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A B S T R A C T

Deep fake technology paves the way for a new generation of super realistic artificial content. While this
opens the door to extraordinary new applications, the malicious use of deepfakes allows for far more realistic
disinformation attacks than ever before. In this paper, we start from the intuition that generating fake content
introduces possible inconsistencies in the depth of the generated images. This extra information provides
valuable spatial and semantic cues that can reveal inconsistencies facial generative methods introduce. To
test this idea, we evaluate different strategies for integrating depth information into an RGB detector and we
propose an attention mechanism that makes it possible to integrate information from depth effectively. In
addition to being more accurate than an RGB model, our Masked Depthfake Network method is +3.2% more
robust against common adversarial attacks on average than a typical RGB detector. Furthermore, we show
how this technique allows the model to learn more discriminative features than RGB alone.
1. Introduction

Advances in generative techniques allow us to generate artificial
images and videos of incredible realism. Many of these contents, such as
photos of Pope Francis in sports gear or Donald Trump in handcuffs [1],
have gone worldwide in recent months alone. If, until recently, most
advanced techniques made us imagine the impossible, today, the ap-
plication of these technologies in everyday life content is becoming
real.

As with any new technology, these advances introduce exciting new
applications and dangers. In this work, we focus on this second aspect,
proposing a deepfake detection technique based on estimating the
depth of the subjects’ faces in a video. In particular, our intuition starts
from the idea that the generation process introduces 3D inconsistencies
in the video, allowing us to identify information that enables the
recognition of fake content. This work builds on our previous study [2],
proposing substantial improvements in terms of the robustness of the
model with respect to adversarial attacks. Unlike the previous work,
which limited itself to fusing depth with an early fusion strategy, in
this paper, we analyze different depth and RGB fusion methodologies,
proposing a solution that integrates an attention mechanism with a late
fusion of the two modalities which is able to achieve more accurate
estimation performances.

Current deepfake detectors still have several limitations to over-
come [3]. First, they tend to overfit training data, resulting in a
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performance drop that can be very relevant to new attacks. In addi-
tion, the more robust detectors are often difficult to interpret, which
poses a reliability problem. Moreover, existing state-of-the-art deepfake
detection systems rely on neural network-based classification models,
which are known to be vulnerable to adversarial examples [4–6]. Depth
information provides valuable spatial and semantic cues that can reveal
inconsistencies introduced by facial manipulation methods. However, it
is unclear to what extent this additional information could contribute
to the development of a more robust detector than the corresponding
methods based on RGB features alone. This paper shows how depth
integration can help mitigate some of these issues. In particular, we
show how the attention mechanism proposed in this work produces
more interpretable activations than other approaches. Furthermore, we
subject our model to a series of adversarial attacks and show that depth
integration makes the model more robust to these attacks.

The main contributions of this work are three. (1) We analyze
different fusion methods of the RGB and depth channels and pro-
pose various experiments to understand the best way to integrate this
extra information into a detector. (2) We compare the heatmaps of
the proposed model with a model trained only on RGB features and
show that integrating the depth with RGB helps the model learn more
interpretable and discriminative features with respect to the RGB-only
counterpart. (3) We test the robustness of the model against the most
commonly used attacks in deepfakes.
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The remainder of this paper is organized as follows. Section 2 gives
an overview of the state of the art and compares our methodology to
existing ones. In Section 3, we introduce the proposed method, which
we call Masked Depthfake Network (MDN). Section 4 contains the im-
plementation details. Finally, in Section 5, we report our experiments,
and in Section 6, we conclude this work.

2. Related work

This section provides an overview of the state of the art for deepfake
detection [7,8]. Across several attempts to solve the problem, we can
group the main techniques into three large families. (1) Physiological
signals-based methods look for inconsistencies concerning biological
signals. (2) The identity-based methods identify irregularities with re-
spect to the target subjects, remodeling the problem as a problem of
identification of a subject. Finally, (3) Learned features methods detect
manipulations as anomalies with respect to the characteristics learned
at training time. Our contribution falls into the latter category.

Physiological signals. In the generation phase, some biological
characteristics, such as the blinking of the eyes [9] or the blood flow
linked to the heartbeat [10,11], are lost. These works look at specific
artifacts of the generated videos related to physiological signals. Ciftci
et al. [12] focus on the use of up to six different photoplethysmography
signals. Unlike these methods, our work does not exploit biological
signals but the semantic information of the scene. Even if we apply our
method to the specific case of fake face recognition, we believe that an
advantage of our approach compared to this category is that it can also
be applied to other types of scenes in which the subject is an object or
an animal.

Identity-based features. This family of methods approaches the
detection problem as a reidentification problem. Agarwal et al. [13]
proposed the first approach that falls into this category. It exploits
an individual’s distinct patterns of facial and head movements to de-
tect fake videos. In later studies, the same research group explored
the inconsistencies between the mouth-shape dynamics and a spoken
phoneme [14] and proposed an identity-based technique to detect face-
swap manipulations [15]. Cozzolino et al. [16] proposed a method that
learns temporal facial features, specific to how a person moves while
talking, using metric learning coupled with an adversarial training
strategy. The advantage is that they do not need any training data for
fakes but only train on authentic videos. Moreover, they utilize high-
level semantic features, which enable robustness to widespread and
disruptive forms of post-processing. Similar to the previous category,
a limitation of these approaches is that they are only applicable to con-
texts in which the video portrays human subjects, while our method, as
well as those belonging to the next category, exploit features applicable
to generic images.

Learned features. This category includes all methods that use
features that can be automatically learned from a model and are
not explicitly based on biological characteristics or the identity of
a subject. Afchar et al. [17] presented one of the first approaches
for deepfake detection based on supervised learning. It focuses on
mesoscopic features to analyze the video frames using a network with
few layers. Rössler et al. [18] analyzed the performance of several
CNN architectures for deepfake video detection and showed that deeper
networks are more effective for this task, especially on low-quality
video. Zhao et al. [19] explore image deepfake detection by dividing
the image into small patches. Each patch gets a consistency value with
respect to all the others. Therefore, manipulations can be identified
as patches that have lower consistency with respect to others. Dang
et al. [20] examine several ways to combine attention mechanisms in
CNN networks to highlight tampered image regions and then guide the
network in the detection phase. Other studies rely on processing tem-
poral dependencies and patterns between frames so that inconsistencies
and anomalies in deepfake videos can be detected. For example, Sabir
100

et al. [21] study how to pair an RNN module with a CNN backbone
in an end-to-end model to improve accuracy by keeping frames in a
temporal relationship. Caldelli et al. [22] propose a methodology based
on optical flow features. In the same direction, Saikia et al. [23] use
optical flow and estimate the frame correlation with an LSTM to detect
any temporal skew. Similarly, Ismail et al. [24] propose a deepfake
detection method based on LSTMs. Recently, a different approach based
on face depth maps have been proposed by Maiano et al. [2]. The latter
study leverages the use of monocular depth estimation methodologies,
i.e., deep learning solutions such as encoder–decoder architectures able
to extract a per-pixel distance map from a single input image [25], in
order to take advantage of depth map inconsistencies (flatten maps)
introduced during the generation phase between real and fake samples.
Differently from the previous study, in this work, the depth is precom-
puted and fused with the RGB information with an early fusion strategy.
Different from this approach, in this work, we propose to exploit an
attention mechanism and combine it with a late fusion strategy. A
similar approach [26] proposes a depth prediction and a triplet feature
extraction network. Our method differs from this one in the way in
which the depth is fused, thanks to a late fusion strategy and the
proposed attention mechanism.

3. Proposed method

Our method is based on the intuition that, as shown in our previous
study [2], the deepfake creation process introduces inconsistencies in
the depth of the face. Consequently, combining the depth information
with the RGB image will improve the learning process and make it more
stable and possibly more robust against adversarial attacks. Our goal is,
therefore, to understand how RGB and depth information can best be
combined to obtain greater accuracy than RGB features on which the
networks typically focus. Unlike our previous study, we propose a late
fusion mechanism combining the RGB and depth features. Moreover,
we propose an attention mechanism that guides the learning of the
feature-depth network based on the most important features identified
by the RGB one. This allows us to keep the two inputs in two separate
streams but, at the same time, direct learning towards a common
feature space. The proposed method is composed of the following two
steps. (1) First, we extract depth from the whole frame using the pre-
trained model introduced by Khan et al. [27]. Since we know that
image resize tends to destroy fundamental traces for the recognition of
fakes, and that manipulations usually focus on the face and the areas
around it, we extract the person’s face using a 𝑊 ×𝐻 crop. (2) Then, as
shown in Fig. 1, we input the RGB and depth patches to the deepfake
detection model to classify the frame as true or false.

More details on both steps are provided in the remainder of this
section. Specifically, Section 3.1 explains the preprocessing operations
we perform to extract depth and crop the face, and Section 3.2 describes
our method of detecting deepfakes.

3.1. Pre-processing

Our method revolves around the depth estimation task. We assume
that the deepfake generation process introduces distortions in the depth
of the subject’s face, which can be crucial for the final classification. For
this step, we rely on the method introduced by Maiano et al. [2].

As mentioned above, the proposed pipeline starts with estimating
the frame depth. For this purpose, we use FaceDepth [27], a technique
for estimating the monocular depth of faces. This network has been
specifically trained to calculate the distance of faces from the camera.
FaceDepth can detect details of facial features and obtain precise depth
information for each facial point. This allows for accurate discrimina-
tion of facial features and allows us to estimate the differences between
real and fake faces more accurately.

Image resizing can eliminate important information that can help

the model in the classification task, so to avoid this kind of problem,
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Fig. 1. Our proposed pipeline. RGB and depth characteristics are analyzed separately by two MobileNet v2. We introduce an attention mechanism that masks the less important
depth features based on the RGB features. Finally, we merge the features through a concatenation to proceed to the classification.
we extract a crop centered on the subject’s face. We use the Dlib1 library
for face detection and extraction.

3.2. Deepfake detection

In this section, we discuss the central part of our contribution. The
proposed model takes as input the original RGB patch of size 𝑊 ×𝐻 ×3
and the estimated depth map of size 𝑊 × 𝐻 × 1. Given RGB’s larger
number of channels, using a single input that concatenates RGB and
depth information may not be optimal because RGB information may
get more network attention than depth. To avoid this, we have devel-
oped an ad hoc architecture, shown in Fig. 1. The whole architecture
consists of two different networks, one for each type of input (RGB and
depth).

The proposed architecture, which we call Masked Depth Network
(MDN), comprises two parallel networks. The RGB network is designed
to process individual RGB frames and extract relevant features for
deepfake detection. In contrast, the depth network captures depth-
related inconsistencies that are often difficult to eliminate in deepfake
videos. The information extracted from the two networks is merged
before classification by concatenating the output of the last convolu-
tional layer of both streams. This allows us to integrate the information
extracted from the RGB and depth networks while preserving the most
discriminating aspects of both channels.

In addition to the fusion phase, we introduce an attention mechanism
to guide the depth network in selecting the most essential features. This
step enforces the fusion process by highlighting regions of interest for
deepfake detection. The attention is introduced by masking the weights
of the RGB network and integrating this mask into the depth network.
Formally, given a weight matrix 𝑊 , we compute the attention mask
𝑎(𝑤𝑖) for all 𝑤𝑖 ∈ 𝑊 as follows.

𝑎(𝑤𝑖) =

⎧

⎪

⎨

⎪

⎩

0, if 𝑤𝑖 < 0.

1, otherwise.
(1)

In our experiments, we apply this masking operation on the fourth
convolutional block of the MobileNet v2 [28] architecture. This atten-
tion mechanism allows the depth network to dynamically adjust its
attention to focus on the most informative regions indicated by the RGB
stream and which are expected to contain critical depth-based cues for
distinguishing real video from deepfakes. As shown in Section 5.1, this
architectural choice helps to achieve better performance than simple
feature concatenation.

In summary, our proposed architecture’s fusion and mask gener-
ation steps enable the integration of RGB and depth channels while

1 http://dlib.net/.
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selectively highlighting informative regions. As we will discuss in Sec-
tion 5, this approach improves the architecture’s overall accuracy
and robustness, leverages both channels’ strengths, and facilitates the
extraction of relevant features for effective deepfake detection. We
incorporate augmentation techniques on the pre-trained model during
the training process to address the overfitting problem and improve our
architecture’s generalization capability. The implementation details are
discussed in the next section.

4. Implementation details

The proposed method has been implemented using PyTorch2 deep
learning API. The trained architectures are initialized on ImageNet
pretrained weights and trained with a CrossEntropy loss function for
30 epochs with a batch size of 192 using Adam optimizer [29] with
𝛽1 = 0.9, 𝛽2 = 0.999, and learning rate of 0.0001. Moreover, to improve
the generalization performances of trained models, data augmentation
has been incrementally performed during the training epochs, i.e, by
increasing the augmentation effect with the increase of the number of
epochs. We examine multiple augmentation strategies and transforma-
tions as proposed in [30–33]. We evaluate our method on commonly
used evaluation metrics such as estimation accuracy, receiver operating
characteristic (ROC) curve, and area under the ROC curve (AUC) on the
FaceForensics++ dataset [18]. This dataset is widely used in the state of
the art due to its heterogeneity and complexity. The dataset consists of
more than 1000 YouTube videos containing real and manipulated faces
in various settings and conditions. The manipulated videos were gen-
erated using various deepfake techniques, such as facial reenactment,
face swapping, and expression manipulation. The dataset consists of
four classes of forgery attacks: (1) Deepfakes (DF), (2) Face2Face (F2F),
(3) FaceSwap (FS), and (4) NeuralTextures (NT). In our experiments, we
report results on individual classes and the entire test set of all four
classes. We refer to this last case indicating it as ALL. Moreover, the
dataset has different compression levels for each video, namely RAW
(uncompressed), C23, and C40. Due to space constraints, we report only
the experiments on the two limiting cases, namely RAW and C40.

5. Results

This section shows the effectiveness of including depth information
for deepfake detection versus a standard RGB approach. Precisely, we
chose the MobileNet v2 [28] as the backbone in all experiments, which

2 Code and corresponding pre-trained weights are made publicly avail-
able at the following GitHub repository: https://github.com/gleporoni/rgbd-
depthfake.

http://dlib.net/
https://github.com/gleporoni/rgbd-depthfake
https://github.com/gleporoni/rgbd-depthfake
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Table 1
Quantitative results obtained on deepfake detection task for RAW and C40 dataset set-
tings when trained on Deepfakes (DF), Face2Face (F2F), FaceSwap (FS), NeuralTextures
(NT), and all (ALL) forgeries. The best results for each configuration are reported in
bold.

Class Testing Set (RAW)

RGB D EF [2] LF MDN

DF 96,00% 89,23% 95,35% 96,59% 96,86%
F2F 95,35% 84,75% 95,38% 95,57% 95,85%
FS 95,32% 81,23% 95,62% 96,33% 96,29%
NT 92,01% 78,77% 92,30% 92,76% 92,65%
ALL 95,02% 83,23% 95,09% 94,81% 94,87%

Class Testing Set (C40)

RGB D EF [2] LF MDN

DF 88,15% 73,46% 88,65% 90,75% 91,26%
F2F 82,57% 66,39% 82,13% 82,25% 81,82%
FS 86,11% 67,00% 85,45% 86,73% 87,17%
NT 70,77% 59,26% 70,77% 71,00% 70,50%
ALL 82,37% 79,59% 82,09% 82,25% 82,43%

is demonstrated to perform well despite being a lightweight architec-
ture [2]. In addition, to leverage the effectiveness of the proposed
attention mechanism included in our Masked Depthfake Network and
inspired by fusion strategies discussed by Ophoff et al. [34] and Zhou
et al. [35], we also compare the proposed method with different archi-
tectural and input configurations. Precisely, to validate the proposed
architecture, we introduce four baseline structures where we modify
how the RGBD input is provided to the model. Below is a detailed
description of each model.

• RGB: it consists of a single MobileNet v2 network that is trained
on the RGB frames.

• Depth (D): it consists of a single MobileNet v2 network trained
only on depth maps.

• Early fusion (EF): in this scenario, the RGB and depth inputs are
stacked and passed to the network as a single (4-channel) input
as done in Maiano et al. [2]. The addition of the depth channel
beside RGB creates the need to use correct weights initialization
for pre-trained models. To do this, we average the weights of the
first layer of the RGB network model trained on ImageNet.

• Late fusion (LF): it comprises two separate MobileNet v2 networks
whose output features are concatenated into a single vector before
the classification layers. The combined vector is then passed to
the fully connected layers for the final classification phase.

The remainder of this section is organized as follows. We first
compare the deepfake recognition performance of the proposed model
with the baselines described above. Then, we examine the activation
maps of the proposed model against the RGB baseline to see if the
addition of depth and the proposed attention system lead the model
to pay attention to more discriminating features. Finally, we conclude
the section by studying the robustness of the proposed method against
common black-box adversarial attacks for deepfakes.

5.1. Detection performance

Our first analysis aims to quantitatively demonstrate the effective-
ness of the addition of the depth channel to standard RGB approaches
and validate the proposed Masked Depthfake Network architecture
with respect to the baselines. Through these experiments, the intent
is to understand what is the most effective way to use depth for this
task. Table 1 shows the overall accuracy obtained at testing time over
the different forgeries and compressions levels of the FaceForensic++
dataset. The ROC curves and their respective AUC (area under the
curve) values are reported in Figs. 2, 3 and Table 2 respectively.

The results show that integrating the depth channel into the stan-
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dard RGB approach guarantees increased detection performance. The
Table 2
AUC values obtained on deepfake detection task for RAW and C40 dataset settings when
trained on Deepfakes (DF), Face2Face (F2F), FaceSwap (FS), NeuralTextures (NT), and
all (ALL) forgeries. The best results for each configuration are reported in bold.

Class Testing Set (RAW)

RGB D EF [2] LF MDN

DF 99,08% 95,73% 99,22% 99,02% 99,33%
F2F 99,07% 90,65% 99,19% 99,09% 98,88%
FS 99,09% 85,20% 99,19% 99,50% 99,51%
NT 97,52% 85,38% 97,72% 97,91% 97,90%
ALL 98,29% 78,33% 98,25% 98,37% 98,50%

Class Testing Set (C40)

RGB D EF [2] LF MDN

DF 93,79% 77,62% 93,79% 96,71% 96,83%
F2F 89,51% 68,01% 89,01% 90,21% 90,15%
FS 90,48% 69,71% 90,72% 94,17% 94,34%
NT 74,32% 58,75% 73,06% 77,70% 77,55%
ALL 78,19% 54,50% 78,76% 80,16% 81,20%

Table 3
AUC values by our proposed MDN compared to state-of-the-art methods. The best two
are shown in bold and underlined respectively.

Class Type ALL (RAW)

DR [11] Physiological signals 98,00%
PPG [10] 93,50%

AB [14] Identity-based 97,00%
IID [36] 99,00%

EF [2]

Learned features

95,09%
DGN [26] 98,30%
MIL [37] 97,73%
FKSPT [38] 98,50%
MDN (our) 98,50%

MDN and the LF usually perform better than the other baselines for
all types of forgeries and compressions. These architectures achieve
an average accuracy and AUC boost of up to +1.01% and +0.42% on
the RAW dataset and up to +3.11% and +3.86% on the C40 dataset
respectively, demonstrating that the depth information combined with
RGB one is able to improve the overall detection process. Moreover,
we can notice that the RGB network outperforms the D network alone
for both RAW and C40 datasets by an average percentage of 12.07%
and of 15.55% on the AUC. This is perfectly explained by the fact
that, besides having fewer channels, the depth information is estimated
starting from the RGB. However, when we combine the two pieces of
information, the results confirm the hypothesis that depth information
helps the model better discriminate between fake and real examples
based on inconsistencies in image depth.

Finally, in Table 3 we compare our results against different state-
of-the-art methods. DeepRhythm [11], and the PPG-based method from
Ciftci et al. [10] use physiological signals. The appearance and behavior
(AB) method from Agrawal et al. [14] and the Implicit Identity Driven
Deepfake Face Swapping Detection (IID) [36] method are identity-
based methods. Finally, the Depth Map-guided Triplet Network [26]
(DGN), the Multiple Instance Networks (MIL [37]), and Fakespotter
(FKSPT [38]) use learned features similar to our proposed method.
Our proposed method is the best runner-up after IID, which performs
slightly better than our method (+0.5%). These results confirm the
contribution introduced by depth compared to other methodologies.
In the next section, we delve further into the contribution of depth to
identify any limitations.

5.2. Feature analysis

We now analyze the activation maps of the proposed Masked Depth-
fake Network from a qualitative perspective. In particular, with this

analysis, we want to understand if the attention mechanism leads



Pattern Recognition Letters 181 (2024) 99–105G. Leporoni et al.
Fig. 2. ROC Curve results obtained on deepfake detection task for RAW dataset when
trained on all (ALL) forgeries.

Fig. 3. ROC Curve results obtained on deepfake detection task for C40 dataset when
trained on all (ALL) forgeries.

the network to focus on more discriminative and, therefore, more
interpretable features than the RGB counterpart. Consequently, we
calculate and display the activation maps of the last convolutional layer
of the Masked Depthfake Network and the RGB baseline using the
GradCam [39] method. We report an example of the obtained Real and
Fake output heatmaps in Fig. 4.

The first row of the figure represents the RGB and corresponding
depth inputs extracted from the FaceForensic++ dataset (RAW). The
second and third rows report the heatmaps of the RGB and depth
models, respectively. The heatmaps show that the RGB model produces
more or less uniform activations, which does not give us particular
indications on any area of the face. This could suggest that the model
may have overfitted the training samples, making it less robust and
interpretable. In the case of depth, the activation is most robust in the
area around the nose. In the EF model, we notice that this difference
between RGB and depth disappears, highlighting the problem of im-
mediately merging the necessary features. The effect of early fusion is
to reduce the depth contribution compared to other fusion methods.
The advantage of late fusion becomes evident for the LF and MDN
models, where the depth and RGB components have different turn-
ons. In particular, we can observe a stronger activation of the MDN
in correspondence with the nose and eyes area, which shows how
the attention mechanism manages to concentrate the model’s attention
towards the places most subject to manipulation. This also highlights a
possible limitation of this approach: the model’s performance is strictly
linked to the accuracy of the depth estimation model. However, this
problem can be easily mitigated with a more accurate depth estimation
method.

Differently, we can notice that the MDN network activates on spe-
cific regions of the face. Precisely, the model focuses on the nose region
103
Fig. 4. Heatmaps generated by the GradCam algorithm. The CAM RGB shows the
obtained heatmaps for the RGB baseline model, while CAM MDN for the proposed
method.

for the authentic RGB image, while for the fake one, the model focuses
on the nose and the eyes. Similarly, but with an opposite behavior, we
notice that the depth network focuses on particular interest areas of the
mouth, nose, and eyes.

Summarizing, we can conclude that although the RGB approach
achieves good results in terms of accuracy, it does not pay particular
attention to specific regions of the face. Indeed, it also takes into
consideration the background areas, and this is why this approach is,
in general, less reliable. This could suggest that instead of learning
facial features, the network is overfitting the dataset, storing general
information only partially related to the characteristics introduced by
the generation process. Contrarily, our proposed method, which focuses
on the tampered region of the image, leads to improved results in terms
of accuracy and makes the whole pipeline more robust, as discussed in
the next section.

5.3. Robustness to adversarial attacks

To have a complete overview of the proposed method against the
RGB baseline, we study its robustness against adversarial attacks. An
attacker may decide to introduce imperceptible disturbances in the fake
video to bypass deepfake detectors. Specifically, we test the robustness
of the models against black-box attacks discussed in Gandhi and Jain,
and Hussain et al. [40,41]. Since these attacks include Guassian blur
(BLR), Guassian noise (NSE), rescaling (RSC), and translation (TRN),
which are also used in the data augmentation strategy, for a correct
comparison, we use the RGB and MDN methods trained without any
data augmentation strategy.

Tables 4 and 5 report the performance of all the baseline models
against every single attack as well as their combination (CMB). Based
on the obtained results, we can notice that all the RGBD approaches are
able to outperform the standard RGB one in almost all of the experi-
ments. More in detail, in the case of the RAW dataset (see Table 4),
the MDN achieves an averaged percentage boost of +3.89%, +2.54%,
and +0.63% with respect to the RGB, EF, and LF methods respectively.
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Table 4
Accuracy results obtained on deepfake detection task for RAW dataset settings when
Blur (BLR), Noise (NSE), Rescale (RSC), Translation (TRN), and all Combined (CMB)
black box attacks are applied. The best results are in bold and the second best are
underlined.

Attack Model Testing Set (RAW)

DF F2F FS NT ALL

BLR

RGB 50,32% 54,30% 50,45% 49,00% 79,64%
D 51,47% 64,84% 51,69% 49,39% 79,75%
EF [2] 53,05% 51,63% 50,60% 49,58% 77,50%
LF 50,34% 69,00% 50,47% 51,92% 78,07%
MDN 50,98% 70,38% 50,62% 50,73% 79,71%

NSE

RGB 85,80% 88,73% 93,83% 76,21% 92,06%
D 50,46% 51,88% 60,41% 50,64% 29,03%
EF [2] 95,32% 95,36% 95,61% 92,27% 95,08%
LF 95,58% 94,96% 95,89% 92,11% 94,98%
MDN 95,69% 95,43% 95,67% 91,61% 94,67%

RSC

RGB 60,63% 60,60% 50,58% 53,89% 74,48%
D 52,23% 68,36% 52,44% 49,46% 79,70%
EF [2] 67,06% 56,91% 50,58% 54,60% 70,42%
LF 56,11% 73,91% 50,65% 62,17% 74,48%
MDN 61,62% 75,64% 50,62% 60,80% 78,76%

TRN

RGB 95,87% 95,11% 95,19% 91,63% 94,89%
D 88,16% 81,75% 75,49% 77,57% 82,52%
EF [2] 95,19% 95,15% 95,42% 91,80% 94,92%
LF 96,42% 95,22% 96,29% 92,52% 94,76%
MDN 96,75% 95,49% 96,23% 92,13% 94,51%

CMB

RGB 50,31% 55,22% 50,33% 49,47% 77,95%
D 50,80% 53,74% 51,05% 49,45% 79,57%
EF [2] 52,44% 51,75% 50,52% 49,64% 77,83%
LF 50,11% 62,67% 50,51% 51,33% 77,63%
MDN 50,27% 64,64% 50,61% 50,46% 79,80%

Table 5
Accuracy results obtained on deepfake detection task for C40 dataset settings when
Blur (BLR), Noise (NSE), Rescale (RSC), Translation (TRN), and all Combined (CMB)
black box attacks are applied. The best results are in bold and the second best are
underlined.

Attack Model Testing Set (C40)

DF F2F FS NT ALL

BLR

RGB 66,03% 67,82% 58,02% 56,00% 79,27%
D 55,27% 60,35% 57,67% 50,22% 79,69%
EF [2] 75,94% 67,00% 55,94% 53,17% 74,34%
LF 63,29% 70,57% 69,09% 50,27% 80,00%
MDN 75,17% 74,60% 71,92% 49,70% 79,90%

NSE

RGB 87,20% 81,05% 85,57% 62,00% 81,41%
D 61,11% 58,82% 61,74% 59,38% 79,55%
EF [2] 88,63% 82,15% 85,48% 70,73% 82,09%
LF 90,98% 82,38% 86,65% 70,28% 82,02%
MDN 89,75% 81,69% 86,86% 70,65% 82,05%

RSC

RGB 73,02% 70,19% 64,67% 57,18% 80,11%
D 56,12% 60,25% 58,36% 51,11% 79,74%
EF [2] 68,64% 69,23% 61,28% 55,40% 75,51%
LF 80,76% 71,58% 73,67% 51,41% 80,44%
MDN 78,37% 74,96% 76,59% 50,46% 80,38%

TRN

RGB 87,63% 81,23% 84,83% 70,13% 81,07%
D 71,74% 61,76% 64,71% 57,35% 79,65%
EF [2] 87,50% 80,80% 84,67% 69,64% 81,37%
LF 89,72% 81,84% 86,14% 70,73% 81,68%
MDN 89,76% 81,46% 86,24% 69,81% 81,82%

CMB

RGB 58,73% 66,32% 55,75% 50,01% 79,67%
D 50,50% 56,15% 54,80% 50,13% 79,73%
EF [2] 60,45% 63,68% 54,07% 51,97% 73,70%
LF 67,00% 68,70% 64,32% 49,85% 79,59%
MDN 71,96% 73,22% 65,96% 50,52% 79,80%

Similarly, in the case of the compressed (C40) dataset, reported in
Table 5, we can notice that the average improvement achieved by MDN
over the RGB, EF, and LF methods is equal to +3.48%, +3.96% and
1.18% respectively.
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Based on the reported values, we can conclude that the proposed
method could be a viable solution to improve the estimation perfor-
mances and the robustness against adversarial attacks in the deepfake
detection task.

6. Conclusion

This paper has explored different fusion strategies between RGB
and depth for deepfake detection. In our experiments, we show how
incorporating depth information into the detection, the Masked Depth-
fake Network can improve the accuracy and robustness of deepfake
detection systems. This is mainly due to the additional information
introduced with the depth channel, which provides valuable spatial
cues that are difficult to replicate in synthetic video. By leveraging
this additional information, our solution identifies subtle inconsisten-
cies that traditional RGB visual techniques can overlook. Furthermore,
depth data has also shown greater resistance to adversary attacks
and manipulations, providing a more robust defense against deepfake
techniques. A possible limitation of this proposed methodology could
be its dependency on the depth estimation model, which, if not suffi-
ciently robust, could introduce semantic errors, reducing the detector’s
performance. However, using an accurate depth estimation method,
this problem can be easily mitigated.

The analyses reported in this article open up new questions for
the community to explore. First, verifying the robustness of a depth-
based method against other black-box and white-box attacks would
be interesting. Furthermore, it would be interesting to analyze depth
inconsistencies from a temporal point of view, exploiting both geo-
metric and temporal signals. Finally, this same analysis can be further
extended to other datasets and generative techniques.
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