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Abstract8

This work proposes a reduced-order multiscale model for the analysis of masonry elements subjected to in-plane9

and out-of-plane loading conditions. The Transformation Field Analysis (TFA) is adopted to link the homogeneous10

shell model at the macroscale with a three-dimensional (3D) representative unit cell (UC) of the masonry material11

defined at the microscale, accounting for the regular arrangement of bricks/blocks and mortar joints. The UC is12

modeled considering linear elastic bricks joined by interfaces subjected to possible damage and frictional plasticity13

mechanisms. An enhanced TFA procedure is proposed, discretizing the interfaces in subsets where non-uniform14

distribution of the inelastic quantities is considered and the plastic-damage evolution problem solved. Numerical15

simulations are developed to assess the advantages and drawbacks of the non-uniform TFA approach compared to16

previously proposed piece-wise uniform procedure. The results obtained through the proposed numerical approach17

are compared with both micromechanical and experimental outcomes.18

Keywords: Masonry, Out-of-plane mechanims, Nonlinear interfaces, Multiscale, Non-uniform TFA19

1. Introduction20

Masonry structures are a relevant part of the cultural and architectural heritage of many European countries.21

They are often vulnerable constructions as they are old buildings, sometime deteriorated because of the lack of due22

maintenance. Moreover, the masonry material is often characterized by poor mechanical properties, making the23

constructions significantly exposed to damage risk.24

Several methods and procedures are available in literature to reproduce and analyze the response of masonry con-25

structions, aimed at assessing their safety conditions and determining their maximum load and displacement capaci-26

ties. A quite extensive review is reported, for instance, in [5, 11, 20, 21, 30], describing the most adopted approaches27

available to evaluate the behavior of both reinforced and unreinforced masonry structures. These can be classified as28

follows:29
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• Damage, Plasticity and Fracture models within Finite Element (FE), Discrete Element or Finite Difference30

numerical methods [9, 10, 19, 26, 27, 31];31

• Limit Analysis approaches [6, 14, 18, 24, 25], with their kinematic or static formulations, as the Thrust Network32

Analysis;33

• Homogenization and Multiscale techniques [2, 15, 26, 27].34

The multiscale approach represents a challenging opportunity for determining the mechanical response of masonry35

constructions, viable at the structural scale, but satisfactorily accurate at the microscale. With the aim of optimizing the36

reliability of the procedure with respect to the computational burden, a reduced-order multiscale model is proposed in37

[4] for the analysis of masonry walls subjected to in-plane loading conditions, showing the considerable computational38

advantages compared to more classical FE2 multiscale techniques [22, 29, 34]. A uniform Transformation Field39

Analysis (TFA) is adopted in [4] to solve the nonlinear homogenization problem and, hence, to link the homogeneous40

two-dimensional (2D) continuum model adopted at the macroscale with a 2D representative unit cell (UC) of the41

masonry material properly defined at the microscale, accounting for the regular arrangement of bricks/blocks and42

mortar joints. Relying on the assumption that the material nonlinear mechanims only occur in the mortar joints, the43

key idea is to discretize the whole domain composed by the mortar joints included in the UC into regions, called44

subsets, where uniform distributions of the inelastic quantities are considered. Hence, the nonlinear constitutive45

response of the macroscopic masonry material is directly computed from the average values of the inelastic strains of46

each subset.47

A similar approach is adopted in [2] for the analysis of masonry elements under both in-plane and out-of-plane loading48

conditions. Indeed, a new shell-3D model is there proposed, where a shell element at the macroscale is linked to a 3D49

solid model of the UC at the microscale. Linear elastic response is considered for the bricks, while all nonlinearities50

are assumed to arise in the mortar joints. This model is then applied in [3] for the analysis of curved masonry elements,51

such as vaults and domes.52

The studies developed in [2, 3] show that the piece-wise uniform distribution assumed for the mortar joint inelastic53

strains, within the shell-3D multiscale model under plate bending and torsional strain states, requires a fine subset54

subdivision of the UC to obtain an accurate representation of the masonry response, hence leading to computationally55

demanding structural models. Indeed, extensive numerical analyses are conducted in [3] to investigate the influence56

of the subset discretization in terms of solution accuracy and required computational effort.57

In the present work, a Non-Uniform TFA (NUTFA) approach, inspired to the procedure proposed in [33], is58

developed. Linear (instead of uniform) distribution of the inelastic strain field within each subset is assumed. Thus,59

the macroscopic masonry constitutive behavior is determined from the corresponding average values and additional60

parameters associated to the higher order contributions. Specifically, based on the results in [2, 3], the proposed61

approach considers a linear profile along the UC in-plane axes of the inelastic strain components directed along the62
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UC thickness. The optimal linear profile is determined through a least square minimization defined with respect to63

the strains occurring at selected points of each subset.64

Of course, the introduction of new parameters ruling the linear profile of the inelastic quantities leads to an in-65

crease of the computational complexity. Hence, a comprehensive comparison is presented in terms of advantages and66

disadvantages of adopting the uniform TFA or NUTFA scheme and suitable criteria to select the proper subset layout67

are given, to obtain a fair compromise between accuracy and computational effort of the model. To this end, numer-68

ical applications are performed on a single UC to study the improvements introduced by NUTFA under bending and69

torsional deformations. Moreover, the response of real scale masonry elements is investigated and the results obtained70

through the proposed model are compared with experimental and micromechanical outcomes.71

2. Macroscale description72

At the macroscale, the proposed model considers a flat shell formulation based on the Mindlin-Reissner theory,73

i.e. including the contribution of the shear deformations. The shell formulation is defined in the local reference system74

(X1, X2, X3), being X1 and X2 the directions that lie in the mid-plane of the element and X3 that running across the75

shell thickness (Fig. 1).

Figure 1: Schematic of the shell model at the macroscale

76

The element kinematics is described by introducing the shell generalized displacement fields, i.e. the mid-plane77

translation displacements V1(X1, X2), V2(X1, X2) and V3(X1, X2) and the shell orthogonal fiber rotations Φ1(X1, X2)78

and Φ2(X1, X2) about the directions X2 and −X1, respectively. These are collected in the vector V(X1, X2).79

The eight generalized shell strains, i.e. the membrane strains E11(X1, X2), E22(X1, X2) and Γ12(X1, X2), the plate80

curvatures K11(X1, X2), K22(X1, X2) and K12(X1, X2) and the plate shear strains Γ13(X1, X2) and Γ23(X1, X2) are col-81

lected in the vector E(X1, X2), i.e.:82

E =
{
E11 E22 Γ12 K11 K22 K12 Γ13 Γ23

}T
(1)83

and are related to the shell generalized displacement fields by the standard compatibility conditions [7, 36].84

The generalized shell stresses work-conjugate to E(X1, X2) are the membrane, bending and shear resultants, col-85

lected in the vector Σ(X1, X2), i.e.:86

Σ =

{
N11 N22 N12 M11 M22 M12 Q13 Q23

}T
(2)87
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The constitutive relationship between generalized shell strains E(X1, X2) and stresses Σ(X1, X2) is obtained from88

the analysis of the UC defined at the microscale and the adoption of a proper homogenization procedure, as described89

in the following.90

The presented flat shell element can be successfully adopted to reproduce the response of plane structures, such91

as masonry walls. To study the behavior of vaults and domes, the proposed model must be formulated in a three-92

dimensional space, making use of appropriate rotation matrices, and introducing the additional kinematic parameter93

of the drilling rotation, in order to join non-coplanar elements [3].94

3. Microscale description95

At the microscale, the proposed model describes masonry material with periodic texture as a heterogeneous 3D96

Cauchy continuum. Thus, a periodic UC is defined and referred to for the computational homogenization. Within the97

UC, the bricks defining the sub-domain Ωb are assumed to exhibit a linear elastic response, while the mortar joints98

defining the sub-domains ℑb (bed) and ℑh (head) are characterized by a cohesive-frictional mechanical response and99

are modeled with zero-thickness plane interfaces.100

Fig. 2(a) shows an example of UC for a running bond texture with single leaf, where Ωb, ℑb and ℑh are distin-101

guished with different colors. The reference system (x1, x2, x3) is assumed, being x1 and x2 the directions that lie in102

the mid-plane of the UC and x3 that running across the thickness. The dimensions of the UC along x1, x2 and x3 are103

indicated with 2 a1, 2 a2 and t, respectively.

(a) (b)

Figure 2: Example of (a) the UC considered at microscale and (b) schematic of the interface model adopted for the mortar joints

104

In the UC, the displacement fields, u = {u1 u2 u3}
T , are defined as the sum of two contributions: ū(x1, x2, x3) repre-105

senting the known contribution, obtained from the macroscopic shell strains E(x1, x2), and u⋆(x1, x2, x3) representing106

the unknown perturbation due to the material heterogeneity.107

Due to the presence of the interfaces, u⋆(x1, x2, x3) is discontinuous in the UC [35] and must satisfy the periodic108

conditions imposed at the boundaries. Accordingly, in the bricks, where u⋆(x1, x2, x3) is continuous, the material109

strains are obtained from the compatibility conditions with the displacements, defined under linear geometry assump-110
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tion, and result as:111

εεε
b = B E + εεε

b⋆ (3)112

where εεε
b =
{
εb

11 ε
b
22 ε

b
33 γ

b
12 γ

b
13 γ

b
23

}T
and εεε

b⋆ =
{
ε b⋆

11 ε
b⋆
22 ε

b⋆
33 γ

b⋆
12 γ

b⋆
13 γ

b⋆
23

}T
are the total and perturbation strain113

vectors, respectively, while B(x3) is the matrix ruling the strain map transition from the macroscale to the microscale114

[2], i.e.:115

B =



1 0 0 x3 0 0 0 0

0 1 0 0 x3 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 x3 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


(4)116

The stresses in the bricks result from the linear elastic constitutive relationship σσσ
b = Cbεεε

b, being Cb(x1, x2, x3) the117

material elastic stiffness matrix.118

To be noted is that, while the UC local axis x3 always coincides with the macroscopic shell direction X3, axes119

x1 and x2 may be rotated with respect to the corresponding macroscopic shell directions X1 and X2. Hence, before120

applying Eq. (3), proper rotation may be required to express the components of E from the macroscopic shell to the121

microscopic UC reference system. The details of this transformation are reported in [3].122

As for the interface elements, as shown in the example of Fig. 2(a), those composing ℑb lie in planes parallel to x1-123

x3, while those composing ℑh lie in planes parallel to x2-x3. Hence, to consider a unique description of the interface124

constitutive response, a local reference system (xT1, xT2, xN) is introduced for the general element, as depicted in125

Fig. 2(b). Accordingly, the difference of the displacements u+(xT1, xT2, xN) and u−(xT1, xT2, xN) of the two interface126

overlapping faces defines the displacement jump s = u+ − u− = {sT1 sT2 sN}
T , being sT1, sT2 and sN the displacement127

jump components expressed in the interface local reference system.128

Denoting by t = {tT1 tT2 tN}
T the interface traction vector, the damage-friction nonlinear model proposed in129

[4] rules the relationship between t(xT1, xT2, xN) and work-conjugate displacement jumps s(xT1, xT2, xN). This is130

expressed as:131

t = C (s − πππ) (5)132

where C = diag {CT ,CT ,CN} is the diagonal elastic stiffness matrix of the interface constitutive relationship, being133

CT and CN the stiffness values in the tangential and normal direction to the interface plane, respectively. Vector134

πππ = {πT1 πT2 πN}
T indicates the inelastic displacement jumps and is defined as:135

πππ = D(c + p) (6)136
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where c = {0 0 ⟨sN⟩+}
T represents the unilateral contact effect, being ⟨sN⟩+ the positive part of sN(xT1, xT2, xN), and137

p = {pT1 pT2 0}T is the sliding frictional relative displacement vector. These latter evolve according to the classical138

Coulomb yield criterion, on the basis of the friction coefficient µ.139

Quantity D in Eq. (5) is the damage variable, which accounts for degrading processes caused by sliding and frac-140

ture opening. Its evolutionary law is ruled by an associated variable defined as function of the normal and tangential141

displacement jumps, and depends on the mode I and II stress thresholds, t0
N , t0

T , and fracture energies, GcN and GcT142

[2, 3, 4].143

Perturbation displacements u⋆ and, thus, brick strains and stresses and interface displacement jumps and tractions144

are determined according to the homogenization procedure described in the following section.145

4. Uniform and Non-Uniform TFA-based homogenization procedure146

The TFA is an effective technique to determine the homogenized response of composite materials [16, 17, 23],147

successfully applied to masonry. The procedure typically relies on the definition of regions, called subsets, where148

the nonlinear phenomena occur, and the assumption of a prescribed variation for the related nonlinear effects within149

each subset. In the proposed model, as bricks are considered as linear elastic, the subset subdivision concerns only150

the interface elements modeling the mortar joints, i.e. ℑb and ℑh. In this spirit, the response of the masonry UC151

is determined by superimposing the effects of two terms: the average strains E in the whole UC and the inelastic152

displacement jumps πππ
i in each subset S i with (i = 1, ..., ns).153

In previous studies [2, 3], piece-wise uniform distributions of the nonlinear quantities over mortar joints were154

assumed, i.e. a uniform TFA approach was adopted, which required fine subset partitions under bending and torsional155

responses. To avoid such computationally expensive refined partitions, a modified procedure is proposed in this work.156

It is based on the definition of non-uniform distribution of the inelastic quantities in each subset, i.e. NUTFA approach.157

Hence, the inelastic strain field in the typical subset S i is represented in the following form:158

πππ
i = πππ

i
0 + x i

s πππ
i
1 (7)159

where πππ
i
0 denotes the average inelastic displacement jump and the second term represents their linear variation along160

the in-plane direction x i
s of the subset. Figure 3(a) shows a possible identification of x i

s for some subsets of a running161

bond UC. Here, 2 and 1 subdivisions are considered for bed and head joints, respectively, in the direction parallel162

to the UC mid-plane, i.e nb = 2 and nh = 1, and, 3 layers are assumed along the UC thickness, i.e nt = 3, so that163

ns = nt × (nh + nb) = 9. Without loss of generality, in the following, it is assumed that local direction xT2 coincides164

with the UC thickness direction x3 for all interface elements and, thus, for all subsets, while xT1 and xN are parallel to165

the UC plane. In particular, the in-plane direction x i
s has origin in the middle of the subset and is parallel to x1 in the166

bed joints and x2 in the head joints.167

Based on the results observed in [2, 3] Eq. (7) is defined to enrich the description of the inelastic displacement168

jump πT2 parallel to the UC thickness. Hence, πππ
i
1 has all zero terms except that directed along t, as opposed to πππ

i
0169

6



that includes all three displacement jump components, i.e. πππ
i
0 = {π

i
0,T1 π

i
0,T2 π

i
0,N}

T and πππ
i
1 = {0 π

i
1,T2 0}T . Figure170

3(b) shows the linear variation assumed for πT2 in the subdomains of a layer extracted from the UC. In the following,171

the main two phases of the methodology are described. The first is a pre-processing phase, called ’offline’, aimed at172

evaluating proper localization operators. The last, named ’online’ phase, solves the nonlinear evolution problem of173

the UC by employing information derived from the previous offline computations.174

s

s

s

(a)

x
2

x
2

(b)

Figure 3: Running bond UC: (a) possible subset subdivision with nt = 3, nh = 1 and nb = 2; (b) linear variation x i
sπ

i
1,T2 of the inelastic component

πT2 in the proposed NUTFA (the regions of the interfaces depicted with the same color belong to the same subset)

The procedure to determine πππ
i
0 and πππ

i
1 is described in the following, where it has to be noted that the uniform TFA175

approach adopted in [2, 3] is obtained as special case of the NUTFA here proposed by neglecting the linear term in176

Eq. (7), that is the contribution xi
sπππ

i
1.177

4.1. Offline phase178

Before performing the nonlinear analysis of the structure, a pre-processing phase is required to evaluate the effects179

of the macroscopic strains and inelastic displacements jumps on the UC response. Hence, micromechanical linear180

elastic analyses are performed by prescribing one-by-one a unit value of the components of E, πππ
i
0 and πππ

i
1 (i = 1, ..., ns).181

The solutions of the mentioned micromechanical problems allow to compute the displacements jumps in the j-th182

subset S j in this form:183

s j
E = R j E s j

πππ i
0
= R j

πππ i
0
πππ

i
0 s j

πππ i
1
= R j

πππ i
1
πππ

i
1 (8)184

where R j(x j
T1, x

j
T2), R j

πππ i
0
(x j

T1, x
j

T2) and R j
πππ i

1
(x j

T1, x
j

T2) denote the localization matrices of the displacement jumps185

s j
E(x j

T1, x
j

T2), s j
πππ i

0
(x j

T1, x
j

T2) and s j
πππ i

1
(x j

T1, x
j

T2), obtained by alternatively applying E, πππ
i
0 and πππ

i
1, respectively. In de-186

tail, the k-th column of R j(x j
T1, x

j
T2) lists the displacement jumps arising at the generic point of the subset S j when187

only the k-th component of E is prescribed on the UC. The columns of R j
πππ i

0
(x j

T1, x
j

T2) and R j
πππ i

1
(x j

T1, x
j

T2) are evaluated188

in the same way, but assuming πππ
i
0 and πππ

i
1 as input actions. Then, the other required operators are computed using the189

localization matrices in Eq. (8). These are defined as:190

R̃
j
=

[
R

jT
R̃ jT
]T

R̃
j

πππ i
0
=

[
R

j
πππ i

0

T
R̃ jT

πππ i
0

]T
R̃

j

πππ i
1
=

[
R

j
πππ i

1

T
R̃ jT

πππ i
1

]T
(9)191

7



where R
j
, R

j
πππ i

0
and R

j
πππ i

1
are the average matrices evaluated over the j-th subset area on the basis of R j(x j

T1, x
j

T2),192

R j
πππ i

0
(x j

T1, x
j

T2) and R j
πππ i

1
(x j

T1, x
j

T2), while the columns of R̃ j, R̃ j
πππ i

0
and R̃ j

πππ i
1

list the values of the displacement jump193

component πT2 computed in m properly selected points of the j-th subset. Figure Fig. 3(a) shows the location of these194

points for the example case of m = 6. The points, represented with yellow square dots, are equally spaced along195

the subset central line starting from the boundaries. Hence, the displacement jump vector s̃
j
, containing the average196

displacement jumps in all spatial directions and the local jumps in the m points along the UC thickness direction, is197

obtained by superimposing the effects of the previous contributions, as:198

s̃
j
= R̃

j
E +

ns∑
i=1

R̃
j

πππ i
0
πππ

i
0 +

ns∑
i=1

R̃
j

πππ i
1
πππ

i
1 (10)199

In a similar fashion, the strain fields in the bricks result as:200

εεε
b
E = Pb E εεε

b
πππ i

0
= Pb

πππ i
0
πππ

i
0 εεε

b
πππ i

1
= Pb

πππ i
1
πππ

i
1 (11)201

being Pb(x1, x2, x3), Pb
πππ i

0
(x1, x2, x3) and Pb

πππ i
1
(x1, x2, x3) the localization matrices able to recover local strain values at202

any point of the bricks, given E, πππ
i
0 and πππ

i
1.203

Finally, the shell generalized stresses Σ are computed by invoking the generalized Hill-Mandel principle [2, 3],204

which leads to:205

Σ =
1
A

∫
A

∫ t/2

−t/2
BTσb dx3 dA (12)206

being A = 2a1 × 2a2 the area of the UC-mid plane (see Fig. 2(a)). Hence, by accounting for the brick constitutive law207

and introducing Eq. (11), it results:208

Σ =
1
A

∫
A

∫ t/2

−t/2
BT Cb

PbE +
ns∑

i=1

Pb
πππ i

0
πππ

i
0 +

ns∑
i=1

Pb
πππ i

1
πππ

i
1

 dx3 dA =

= CE +
ns∑

i=1

Cπππ i
0
πππ

i
0 +

ns∑
i=1

Cπππ i
1
πππ

i
1

(13)209

4.2. Online phase210

Matrices C, Cπππ i
0
, Cπππ i

1
, R̃

j
, R̃

j

πππ i
0
, R̃

j

πππ i
1

(i = 1, ..., ns, j = 1, ..., ns) are used to solve the evolutionary nonlinear211

problem of the UC within the multiscale analysis. In the spirit of the displacement-based FE method, at the current212

global Newton–Raphson iteration, the strain vector E is given at each point of the structural model, whereas the stress213

vector Σ has to be determined through Eq. (13) on the basis of the updated values of the inelastic vectors πππ
i
0 and πππ

i
1214

(i = 1, ..., ns). To determine these latter, the evolution problem of the damage and friction variables in each subset is215

solved by means of an iterative elastic predictor-inelastic corrector procedure, as summarized in the following.216

First, the displacement jumps are evaluated in each subset by using Eq. (10) and assuming the inelastic vectors217

as frozen at the previous step. On the basis of these quantities, the damage and unilateral-contact friction problems218

are solved in each subset by using the evolution law reported in Section 3. In particular, the average displacement219
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jump values recovered by means matrices R
j
, R

j
πππ i

0
, R

j
πππ i

1
are used to compute the inelastic vectors πππ

j
0, whereas the dis-220

placement jumps derived from R̃ j, R̃ j
πππ i

0
, R̃ j

πππ i
1

are employed to evaluate πππ
j
1. In fact, the local values of the displacement221

jump component πT2 along the UC thickness direction, combined with the average values in the other two directions,222

allow to solve the damage-friction problems in the chosen m points of the analyzed subset and, then, to compute πππ
j
1223

by solving the following problem of minimum:224

min
πππ j

1

 m∑
h=1

[
πππ

j
0 + x j,h

s πππ
j
1 − πππ

j
(
x j,h

s

)]2 (14)225

where x j,h
s is the coordinate of m-th point, with h = 1, ...,m. To be noted is that, for the special NUTFA proposed, the226

problem of minimum in Eq. (14) is actually solved referring only to the inelastic component directed along xT2. Once227

πππ
j
0 and πππ

j
1 ( j = 1, ..., ns) are updated, a further iteration is performed by solving again the damage, unilateral contact228

and sliding friction problems in all subsets. The procedure continues until convergence for the values of πππ
i
0 and πππ

i
1229

(i = 1, ..., ns) is reached. Finally, the stress vector Σ is computed according to Eq. (13), thus providing the constitutive230

response of the shell at the macroscale.231

5. Single UC response232

To investigate the performance of the presented model at the material level, the response of a running bond ma-233

sonry UC is studied under two typical loading histories (LHs) involving the out-of-plane behavior. Brick size and234

mortar joint thickness are set equal to 240 × 60 × 120 mm3 and 10 mm, respectively. Mechanical properties of both235

of them are contained in the first row of Table 1, being Eb and Gb the Young’s and shear moduli of the bricks used to236

construct the isotropic elastic stiffness matrix Cb.237

Table 1: Material parameters for bricks and mortar used for the UC and the masonry elements analyzed in Sections 5 and 6 .

Eb Gb CN CT t0
N t0

T GcN GcT µ

[MPa] [MPa]
[
N/mm3

] [
N/mm3

]
[MPa] [MPa] [N/mm] [N/mm] [-]

18000 7826.1 100 43.5 0.50 0.44 1.25 × 10−2 2.17 × 10−2 0.50

52700 22913.1 100 43.5 0.15 0.15 3.00 × 10−3 3.00 × 10−3 0.50

4000 1666.7 140 58.3 0.10 0.27 3.00 × 10−4 4.00 × 10−1 0.37

4260 1775.0 1000 1000 0.35 0.19 2.50 × 10−4 1.25 × 10−1 0.58

The first test (LH1) analyzes the UC behavior under curvature about x2 axis combined with membrane tensile238

strain in x1 direction. In detail, linearly increasing curvature K11 and tensile strain E11 = t K11 are applied to the UC239

up to the final value K11 = 4 × 10−6 mm−1. Similarly, the second test (LH2) considers linearly increasing curvature240

K12 and tensile strains E11 = E22 =
t
4 K12 up to the final value K12 = 1.5 × 10−5 mm−1. In [2], the UC response241
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was analyzed under the same loading conditions with the uniform TFA approach, obtaining inaccurate results with242

coarse ’in-plane’ subset discretizations, i.e. assuming nh = 1 and nb = 2. Thus, the effects of both denser subset243

partitions and the assumption of non-uniform distributions of inelastic quantities in each subdomain are investigated244

in this study. In detail, four alternative subset discretizations are considered in the numerical simulations. These all245

divide the UC into nt = 8 layers across the thickness t = 120 mm, but assume different subset arrangements in the246

in-plane directions, as depicted in Figs. 4(a)-4(d). Model (a), indicated as TFA 1 + 2, considers nh = 1 and nb = 2247

subsets for the head and bed joints, respectively, in each layer, based on the uniform TFA approach; similarly, models248

(b) and (c), TFA 2 + 6 and TFA 4 + 10, consider nh = 2 with nb = 6 and nh = 4 with nb = 10 subsets for the head and249

bed joints based on uniform TFA, respectively; finally, model (d), NUTFA 1 + 2, considers nh = 1 and nb = 2 subsets250

for the head and bed joints, respectively, but based on the linear NUTFA approach. For the latter, m = 6 points are251

used in each subset (yellow square dots) to evaluated the linear variation x i
s πππ

i
1 of the inelastic displacement jumps in252

Eq. (7).253

To solve the offline micromechanical problems (Section 4.1), FE analyses of the UC are performed adopting254

standard 8-node hexaedral isoparametric elements [36] to model the masonry bricks and 4+4-node plane isoparametric255

interface elements for the mortar joints. Of course, other higher order finite elements could be used or even other256

numerical approaches could be used.257

1

1

11

3

3

2

2

(a) TFA 1 + 2 (b) TFA 2 + 6

3

5

4

6 7 8 91

2

3

4

1

2

1

2

3

4

10 11 12 13 14

10 11 12 13 14 5 6 7 8 9

(c) TFA 4 + 10

1

1

11

3

3

2

2

m = 6 points for each subset

(d) NUTFA 1 + 2

Figure 4: Subset subdivision in each layer of the UC (colors and numbers indicate the region of the UC belonging to the same subset)

Fig. 5(a) contains the UC response to LH1 in terms of average bending moment M11 versus average curvature K11258

for all models. It appears that, when the number of ’in-plane’ subsets increases, the uniform TFA prediction (blue,259

violet and red curves) converges to the reference solution obtained with a detailed FE micromechanical model (black260

curve) based on the same constitutive assumptions. The best result is obtained with NUTFA 1 + 2, as this model261

accurately capture the distribution of the inelastic quantities over mortar joints. This is evident from Fig. 6, where262
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Figure 5: Response of the UC to (a) LH1 and (b) LH2 in terms of average moments M11, M12 versus average curvatures K11, K12

the variation of the component πT2 along the bed joint subsets extracted from the first layer of the UC is plotted for263

both micromechanical (black curves) and NUTFA (green curves) models. Note that, for this loading conditions, πT2264

is equal to zero in the head joints. At the beginning of the loading histories, i.e. at K11 = 1.1 × 10−6 mm (Fig. 6(a)),265

nonlinear variation of πT2 is detected with the micromechanical model. Thus, the NUTFA model also approximately266

describes the occurring nonlinear field at this stage. However, as the analysis goes on, a fairly linear trend appears267

for πT2 in the micromechanical simulation (Fig. 6(b)), in accordance with the prescribed variation of the inelastic268

displacement jumps in the NUTFA model (see Eq. (7) and Fig. 3(b)), thus leading to a perfect match of the global269

curves in Fig. 5(a).270

Finally, the curves in Fig. 5(b) show the UC response to LH2 in terms of average torsional moment M12 versus271

average curvature K12. For this loading history, the proposed NUTFA 1 + 2 procedure significantly improves the272

results obtained with the uniform TFA 1 + 2, but, differently from the previous case, the micromechanical results are273

not accurately reproduced. In fact, in this case, the best solution is achieved with the uniform TFA 4 + 10 that better274

describes the inelastic displacement field in the UC.275

6. Masonry structural element response276

To study the performance of the proposed model in reproducing the response of real masonry structures, three277

significant examples are presented in the following.278

The multiscale simulations are based on the use, at the macroscale, of a 4-node shell FE obtained by coupling a279

standard 4-node isoparametric membrane FE with a 4-node MITC plate model [7]. Hence, bi-linear shape fuctions280

are used for the membrane problem to interpolate V1 and V2, while the plate problem is addressed by interpolating281
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Figure 6: Distribution of the inelastic component πT2 in the bed joint subsets extracted from the first layer identified along the UC thickness: results

for LH1 at a) K11 = 1.1 × 10−6mm−1 and b) K11 = 2.3 × 10−6mm−1

Γ13 and Γ23 independently on V3, Φ1 and Φ2, according to the model proposed in [8]. As drill degrees of freedom are282

not directly included in the shell formulation, to manage possible singularities of the global structure stiffness matrix,283

the standard approach described in [7] is used, which consists in introducing proper defined rotational springs at the284

mesh nodes.285

As for the regularization technique required in presence of strain-softening behavior the proposed model is suitable286

for the use of different strategies. Hence, in the numerical tests presented the nonlocal integral and fracture energy-287

based approach are alternatively employed at the macroscale.288

To solve the offline micromechanical problems (Section 4.1), the same FE approach used for the single UC re-289

sponse is adopted.290

6.1. Vertically loaded masonry slab291

The behavior of a simply supported masonry slab vertically loaded at the mid-span is analyzed. The specimen is292

characterized by a running bond texture obtained by arranging 230 mm × 76 mm × 110 mm bricks with 10 mm thick293

mortar. Overall size and loading conditions considered are depicted in Fig. 7. Similar specimen was studied in [28].294

Second row of Table 1 is referenced for the mechanical parameters assumed for the constituent materials.295

To assess effectiveness of the presented formulation, the results obtained with the multiscale model are compared296

with those evaluated through a detailed micromechanical model, based on the same constitutive assumptions. The297

latter model discretizes bricks and mortar joints with solid linear-elastic 8-node hexaedral isoparametric elements and298

4+4-node nonlinear isoparametric interface elements, respectively [3].299

Fig. 8 compares the load-deflection curves obtained with the proposed multiscale approach with that deriving300
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Figure 7: Geometry of the masonry slab vertically loaded (dimensions in millimeters)

from the micromechanical simulation (black curve). The multiscale analyses are based on different in-plane subset301

arrangements, all dividing the UC thickness in nt = 10. The blue curve refers to the case of uniform TFA 1+2, the red302

curve to the uniform TFA 1 + 10 and the green curve to the NUTFA 1 + 2. The nonlocal integral approach is adopted303

to regularize the numerical solutions [3], by adopting a nonlocal radius equal to 35 cm.304

The results clearly show that the TFA 1 + 2 model leads to a wrong evaluation of the structural performance, as305

this model considers piece-wise uniform distributions of inelastic quantities and coarse in-plane subset discretization.306

By contrast, good predictions are detected with the uniform TFA 1 + 10 and NUTFA 1 + 2 models. The peak loads307

and softening branches satisfactorily reproduce the micromechical behavior. However, the total number of inelastic308

variables to be determined in the NUTFA 1 + 2 model is lower than that required from TFA 1 + 10, and, thus, the309

NUTFA 1 + 2 is computationally less expensive than the TFA 1 + 10.310

According to the micromechanical results, damage firstly develops in the head joint subsets located at the mid-311

span due to mode I of fracture and, then, spreads around affecting also the bed joint subsets. Fig. 9 shows the resulting312

damage distribution, plotted in the amplified deformed configuration of the structure, referred to (a) micromechanical313

and (b) multiscale NUTFA 1 + 2 models, respectively.314
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Figure 8: Global response curves of the masonry slab in Fig. 7
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Figure 9: Crack pattern at the end of the analyses: (a) distribution of the damage variable D at the interfaces for the micromechanical model and

(b) average damage occurring in the UC subsets of the multiscale NUTFA 1 + 2 model

6.2. Masonry wall under eccentric load315

The second application concerns the unreinforced wall depicted in Fig. 10. This specimen was experimentally316

tested during the campaign conducted by D’Ambra et al. [13] and its structural behavior is numerically studied in317

[12, 32]. The geometry of the wall considers a running bond arrangement for the 250 × 55 × 120 mm3 clay bricks,318

with mortar joints having an average thickness of 10 mm.319

A UPN steel beam is placed at the base to connect the wall to the floor, so that a cylindrical hinge boundary restraint320

configuration is obtained at the bottom edge. A second UPN steel beam is placed on one lateral edge. This is fixed to321

a rigid steel frame in order to provide a fully clamped restraint configuration on this edge. Hence, a concentrated load,322

orthogonal to the wall plane, is applied at the top corner on the opposite vertical edge, to induce a double-bending323

stress state. The load is applied by means of an hydraulic jack and a 300 mm × 300 mm × 10 mm steel plate, and is324

constantly increased under displacement control until specimen failure.
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Figure 10: Geometry of the masonry wall subjected to out-of-plane loading (dimensions in millimeters)

325

The mechanical behavior of the wall is numerically reproduced by the proposed multiscale shell model, adopting326

the material parameters calibrated in [12] for the bricks and mortar, and reported in the third row of Table 1.327
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The FE mesh for the masonry consists of 20 × 21 = 420 rectangular elements, while the loading steel plate is328

explicitly modeled with additional linear elastic shell FEs. The edge UPN beams are simulated by imposing proper329

boundary conditions to the wall. In particular, for nodes located at the bottom edge, all three displacement components330

are restrained, while rotations are permitted. By contrast, although the vertical beam was fixed to a rigid frame, it331

emerged that this was not able to provide full rotational restraint about its axis. Therefore, for nodes located at the332

fixed lateral edge, all displacement and rotation components are restricted except for the rotation about the vertical333

direction. To simulate the partial flexibility of the beam, distributed rotational springs are applied along the vertical334

direction.335

Three alternative subset discretizations are considered in the numerical simulations. These all consider the UC336

thickness divided in nt = 10, but assume different subset arrangements in the in-plane directions, as depicted in337

Figs. 4(a), 4(c) and 4(d). Hence, in the following, the results obtained with the uniform TFA 1 + 2 and 4 + 10 are338

compared with those evaluated with NUTFA 1 + 2.339

Fig. 11 shows the global response curves obtained with the proposed multiscale model in terms of applied force340

versus out-of-plane displacement of the loaded point. These are compared to the experimental results (black curve).341

All numerical models give the same solution until the applied load reaches the value of about 2.3 kN, i.e. when a342

diagonal crack starts growing from the top corner of the fixed vertical edge to mid-height of the opposite edge (see343

also Fig. 12(b)), due to the bending deformations of the wall that couple with the torsional one. For higher load,344

TFA 4 + 10 (red curve), which considers a piece-wise uniform but detailed approximation of the mortar inelastic345

deformations, gives good results, correctly capturing wall collapse. By contrast, TFA 1+ 2 (blue curve), with a coarse346

piece-wise uniform subset discretization, cannot reproduce the failure mechanism, although it shows the correct crack347

formation pattern. Finally, NUTFA 1+2, with a coarse but piece-wise linear inelastic deformation assumption, almost348

well matches the TFA 4+10 solution and the experimental outcomes. For this model, Fig. 12 shows (a) the distribution349

of the average damage occurring in all subsets of the UC and compares it with (b) the experimental counterpart.350

6.3. Masonry vault under differential settlements351

The proposed multiscale NUTFA model is used to analyze the response of a masonry barrel vault under differential352

settlements. The specimen, schematically shown in Figure 13, is characterized by the following overall geometric353

parameters: medium radius equal to 2060 mm, span and width equal to 3980 mm. The running bond texture is354

obtained by arranging 250 × 55 × 120 mm3 bricks and mortar joints with average thickness equal to 10 mm, resulting355

in a vault thickness equal to 120 mm.356

The structural behavior is studied under a horizontal displacement along the Z direction imposed at one of the357

abutments (Fig. 13). A two-step analysis is performed: first, the self weight is applied; then, the imposed displacement358

is gradually increased up to its final value of 5 mm. Mechanical parameters ruling the response of bricks and interfaces359

are contained in the last row of Table 1. These are set according to data reported in [1], where same specimen is tested360

by adopting a micromechanical model made up of 3D solid FEs for the bricks and plane interfaces for the mortar joints.361
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Figure 11: Global response curves of the wall under out-of-plane load
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Figure 12: Crack pattern: (a) average damage distribution obtained with the NUTFA 1 + 2 model at the out-of-plane displacement of the loaded

point equal to 7.2 mm and (b) experimental outcomes [12, 13]

Hence, the numerical outcomes obtained with the presented multiscale formulation are compared in the following with362

those derived from the detailed model adopted in [1].363

The NUTFA simulation is performed subdividing the representative UC in nt = 10 layers across the thickness and364

assuming nb = 2 and nh = 1, similarly to Figure 4(d). The resulting load-displacement global curves obtained with365

the two models are shown in Figure 14, exhibiting an overall good match. The discrepancies shown in the figure are366

a consequence of the different intrinsic characteristic of the two models. In fact, as opposed to the continuum shell367

model here proposed, the model in [1] explicitly considers the heterogeneous and discrete nature of masonry.368

Moreover, the multiscale solution (green dashed curve) shows an irregular trend and a slightly more flexible369

response with respect to the referred micromechanical curve. Each drop in the resisting force is due to the sudden370

formation of a damaged area that involves a large portion of the vault, comparable to the single FE size, while, in a371

16



real specimen, damage is confined to the size of mortar joint. Thus, the effect of the damaging process is a little more372

evident than in the micromechanical solution.373

Figure 15 shows the distribution of the average damage in the subsets of the UC. This is plotted over the (amplified)374

deformed configuration of the vault at the last step of the analysis. In agreement with the failure mode predicted in375

[1], four significant cracks arise along mortar joints. In particular, damage starts at the vault abutments and, then,376

propagates towards the middle of the vault forming two diagonal bands.377
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Figure 14: Global response curves of the vault under differential settlements

7. Conclusions378

In this work an enhanced Transformation Field Analysis procedure tailored to the multiscale analysis of periodic379

masonry has been presented. The response of the shell model at the macroscale is deduced via homogenization from380

that of a representative 3D unit cell defined at the microscale. The nonlinear parts of the UC, i.e. the interfaces rep-381

resenting mortar joints, are divided into regions where pre-assumed non-uniform variations of the inelastic quantities382
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Figure 15: Average damage distribution at the ultimate imposed displacement obtained with the NUTFA 1 + 2 model

are considered. In detail, linear interpolation along the UC mid-plane is adopted for the inelastic component directed383

along the UC thickness, accounting for damage and slip. This assumption permits to avoid the fine subset partitions384

needed in case of piece-wise uniform distributions of nonlinearities over mortar joints [2, 3], but requires to solve the385

damage and friction problems in further points identified in each subset.386

Effectiveness of the proposed NUTFA model has been proved at both material and structural level by analyzing387

the bending and torsional behavior of a running bond UC and the response of three masonry structures, respectively.388

The numerical results have been compared to micromechanical and experimental outcomes, considered as reference389

solutions, and a comparative study has been conducted to evaluate advantages and disadvantages of the adoption of390

the NUTFA with respect to the uniform TFA.391

The numerical simulations of the UC showed that the NUTFA model impressively improves predictions of the392

uniform TFA model, if the same coarse subset ’in-plane’ partition is considered for the two models. Instead, in case393

of torsional behavior, the NUTFA solution poorly approaches the micromechanical one and, thus, in this case, the394

best evaluation of the micromechanical behavior is achieved with the uniform TFA characterized by refined subset395

arrangement. At the structural level, the NUTFA model satisfactorily describes the overall response of the analyzed396

elements, proving to be able to predict failure load and occurring cracking paths.397

To summarize, the proposed NUTFA appears as an effective alternative tool to the uniform TFA to analyze the398

response of regular masonry, also considering curved geometry and subjected to both in-plane and out-of-plane load-399

ing conditions. Certainly, the technique can be further improved by including higher order variations of the nonlinear400

variables over each subdomain, such as parabolic or cubic, but this in turn increases the model complexity making401

harder the solution of the damage-friction problem in each subset.402
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