, we compute the pair correlation
function of the spin field. The latter is defined by

〈σ1(x1, y1)σ2(x2, y2)〉Bbab = 1
Z
Bb〈0|µba(0, R/2)σ1(x1, y1)σ2(x2, y2)µab(0,−R/2)|0〉Bb .

(4.1)
We can replace ε with σj into (3.2) and use an analogous decomposition for spin fields
matrix elements

Mσ1(θ1|θ2)Mσ2(θ2|θ3) =

σ1

σ2

a b

θ1

θ2

θ3︸ ︷︷ ︸
MCP
D

+

σ1

σ2

a

a

b

θ1

θ2

−θ2

θ3︸ ︷︷ ︸
MCP
R

+ disconnected .

(4.2)
The leading low-energy behavior of the above diagrams is given by

Mσ,CP
D = (i)2∆〈σ1〉∆〈σ2〉

1
θ12θ23

, (4.3)

Mσ,CP
R = (i)2∆〈σ1〉∆〈σ2〉

Raba(0)
θ̂12θ23

, (4.4)
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respectively for the first and second diagrams in (4.2). In the above, Raba(0) is the boundary
S-matrix evaluated at zero rapidity. It has to be noticed that within the low-rapidity regime
pertinent to mR � 1 the boundary S-matrix reduces to Raba(0) = −1. Such a limiting
behavior suffices for the determination of correlation functions at leading order in powers
of (ξb/R)1/2.

The calculation of (4.1) proceeds as follows. Let us indicate with {M} the contribution
of the diagram M to the pair correlation function. The two diagrams appearing in (4.2)
give the following contribution to the spin-spin correlation function

{Mσ,CP
D + Mσ,CP

R } = −∆〈σ1〉∆〈σ2〉
π5/2

[
H
θ1θ3
θ12θ23

I+ − H
θ1θ3

θ̂12θ23
I−
]
, (4.5)

where H· · ·I± is the notation defined in (A.3). By taking the first derivatives with respect
to x1 and x2 and using the identity (A.7), which relates the calculation of matrix elements
to the joint passage probability, it follows that

∂x1∂x2{M
σ,CP
D + Mσ,CP

R } = ∆〈σ1〉∆〈σ2〉
π5/2λ2

[
Hθ1θ3I+ − Hθ1θ3I−

]
,

= ∆〈σ1〉∆〈σ2〉P2(x1, y1;x2, y2) .
(4.6)

Thus, by integrating back with respect to x1 and x2, we have

{Mσ,CP
D + Mσ,CP

R } = ∆〈σ1〉∆〈σ2〉
∫ x1

0
du1

∫ x2

0
du2 P2(u1, y1;u2, y2) + O(R−1/2) , (4.7)

up to integration terms6 which, without loss of generality, can be reabsorbed in the dis-
connected diagrams; for example, by fixing their contribution for xj → +∞.

The disconnected terms appearing in the right hand side of (4.2) are depicted as follows:

Mσ1,disc =

σ1

σ2a b

θ1

θ2

θ3

= 2πi〈σ1〉a∆〈σ2〉
δ(θ12)
θ23

Mσ2,disc =

σ1

σ2

a b

θ1

θ2

θ3

= 2πi〈σ2〉a∆〈σ1〉
δ(θ23)
θ12

.

(4.8)

6The integration constants are actually functions which are annihilated by the differential operator
∂x1 ∂x2 .
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The calculation of the above diagrams retraces the same arguments already followed
for the one point function; thus,

{Mσ1,disc} = −〈σ1〉a∆〈σ2〉D(χ2) + O(R−1/2) ,

{Mσ2,disc} = −〈σ2〉a∆〈σ1〉D(χ1) + O(R−1/2) .
(4.9)

Collecting all the results obtained so far and expressing the scaling function D(χj) as an
integral involving the passage probability, with the aid of (2.25), we find

〈σ1(x1,y1)σ2(x2,y2)〉Bbab = 〈σ1〉a〈σ2〉a+∆〈σ1〉∆〈σ2〉
∫ x1

0
du1

∫ x2

0
du2P2(u1,y1;u2,y2)

−〈σ2〉a∆〈σ1〉
∫ x1

0
du1P1(u1,y1)−〈σ1〉a∆〈σ2〉

∫ x2

0
du2P1(u2,y2)

+O(R−1/2) .
(4.10)

The first term in the right hand side of (4.10) follows by imposing the correct boundary
conditions for xj → +∞. Notice also that upon taking one of the two spins deep inside
the bulk, the pair correlation function (4.10) satisfies the clustering property

lim
x2→+∞

〈σ1(x1, y1)σ2(x2, y2)〉Bbab = 〈σ2〉b〈σ1(x1, y1)〉Bbab , (4.11)

and analogously when x1 → +∞ with finite x2.
In view of future use, we write (4.10) in the following form

〈σ1(x1, y1)σ2(x2, y2)〉Bbab = 〈̂σ1〉〈̂σ2〉G(η1, τ1; η2, τ2)− 〈̃σ1〉〈̂σ2〉Υ(χ2)− 〈̃σ2〉〈̂σ1〉Υ(χ1)

+ 〈̃σ1〉〈̃σ2〉+ O(R−1/2) ,
(4.12)

where 〈̃σj〉 = (〈σj〉a + 〈σj〉b)/2 is the averaged vacuum expectation value in pure phases,
〈̂σj〉 = (〈σj〉a − 〈σj〉b)/2 is the half jump of order parameter across the interface, and
G(η1, τ1; η2, τ2) is the scaling function which encodes the connected part of the two-point
correlation function, i.e.,

〈σ1(x1, y1)σ2(x2, y2)〉CP
Bbab

= 〈̂σ1〉〈̂σ2〉G(η1, τ1; η2, τ2) + O(R−1/2) , (4.13)

with

G(η1, τ1; η2, τ2) =
∫ ∞

0
du1

∫ ∞
0

du2 P2(u1, y1;u2, y2)sign(x1 − u1)sign(x2 − u2) . (4.14)

The function G defined by (4.14) is plotted in figure 4 as function of the rescaled coordinates
η1 and η2 with fixed vertical separation τ1 − τ2 of spin fields. From (4.14) it is simple to
establish the following clustering properties:

lim
x1→+∞

G(η1, τ1; η2, τ2) = Υ(χ2) ,

lim
x2→+∞

G(η1, τ1; η2, τ2) = Υ(χ1) ,
(4.15)
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Figure 4. The function G(η1, τ1; η2, τ2) with τ1 = −τ2 = 0.1. The solid red curves and the dashed
blue curves correspond to the droplet profiles ±Υ(χ1) and ±Υ(χ2), respectively.

whose occurrence is visualized by means of the solid red curves at the boundaries of the
surface depicted in figure 4. In a completely analogous way, one finds

lim
x1→0

G(η1, τ1; η2, τ2) = −Υ(χ2) ,

lim
x2→0

G(η1, τ1; η2, τ2) = −Υ(χ1) ,
(4.16)

which correspond to the dashed blue curves visualized in figure 4.
A rather more transparent expression for the spin-spin correlation function can be

obtained for spin fields arranged parallel to the interface, or, more precisely, parallel to the
line which joins the pinning points. For this configuration, x ≡ x1 = x2, y ≡ y1 = −y2. By
further restricting the focus to the regime of small vertical separations between spin fields,
we obtain (1.1), which we report here for convenience

〈σ(x, y)σ(x,−y)〉Bbab =
(〈σ〉a + 〈σ〉b

2

)2
− 〈σ〉

2
a − 〈σ〉2b

2 Υ(η)+

+
(〈σ〉a − 〈σ〉b

2

)2 [
1− 16

π

√
τη2e−η2

]
+ O(τ3/2) ,

(4.17)

for ξb � y � R. The derivation of (4.17) is supplied in appendix B.
The expression for the parallel correlation function given by (4.17) is one of the most

important results of this paper. From the result (4.17) it is immediate to appreciate how
phase separation on the half plane generates long-range correlations. The term propor-
tional to

√
τ is the signature of the long-range character of interfacial correlations. Quite

interestingly, the term
√
τ is multiplied by a function which is proportional to the passage
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probability, η2e−η2 . The entropic factor η2 suppresses the correlations in the closeness of
the wall, while the exponential factor suppresses interfacial correlations in the bulk. The
maximum effect is thus achieved when the passage probability reaches its maximum value.
The latter is reached for η = 1, corresponding to a distance x =

√
Rξb from the wall.

This feature — which emerges from an exact field-theoretic calculation — could have been
guessed from the very beginning once the Brownian excursion character of the interface is
established by the calculation of the one-point correlation function.

We conclude this section by observing how the spin-spin correlation function given
by (4.10) coincides with the following expression obtained within the probabilistic inter-
pretation

〈σ1(x1, y1)σ2(x2, y2)〉Bbab =
∫ ∞

0
du1

∫ ∞
0

du2P2(u1, y1;u2, y2)σab(x1|u1)σab(x2|u2) , (4.18)

where P2 is the joint passage probability density (3.7) and σab(xi|ui) is the conditioned
magnetization profile given by (2.24). If we specialize the above result to the Ising model
(〈σ〉a/b = ∓M), then (4.18) reduces to the corresponding result obtained within the frame-
work of Solid-On-Solid models,7 as consistency requires. Moreover, for the Ising model the
spin-spin correlation function (4.12) simplifies to

〈σ(x1, y1)σ(x2, y2)〉B+−+ = M2G(η1, τ1; η2, τ2) + O(R−1/2) . (4.19)

The subleading correction of order O(R−1/2) is computed in the next section.

4.1 Spin-spin correlation function at order O(R−1/2)

In order to compute the next-to-leading term appearing in (4.19), we need to further
expand both the bulk and boundary matrix elements at low energies. The connected
matrix element comprises the following terms

Mσ,CP
D = F σ1

aba(θ12 + iπ)F σ2
aba(θ23 + iπ) , (4.20)

Mσ,CP
R = F σ1

aba(θ̂12 + iπ)Raba(θ2)F σ2
aba(θ23 + iπ) , (4.21)

while the disconnected ones are given by

Mσ1,disc = 2π〈σ1〉aF σ2
aba(θ23 + iπ)δ(θ12) , (4.22)

Mσ2,disc = 2π〈σ2〉aF σ1
aba(θ12 + iπ)δ(θ23) . (4.23)

The form factor F σlaba(θij + iπ) is expanded as in (2.11) but now the expansion coefficients
are c(l)

k with an extra superscript l which labels the spin field. In an analogous way, we
proceed by expanding the boundary S-matrix at low rapidities; hence, we write

Raba(θ) = −1 + ir θ + O(θ2) , (4.24)

7See eq. (22) of [11].
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where r is a model-dependent (real) coefficient which is known for integrable field theo-
ries [35, 37]. The connected part of the correlation function is written as follows

〈σ1(x1, y1)σ2(x2, y2)〉CP
Bbab

= 1
Z

∫ dθ1dθ2dθ3
(2π)3

[
Fµ(θ1)Mσ,CP

D F∗µ (θ3)U+ + Fµ(θ1)Mσ,CP
D F∗µ (θ3)U−

]
.

(4.25)

The low-rapidity expansion of the “directed” matrix element yields

Fµ(θ1)Mσ,CP
D F∗µ (θ3)U+ = a2c

(1)
−1c

(2)
−1

θ1θ3
θ12θ23

[
1− iω1θ12 − iω2θ23

]
+ O(θ2) , (4.26)

where ωl = b/a + ic(l)
0 /c

(l)
−1. The “reflected” matrix element gives

Fµ(θ1)Mσ,CP
R F∗µ (θ3)U+ = −a2c

(1)
−1c

(2)
−1

θ1θ3

θ̂12θ23

[
1− iω1θ̂12− iω2θ23 + iω′θ2

]
+O(θ2), (4.27)

with ω′ = −r + 2b/a. Since the boundary form factor Fµ(θ) and the boundary S-matrix
Raba(θ) are related by means of the functional equation Fµ(θ) = Raba(θ)Fµ(−θ) [36], it
follows that 2b = ar and therefore ω′ = 0. As a result, this crucial observation removes the
asymmetry between (4.26) and (4.27).

In general, also the partition function has to be expanded in an analogous way. How-
ever, it turns out that for Z it is legitimate to use the expression (2.5) because the large-
R expansion involves higher-order powers of R−1/2. By using the “bag”-notation given
in (A.3), the correlation function including corrections proportional to R−1/2 reads

〈σ1(x1, y1)σ2(x2, y2)〉CP
Bbab

= 1
π5/2 c

(1)
−1c

(2)
−1

[(
H
θ1θ3

θ̂12θ23
I+ − H

θ1θ3
θ12θ23

I−

)
+

− iω1

√
2
mR

(
H
θ1θ3
θ23

I+ − H
θ1θ3
θ23

I−
)
− iω2

√
2
mR

(
H
θ1θ3
θ12

I+ − H
θ1θ3

θ̂12
I−

)]
+ O(R−1) .

(4.28)

The terms at order O(θ2) in (4.26) and (4.27) contribute of order R−1 in (4.28). The
first term in the right hand side of (4.28) originates the leading order contribution, while
the remaining two terms give corrections at order R−1/2. In the following, we outline the
calculation of these corrections. By taking the first derivative with respect to η2 in the first
term, we find

i∂η2

(
H
θ1θ3
θ23

I+ − H
θ1θ3
θ23

I−
)

= i2 (Hθ1θ3I+ − Hθ1θ3I−)

= π5/2i2λ2P2(x1, y1;x2, y2) ,
(4.29)

integrating back and imposing the boundary conditions, we readily obtain

i
(

H
θ1θ3
θ23

I+ − H
θ1θ3
θ23

I−
)

= −π5/2λ

∫ x2

0
du2P2(x1, y1;u2, y2) . (4.30)
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Proceeding in an analogous way for the other term and collecting all the results together,
the connected part reads

〈σ1(x1, y1)σ2(x2, y2)〉CP
Bbab

= ∆〈σ1〉∆〈σ2〉
4 G(η1, τ1; η2, τ2)

− ω1
m

∆〈σ1〉∆〈σ2〉
∫ x2

0
du2P2(x1, y1;u2, y2)

− ω2
m

∆〈σ1〉∆〈σ2〉
∫ x1

0
du1P2(u1, y1;x2, y2) + O(R−1) .

(4.31)

The disconnected terms are proportional to the one-point correlation functions (2.19); thus,

{Mdisc
1 } = −〈σ1〉a∆〈σ2〉

∫ x2

0
du2 P1(u2, y2) + ω2〈σ1〉a∆〈σ2〉P1(x2, y2)/m+ O(R−1) ,

{Mdisc
2 } = −〈σ2〉a∆〈σ1〉

∫ x1

0
du1 P1(u1, y1) + ω1〈σ2〉a∆〈σ2〉P1(x1, y1)/m+ O(R−1) .

(4.32)
We can cast the large-R expansion of the correlation function in the form

〈σ1(x1, y1)σ2(x2, y2)〉Bbab =
∞∑
`=0

[
〈σ1(x1, y1)σ2(x2, y2)〉Bbab

]
`
, (4.33)

where [. . . ]` = O(R−`/2). Therefore the term with ` = 0, which is the leading one, is given
by (4.12). The first subleading correction, which is the term with ` = 1, is given by[
〈σ1(x1,y1)σ2(x2,y2)〉Bbab

]
1

= ω1∆〈σ1〉
m

[
〈σ2〉aP1(x1,y1)−∆〈σ2〉

∫ x2

0
du2P2(x1,y1;u2,y2)

]
+

+ω2∆〈σ2〉
m

[
〈σ1〉aP1(x2,y2)−∆〈σ1〉

∫ x1

0
du1P2(u1,y1;x2,y2)

]
.

(4.34)
The clustering property (4.11), which we have checked at order ` = 0 in (4.15), is satisfied
also at order ` = 1. Taking x2 deep into the b phase the vacuum expectation value 〈σ2〉b
factors out and one is left with the term at order R−1/2 stemming from the one-point
function in the variable x1, i.e.

lim
x2→+∞

[
〈σ1(x1, y1)σ2(x2, y2)〉Bbab

]
1

= 〈σ2〉b
[
ω1∆〈σ1〉

m
P1(x1, y1)

]
, (4.35)

as consistency requires.
To conclude this section, we present an explicit evaluation of the subleading correction

for the Ising model. To be definite, we examine the parallel correlation function for which
the interface structure correction reads[

〈σ1(x, y)σ2(x,−y)〉B+−+

]
1

= 2M2

m

[
−P1(x, y) + 2

∫ x

0
duP2(x, y;u,−y)

]
= M2
√

2mR
B‖(η, τ) ,

(4.36)

with

B‖(η, τ) = 16√
πκ
χ2e−χ2

[
erf(χ

√
τ) + erf(χ/

√
τ)− 1

]
− 32
πκ

χ
√
τ

1− τ e
−χ2

[
e−χ2τ − e−χ2/τ

]
;

(4.37)

– 18 –



J
H
E
P
0
3
(
2
0
2
3
)
1
2
3

x

y

−

+

+

(x, y)

(x,−y)

(a) G‖

x

y

−

+

+

(x, 0)
(x+ d, 0)

(b) G⊥

Figure 5. Definition of parallel (a) and perpendicular (b) correlation function for the Ising model.

we recall that χ = η/
√

1− τ2. The function B‖(η, τ) satisfies the following properties:
B‖(0, τ) = 0 and B‖(η → +∞, τ) = 0.

4.2 Parallel and perpendicular correlation functions

We specialize the general result (4.12) to the two-dimensional Ising model and focus on
particularly symmetric configurations for the two spin fields. We have already considered
the so-called parallel correlation function (‖). Here, we also introduce the perpendicular
correlation function (⊥), meaning that spin fields are arranged perpendicularly to the line
which joins the pinning points. The aforementioned correlation functions are defined by

G‖(η, τ) = 〈σ(x, y)σ(x,−y)〉B+−+/M
2 ,

G⊥(η, δ) = 〈σ(x, 0)σ(x+ d, 0)〉B+−+/M
2 , δ = d/λ ,

(4.38)

with η = x/λ and τ = 2y/R. The arrangement of spin fields defining the correlation
functions given in (4.38) is illustrated in figure 5.

Thanks to (4.19) and (4.36), the parallel correlation function including interface struc-
ture corrections at order R−1/2 is given by

G‖(η, τ) = G(η, τ ; η,−τ) + 1√
2mR

B‖(η, τ) + O(R−1) . (4.39)

The leading term in the parallel correlation function is shown in figure 6 as function of
both η and τ . As expected, the largest variation occurs within the interfacial region. The
latter corresponds to η ≈ 1 when τ is small and in the closeness of the pinning points when
τ tends to one. These features are visible in the plot of figure 6.

The analysis of the perpendicular correlation function G⊥(η, δ) requires special care.
The reason is due to the fact that spin fields do no longer satisfy the assumption y1−y2 �
ξb. Although the vertical separation vanishes identically, the horizontal separation d is
taken to be large compared to the bulk correlation length. In this setup, we can perform
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Figure 6. The parallel function at leading order: G(η, τ ; η,−τ).

the limit y1, y2 → 0 in the field-theoretical result with finite d. The aforementioned limit
actually implies that the correlation coefficient ρ tends to one. Analytic results within
the probabilistic description are found by taking ρ → 1 in the joint passage probability
density, which thus reduces to P1(x1, 0)δ(x1 − x2). Therefore when the two spin fields are
widely separated from each other (md � 1) with the leftmost spin field far from the wall
(mx� 1) the perpendicular correlation function reads

G⊥(η, δ) = 1+Υ(η)−Υ(η+δ)+ 1
m

(P1(x, 0)− P1(x+ d, 0))+O(R−1) , (δ > 0). (4.40)

The limit md→∞ in (4.40) yields

G⊥(η, δ → +∞) = Υ(η) + P1(x, 0)
m

+ O(R−1) . (4.41)

The above result indicates that the clustering to the one-point correlation function is
correctly retrieved. All the above features have been accurately verified in [50].

5 Interface structure factor

Long-range interfacial correlations are traditionally studied in momentum space through
the notion of interface structure factor [51–54]. The interface structure factor can be
obtained upon performing a parallel Fourier transform, i.e., along the direction parallel
to the interface, of a suitably defined connected pair correlation function. The interface
structure factor is defined by

Ŝ(q) = 1
2 (∆〈σ〉)2

∫ R/2

−R/2
dy eiqy

∫ ∞
0

dx1

∫ ∞
0

dx2 〈σ(x1, y)σ(x2,−y)〉conn.
Bbab

; (5.1)

the hat symbol on top of S(q) stands for the presence of finite-size corrections due to
the finite distance between pinning points. The connected correlation function 〈σ1(x1, y1)
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σ2(x2, y2)〉conn.
Bbab

can be obtained from (4.12) by subtracting the disconnected parts which
lead to a vanishing correlation function in the limit when x1 and/or x2 go to infinity.
Moreover, since (5.1) has to take into account only those degrees of freedom coupled to
the interface, bulk contributions must be subtracted too. In order to find the appropriate
subtraction scheme, we follow the guidelines outlined in [18] by adopting some modifica-
tions due to the specificities of the half-plane geometry which induces the droplet-shaped
interface. The connected correlation function is thus written as follows

〈σ1(x1, y1)σ2(x2, y2)〉conn.
Bbab

= Gs(x1, y1;x2, y2)−Gb(x1, y1;x2, y2) . (5.2)

The termGb(x1, y1;x2, y2) = 〈σ1σ2〉b−〈σ1〉b〈σ2〉b is the connected bulk correlation function.
The subtraction of the connected bulk correlation function Gb ensures that 〈σ1(x1, y1)
σ2(x2, y2)〉conn.

Bbab
goes to zero when both x1 and x2 tend to +∞ (deep into the b-phase) with

their relative distance kept finite. These bulk contributions to the two-point correlation
function are visualized within the pictorial representation of matrix elements in (5.3).

(
Mσ1

abM
σ2
ab

)bulk =

σ1

σ2

a b +

σ1

σ2

a b + . . . . (5.3)

The two diagrams illustrated in (5.3) are obtained upon inserting a multi-kink state in
the resolution of the identity between spin fields. When R is sufficiently large both the
diagrams yield the bulk correlation function averaged over the two phases separated by the
droplet. It is thus clear how the diagrams shown in (5.3) involve the propagation of three
kinks; as a result, their contribution is definitely subleading and from now on they will be
ignored in the discussion that follows.

Let us comment on the first term in the right hand side of (5.2). The correlation
function Gs(x1, y1;x2, y2) is defined by

Gs(x1, y1;x2, y2) =
〈[
σ1(x1, y1)− sab(x1, y1)

][
σ2(x2, y2)− sab(x2, y2)

]〉
Bbab

, (5.4)

with sab(xj , yj) a reference density profile which tends to the asymptotic value 〈σj〉b when
xj tends to +∞. It is evident how the above asymptotic specification does not fix the
reference density profile. On phenomenological grounds, a rather natural candidate is
provided by the sharp reference profile

s
(sharp)
ab (xj , yj ;L) = 〈σj〉aθ(L− xj) + 〈σj〉bθ(xj − L) , (5.5)

with a parameter L that indicates the position in which the two phases meet within the
sharp interface picture. The above can be regarded as the natural extension to the half-
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plane of the prescription used in [51].8 However, we already observe at this stage the
occurrence of a specific feature of the half-plane geometry. In fact, while L = 0 in the
absence of the vertical wall — see [18] for the strip geometry in d = 2 dimensions and [51]
for d = 3 — for the half-plane L ∼

√
R and, moreover, L depends also on y through the

combination κ by means of L ∝ κ
√
R; see the contour line equation (2.20). It is thus

evident that the precise form of L is not fixed a priori and therefore the definition (5.2)
with the prescription (5.5) contains an ad-hoc parameter.

In order to construct a definition of connected correlation function which is free of ad-
hoc parameters, we will consider for the reference profile the one-point function at leading
order; thus, we set

sab(xj , yj) =
[
〈σj(xj , yj)〉Bbab

]
0 . (5.6)

Thanks to the above choice the ambiguity inherent to the accessory parameter L is removed.
As a result, (5.6) provides an intrinsically natural choice free of external parameters. For
the sake of completeness, it has to be mentioned how the full magnetization profile with
subleading corrections also provides a parameter-free reference profile. Nonetheless, we
will adopt (5.6) as the natural choice for the reference profile and other prescriptions can
be examined by properly modifying the treatment that follows.

Leaving out the subdominant bulk corrections mentioned above, the interface structure
factor reads

Ŝ(q) = 1
2 (∆〈σ〉)2

∫ R/2

−R/2
dy eiqy

∫ ∞
0

dx1

∫ ∞
0

dx2 Gs(x1, y;x2,−y) . (5.7)

It is convenient to split the reference profile sab as follows

sab(xj , yj) = 〈σj(xj , yj)〉Bbab + eab(xj , yj) , (5.8)

with the excess part defined by

eab(xj , yj) =
[
〈σj(xj , yj)〉Bbab

]
0 − 〈σj(xj , yj)〉Bbab ,

= −A(σj)
ab P1(xj , yj) + O(R−1) ,

(5.9)

with the structure amplitude

A
(σj)
ab = c

(j)
0
m

+ b

a

∆〈σj〉
m

, (5.10)

in agreement with (2.26). It then follows that

Gs(x1, y1;x2, y2) = G(x1, y1;x2, y2) + eab(x1, y1)eab(x2, y2) (5.11)

with

G(x1, y1;x2, y2) = 〈σ1(x1, y1)σ2(x2, y2)〉Bbab − 〈σ1(x1, y1)〉Bbab〈σ2(x2, y2)〉Bbab . (5.12)
8It should be implicit that fluctuations of the contour separating the two phases do not preserve the

droplet volume. For the sake of completeness we mention that constraining the droplet volume leads to
interesting effects on free energies [55] and on correlations in interfacial phenomena [56].
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The integrand in (5.7) is then written as a power series in the small parameter
(mR)−1/2; thus, we write

Gs(x1, y;x2,−y) =
∞∑
`=0

[
Gs(x1, y;x2,−y)

]
`
. (5.13)

In analogy with (4.33), the subscript ` stands for a term of order R−`/2. The leading-order
term can be further simplified as follows[

Gs(x1, y;x2,−y)
]

0
=
[
G(x1, y;x2,−y)

]
0
,

= ∆〈σ1〉∆〈σ2〉
4

[
G(η1, τ ; η2,−τ)−Υ(χ1)Υ(χ2)

]
.

(5.14)

The first identity follows by noticing that the excess part does not contribute at leading
order, i.e.,

[
eab(xj , yj)

]
0 = 0. By using Mehler’s decomposition of the joint passage proba-

bility density it is possible to write the scaling function G as a series of factorized terms.
Leaving the details in appendix C, we find

G(η1, τ1; η2, τ2) = Υ(χ1)Υ(χ2) +
∞∑
n=1

ρ2nΥ2n+1(χ1)Υ2n+1(χ2) , (5.15)

where ρ is the correlation coefficient given by (3.8) and Υ2n+1(χj) are the functions defined
by (C.6). By inserting (5.15) into (5.14) and focusing on identical spin fields, i.e., σ1 =
σ2 ≡ σ, we find

[
Gs(x1, y1;x2, y2)

]
0

= (∆〈σ〉)2

4

∞∑
n=1

ρ2nΥ2n+1(χ1)Υ2n+1(χ2) . (5.16)

The subleading correction at order R−1/2 is formally given by[
Gs(x1, y1;x2, y2)

]
1

=
[
G(x1, y1;x2, y2)

]
1

+
[
eab(x1, y1)eab(x2, y2)

]
1
, (5.17)

however, the second addend vanishes because eab is itself of order R−1/2, therefore only the
first addend contributes and one is left with[
Gs(x1, y1;x2, y2)

]
1

=
[
〈σ1(x1, y1)σ2(x2, y2)〉Bbab − 〈σ1(x1, y1)〉Bbab〈σ2(x2, y2)〉Bbab

]
1

=
[
〈σ1(x1, y1)σ2(x2, y2)〉Bbab

]
1
−
[
〈σ1(x1, y1)〉Bbab

]
1

[
〈σ2(x2, y2)〉Bbab

]
0

−
[
〈σ1(x1, y1)〉Bbab

]
0

[
〈σ2(x2, y2)〉Bbab

]
1
.

(5.18)
The explicit expression is readily obtained[
Gs(x1, y1;x2, y2)

]
1

= ω1∆〈σ1〉∆〈σ2〉
m

∫ x2

0
du2

[
P1(x1, y1)P1(u2, y2)− P2(x1, y1;u2, y2)

]
+ ω2∆〈σ1〉∆〈σ2〉

m

∫ x1

0
du1

[
P1(u1, y1)P1(x2, y2)− P2(u1, y1;x2, y2)

]
.

(5.19)
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The next task is the calculation of the integrals with respect to x1, x2 appearing in (5.7).
Focusing on the leading order contribution of the connected correlation function, we show
in appendix D that it is possible to compute the integrals of (5.16) for each term in the sum
and, moreover, it is also possible to resum the resulting series in closed form. Regarding
the first subleading order contribution, we observe that (5.19) vanishes when either x1 or
x2 tend to +∞ and that its integral with respect to x1, x2 also vanishes, i,e.,∫ ∞

0
dx1

∫ ∞
0

dx2
[
Gs(x1, y1;x2, y2)

]
1

= 0 , (5.20)

therefore the subleading correction to the connected correlation function (` = 1) does not
contribute to the integrals involved in (5.1).

We are now in the position to collect the contributions to Ŝ(q) generated by the leading
and first subleading expressions for the pair correlation function of the order parameter.
In appendix D, we show that the integration of (5.16) admits the following expression∫ ∞

0
dx1

∫ ∞
0

dx2
[
Gs(x1, y;x2,−y)

]
0

= (∆〈σ〉)2 R

2mE(τ) , (5.21)

with

E(τ) = 2
π

(1− τ)
(
−2 + 3

√
τ − 2τ

)
+
(
3− 2τ + 3τ2

) [1
2 −

2
π

tan−1(
√
τ)
]
. (5.22)

The interface height at ordinate y can be defined as the deviation h(y) of the interface
position from the average value h(y). The average is

h(y) =
∫ ∞

0
dxxP1(x, y) =

√
2R
πm

√
1− (2y/R)2 . (5.23)

The height-height correlation function is thus

h(y)h(−y) =
∫ ∞

0
dx1

∫ ∞
0

dx2 x1x2P2(x1, y;x2,−y) , (5.24)

and the connected part is

h(y)h(−y)− h(y)h(−y) = R

2mE(τ) . (5.25)

This result is identical to the one given in (D.3).
Coming back to the definition (5.1), it is implicit that q is much larger than the lower

momentum cutoff imposed by the system size; hence, q � qmin ∼ R−1. Analogously, the
wavenumber q cannot be larger than the upper momentum cutoff qmax ∼ 1/ξb ∝ m set by
the inverse bulk correlation length, which plays the role of a microscopic scale. With this
in mind, the parallel Fourier transform is thus computed for q � 1/R and the following
result is obtained

Ŝ(q) ' 1
mq2

[
1− 32√

π

1
(qR)3/2 + . . .

]
. (5.26)

The mathematical details involved in such a derivation are collected in appendix D. Since
corrections at order ` = 1 do not report in (5.7), the expression (5.26) for the structure
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factor, which is computed from terms at order ` = 0 and ` = 1, actually does not involve
specificities of the bulk universality class encoded in the coefficients ωj . Details involving
the bulk universality class play a role in the terms at order ` > 2 and could play a role
through further subleading corrections in the large-R expansion of the interface structure
factor. One of these terms at ` = 2 is originated by the term eab(x1, y1)eab(x2, y2), which is
of order R−1. In appendix D, we show that such a term yields the following contribution
to the interface structure factor

∆Ŝ(q) = z
sin(qR/2)
m2q

; (5.27)

with an overall factor
z =

(
c0

∆〈σ〉 + b

a

)2
(5.28)

that depends on the bulk and boundary universality classes through the quantities c0/∆〈σ〉
and b/a. The latter are known for integrable bulk and boundary field theories, respectively.
Quite interestingly, the structure of the interface — encoded in the factor Aab ∼

√
z —

affects the interface structure factor Ŝ(q). The result is the contribution (5.27) which how-
ever localizes towards q = 0 in the limit of large qR. This feature has been already reported
in the exact investigation of the interface structure factor on the strip geometry [18]. In
that case the structure of the interface contributes to Ŝ(q) through a completely analogous
term, however, with a different value of the structure amplitude pertinent to the strip ge-
ometry, which reads Aab ∝ c2

0. While the latter vanishes for the Ising model (c0 = 0), z
does vanish not because of the boundary data b/a 6= 0.

The systematic calculation of these higher-order finite-size corrections to the spin-
spin correlation function and their contribution to the structure factor certainly deserves
further studies but goes far beyond the scope of the present analysis. On the other hand,
the present analysis indicates the effect played by entropic repulsion of the interface from
the wall. The entropic repulsion is already signaled by the quadratic term ∝ χ2 in the
passage probability P1(x, y). The latter affects the shape of the order parameter profile
at any order in the large-R expansion and is responsible for the additional term displayed
in the square brackets of (5.26). Such a feature is indeed absent in the calculation on the
strip geometry [18] where no entropic effects come into play. By taking the limit of infinite
system size (5.26) leads to

S(q) = lim
R→∞

Ŝ(q) = 1
mq2 . (5.29)

This is the typical Wertheim-Weeks divergence [31] at q = 0 of the interface structure
factor exhibited by fluid state theories in spatial dimensions d > 3 [29, 30, 33] and by the
exact theory of phase separation in d = 2 [18].

6 Conclusions

In this paper we showed how field theory yields exact results for correlation functions in
phase-separating systems on the half-plane with boundary conditions enforcing the for-
mation of a droplet separating coexisting phases. The exact field-theoretical formalism
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illustrated in this paper follows as an amalgamation of the techniques developed in [19]
and [18]. The system we examined is a droplet separating phases a and b whose endpoints
are separated by a distance R along the wall. For finite R we show that the order pa-
rameter exhibits long range correlations in the direction of the interface and the latter are
confined within the interfacial region. We also determine the first subleading correction of
both the order parameter profile and correlations and show that it is of order R−1/2. The
leading-order form of correlations in the large-R expansion can be interpreted according
to a probabilistic picture in which the droplet fluctuates as a Brownian excursion. The
excellent agreement between the analytical results derived in this paper and Monte Carlo
simulations for the Ising model will appear in a separate publication [50].

In the last part of the paper, we examined the long-range character of interfacial
correlations in momentum space through the notion of interface structure factor. We
showed how to extend traditional studies of the interface structure factor to a system
defined on the semi-infinite space in two dimensions. After having isolated the interfacial
degrees of freedom from the bulk ones, we have calculated the contribution of the leading
order and first subleading order of the correlation function to the interface structure factor.
We then showed how the entropic repulsion of the interface from the wall reflects into a
specific term in the structure factor. In summary, the exact calculation given in this paper
shows that the interface structure factor for the pinned droplet in two dimensions exhibits
the long-wavelengths asymptotic behavior proportional to 1/q2. Although the latter feature
is the typical result found within effective descriptions in terms of the capillary-wave theory
for an interface which fluctuates in the bulk, the calculation presented in this paper relies on
an exact formalism built in terms of the fundamental degrees of freedom of the near-critical
system in contact with a boundary.

Concluding, it is worth discussing those aspects that distinguish the field-theoretic
formalism from other approaches such as interfacial Hamiltonian models (IHM); see [32]
and references therein. In IHM the interface is a fluctuating (d− 1)-dimensional manifold
embedded in d spatial dimensions, such a collective variable emerges after a coarse-graining
procedure operated on microscopic degrees of freedom. Among various definitions, such a
manifold can be defined as the locus in which the magnetization attains some fixed value.
Although the interface such defined is a perfectly well defined entity, the definition itself is
inevitably ad-hoc. It is clear that according to such a definition the interface is accompanied
by disconnected closed manifolds that are originated by bubbles of, say, phase b 6= a hosted
in the region filled by phase a. Effective coarse-grained approaches based on IHM do not
take into account such a type of excitations which naturally arise within the interfacial
region. These processes instead emerge within the field-theoretic formalism as interface
structure corrections and their effect generates subleading corrections to correlators, as
shown in this paper.

Another remarkable difference between the field-theoretic formalism and effective mod-
els can be appreciated by observing how the interface structure factor is calculated. In IHM
the coarse grained degree of freedom is the deviation of the height of the interface with
respect to a reference plane. As a result, the interface structure factor can be calculated
as a Fourier transform of the connected height-height correlation function. Then, in IHM
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it is assumed that interfacial fluctuations are Gaussian distributed and equipartition the-
orem is naturally invoked. The logic presented in this paper is actually different. We
first derived the exact analytic form of order parameter correlations and then we showed
that the leading order term in the large-R expansion can be consistently interpreted as
the contribution of a sharp interface whose probability density is the one of a Brownian
excursion. The occurrence of the underlying Gaussian nature of the fluctuations emerges
directly from field theory rather than from an assumption. In addition, we also showed
how the height-height correlator of the Brownian excursion [eq. (5.25)] perfectly matches
the expression of the integrated connected order parameter correlation function obtained
— at leading order — in field theory [eq. (5.21)]. Moreover, we also showed that correlation
functions beyond the leading order contribute to the interface structure factor, this is a
further novelty aspect captured by the field-theoretic formalism. Quite interestingly all
these features regarding interface structure and entropic repulsion — which have a clear
meaning in real space — emerge from momentum space properties of matrix elements of
bulk and boundary operators in field theory.

In view of future directions, it would be interesting to characterize how the geometry
affects correlations in a two-dimensional wedge. This paper indicates how to investigate
the emergence of the elusive symmetry named wedge covariance [20, 57–60] at the level
of correlation functions. The analysis of two-dimensional models could provide helpful
insights towards the study of three-dimensional systems as well [61, 62]. The examination
of pair functions in the presence of wetting boundaries has been addressed in [64].
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A Energy density correlations

In this appendix we show how to derive (3.6). The saddle-point method, which has been
used for the calculation of the one-point correlation function is used also for (3.2). The
function U± given by (3.3) is expanded at low energies and rapidities are rescaled as follows:
θj →

√
2/(mR)θj ; thus, U± becomes

Y±(θ1, θ2, θ3) = exp
[
−1− τ1

2 θ2
1−

τ1 − τ2
2 θ2

2−
τ2 + 1

2 θ2
3 +iη1(θ1∓θ2)+iη2(θ2−θ3)

]
, (A.1)

up to a factor exp(−mR) which cancels the corresponding one from the partition function
Z at the denominator of (3.2). Hence, (3.2) becomes

〈ε(x1, y1)ε(x2, y2)〉CP
Bbab

= 2 (F εaba(iπ))2

π5/2mR

∫
R3

dθ1dθ2dθ3 θ1θ3

[
Y+(θ1, θ2, θ3)− Y−(θ1, θ2, θ3)

]
.

(A.2)
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The next task is to compute the Gaussian integrals in the above. To this end it is convenient
to introduce the shorthand notation

HO(θ1, θ2, θ3)I± ≡
∫

R3

3∏
j=1

dθj O(θ1, θ2, θ3)Y±(θ1, θ2, θ3) , (A.3)

therefore
〈ε(x1, y1)ε(x2, y2)〉CP

Bbab
= 2 (F ε(iπ))2

π5/2mR

[
Hθ1θ3I+ − Hθ1θ3I−

]
. (A.4)

We observe that

Hθ1θ3I± = 4π5/2λ2η1η2
(1− τ1)(1 + τ2)Pstrip(±x1, y1;x2, y2) , (A.5)

where

Pstrip(x1, y1;x2, y2) = 1
πκ1κ2λ2

√
1− ρ2 exp

[
−χ

2
1 + χ2

2 − 2ρχ1χ2
1− ρ2

]

= 2
κ1κ2λ2 Π2(

√
2χ1,

√
2χ2|ρ) ,

(A.6)

is the passage probability on the strip. Equation (A.6) is the joint probability which
characterizes a Brownian bridge in one space dimension [18]. Thanks to (A.6), we can
write

Hθ1θ3I+ − Hθ1θ3I− = 4π5/2λ2η1η2
(1− τ1)(1 + τ2)

[
Pstrip(x1, y1;x2, y2)− Pstrip(−x1, y1;x2, y2)

]
,

≡ π5/2λ2P2(x1, y1;x2, y2)
(A.7)

and (A.4) simplifies to

〈ε(x1, y1)ε(x2, y2)〉CP
Bbab

= 2λ2

mR
(F ε(iπ))2 P2(x1, y1;x2, y2) , (A.8)

which is (3.6) in the main body of the paper. Then, from (A.7), we obtain

P2(x1, y1;x2, y2) = 4η1η2
(1− τ1)(1 + τ2)

[
Pstrip(x1, y1;x2, y2)− Pstrip(−x1, y1;x2, y2)

]
. (A.9)

The expression (3.7) for P2 follows by expressing Pstrip in terms of the bivariate Gaus-
sian (C.1). It has to be observed how the passage probability P2 for the Brownian excursion
is related to the passage probability of the Brownian bridge. It is indeed evident that (A.6)
amounts the construction implied by the method of images.

B Parallel correlation function

In this appendix we show how to derive the analytic expression for the parallel correlation
function given by (4.17). By setting x1 = x2 ≡ x in the integral representation provided
by (4.13), we have

G(η, τ1; η, τ2) =
∫ ∞

0
du1

∫ ∞
0

du2 P2(u1, y1;u2, y2)sign(x− u1)sign(x− u2) , (B.1)
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by applying ∂η = λ∂x to both sides of (B.1)

∂ηG(η, τ1; η, τ2) = 2λ
∫ ∞

0
du1

∫ ∞
0

du2 P2(u1, y1;u2, y2)
[
δ(x− u1)sign(x− u2)

+ δ(x− u2)sign(x− u1)
]
,

= 2λ
[∫ ∞

0
du2 P2(x, y1;u2, y2)sign(x− u2)

+
∫ ∞

0
du1 P2(u1, y1;x, y2)sign(x− u1)

]
(B.2)

and replacing the dummy variable in the second integral with u2, we find

∂ηG(η, τ1; η, τ2) = 2λ
∫ ∞

0
du2

[
P2(x, y1;u2, y2) + P2(u2, y1;x, y2)

]
sign(x− u2) . (B.3)

In general, P2(x, y1;u2, y2) 6= P2(u2, y1;x, y2), however, if we take τ1 = τ and τ2 = −τ ,
which is the case for the parallel correlation function we are interested in, we have the
identity P2(x, y;u2,−y) = P2(u2, y;x,−y), which implies

∂ηG(η, τ ; η,−τ) = 4λ
∫ ∞

0
duP2(x, y;u,−y)sign(x− u) . (B.4)

Thanks to (3.7), the above reads

∂ηG(η, τ ; η,−τ) = 16χ
κρ

[
I(χ, ρ)− I(χ,−ρ)

]
(B.5)

with χ = η/
√

1− ρ2,

I(χ, ρ) =
√

1− ρ2

2π
[
e−χ2/(1−ρ2) − 2e−χ2/(1+ρ)

]
+ ρχ

2
√
π
e−χ2[−1 + erf(ρχ/

√
1− ρ2) + 2erf(

√
(1− ρ)/(1 + ρ)χ)

]
,

(B.6)

and ρ = (1− τ)/(1 + τ). A simple calculation entails

∂ηG(η, τ ; η,−τ) = 16χ
πκρ

√
1− ρ2

[
e−

2χ2
1−ρ − e−

2χ2
1+ρ
]

+ 16χ2
√
πκ

e−χ2
[
−1 + erf

(√
1− ρ
1 + ρ

χ

)
+ erf

(√
1 + ρ

1− ρχ
)]

.

(B.7)

Equivalently

∂ηG(η,τ ;η,−τ) = 16√
πκ
χ2e−χ2

[
erf(χ

√
τ)+erf(χ/

√
τ)−1

]
− 32
πκ

χ
√
τ

1−τ e
−χ2

[
e−χ2τ−e−χ2/τ

]
.

(B.8)
The parallel correlation function can be obtained by integrating with respect to η as follows

G(η, τ ; η,−τ) = G(0, τ ; 0,−τ) +
∫ η

0
dη′ ∂η′G(η′, τ ; η′,−τ) (B.9)

with G(0, τ ; 0,−τ) = 1 from (B.1) and the normalization condition for P2.
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In order to get a quantitative understanding of (B.8), we provide a more explicit
representation valid in the asymptotic regime τ → 0. For small τ it is possible to adopt
the Taylor expansion

∂ηG(η, τ ; η,−τ) = 32
π
η
(
η2 − 1

)
e−η2

τ1/2 − 32
3πη

(
3− 3η2 + η4

)
e−η2

τ3/2 + O(τ5/2) .
(B.10)

Integrating back with respect to η and imposing the boundary condition at η = 0,
G(0, τ ; 0,−τ) = 1, we readily find

G(η, τ ; η,−τ) = 1− 16
π
η2e−η2

τ1/2 − 16
3πη

2
(
1− η2

)
e−η2

τ3/2 + O(τ5/2) . (B.11)

The expression (4.17) follows accordingly.

C Mehler’s decomposition of the spin-spin correlator

The bivariate Gaussian distribution is defined by

Π2(x1, x2|ρ) = 1
2π
√

1− ρ2 exp
[
−x

2
1 + x2

2 − 2ρx1x2
2(1− ρ2)

]
, (C.1)

with ρ the correlation coefficient. The expression (C.1) satisfies the properties∫
R
dx2 Π2(x1, x2|ρ) = 1√

2π
e−x2

1/2 ≡ Π1(x1) ,∫
R2

dx1dx2 Π2(x1, x2|ρ) = 1 .
(C.2)

The Gaussian bivariate can be expressed as an infinite series of factorized products contain-
ing the factors Π1(x1)Π1(x2). This is the content of Mehler [63] theorem, which establishes
the following identity

Π2(x1, x2|ρ) =
∞∑
`=0

(ρ/2)`

`! H`(x1/
√

2)H`(x2/
√

2)Π1(x1)Π1(x2) , (C.3)

with H` Hermite polynomials. For ρ = 0 the random variables x1 and x2 are uncorrelated
and the corresponding joint distribution factorizes, i.e., Π2(x1, x2|ρ) = Π1(x1)Π1(x2), as
expected.

By plugging (C.3) into the joint passage probability density for the droplet-shaped
interface (3.7), we obtain

P2(x1, y1;x2, y2) = 8χ1χ2
πρκ1κ2λ2

∞∑
n=0

(ρ/2)2n+1

(2n+ 1)! H2n+1(χ1)H2n+1(χ2)e−χ2
1−χ

2
2 . (C.4)

Thanks to (C.4) the connected spin-spin correlation function (4.13) admits the series rep-
resentation

G(η1, τ1; η2, τ2) =
∞∑
n=0

ρ2nΥ2n+1(χ1)Υ2n+1(χ2) , (C.5)
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Figure 7. The functions Υ2n+1(χ) for the values of 2n+ 1 indicated in the inset.

where Υ2n+1(χ) are the functions

Υ2n+1(χ) = 1
2n−1

√
(2n+ 1)!π

∫ ∞
0

dv vH2n+1(v)e−v2sign(χ− v) , (C.6)

the first few of them are plotted in figure 7.
By using the definition of Hermite polynomials,

Hn(x) = (−1)nex2 dn

dxn e
−x2

, (C.7)

and integrating by parts in (C.6), we find the following representation of the functions
Υ2n+1(χ) in terms of Hermite polynomials

Υ2n+1(χ) = − 1
2n−2

√
(2n+ 1)!π

[
H2n−1(χ) + χH2n(χ)

]
e−χ2

, n > 1 . (C.8)

It thus follows that Υ2n+1(χ) for n > 1 satisfies Υ2n+1(0) = Υ2n+1(χ → +∞) = 0.
Moreover, Υ2n+1(χ) with n > 1 are localized functions in the sense that their integral
is finite, while Υ1(χ) = Υ(χ) corresponds to an extended profile because it interpolates
between −1 and +1; see the green curve in figure 2.

D Calculation of Ŝ(q)

In this section, we complete the main steps involved in the calculation of the interface
structure factor. We begin by computing the integral with respect to x1 and x2 of the
function [Gs]0 appearing in (5.7) and defined by (5.16). To this end it is convenient to
introduce the shorthand notation

JΥ2n+1K ≡
∫ ∞

0
dχΥ2n+1(χ) , n > 1 . (D.1)
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By plugging (C.8) into (D.1) and integrating by parts, we find

JΥ2n+1K = − H2n−2(0)
2n−3

√
(2n+ 1)!π

= (−1)n 4(2n− 3)!!√
(2n+ 1)!π

;
(D.2)

in the last line we used Hermite numbers H2n(0) = (−2)n(2n − 1)!!. The integral with
respect to x1 and x2 of the connected correlation function reads∫ ∞

0
dx1

∫ ∞
0

dx2
[
Gs(x1, y;x2,−y)

]
0 = (∆〈σ〉)2κ

2λ2

4

∞∑
n=1

ρ2nJΥ2n+1K2

= (∆〈σ〉)2 2κ2R

πm

∞∑
n=1

[(2n− 3)!!]2

(2n+ 1)! ρ2n .

(D.3)

The series appearing in the right hand side of (D.3) can be re-summed thanks to the
identity

∞∑
n=1

[(2n− 3)!!]2

(2n+ 1)! ρ2n =
(
ρ

2 + 1
4ρ

)
sin−1 ρ+ 3

4

√
1− ρ2 − 1 ≡ H(ρ) . (D.4)

Turning to the interface structure factor, we have

Ŝ(q) = 1
2 (∆〈σ〉)2

∫ R/2

−R/2
dy eiqy

∫ ∞
0

dx1

∫ ∞
0

dx2
[
Gs(x1, y;x2,−y)

]
0 ,

= R2

πm

∫ 1

0
dτ
(
1− τ2

)
H

(1− |τ |
1 + |τ |

)
cos(Qτ) ,

= R2

4m

∫ 1

0
dτ E(τ) cos(Qτ) ,

(D.5)

where
E(τ) = 4

π
(1− τ2)H

(1− |τ |
1 + |τ |

)
, (D.6)

is the function (5.22) whose explicit expression can be derived from (D.4) thanks to the
identity

sin−1
(1− τ

1 + τ

)
= π

2 − 2 tan−1(
√
τ) . (D.7)

In the second line of (D.5), we rescaled the integration variable y = (R/2)τ and the rescaled
wavenumber Q = qR/2 has been adopted. We also recall that for y < 0 we have to revert
the order of the two spins, this can be achieved by replacing τ with |τ |. For large Q the
integral in (D.5) yields the asymptotic expansion

Ŝ(q) = R2

4m

[ 1
Q2 − 8

√
2
π

1
Q7/2 + . . .

]
(D.8)

which corresponds to (5.26) in the main body of the paper. The result (D.8) is proved in
appendix E.
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To conclude, we compute the contribution of the excess part to the interface structure
factor. Denoting such a contribution with ∆Ŝ(q), we have

∆Ŝ(q) = 1
2 (∆〈σ〉)2

∫ R/2

−R/2
dy eiqy

∫ ∞
0

dx1

∫ ∞
0

dx2 eab(x1, y)eab(x2,−y) (D.9)

with the excess part given by eab(xj , yj) = −AabP1(x1, y1), up to subdominant corrections;
see (5.9). Since P1 is normalized, we have∫ ∞

0
dx1eab(x1, y) = −Aab (D.10)

with the structure amplitude Aab given by (2.26). Therefore (D.9) becomes

∆Ŝ(q) = A2
ab

2 (∆〈σ〉)2

∫ R/2

−R/2
dy eiqy (D.11)

or equivalently, by using (2.26), we can write

∆Ŝ(q) = z
sin(qR/2)
m2q

(D.12)

with the overall factor z given by (5.28) in the main body of the paper.

E Special integrals

In this appendix we show how to derive (D.8). We begin by considering the function E(τ)
which appears in the integrand of (D.5) and whose expression — given by (5.22) — can be
written as follows

E(τ) = E1(τ) + E2(τ) , (E.1)

where
E1(τ) = 2

π
(1− τ)

(
−2 + 3

√
τ − 2τ

)
+ 1

2
(
3− 2τ + 3τ2

)
E2(τ) =

(
− 6
π

+ 4
π
τ − 6

π
τ2
)

tan−1(
√
τ) .

(E.2)

The decomposition (E.1) entails Ŝ(q) = Ŝ1(q) + Ŝ2(q), where

Ŝj(q) = R2

4m

∫ 1

0
dτ Ej(τ) cos(Qτ) , (E.3)

for j = 1, 2. The calculation of Ŝ1(q) is immediate and the result is

Ŝ1(q) = R2

4m

[ 1
Q2 +

(
2− 1

π

) cosQ
Q2 + 2sinQ

Q
−
(

3 + 8
π

) sinQ
Q3 + 9c(Q)− 6Qs(Q)√

2πQ5/2

]
,

(E.4)
where s(Q) and c(Q) are the functions

s(Q) ≡ S(
√

2Q/π)

c(Q) ≡ C(
√

2Q/π) ,
(E.5)
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S and C are Fresnel integrals, whose definition is recalled for completeness

S(z) =
∫ z

0
du sin

(
π

2u
2
)

C(z) =
∫ z

0
du cos

(
π

2u
2
)
.

(E.6)

The calculation of Ŝ2(q) is less immediate. In order to proceed with its calculation, we
introduce the following auxiliary functions

Vn(Q) =
∫ 1

0
dτ τn tan−1(

√
τ) cos(Qτ) , (E.7)

whose calculation will be presented shortly. Thanks to the above definition, we have

Ŝ2(q) = − 6
π
V0(Q) + 4

π
V1(Q)− 6

π
V2(Q) . (E.8)

In order to simplify the calculation of Vn(Q) it is convenient to write cos(Qτ) in exponential
form; thus, we consider

Wn(Q) =
∫ 1

0
dτ τn tan−1(

√
τ)eiQτ , (E.9)

which implies that
Vn(Q) = 1

2
[
Wn(Q) + Wn(−Q)

]
. (E.10)

The advantage is that Wn(Q) can be computed by employing Feynman’s trick, meaning
that

Wn(Q) = (−i∂Q)nW0(Q) . (E.11)

As a result, the only integral we have to perform is the one which defines the function
W0(Q).

The calculation W0(Q) can be carried out by writing the arctangent in terms of the
integral representation

tan−1(
√
τ) =

∫ √τ
0

dx
1 + x2 , (E.12)

thus,

W0(Q) =
∫ 1

0
dτ eiQτ

∫ ∞
0

dx
1 + x2 θ(

√
τ − x) , (E.13)

where θ is Heaviside’s theta function. By exchanging the order of integrations, and per-
forming the integral with respect to τ , we find

W0(Q) =
∫ ∞

0

dx
1 + x2

∫ 1

0
dτ eiQτθ(

√
τ − x)

= i
Q

∫ ∞
0

dx
1 + x2

[
eiQx2 − eiQ

]
θ(1− x)

= i
Q

∫ 1

0

dx
1 + x2

[
eiQx2 − eiQ

]
,

(E.14)
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hence

W0(Q) = − iπ
4QeiQ + i

Q

∫ 1

0
dx eiQx2

1 + x2 . (E.15)

The integral appearing in the second term can be calculated by recalling the following
identity ∫ 1

0
dx eiQx2

1 + x2 = π

4 e
−iQ

[
1− erf2

(√
−iQ

)]
, (E.16)

a further simplification occurs by bringing in Fresnel integrals thanks to the property

C(z) + iS(z) = 1 + i
2 erf

(√
π

2 (1− i)z
)
, (E.17)

from which it follows that

erf
(√
−iQ

)
= 2

1 + i

[
c(Q) + is(Q)

]
, (E.18)

where c(Q) and s(Q) are the functions defined by (E.5). The above results allow us to
write

W0(Q) = π

2
sinQ
Q
− π

2Qe−iQ
[
c(Q) + is(Q)

]2
. (E.19)

The assemblage of the final result for Ŝ(q) is now an elementary (but rather tedious)
exercise which gives

Ŝ(Q) = 1
mq2

[
1− 4

(
1 + 1

π

)
cosQ+

(
3− 8

π
− 4Q2

) sinQ
Q

+ 4
√

2
πQ

(3c(Q)− 2Qs(Q))

+ 4s(Q)c(Q)
(

4 cosQ+ 4Q sinQ− 3sinQ
Q

)
+
(
c2(Q)− s2(Q)

)(
8Q cosQ− 8 sinQ− 6cosQ

Q

)]
.

(E.20)

By using the asymptotic expressions for the Fresnel integrals at large arguments, we find

s(Q) = 1
2 + 1√

2πQ

[
− cosQ− sinQ

2Q + 3
4

cosQ
Q2

]
+O(Q−7/2)

c(Q) = 1
2 + 1√

2πQ

[
sinQ− cosQ

2Q − 3
4

sinQ
Q2

]
+O(Q−7/2) ,

(E.21)

once we plug the above into (E.20), we obtain

Ŝ(Q) = 1
mq2

[
1− 8

√
2
π

1
Q3/2 +O(Q−2)

]
; (E.22)

which proves the result given by (D.8).
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