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ABSTRACT
In this work, an extended classical nucleation theory (CNT), including line tension, is used to disentangle classical and non-classical effects in
the nucleation of vapor from a liquid confined between two hydrophobic plates at a nanometer distance. The proposed approach allowed us
to gauge, from the available simulation work, the importance of elusive nanoscale effects, such as line tension and non-classical modifications
of the nucleation mechanism. Surprisingly, the purely macroscopic theory is found to be in quantitative accord with the microscopic data,
even for plate distances as small as 2 nm, whereas in extreme confinement (<1.5 nm), the CNT approximations proved to be unsatisfactory.
These results suggest how classical nucleation theory still offers a computationally inexpensive and predictive tool useful in all domains where
nanoconfined evaporation occurs—including nanotechnology, surface science, and biology.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0140736

I. INTRODUCTION

Nucleation of bubbles in nanoconfined liquids has a major
importance in diverse fields such as physics, chemistry, engineering,
and biology: the proximity of two hydrophobic surfaces promotes
the evaporation of the intervening liquid,1 which, for instance, can
be exploited in self-recovery superhydrophobic surfaces2–6 and is
crucial to achieve extrusion of liquids entrapped within nanoporous
materials7–15 and in nanofluidic circuits.16 In biology, the forma-
tion of localized vapor pockets gives rise to attractive forces between
hydrophobic protein residues,17–19 playing a major role in protein
folding20,21 and gating of ion channels.22–26

In this work, we devise an exact classical nucleation theory
(CNT) for the formation of vapor bubbles confined between two
infinite parallel plates, showing that different bubble morpholo-
gies are possible and dominate at different pressures. This theory
is then used to interpret the existing simulation results of water
cavitation between plates at nanometer separation, discriminating
purely “classical,” i.e., that can be explained in terms of CNT, from
“non-classical” effects. Unexpectedly, we found quantitative agree-
ment of CNT down to plate separations of 2 nm, suggesting that

a 150-year-old theory is still fresh and insightful and, in perspec-
tive, can be used to model and understand more complex phe-
nomena such as nucleation within flexible boundaries such as the
hydrophobic regions of membrane proteins.

II. THE MODEL
A. Fundamentals

The objective of the present section is to offer a brief overview
of the heterogeneous CNT that we make use of and that we are
going to identify as “confinement CNT.” In the classical capillar-
ity framework, the system is supposed to be composed of three
phases—solid, liquid, and vapor. It is assumed that these phases
are divided by geometrical surfaces (which we denote, using sub-
scripts, as Σlv, Σsl, Σsv) and that phases display bulk properties up to
the interface (sharp interface approximation). The convenient free
energy (i.e., the grand canonical potential27) of the system can now
be expressed as a sum of the bulk and interface terms of the vari-
ous phases. Since the nanoscale confinement line tension has been
shown to be relevant,9,11 we also include free-energy terms scaling
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with the length of the triple line (i.e., the line where the three phases
meet).

In our treatment, we are going to consider a rigid confinement
such that the solid surface (Σs = Σsl ∪ Σsv) does not change during
nucleation. Due to this assumption, the bulk term in the free energy
associated with the bulk solid phase is constant and can be set to
zero without the loss of generality. For the same reason, the sum of
the areas of the solid–vapor and solid–liquid interfaces is constant
Asv + Asl = Area(Σsl ∪ Σsv) = const.

Under the aforementioned assumptions, the grand potential
can be expressed, up to a constant, as

Ω = −PvVv − PlVl + (γlvAlv + γslAsl + γsvAsv) + τllvs, (1)

where the {l, s, v} subscripts denote the liquid, solid, and vapor
phases, respectively. More specifically, by Alv = Area(Σlv), we iden-
tify the measure of the liquid–vapor interface, and Pi and V i are the
pressure and volume of the i-th phase, respectively, while by γαβ, we
denote the surface tension associated with the Σαβ interface between
phases α and β. By τ, we denote the line tension, and llvs is the length
of the liquid–vapor–solid triple line. It is also possible to notice how,
under the hypothesis that solid surfaces do not vary, all the terms in
Eq. (1) can be expressed in terms of Σlv: Σlv separates the liquid and
vapor domains of the fluid (hence giving Vv and V l) and its inter-
section with Σs unambiguously determines Σsl and Σsv; thus, one can
express Ω[Σlv].

The central quantity in CNT is the free energy necessary to
form a nucleus of the new (vapor, in our case) phase,28–30 expressed
as the difference ΔΩ ≡ Ω −Ωref between the grand potential of the
nucleating system and that of the initial metastable state (here state
corresponding to the fully wet solid), Ωref = −PlV tot + γslAs,tot, where
V tot is the total volume available to the liquid and As,tot is the total
area of the solid. This quantity is expressed as

ΔΩ = ΔPVv + γlv(Alv + cos θY Asv) + τllvs, (2)

where ΔP ≡ Pl − Pv and cos θY ≡ (γsv − γls)/γlv is the Young contact
angle.

B. Confinement classical nucleation theory
1. Nucleation as a sequence of constant mean
curvature shapes

Confinement CNT allows us to compute the most probable
shapes of a vapor bubble as it grows quasistatically and, from them,
construct the nucleation path.31,32 This construction is achieved by
minimizing the functional ΔΩ with respect to Σlv. This minimiza-
tion is performed while constraining the vapor volume Vv to a given
value Z, e.g., using a Lagrange multiplier λ (see, e.g., Refs. 31 and 33),

ℒ ≡ ΔΩ[Σlv] − λ(Vv[Σlv] − Z). (3)

This procedure singles out the most favorable configuration(s) in
terms of free energy associated with a given bubble size, that is, at
a fixed advancement of the nucleation process.

Using this Lagrange multiplier formalism, it is straightforward
to demonstrate that the Euler–Lagrange equations for the stationary

solutions of this variational problem can be recast in a generalized
version of the usual Laplace equation, where λ is added to ΔP,

ΔP + λ = 2γlvH, (4)

where H denotes the mean curvature of the liquid–vapor dividing
surface; we also take the occasion to remind that the sign of the
mean curvature depends on the choice of the normal vector, and
that throughout the paper, we will consider the normal vector to
be in the liquid domain, thus the mean curvature for a spherical
vapor bubble will amount to −1/R. Since the nucleation path can be
thought as a succession of minimizers of ℒ of the increasing vapor
volume, it will be represented by a sequence of bubble shapes having
constant mean curvature (CMC), H = const. At the particular points
where λ = 0, the free energy ΔΩ attains its extrema and the Laplace
equation is recovered. For example, in the classical case of homoge-
neous cavitation, the nucleation path corresponds to a sequence of
spherical bubbles with an increasing radius with the critical one
attained at R = 2γlv

−ΔP .
In the confined case, Laplace’s equation has to be supple-

mented with a boundary condition prescribing the angle at which
liquid–vapor surfaces meet with the solid walls. We will return to
this point in Subsection II C when discussing the general case in the
presence of a line tension.

C. Classical nucleation between parallel planar
surfaces in the presence of a line tension

In this article, we focus on axisymmetric vapor bubbles,34,35

confined between planar surfaces.36

The geometry that will be considered is one composed of
two infinite parallel plates. This geometry is not exclusive to vapor
nucleation studies, but it is also common to investigations of the
(thermodynamic) Casimir forces mediated by thin confined films
close to the critical point (see, e.g. Ref. 37). Within the present CNT
framework, in order to comply with force balance at the bound-
ary, CMC bubble surfaces have to satisfy the boundary conditions
dictating the specific shape of the various bubbles. In the absence of
a line tension, this boundary condition is represented by the familiar
Young equation prescribing the contact angle at which vapor bub-
bles approach the solid surface. In addition, this latter equation can
be obtained variationally.31

When considering the presence of a line tension, it can be
shown, using variational arguments that are not dissimilar from
those previously discussed, how the addition of a triple line tension
results in an additional term in the Young equation,38 which is pro-
portional to the geodesic curvature of the triple line, when thought
as a curve on the surface of the solid boundary with a proportionality
factor that amounts to the ratio τ/γlv.

When the bubble is axisymmetric and the solid surfaces are
planar, as in the cases considered in this work, the geodesic curva-
ture assumes a simple expression and the Young law, which can be
recast into the much simpler form (Ref. 39),

cos θ = cos θY +
τ

γlv

1
Rb

, (5)

where Rb is the base radius of the bubble.
From a geometrical perspective, the addition of a line tension

to the model is not directly able to change the general CMC shape of
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droplets, whose shape, within CNT, is prescribed by Eq. (4). Yet, the
presence of line tension results in a complicated boundary condition
prescribing a size-dependent contact angle [see Fig. 5(d)], which is,
in general, different from the Young one. It should be noticed that,
by introducing a line tension, one also introduces an intrinsic length-
scale, defined by the ratio τ/γlv, disrupting the general property of
capillary shapes to be scale invariant.

D. General form of axisymmetric CMC surfaces
Restricting our attention to axisymmetric surfaces makes it

possible to considerably simplify the problem of determining the
bubble shapes, making it tractable analytically or semi-analytically.
This is due to the fact, proven almost two centuries ago by
Delaunay,40 that there exist only a limited number of families of
axisymmetric CMC surfaces.

Such surfaces have in common the fact that they are generated
by the revolution along the x-axis of curves that are rouloids of conic
sections. These curves, known as the undulary, the nodary, and the
catenary, represent the locus of the points spanned by the foci of dif-
ferent conic sections when rolling without slipping along the x axis.
More specifically, the undulary is the locus of points occupied by
the focus of an ellipse while rolling along the x axis, the catenary is
similarly generated by the focus of a parabola while the nodary is
generated by the focus of a hyperbola. The rouloid curves, together
with their surfaces of revolution, are shown in Fig. 1. The more
familiar CMC surfaces represented by the cylinder and the sphere
can also be rationalized in the same framework by considering these
shapes as the result of the revolution, respectively, of a straight line of
a semi-circle (i.e., the rouloids for a circle and a degenerate ellipse).
Adding to the surfaces mentioned previously, the plane is finally the
last member of the Delaunay family of CMC surfaces of revolution.

The six families: cylinders, spheres, catenoids, unduloids,
nodoids, and planes correspond to the totality of axisymmetric
CMC surfaces. We refer to Refs. 41 and 68 for an enlightening review
of this subject.

Although the classification of axisymmetric CMC surfaces
dates back to Delaunay, it was not until 50 years ago that
Kenmotsu derived convenient closed-form expressions for such sur-
faces in terms of elliptic integrals.42 Variations of such expressions
are reported in Subsection 2 of the Appendix.

FIG. 1. Rouloids of conics and their associated surfaces of revolution. Along with
planes, these surfaces represent the totality of CMC surfaces of revolution.

It is now clear how the candidate solutions to our variational
problem for the minimal bubble shapes in confinement, associated
with the given value of the vapor volume, should be singled out by
selecting suitable portions of a CMC surface Σlv, compatible with
the prescribed curvatures, vapor volumes, and boundary conditions
[i.e., the contact angle prescribed by the generalized Young law,
Eq. (5)]. This procedure amounts to determining the coefficients
(e.g., B, or a and c for the parametrizations given in Subsection 2
of the Appendix) in the expressions for the constant mean curvature
surfaces. This procedure can be performed analytically for the sim-
plest cases (e.g., in the absence of line tension) or numerically in the
other cases.

From the previous discussion, it is clear how finding a section
of a mean curvature surface satisfying prescribed boundary condi-
tions corresponds to the solution of a boundary value differential
problem. As such uniqueness of the result is not guaranteed and, in
general, several shapes exist satisfying the CMC and boundary con-
ditions. In particular, unduloids and nodoids are periodic functions
and, typically, more than one section of these surfaces is compati-
ble with a given bubble volume and contact angle (see Sec. I C). In
this case, CNT suggests that the most probable bubble configura-
tion is the least energetic one. We will, therefore, screen candidate
(constrained) minima via Eq. (2).

E. Nucleation of vapor between hydrophobic
parallel plates

In the following discussion, we focus on nucleation occur-
ring between two hydrophobic parallel plates (see, for instance, the
right panels of Fig. 2). Two main families of bubble geometries are
relevant in such confines: a spherical-cap bubble in contact with one
wall and an hourglass-shaped bubble bridging the two walls [see
Figs. 5(b) and 5(c), respectively]. As the hourglass-shaped bubble
grows along its nucleation path and its volume changes, the mean
curvature H varies proportionally to the Lagrange multiplier λ and
bubble shapes change with continuity. In this discussion, we have
neglected the possibility of spherical bubbles nucleating in the bulk,
and of multiple surface-attached spherical caps, which can be shown
to be non-minimal in terms of ΔΩ.

Within the present framework, it is, particularly, instruc-
tive to single out zero mean curvature bubbles, which at (bulk)
liquid–vapor coexistence (ΔP = 0), correspond to unconstrained
extrema (i.e., maxima in this case) of the grand potential. These
shapes correspond naturally to the most energetic bubbles along the
nucleation path, that is, the transition state.

An analytic solution to the problem of finding an axisymmetric
surface with zero curvature dates back to Meusnier,43 who in the late
XVIII century proved that the only minimal surfaces of revolution
are the plane and the catenoid, i.e., the surface obtained through a
rotation around the x axis of the graph of a catenary.

At ΔP + λ = 0 (i.e., H = 0), a regular maximum of the grand
potential functional ΔΩ(Vv) corresponds to the catenoid, for which
the analytical expression has the simple form

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x = u,

y = 1
a

cosh(a u) cos(ϕ),

z = 1
a

cosh(a u) sin(ϕ).

(6)

J. Chem. Phys. 158, 134708 (2023); doi: 10.1063/5.0140736 158, 134708-3

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0140736/16823785/134708_1_5.0140736.pdf

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 2. Free-energy barriers for nucleation between plates computed via umbrella
sampling simulations from Ref. 45 (orange circles), Ref. 46 (green hexagons),
and Ref. 47 (blue squares) and via the present CNT with τ = 0 [Eq. (7), solid
blue line]. All thermodynamic parameters in Eq. (2) (ΔP = 0, γ = 0.0636 N/m, and
θY = 135○) were computed by independent molecular dynamics simulations such
that no fit parameters were required. The bars represent the CNT calculations
repeated for τ = −5 and 5 pN. Right panels show, respectively, a sketch of a
section of the system, defining the effective and nominal distances between plates
and a MD snapshot of the system described in Ref. 47.

Summarizing, there are six axisymmetric morphologies of con-
stant curvature that can describe bubble shapes compatible with
CNT, as specified by Eqs. (4) and (5): the sphere/spherical cap, the
plane, the cylinder, the catenoid, the unduloid, and the nodoid. In
particular, the nucleation path is constituted by the succession of
bubbles having the minimum grand potential at fixed Vv; these
bubble shapes are CMC surfaces that are sought for among the
aforementioned bubble morphologies. The values of the parameters
describing the surfaces are eventually determined by the volume
and contact angle of the bubble. For several cases (e.g., τ = 0 and
ΔP = 0), the values of the parameters can be determined analyti-
cally in a simple way. In the other cases, the parameters can be
obtained numerically by minimizing the grand potential in which all
geometrical quantities are expressed through Eq. (A3) or simplified
versions of it.

For τ = 0, ΔP = 0, we obtain an analytical expression for the
energy at the transition state ΔΩ†:

ΔΩ† = −γlvD2 π
4 arcsinh(cot(θY))2

× [2 cot(θY)(csc(θY) − ∣csc(θY)∣) − 2 arcsinh(cot(θY))]
= ℵ(θY)γlvD2. (7)

We notice that, in the absence of line tension, since no explicit
lengthscale characterizes the system, the D2 scaling of ΔΩ† in the
previous expression could be deduced from purely dimensional
arguments, as the free energy for the transition state bubble will
scale proportionally to the bubble surface. When nucleation barriers
appear to scale as D2, we may, therefore, conclude that the behavior
is consistent with CNT in the absence of line tension. The expres-
sion provided in Eq. (7) was also found to be in very good accord, at
least for certain values of the contact angle, with the approximated
expression proposed in Ref. 44 resulting from identifying the critical
bubble as the (non-CMC) surface generated by the revolution of a
circular arc.

III. RESULTS AND DISCUSSION
A. Comparison with simulation data, effect
of the line tension

In this section, we exploit the CNT summarized in Sec. II C
to interpret the nucleation free-energy barriers obtained by means
of accurate simulations in a sequence of papers45–47 that focused on
the confined nucleation of vapor between hydrophobic plates. This
procedure allowed us to rationalize the scaling of free energy barriers
with the plate distance and to narrow down a range of values for the
line tension τ.

Since our CNT is based on the sharp interface assumption, it is
clear that some convention on the positioning of the interfaces has
to be assumed when interpreting atomistic simulation data; this is
especially relevant for the positioning of the plates. In the following
discussion, we assume the solid interfaces to be shifted by σ = σO–O
away from the nominal positions of the wall atoms, accounting for
the excluded volume at the plates (see right panels of Fig. 2). We are
going to refer to this measure for the plate distance as Deff, whereas
we indicate the nominal plate distance, which is typically addressed
in the simulation work, with the symbol Dnom. The same conven-
tion was adopted also when independently measuring the contact
angle (see Fig. 9).

Figure 2 directly compares the CNT results using our conven-
tion for the plate distance D and the atomistic free-energy barriers
from Refs. 45–47. Thermodynamic and material properties of the
atomistic system are taken from the literature or computed via
independent molecular dynamics (MD) simulations: ΔP = 0,
γ = 0.0636 N/m, and θY = 135○ (for details, see Subsection 1 of the
Appendix). We remark that there are no fitting parameters, besides
the uneludible need of choosing a sensible convention to express
the atomistic plate distances. With these positions, it is seen that
τ = 0 pN yields a quantitative accord with the atomistic data. The
bars further indicate that all simulation results seem to fall within
the narrow range τ = 0 ± 5 pN, a small value that is smaller than
previous reports, but which is found to be consistent with recent
simulations performed by Bey et al.48 In this recent paper, the
authors performed a direct measurement (based on the Navascués
and Tarazona theory49) of the line tension of SPC/E water on similar
model hydrophobic substrates obtaining values of the line tension in
the same range.

Within our new estimate of τ, it is clear that the dominant
contribution to the free-energy barriers, and thus to the nucleation
kinetics, comes from the surface terms in Eq. (2). In other words,
even at two-phase coexistence (ΔP = 0), the competition between
the cost of forming a liquid–vapor interface and the free-energy gain
obtained by dewetting a portion of the hydrophobic walls is suffi-
cient to determine the thermally activated drying of the two plates
even without invoking major line tension effects. Accordingly, the
CNT expression for the free-energy barriers is ΔΩ† = α(θY)γD2, in
agreement with the scaling predicted in Refs. 50 and 51 for which we
have provided the full the analytical expression, Eq. (7).

CNT in the absence of line tension offers an additional inter-
pretation on the ΔΩ† ∼ D2 scaling: if the free energy is dominated
only by surface terms, all the transition-state bubbles are the same up
to a simple geometrical rescaling. When τ ≠ 0, the intrinsic length-
scale imposed by the τ/γ term in the generalized Young equation
results in a more complicated scenario, where these simple scaling
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arguments do not apply anymore, due to the size-dependent shape
of the transition-state bubbles which have different contact angles.
Figure 3 clearly shows the different scalings of ΔΩ†(D) with
and without the line tension: in a log–log scale ΔΩ†(Deff)∣τ=0

is
represented by a straight line, indicative of the expected power
law behavior. When, instead, τ ≠ 0, deviations are observed which
become more prominent at small plate distances (Dnom ∼ 2 nm).
Interestingly, the largest deviations are observed for negative line
tensions, which account for effectively more hydrophobic plate
behavior.

A fruitful test of CNT may also be carried out by focusing on
nucleation rates, a quantity of direct experimental interest; object
of this comparison is the rates of nucleation obtained via forward
and reverse flux sampling simulations by Sharma and Debenedetti,
Ref. 52. In order to perform a comparison between our theory, which
provides an expression for nucleation free-energy barriers and the
nucleation rates, we use the Eyring30,53 expression for the rate j,

j = j0 exp(−ΔΩ†(D; τ)
kBT

), (8)

where j0 is a prefactor, and the dependence of the free-energy bar-
rier on the relevant parameters has been emphasized. The simulation
data are then compared with the prediction of our CNT model
(Fig. 4). In this procedure, once the material properties and the
thermodynamic conditions have been established as earlier, one
adjustable parameter remains—the prefactor j0, whose effect, in the
logarithmic scale plot provided, is just to rigidly shift the CNT
curves. While the trends of the simulation rates are clearly captured
by CNT for τ = 0, the matching becomes quantitative by adopting
the conventional value j0 = 1 × 1010, which is typically considered
to be a reasonable atomistic timescale for the attempt frequency of
nucleation.9 The associated characteristic reference time of t0 = 1

j0

= 10−10 s is roughly two orders of magnitude larger than the molec-
ular rearrangements in the liquid, as quantified, for example, by
the typical hydrogen bond lifetime 10−12 s.1 In this regard, it is
useful to recall how the relatively flat barriers observed in correspon-
dence with the transition states support the possibility of frequent
barrier recrossings.54 Due to such events, the value j0 = 1 × 1010 that

FIG. 3. Log–log plot of the free energy barriers ΔΩ† as a function of the effective
plate distance Deff, displaying the power law behavior of the free-energy barriers
for τ = 0. The slope of the green line is exactly 2 accounting for the the ΔΩ†

∼ D2 scaling, which is lost when τ ≠ 0 (solid lines). The dotted-dashed curves are
straight lines to be used as a guide to the eye. The slope of the dashed lines is
derived from a polynomial fit of the large Deff behavior for the various curves.

FIG. 4. Nucleation rates computed via FFS simulations (from Ref. 52, symbols) and
computed by the exact CNT with τ = 0 (solid line). The thermodynamic parameters
are taken from the literature or computed via independent MD simulations are
θY = 135○, γlv = 0.063 N/m, and τ = 0. The prefactor j0 = 1 × 1010 s−1 is the
only adjustable parameter, which has the only effect of shifting vertically the curve,
without changing its trend. It is to be remarked how the volume normalization of
the original rates was refactored into the [s−1] expression for the rates hereby
presented. This change in normalization accounts for the fact that in CNT, given
the fact that plate size is comparable to the critical bubble, only a single nucleation
site is found. This refactoring of the normalization corresponds to a small vertical
shift, which can easily be confused with the exponential prefactor.

we observe to be compatible with available simulation data could
be interpreted as an effective prefactor that has been corrected, via
a transmission coefficient, to account for these eventual recrossing
events. In this regard, it is possible to notice how typical values for
these transmission coefficients can be in the order of 10−1–10−2, sup-
porting a value for the actual rate that is the inverse of an atomistic
attempt frequency.55

As in the case of Fig. 2, the analysis of nucleation rates under-
scores how smaller to vanishing line tension values τ = 0 ± 5 pN
yield good agreement between the atomistic data and CNT.

It is somewhat surprising that the simple and generic sharp-
interface CNT is in quantitative agreement with simulation data
reported by different authors and obtained with different simulation
techniques for the nucleation of water between simple hydrophobic
planar walls.

At the same time, it should be noted that our result does not
rule out line tension in the general case, for its value might depend
on the confining geometry.56 For example, experimental data on
water in hydrophobized MCM-41 nanopores reported τ = −30 pN9

and a similar figure are obtained in MD estimates.11 In this lat-
ter system, the cylindrical geometry of the pores imposes bubble
shapes in which the triple line terms are magnified, especially close
to the transition state. Altogether, our study brings to the conclu-
sion that accurate sharp-interface models are necessary to interpret
experimental and computational data to extract the elusive line
tension.

Summarizing, the exact CNT presented here pushes the value of
line corrections extracted from the data of water cavitation between
plates down to values smaller than 5 pN in the absolute value. Impor-
tantly, this result suggests that the classical budget of the volume
and surface terms in (2) yields accurate estimates of the free-energy
barriers for nucleation in confinement between plates. This tool
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is conceptually simple and computationally inexpensive and thus
shows promise for investigating wetting and drying phenomena at
the nanoscale.

B. Nucleation pathways at liquid–vapor
coexistence via CNT

In order to further test the predictions of the CNT hereby
presented, it is instructive to analyze the full nucleation pathway.
Earlier simulation reports, e.g., Ref. 47 have established that, at
thermodynamic conditions close to liquid–vapor coexistence, the
typical nucleation pathway is characterized by initial density fluc-
tuations that eventually result in the formation of a vapor bubble
attached to one of the walls. This spherical-cap bubble grows until
an “hourglass-like” bubble becomes more energetically favorable.
The maximum of the free energy (and thus the transition state)
is found in correspondence with this hourglass morphology. Sub-
sequent growth of the bubble results in the spontaneous growth
of the hourglass-like shape, until the finite size of the simulated
plates induces the pinning of the triple line not considered in the
present theory. Figure 5 shows that the current CNT predicts a sim-
ilar path formed by the juxtaposition of two free-energy branches
corresponding to the spherical-cap and hourglass morphologies
which dominate at small and large bubble volumes Vv, respectively.
Bubble morphologies can be expected to depart from the atomistic
ones for finite plates at low Vv, because water density fluctuations
are not captured by CNT, and at large Vv, because the infinite plates
of our CNT do not induce pinning.

The qualitative agreement between the atomistic and CNT
nucleation mechanisms further motivated us to quantitatively test
the CNT predictions for the entire free-energy profile against avail-
able simulation data.47 The detailed comparison is presented in
Fig. 6. In general, the agreement of the free-energy profiles appears
fair, with major deviations of CNT from atomistic data observed
only for the system with the smaller plate distance Dnom = 14 Å; in
this case, the effective distance between the plates Deff < 1 nm. For
the other systems (Dnom = 17, 20, and 23 Å), the central part of the

FIG. 6. Nucleation free-energy profiles for ΔP = 0 and for nominal plate dis-
tances Deff = 23, 20, 17, and 14 Å. The dashed lines are used for the atomistic
results of Ref. 47 while solid lines for CNT (obtained using τ = 0, γ = 0.0636 N/m,
θY = 135○, and an horizontal shift ΔVv = 2200 Å3, see the main text). The inset is
a magnification of the free-energy profile for D = 23 Å close to Vv = 0; the dotted-
dashed line indicates the parabolic free-energy due to Gaussian fluctuations; the
dotted line is the CNT solution for a spherical-cap bubble. In order to obtain a
fair comparison between the finite plate simulations and the infinite plates CNT,
the curves corresponding to CNT solutions were truncated at a volume that cor-
responds to an hourglass-shaped bubble whose minimum distance from the plate
edges is smaller than σO–O.

free-energy profiles, including the transition state, is in quantitative
accord with simulations, while deviations appear at small and large
Vv for different reasons, explained below.

At small Vv, atomistic effects are observed to dominate the
simulation free energies, accounting for the deviation between
simulations and CNT. In particular, Gaussian density fluctuations
in the confined liquid without the formation of an actual interface
are expected at the molecular scale,17,47,57 while CNT is a mean-field
theory according to which the smallest bubbles possess a well-
defined and sharp interface. These behaviors are known to give rise

FIG. 5. (a) Free-energy profile for nucle-
ation between plates for selected values
of the pressure difference ΔP (τ = 0,
γ = 0.0636 N/m, θY = 135○, and Deff

= 20 Å). Symbols denote the free-energy
maxima occurring at the hourglass con-
figuration (filled circle), at the kink
(triangles), and at the spherical-cap
bubble (hexagon). (b) and (c) Illustration
of the axisymmetric solutions of Laplace
equation between plates: a spherical-
cap bubble in contact with one plate (b)
and a hourglass-shaped one bridging the
two plates (c). (d) Illustration of growing
hourglass-shaped bubbles in the pres-
ence of a negative line tension, ( τ/γ

Deff
= 0.078 62, θY = 135○) accompanied
by a sketch of the contact angle values
attained along the growth of the bubble.
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to opposite curvatures58 in the free energy profile (see the inset in
Fig. 6). Since the volume of the vapor bubble in the fluctuation-
dominated regime is actually zero, the comparison in Fig. 6 is made
by adding a small horizontal shift to the CNT profiles, which allows
the superimposition of the free-energy branch corresponding to the
spherical cap, not dissimilar from what can be observed in Ref. 47,
Fig. 5. The value ΔV = 2200 Å3, which may look arbitrary, can be
rationalized by measuring, in independent simulations, the actual
volume associated with the liquid phase intruding the plates. The
small ΔV emerges as the difference between the inter-plate volume
measured according to the effective plate distance convention and
the actual volume occupied by water molecules. Using a convex hull
to estimate by excess this latter quantity, we were able to measure,
in independent simulations, a ΔV of roughly 1900 Å3. It should also
be noticed how a certain degree of approximation in the mapping
between CNT and atomistic simulation is inherent in the fact that
atomistic simulation free energies are obtained using the number
of atoms N within a control volume as the order parameter, while
CNT uses the bubble volume Vv. In the present comparison, a con-
stant density was used to convert N into Vv; this approximation is
good for larger volumes, yet it deteriorates for small values Vv. The
agreement, with the volume shift explained previously, is excellent
for the spherical cap regime and in the vicinity of the transition
state, especially for the cases D = 23 and 20 Å in which a proper
bubble is formed before the transition state (see below). It is also
useful to notice how the slope for the spherical bubble branch result-
ing from CNT exactly matches the slope obtained in simulations
without any fit, which reassures on the horizontal shift procedure
discussed previously.

For large Vv, the atomistic and CNT free-energy profiles would
tend to diverge for different reasons, related to the finite size of the
plates used in simulations. As a matter of fact, in simulations, the
hourglass bubble becomes pinned at the plate boundary leading to
the emergence of a second minimum in the free energy associated
with the metastably dry plates. For this very reason shown in Fig. 6,
we opted to report the CNT curves associated with bubbles that
are at least σO–O away from the plate boundaries, to reflect the fact
that pinning effects have not been considered in our CNT model,
based on the assumption of infinite plates. Such finite-size effects not
only induce bubble pinning at the edges but also influence indirectly
thermodynamic parameters, such as θY , when the liquid–vapor
interface is close to the plate boundaries.

As already observed by Remsing et al.,47 there is a particular
bubble volume at which the free energy associated with the for-
mation of the spherical-cap and the hourglass bubbles coincide,
resulting in a “kink” in the free energy profile ΔΩ(Vv), associated
with the change in the different slopes of the two branches. It is
known that kink-like features are a signature that the order para-
meters used in CNT and in simulation11,59 are not able to locally
describe a morphological change in the bubble and discontinuously
switch between two minimal bubble morphologies. More in detail,
ordinary CNT assumes that the nucleation pathway is a sequence
of quasi-equilibrium, volume-constrained vapor bubbles; similar
hypotheses are also used in simulations that use the number of water
molecules N or Vv as collective variables. Since these approxima-
tions are equivalent for CNT and the reported simulations, both
feature a kink in the free-energy profile. At pressure conditions far
from liquid–vapor coexistence, it is possible that the maximum of

the free energy profile (transition state) coincides with the kink, as
shown in Fig. 5. While the detailed exploration of this regime is
outside the scope of the present work, it would be desirable in
the future to deploy dedicated methods to overcome the subtleties
associated with a single order parameter/collective variable.11,12,59,60

C. Nucleation regimes via CNT
The agreement with simulation data suggests that the CNT

model can be used as a flexible and computationally conve-
nient tool to predict, at least approximately, nucleation free-energy
barriers, rates, and mechanism. For instance, within the CNT model,
it is straightforward to continuously vary geometrical (D) and ther-
modynamic parameters (ΔP, θY , τ, etc.) and recompute, for each
set, the nucleation path and free-energy profile. This parameter scan
allows one to identify different nucleation regimes, which, in turn,
determine non-trivially the nucleation kinetics via Eq. (8). Here by
“regimes” we refer to the bubble configurations connected to the
free-energy maximum, which change depending on confinement
and thermodynamic conditions.

The CNT predictions for the nucleation regimes are reported
in Fig. 7(a). Recalling Fig. 5, it is seen that decreasing ΔP shifts the
maximum to lower Vv, first to the kink and then to the spherical-
cap configuration. Decreasing the distance D, instead, causes the
free-energy profile connected with the hourglass bubble to become
steeper, while shifting the maximum toward the point where the

FIG. 7. Nucleation regimes as a function of the plate distance Dnom and of the
pressure difference ΔP for τ = 0, γ = 0.0636 N/m, and θY = 135○. Above the red
line, the transition state is an hourglass spanning the gap, while below the blue
line a spherical cap; in the intermediate regime, the transition state corresponds to
a kink in the free-energy profile. Color map encodes the height of the free-energy
barriers, expressed in kBT units. (b) Free-energy profile for Dnom = 20 Å and for
different line tensions: τ = −5, 0, and 5 pN.
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two free-energy branches meet (Fig. 6). Intuitively, as D increases,
one moves toward the single-plate limit, where only the spherical-
cap regime exists. Finally, Fig. 7(b) clearly shows that line tension τ
changes the height of the barriers and the critical volume but has
a minor influence on the nucleation regime, slightly altering the
stability of hourglass-shaped transition states, in which two contact
lines exist.

A partial comparison of the nucleation regimes is possible with
the mesoscale predictions of Ref. 44, remembering that the main
case considered there is that of condensation. Both theories predict
that, close to coexistence (ΔP ≈ 0 or unit supersaturation in Ref. 44),
the hourglass regime is favored over the spherical-cap one, while,
away from this condition, the opposite happens; similarly, both the
macroscopic and the mesoscopic theories predict that increasing
D facilitates the spherical-cap regime. A conceptual novelty intro-
duced by the present CNT approach is that one should consider the
entire nucleation path and not only the transition states: in this case,
the construction in Fig. 5 clearly shows that the nucleation process
must always start with a spherical cap, simply because for vanish-
ingly small Vv, a gap-spanning vapor tube meeting the plates with
the prescribed contact angle cannot exist (in geometrical terms, no
hourglass can be constructed for Vv → 0). The consequence of this
approach is that an intermediate regime between the spherical cap
and the hourglass exists, the kink regime, which actually occupies
a substantial domain in the ΔP vs D plane (Fig. 7). We would like
to underline how this prediction is consistent with the results of
atomistic simulations.47

Summarizing, the present CNT is capable of explaining the
different nucleation regimes between two parallel plates for a variety
of surface chemistries and fluids and in a wide range of thermody-
namic conditions. A favorable comparison is found between CNT
predictions and a number of simulation data obtained by vari-
ous authors with different techniques. Surprisingly, the agreement
between the free-energy barriers computed by MD and by CNT
holds down to very small plate separations of the order of roughly
2 nm. A significant non-classical effect due to equilibrium density
fluctuations was only observed in the confined liquid close to the
fully wet state. These phenomena are well outside the scope of the
present model inspired by macroscopic capillarity, yet in this regard,
the exact CNT solution may help interpreting deviations of the free
energy from this fluctuation-dominated basin as the emergence of a
fully formed spherical bubble.59

IV. CONCLUDING REMARKS
In this work, we have shown the power of an exact classi-

cal nucleation theory at interpreting experiments and simulations
of nanoconfined water. Using this theory as a reference, we
have identified from the results of recent molecular dynamics
simulation46,47,52,61,62 non-classical effects, that is, those which devi-
ate from the hypotheses of classical nucleation theory, for example,
due to nanoscale confinement. Within the CNT realm, line ten-
sion is found to be less important than previously assumed in the
plate geometry, resulting in a reasonable collapse of simulation
data for τ = 0, even for distances between plates close to 2 nm.
Additionally, CNT was able to rationalize the different nucleation
regimes reported in simulations47 and mean-field calculations,44

with the transition state assuming different shapes. Non-classical

effects related to fluctuations of the confined liquid are impor-
tant in the free-energy profiles only close to the fully wet state.
However, these deviations from CNT do not seem to significantly
affect the estimates of the free-energy barriers and of the nucle-
ation rates, demonstrating the capability of simple CNT to predict
the energetics of nucleation in extreme hydrophobic confinement.
In more detail, the computational strategy suggested by the present
results is to use simple microscopic calculations (e.g., molecular
dynamics) only to measure the relevant thermodynamic parameters
(ΔP, γ, and θY , as explained in Subsection 1 of the Appendix)
and computationally inexpensive CNT calculations to treat nucle-
ation phenomena, in the spirit of morphometric thermodynamics.63

This powerful and flexible approach may prove an invaluable tool
to investigate phenomena of interest in nanotechnology, surface
science, and biology far beyond what can be accessed today by
molecular dynamics alone. Future investigations could be devoted to
the investigation of the role of thermal fluctuations for the confined
menisci of present interest via minimization of a non-local energy
functional.64

In conclusion, we observed that in the highly sophisticated sim-
ulation data available, only relatively minor non-classical effects can
be detected as to vapor nucleation between extended planar surfaces
even at nanoscale distance.

ACKNOWLEDGMENTS
The authors acknowledge thoughtful discussion with Matteo

Amabili. This project received funding from the European Research
Council (ERC) under the European Union’s Seventh Framework
Programme (Grant No. FP7/2007-2013)/ERC Grant Agreement No.
339446 and Horizon 2020 research and innovation program (Grant
Agreement No. 803213).

S.M. acknowledges financial support from the Sapienza
University of Rome for financial support via Grant No.
RG11715C81D4F43C and from the University of Ferrara under the
program Finanziamento per l’Incentivo alla Ricerca (FIR) 2020.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Antonio Tinti: Investigation (equal); Writing – original draft
(equal); Writing – review & editing (equal). Alberto Giacomello:
Methodology (equal); Supervision (equal); Writing – review & edit-
ing (equal). Simone Meloni: Supervision (equal); Writing – review
& editing (equal). Carlo Massimo Casciola: Supervision (equal);
Writing – review & editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

J. Chem. Phys. 158, 134708 (2023); doi: 10.1063/5.0140736 158, 134708-8

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0140736/16823785/134708_1_5.0140736.pdf

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

APPENDIX: FINER METHODOLOGICAL POINTS
1. Matching of the thermodynamic parameters
from simulation data

In order to identify non-classical effects, the thermodynamic
parameters appearing in the CNT should be accurately matched
to the atomistic ones. For the liquid–vapor surface tension, we use
the result γ = 0.0636 N/m from Ref. 65; the pressure, instead, is
the coexistence one ΔP = 0 for the considered simulations.47,52 In
the CNT augmented with line tension, τ enters only through the
boundary condition, modifying the contact angle θ as compared to
the Young law, Eq. (5). Therefore, if one wants to compute τ by
comparing CNT with simulations, as in the present case, it is cru-
cial to obtain an accurate estimate of θY avoiding small-size artifacts.
With this aim, we performed 6ns-long MD simulations (∼250 000
Atoms) of a large cylindrical drop with a radius of ∼100 Å (see
Fig. 8), with the same inter-atomic potentials of Refs. 47 and 52
obtaining θY ≈ 135○, a value remarkably close to the one in Ref. 45.
The cylindrical droplet allowed us to avoid line tension contribu-
tions to the contact angle (see for instance Ref. 66). A bulk-like layer
of water is also present below the wall in order to mimic the actual
conditions presented in the literature.

The contact angle was then obtained by calculating the slope of
the circle fitting the density isoline ρ/ρbulk = 0.5 at a distance of 1σ
from the center of the solid atoms (Fig. 9). The distance D between
the plates was estimated by subtracting from the distance between
the centers of the wall atoms twice the depleted layer of ∼1 σO–O.
It is important that the same convention is used for the measure-
ment of the contact angle, for the distance D, and for all geometrical
quantities appearing in the grand potential.

2. Closed-form expression for Delaunay surfaces
Following Kenmotsu42 axisymmetric constant mean curvature

surfaces can be written in the general parametric form:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x = x(u)
y = y(u) cos(v)
z = y(u) sin(v)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x(u) = ∫
u

0
c1{c2

1 + (t + c2)2}−1/2
dt + c3,

y(u) = {c2
1 + (u + c2)2}1/2

,
(A1)

FIG. 8. Side view of the cylindrical drop of SPC/E water on a Lennard-Jones wall
used to compute the Young contact angle θY .

FIG. 9. Average water number density for the drop is shown in Fig. 8, with the
convention chosen for the calculation of the contact angle and the geometrical
quantities. The green line indicates the position of the wall atoms.

where c1, c2, c3 are constants. The surface hereby represented is a
catenoid for every c1 ≠ 0.

The special case of H ≠ 0 was also found to provide a sim-
pler expression for the same surfaces up to reparameterization and
translation along the x-axis, as a function of the two parameters
H ≠ 0 and B,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x(u, H ≠ 0, B) = ∫
u

0

1 + B sin(2Ht)
{1 + B2 + 2B sin(2Ht)}1/2 dt,

y(u, H ≠ 0, B) = 1
2∣H∣ {1 + B2 + 2B sin(2Hu)}1/2

.
(A2)

As pointed out by Kenmotsu, since the equali-
ties {x, y}(u,−H, B) = {x, y}(u, H,−B), {x, y}(u, H,−B)
= {x, y}(u − π/2H, H, B) + const. ∈ R2 and {x, y}(u, λH, B)
= (1/λ){x, y}(λu, H, B),∀λ > 0 hold, no excessive care should be
taken when dealing with the sign of H, and, in order to characterize
shapes, it is sufficient to restrict ourselves to B ≥ 0, H > 0. These
expressions can be further simplified (see, for instance, Ref. 67)
leading to:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x(u) = aF(μu
2
− π

4
, k2) + cE(μu

2
− π

4
, k2),

y(u) =
√

m sin(μu) + n,
(A3)

where by F( μu
2 −

π
4 , k2) = ∫

μu
2 − π

4
0

dθ√
1−k2(sin2(θ))

and E( μu
2 −

π
4 , k2)

= ∫
μu
2 − π

4
0

√
1 − k2 sin2(θ) dθ, we denote the incomplete elliptical

integrals of the first and second kind, respectively.
The parameters appearing in the aforementioned equa-

tions, μ = 2/(a + c) = 2H, k2 = (c2 − a2)/c2, m = (c2 − a2)/2, n = (c2

+ a2)/2, and finally BH≠0 = 1 − 2a
a+c , solely depend on the real para-

meters a and c, which, in turn, control the shape of the surface;
the inequality c > a is assumed for non-degenerate unduloids.67

More specifically, from the functional form of y(u), it is possible
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to quickly establish that the distance from the symmetry axis is
bounded between a and c. The surfaces of revolution are found
to be periodic along the symmetry axis, with a distance π(a + c)/4
occurring between the points of minimum distance from the axis.
The mean curvature of the surface obtained via revolution of the
undulary about the x axis is now conveniently expressed by the
constant H = 1/(a + c).

In conclusion, by selecting appropriate values of the parameters
a and c, it is possible to obtain curves whose revolution gener-
ates several families of CMC surfaces, including spheres, cylinders,
unduloids, and nodoids. Nodoids are, in general, self-intersecting
surfaces, and special care must be taken when branches of nodoids
are meant to represent liquid–vapor dividing surfaces.

3. Multiple solutions for the hourglass shapes
Due to the nature of the energy minimization process, which

can be recast as a differential boundary value problem, the unique-
ness of the solution is not guaranteed. This reasoning can be further
specialized by considering that unduloids and nodoids are, in gen-
eral, periodic shapes and as such a potentially infinite number of
unduloid or nodoid branches can be found, with the only constraint
that they comply with the generalized Young boundary conditions.
Without recurring to sophisticated stability arguments, we resolved
this difficulty by noticing that the free energy Ω of these shapes,
which still are extremants for our variational problem, is larger than
the one associated with the uncorrugated shapes. These latter shapes
can be numerically extracted by iteratively perturbing the analytic
catenoid solution at zero mean curvature to yield the full nucle-
ation path. An example of the multiple shapes with the same mean
curvature that can be computed is provided in Fig. 10. It should
also be remarked how, in this work, out of simplicity, only solutions

FIG. 10. Two axisymmetric hourglass-shaped bubbles with the same mean curva-
ture compatible with the same effective distance Deff = 10 Å and the same contact
angle.

that are symmetric with respect to the plane equidistant from the
plates have been investigated. This symmetry is implicit in the case
of identical plates and no line tension, and it was retained for small
perturbations of the τ = 0 solutions that are presently reported.
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