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Resting‑state magnetoencephalographic 
oscillatory connectivity to identify patients 
with chronic migraine using machine learning
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Abstract 

To identify and validate the neural signatures of resting-state oscillatory connectivity for chronic migraine (CM), we 
used machine learning techniques to classify patients with CM from healthy controls (HC) and patients with other 
pain disorders. The cross-sectional study obtained resting-state magnetoencephalographic data from 240 partici‑
pants (70 HC, 100 CM, 35 episodic migraine [EM], and 35 fibromyalgia [FM]). Source-based oscillatory connectivity 
of relevant cortical regions was calculated to determine intrinsic connectivity at 1–40 Hz. A classification model that 
employed a support vector machine was developed using the magnetoencephalographic data to assess the reli‑
ability and generalizability of CM identification. In the findings, the discriminative features that differentiate CM from 
HC were principally observed from the functional interactions between salience, sensorimotor, and part of the default 
mode networks. The classification model with these features exhibited excellent performance in distinguishing 
patients with CM from HC (accuracy ≥ 86.8%, area under the curve (AUC) ≥ 0.9) and from those with EM (accuracy: 
94.5%, AUC: 0.96). The model also achieved high performance (accuracy: 89.1%, AUC: 0.91) in classifying CM from 
other pain disorders (FM in this study). These resting-state magnetoencephalographic electrophysiological features 
yield oscillatory connectivity to identify patients with CM from those with a different type of migraine and pain disor‑
der, with adequate reliability and generalizability.

Keywords:  Chronic migraine, Resting-state oscillatory connectivity, Pain disorders, Magnetoencephalography, 
Machine learning
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Introduction
Migraine, a highly prevalent neurological disorder, is a 
disabling disease that affects more than one billion peo-
ple worldwide, with a global age-standardised prevalence 
of 14.4%, according to the World Health Organiza-
tion’s Global Burden of Disease study [1]. Patients with 

migraine experience substantial functional disability, 
especially when the migraine evolves from episodic 
migraine (EM) to chronic migraine (CM; ≥ 15 headache 
days per month for > 3  months) [2], which also imposes 
a considerable economic burden [3]. Migraine is a com-
plex brain network disorder with a strong genetic basis 
in which interactions of multiple neuronal systems cause 
the wide variety of symptoms, including pain, that char-
acterise a migraine attack. Neuroimaging studies have 
revealed widespread structural and functional abnormal-
ities in the brain areas involved in multisensory, affective, 
and cognitive processing [4–9]. Whether these neuro-
imaging results represent a potential migraine signature 
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that can be used to discriminate patients with migraine 
from those without migraine or with other pain disorders 
remains debatable.

Although many neuroimaging studies have focused 
on identifying brain signatures for migraine, neurolo-
gists still rely on traditional diagnostic tools to diagnose 
patients with CM. This may be because neuroimaging 
studies have typically reported the differences between 
groups, whereas doctors in clinical settings must make 
clinical decisions at the individual level [10]. To utilise 
the strengths of neuroimaging for individualised diag-
nosis of migraine, the supervised machine learning (ML) 
approach may be a promising method, in which algo-
rithms and techniques are developed to automatically 
detect patterns in data, which are then used to predict or 
classify future data. This approach may thus allow a high 
level of individual characterisation suitable for routine 
clinical use.

In this study, we used magnetoencephalography (MEG) 
to directly record neural activity in a wide frequency 
range and analyse resting-state oscillatory connectiv-
ity within cortical networks that are promising for the 
investigation of ongoing processing in chronic pain [11] 
and consequently can help diagnose migraine. Compared 
with conventional scalp electroencephalography, MEG 
is superior in the localisation and measurement of cor-
tical activities [12]. Notably, although many migraine 
researches using functional magnetic resonance imag-
ing (fMRI) pointed to the brainstem and hypothalamus 
as involved in generation and maintenance of migraine 
attacks [13, 14], we focused on the multisensory higher 
cortical networks for their engagement of subsequent 
pain processing. MEG recording, which has excellent 
temporal resolution and is especially sensitive to neural 
signals tangential to the scalp, well detects the dynamics 
of multisensory higher cortical interactions. In contrast, 
due to the limited temporal resolution, fMRI cannot 
provide the cortical dynamics in the > 0.1  Hz frequency 
range. To identify the electrophysiological features for 
CM diagnosis, we used a classification model to differ-
entiate patients with CM from healthy controls (HC), 
validated this model with a new testing data set (CM vs. 
HC), and assessed its performance on another testing 
data set (CM vs. EM and CM vs. fibromyalgia [FM]) to 
evaluate generalizability.

Materials and methods
Participants
All participants were 20–60 years old, right-handed, had 
no history of systemic or major neurological diseases, 
had normal results on physical and neurological exami-
nations, and were enrolled from the headache clinic of 
Taipei Veterans General Hospital. Patients with EM and 

CM were diagnosed according to the International Clas-
sification of Headache Disorders, Third Edition [2], and 
they were naïve to preventive treatment of migraine. 
CM was characterized with headache occurring on 15 
or more days/month for more than 3 months, which, on 
at least 8 days/month, has the features of migraine head-
ache. We excluded patients with headache medication 
overuse and those taking migraine prophylactic drugs, 
hormones, or other medications on a regular (daily) 
basis. FM was diagnosed according to the modified 2010 
American College of Rheumatology criteria [15]. For the 
FM group, patients who had a CM, tension-type head-
ache or autoimmune rheumatic disease or who took 
hormones or other medications on a daily basis were 
excluded. None of the HC participants had personal or 
family histories of pain disorders or had experienced any 
significant pain condition over the previous year. The 
hospital’s Institutional Review Board approved the study 
protocol (VGHTPE: IRB 2015–10-001BC), and all par-
ticipants provided written informed consent before study 
commencement.

Study design
All participants completed semistructured question-
naires on demographic information and psychometric 
scales, including the Hospital Anxiety and Depression 
Scale (HADS) [16]. For patients with migraine, the head-
ache profile was recorded, including the headache days 
per month, duration (months) of headache attack, and 
average headache intensity over the preceding year. 
Moreover, the Migraine Disability Assessment (MIDAS) 
questionnaire was administered to evaluate migraine-
related disability [17]. All patients maintained a head-
ache diary after recruitment, in which they recorded 
the following data: date/time of headache attacks, pain 
intensity, associated symptoms, medication used (if any), 
and menstrual periods. For patients with FM, the FM 
profile was collected, including the distribution (wide-
spread pain index) accompanying somatic or psychiatric 
symptoms (symptom severity scale) [15], and the days of 
painkiller use per month. In addition, the Fibromyalgia 
Impact Questionnaire-revised was administered to assess 
functional disability associated with FM.

Each participant underwent MEG recording. For 
patients with migraine, the recording was conducted 
during the interictal period, arbitrarily defined as the 
absence of an acute migraine attack in the 2 days before 
and after the MEG recording. The presence of a back-
ground or interval headache during this period was 
allowed for patients with CM [6]. The MEG recording 
was rescheduled in case of an acute attack during this 
period or the use of analgesics, triptans, or ergots for any 
reason in the 48  h before the recording. The temporal 
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relationship between MEG recordings and attacks was 
determined from the headache diary or through follow-
up phone calls.

MEG recording
Brain activity was recorded using a whole-scalp 
306-channel MEG system (Vectorview; Elekta Neuro-
mag, Helsinki, Finland). Four coils representing the head 
position were placed on the participant’s scalp, posi-
tioned in the head coordinate frame with respect to the 
nasion and two preauricular points by using Cartesian 
coordinates, and measured with a three-dimensional 
(3D) digitiser. Approximately 100 additional scalp points 
were also digitised to obtain an accurate registration. 
These landmarks enabled further alignment of the MEG 
and magnetic resonance imaging (MRI) coordinate sys-
tems. Individual brain T1 images were acquired using a 
3-T MRI system (Discovery 750; GE Medical Systems, 
WI, USA) with the following parameters: repetition time: 
9.4 ms, echo time: 4 ms, recording matrix: 256 × 256 pix-
els, field of view: 256 mm, and slice thickness: 1 mm.

During the 5-min resting-state MEG recordings 
with a digitisation rate of 600 Hz, the participants were 
instructed to close their eyes but remain awake, relax, 
and perform no explicit task. If a participant fell asleep or 
had excessive within-run head movement, the recording 
was stopped and then rerun. Electrooculography (EOG) 
and electrocardiography (ECG) activities were also 
acquired simultaneously for offline artefact elimination. 
A 3-min empty-room recording to capture sensor and 
environmental noise was applied to calculate the noise 
covariance for the offline source analysis.

MEG data preprocessing and analysis
To eliminate the contamination of nonbrain or environ-
mental artefacts from spontaneous resting-state MEG 
data (Fig.  1), (i) segments containing artefacts from 
environmental noise were discarded, (ii) notch filters 
(60 Hz and its harmonics) were used to remove power-
line contaminations, and (iii) identified heartbeat and eye 
blinking events from ECG and EOG data were used to 
separately define the projectors through principal com-
ponent analysis [18]. Regarding the T1-weighted brain 
images, for establishing the cortical model used in source 
analysis, MR images were automatically reconstructed 
into a surface model by using BrainVISA (4.5.0, http://​
brain​visa.​info). The anatomical MR images and recon-
structed cortical surface were subsequently coregistered 
with the corresponding MEG data set.

To obtain source-based cortical activation, a distrib-
uted source model of the MEG data was established using 
Brainstorm [19]. The overlapping sphere method [20] and 
inverse operator were calculated using a depth-weighted 

minimum norm estimate (MNE) analysis. The source 
model presents each grid point of the cortical source as 
a current dipole. The cortical activation dynamics of each 
participant were finally morphed into a common source 
space for group analysis. The MNE parameters were 
described in our previous studies [5, 8, 21]. In the present 
study, we defined regions of interest (ROIs) in the struc-
tural T1 template volume by using Mindboggle cortical 
parcellation [22], and we selected 26 cortical regions, 
including the default mode, sensorimotor, visual, sali-
ence, and pain networks (details in supplementary Fig. 1).

The oscillatory functional connectivity (FC) between 
ROIs was calculated from activation dynamics by using 
the imaginary coherence method at 1–40 Hz with a fre-
quency resolution of 0.586  Hz [6], which essentially 
measures how the phases between two cortical sources 
are coupled to each other with minimal crosstalk effects 
between the sources [23]. The frequency bands of FC 
were classified as delta (1–4  Hz), theta (5–7  Hz), alpha 
(8–13 Hz), beta (14–25 Hz), and gamma (26–40 Hz).

ML analysis
Feature selection
Altered oscillatory FC values were associated with the 
chronification of migraine [6]; thus, utilising these fea-
tures to establish the predictive migraine model is 
desirable to obtain high classification accuracy. Feature 
selection is the process of selecting a subset from the 
original set of extracted features to increase classification 
performance with a compact feature subset, which might 
reduce computational complexity and diminish irrel-
evant features. Therefore, we applied univariate analyses 
(independent t test) for the factors of the group with the 
false detection of discovery (FDR) corrections to obtain 
the most discriminative features, which were also used to 
construct training and testing data sets (Fig. 1).

Classification models and statistical analysis
This study used support vector machine (SVM) algo-
rithms to establish the classification model. SVM 
algorithms maps input feature vectors into a high-dimen-
sional space to create a linear classification system. By 
implementing the algorithm with training data, SVM 
can determine an optimal hyperplane that minimises 
risks and produces a classification model. The super-
vised learning approach to train the SVM classifiers 
decoded two conditions in a pairwise manner (CM vs. 
HC). The kernel functions and parameters for all classifi-
cation analyses are listed in Table 1. To avoid overfitting, 
we trained the models based on a fivefold leave-one-out 
cross-validation technique. All ML analyses were per-
formed using the ML toolbox from MATLAB software 
(R2019a).

http://brainvisa.info
http://brainvisa.info
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The performance of each classification model was 
evaluated based on accuracy, sensitivity, specificity, 
and the area under the curve (AUC). After the recon-
struction and evaluation of the classification models 
using the training data set, these models were further 
validated to determine whether identified features are 

generalisable across various testing data sets, including 
new testing data sets (CM vs. HC) and other data sets 
(CM vs. EM; CM vs. FM) (Fig. 1). These data sets were 
extracted based on the discriminative feature index. 
The testing data set labels were blinded, and the clas-
sification models were applied to the discriminative 
features without any model training procedure. Predic-
tive accuracy and AUC were obtained for each model. 
Additionally, to estimate the statistical significance of 
predictive accuracy, the statistical significance of the 
observed classification accuracy was estimated using 
nonparametric permutation tests (10,000 times). The 
number of permutations in this null distribution that 
achieved a higher accuracy than the true labels was 
divided by the total number of permutations. This pro-
vided an estimate of the significance of the accuracy 
relative to chance.

Fig. 1  Pipeline of the resting-state MEG and machine learning analysis. CM, chronic migraine; HC, healthy controls; EM, episodic migraine; FM, 
fibromyalgia

Table 1  Models and parameters of machine classification

SVM support vector machine

SVM Kernel function Kernel scale

Linear SVM Linear auto

Quadratic SVM Quadratic auto

Cubic SVM Cubic auto

Fine Gaussian SVM Gaussian 3

Medium Gaussian SVM Gaussian 12

Coarse Gaussian SVM Gaussian 48
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Results
Discriminative features of oscillatory connectivity 
and the classification model for CM
This study included 240 participants—70 HCs, 100 
patients with CM, 35 patients with EM, and 35 patients 
with FM; of them, the data of 56 HCs and 80 patients 
with CM were included in the training data set, and 
those of 14 HCs, 20 patients with CMs, 35 patients with 
EM, and 35 patients with FM were included in the test-
ing data sets. The clinicodemographic characteristics of 
all participants are summarised in Table 2. In the train-
ing data set (HC [n = 56] vs. CM [n = 80]), the two groups 
did not differ significantly in terms of age or sex. Anxiety 
(HADS_A) and depression (HADS_D) scores were higher 
in the CM group than in the HC group (all p < 0.005). In 
the testing data sets, the groups did not differ signifi-
cantly in age or sex, except for significantly more women 
in the FM group than in the CM group (p = 0.02). Simi-
lar to the training data set, anxiety and depression scores 
were higher in the CM group than in the HC group (all 
p < 0.005). As expected, patients with CM had more 
monthly headache days (p < 0.001) than those with EM; 
however, disease duration and severity in the preceding 
year were comparable between the two groups. MIDAS 
scores were higher in patients with CM than in those 
with EM (p < 0.05). Notably, the psychometric scores 
were comparable between the CM, EM, and FM groups.

For feature selection, in the training data set, we 
obtained 1820 FCs; univariate analysis with FDR cor-
rections revealed that the resting-state oscillatory FCs 
were significantly different between HC and CM groups. 
Specifically, patients with CM had decreased oscillatory 

FCs. These discriminative FCs are illustrated with adja-
cency matrices from delta to gamma bands (Fig.  2 (a)), 
and the connections are topographically displayed onto 
the cortical surfaces with axial and coronal views (Fig. 2 
(b) and (c)). The differences were dominantly noted in the 
beta (19.1% of all significant connections) and gamma 
(77.4% of all significant connections) bands and primar-
ily located within the following networks: salience (in the 
insula [7.5%] and anterior cingulate cortex [9.1%]), senso-
rimotor (in the primary motor cortex [6.6%] and primary 
[7.3%] and secondary somatosensory cortex [7.1%]), and 
part of the default mode (in the posterior cingulate cor-
tex [8.1%]) networks. With these discriminative features, 
classifiers for differentiating CM from HC achieved > 80% 
accuracy using Linear (accuracy: 83.1%, AUC: 0.9, sensi-
tivity: 0.97, specificity: 0.62), Quadratic (accuracy: 80.1%, 
AUC: 0.85, sensitivity: 0.96, specificity: 0.57), and Fine 
Gaussian (accuracy: 86.8%, AUC: 0.9, sensitivity: 1.0, 
specificity: 0.68) SVMs (Fig. 3).

Generalizability of the classification model for CM
We further examined the generalizability of the clas-
sification model with the three SVMs by using an inde-
pendent data set of 20 patients with CM and 14 HCs. 
The model exhibited good performance using Linear 
(accuracy: 94.1%, AUC: 0.94, sensitivity: 0.95, specific-
ity: 0.93, p < 0.0001), Quadratic (accuracy: 82.3%, AUC: 
0.79, sensitivity: 0.95, specificity: 0.64, p = 0.0004), and 
Fine Gaussian (accuracy: 94.1%, AUC: 0.93, sensitivity: 
1.0, specificity: 0.86, p < 0.0001) SVMs (Fig. 4). The model 
performance in classifying different headache subtypes 
was assessed using a data set of 20 patients with CM and 

Table 2  Demographics and clinical profiles

HC Healthy control, CM Chronic migraine, EM Episodic migraine, FM Fibromyalgia, HADS Hospital anxiety and depression score, A Anxiety, D Depression, MIDAS 
Migraine disability assessment, WPI Widespread pain index, SSS Symptom severity scale, FIQR Revised fibromyalgia impact questionnaire

Training data set Testing data sets

HC CM HC CM EM FM

N 56 80 14 20 35 N 35

Demographics Demographics
  Age (years) 41.4 ± 8.3 39.4 ± 11.6 38.3 ± 11.7 36.2 ± 10.5 38.0 ± 11.8   Age (years) 42.5 ± 11.2

  Sex 39F/17 M 69F/11 M 11F/3 M 15F/5 M 27F/8 M   Sex 34F/1 M

Psychometrics Psychometrics
  HADS_A 4.6 ± 3.5 8.4 ± 4.1 3.7 ± 2.5 9.7 ± 5.4 8.2 ± 4.3   HADS_A 9.8 ± 4.2

  HADS_D 3.9 ± 3.0 6.3 ± 3.9 3.7 ± 2.9 7.6 ± 4.3 5.8 ± 3.2   HADS_D 7.6 ± 4.4

Migraine profile FM profile
  Headache days (/month) - 20.1 ± 6.4 - 22.6 ± 6.2 6.6 ± 3.8   WPI 11.0 ± 5.0

  Disease duration (months) - 198.6 ± 144.2 - 182.9 ± 157.5 162.3 ± 129.2   SSS 7.1 ± 2.1

  Severity of last year (0–10) - 6.3 ± 2.1 - 6.1 ± 2.2 5.5 ± 2.1   Painkiller use 
(days/month)

2.0 ± 3.3

  MIDAS scores - 45.7 ± 61.2 - 51.1 ± 74.9 22.2 ± 28.3   FIQR 39.4 ± 18.1
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Fig. 2  Characteristic features of oscillatory connectivity for differentiating chronic migraine from healthy controls. L, left; R, right
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35 patients with EM. The Fine Gaussian SVM achieved 
high performance (accuracy: 94.5%, AUC: 0.96, sensitiv-
ity: 1.0, specificity: 0.91, p < 0.0001) (Fig.  5). Finally, the 
model performance in identifying CM compared with 
other chronic pain disorders was assessed using a data 
set of 20 patients with CM and 35 patients with FM. The 
Fine Gaussian SVM (Fig.  6) achieved favourable results 
(accuracy: 89.1%, AUC: 0.91, sensitivity: 1.0, specificity: 
0.83, p < 0.0001). In summary, these findings indicated 
that our model had good generalizability for identifying 
patients with CM in an independent data set.

Discussion
In this study, by utilising resting-state MEG record-
ing data to develop SVM models, we discovered the 
FCs of spontaneous neuromagnetic activities that could 
identify patients with CM. The discriminative features 
were principally deciphered from the functional inter-
actions among salience, sensorimotor, and part of the 
default mode networks. The classification model with 
these features exhibited excellent performance in dif-
ferentiating patients with CM from HC (training data 
set: accuracy = 86.8%, AUC = 0.9; testing data set: accu-
racy = 94.1%, AUC = 0.93). Moreover, this model also 
performed well in distinguishing patients with CM from 
those with EM (accuracy: 94.5%, AUC: 0.96) as well as 
from those with FM (accuracy: 89.1%, AUC: 0.91). These 
findings imply that resting-state MEG signatures can be 
specific and reliable for identifying patients with CM.

Characteristic features of oscillatory connectivity in CM
Altered oscillatory connectivity was dominantly noted 
in the beta and gamma bands among salience, sensori-
motor, and default mode networks; this indicated that 

patients with CM had altered oscillatory synchrony, 
impairing flexible routing of information across brain 
areas [24, 25]. Consistent with previous MEG [6] and 
EEG findings [26, 27], our data revealed decreased FC 
at distinct frequency bands in patients with migraine. 
This corresponds to the notion that pain is associated 
with complex temporal–spectral–spatial synchrony 
patterns of brain activity [11], which are abnormal in 
patients with chronic pain [6, 28–30]. Although the find-
ings implied no substantial relationship of the specific 
brain oscillation with pain processing [31], pain occur-
ring with the integration of nociceptive and contextual 
information is mediated by feedforward and feedback 
processes in the brain [32], which are, respectively, 
engaged in gamma and alpha/beta oscillations [11]. Cor-
respondingly, aberrant cortical processing for CM was 
mainly identified with beta and gamma oscillations in 
this study. Beta activities in animal models of chronic 
pain changed over the primary somatosensory and fron-
tal cortex [30, 33, 34]. Gamma oscillation before stimu-
lus onset was correlated with pain perception [35], and 
abnormal gamma oscillation has been associated with 
neurological and psychiatric symptoms, including ongo-
ing pain, resulting from thalamocortical dysrhythmia 
[36, 37]. Taken together, the oscillatory connectivity 
selected from this study by using a statistical approach 
adequately represents the cortical-level neuropathologi-
cal characteristics in patients with CM.

The main hubs in the cortical areas exhibiting the 
alterations for CM included the insula, anterior cingulate 
cortex (ACC), primary motor, primary somatosensory, 
secondary somatosensory, and posterior cingulate cor-
tex areas, which are located in the salience, sensorimotor, 
and default mode networks. In accordance with previous 

Fig. 3  Accuracy and area under the curve (AUC) of machine learning analysis with six kernels for classifying chronic migraine (CM) from healthy 
controls (HCs) in the training data set. SVM, support vector machine
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neurophysiological findings [6, 26, 27], decreased FC 
within the frontal–central, central–parietal, temporal-
parietal, or pain-related networks was noted in patients 
with migraine. Intriguingly, these cortical areas have 
shown their crucial roles in sensory-discriminative and 
affective-motivational pain, associated with headache 
severity. Activities in the sensorimotor cortex were asso-
ciated with pain intensity [38]. FC in ACC was related 
to migraine chronification [6]. The subjective percep-
tion of pain intensity was related to bilateral insula acti-
vation [39, 40]. Moreover, the posterior cingulate cortex 
is engaged in both pain sensitivity and integration of 
inputs from different sensory modalities (multisensory 

integration), which is declined in patients with migraine 
[41]. Theta connectivity between the insula and default 
mode network exhibited associations with FM severity 
[42]. Altered activities in the salience, sensorimotor, and 
default mode networks have also been noted in patients 
with chronic pain [28, 29, 43]. Notably, gamma oscilla-
tion was elicited to encode afferent sensory information 
over the sensory cortex; however, after long-lasting pain, 
it appeared over brain areas encoding emotional–motiva-
tional processing and dominated the processing and per-
ception of pain [11, 44]. This implies that the pain process 
not only is spatially distributed over the brain network 
but also dynamically recruits brain areas for the adaptive 

Fig. 4  a Confusion matrix, (b) area under the curve (AUC), and overall prediction accuracy (permutation test) of machine learning analysis with 
three kernels for classifying chronic migraine (CM) from healthy controls (HC) in the independent testing data set. SVM, support vector machine
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integration of nociceptive, cognitive, and affective pro-
cessing, which are apparently aberrant in patients with 
chronic pain. Therefore, the characteristic features of FC 
among the cortical networks that were observed in this 
study might serve as pivotal signatures to identify CM.

In this resting-state MEG study, the participants were 
instructed to close their eyes but remain awake, relax, and 
perform no explicit task. Thus, the recorded MEG signals 
were spontaneous cortical activities and originated from 
the intrinsic brain networks, which were distinct from 
the evoked activities from pain-related emotional stimuli 
[45]. Besides, Hepschke and colleagues suggested that 

rhythmical brain activity in the primary visual cortex is 
both hyperexcitable and disorganized in visual snow syn-
drome [46]. Notably, in our study, no migraine patient 
was diagnosed with visual snow syndrome; nevertheless, 
in our previous and present studies, patients with CM 
was characterized with hyperexcitability or disinhibition 
in visual and somatosensory cortices [5, 8, 47–49] and 
aberrant functional connectivity in pain-related areas [6]. 
Common altered pathophysiological mechanisms might 
exist between patients with and without visual snow syn-
drome, but the dominant involved cortical areas should 
differ from both.

Fig. 5  a Confusion matrix, (b) area under the curve (AUC), and overall prediction accuracy (permutation test) of machine learning analysis with 
three kernels for classifying chronic migraine (CM) from episodic migraine (EM) in the independent testing data set. SVM, support vector machine
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Identifying patients with CM using ML
The classification model of the present study exhib-
ited favourable performance in differentiating patients 
with CM from HC, EM, and FM (all accuracy > 86% and 
AUC > 0.9), indicating the generalizability of this model 
on the prediction of patients with CM from the popula-
tions of migraine (CM vs. EM) and from chronic pain 
disorders (CM vs. FM). By using advanced neuroimag-
ing approaches, studies have reported that the brain 
networks during the stimulus-evoked or resting-state 
conditions were altered in patients with migraine; how-
ever, whether these functional or structural features can 

help achieve migraine classification using ML algorithms 
has been somewhat unclear. The CM classification model 
developed by Schwedt and colleagues [50] by using brain 
structural imaging data achieved accuracies of 86.3% 
(CM [n = 15] vs. HC [n = 54]) and 84.2% (CM [n = 15] vs. 
EM [n = 51]). Resting-state FC data obtained from func-
tional MRI achieved 86.1% accuracy in discriminating the 
brain of patients with migraine [n = 58] from that of HC 
[n = 50] [51]. The combination of functional and struc-
tural MRI data achieved 83.67% accuracy in discriminat-
ing the patients with migraine (n = 21) from HC (n = 28) 
[52]. These three studies also exhibited the prominent 

Fig. 6  a Confusion matrix, (b) area under the curve (AUC), and overall prediction accuracy (permutation test) of machine learning analysis with 
three kernels for classifying the chronic migraine (CM) from fibromyalgia (FM) in the independent testing data set. SVM, support vector machine
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role of the pain-related areas, especially the insula and 
cingulate cortex, in the identification of patients with 
migraine. However, the parameters of somatosensory-
evoked high-frequency oscillations achieved some-
what higher accuracies of 89.7% (HC [n = 15] vs. ictal 
migraine [n = 13]) and 88.7% (HC [n = 15] vs. interictal 
migraine [n = 29]) in identifying patients with migraine 
[53]. Nevertheless, these studies have limited reliability 
and generalizability because of small sample sizes, lack 
of independent data to validate the findings, and lack of 
evaluation of whether these discriminative features spe-
cifically characterised the migraine. Our study overcame 
these shortcomings by recruiting 240 participants and 
dividing them into subgroups of training or independ-
ent testing data sets; moreover, the factors of different 
migraine spectrum and other chronic pain disorders 
were considered.

One promising study by Tu and colleagues [54] iden-
tified, cross-validated, independently validated, and 
cross-sectionally validated the fMRI-based neural 
marker and claimed that the functional connections 
within the visual, default mode, sensorimotor, and fron-
toparietal networks had 84.2%–91.4% accuracy in iden-
tifying patients with EM from HC and 73.1% accuracy 
in identifying patients with EM from those with other 
chronic pain disorders (FM and chronic low back pain). 
In addition to the fundamental difference between 
fMRI and MEG techniques, oscillatory connectivity 
analysis in this study (MEG with frequency bands of 
1–40  Hz neural activities compared with fMRI con-
fined within < 0.01  Hz blood oxygen level–dependent 
activities) might contribute to improved accuracies of 
migraine classification. Rocca et  al. [55] claimed that 
classification performance using fMRI data might be 
influenced by the factors of scanners and acquisition 
protocols. MEG-based electrophysiological features 
obtained from direct neural recordings with fine spa-
tial resolution and excellent temporal resolution, which 
assess the oscillatory connectivity between relevant cor-
tical areas, might eventually help diagnose patients with 
CM. Moreover, the frequency- and region-specific MEG 
signatures used in this model might represent the tar-
geting candidates of migraine neuromodulation using 
transcranial magnetic and direct current stimulation.

Limitations
Our study had several limitations. First, all participants 
were naïve to any migraine preventive medication, pre-
cluding the determination of whether our model can be 
generalised to patients taking such treatments. Second, 
the presence of background or interval headache, but not 
ictal attack, was allowed for patients with CM. Although 
our study noted the dynamic brain excitability within the 

migraine cycle in patients with EM [56], the longitudi-
nal day-to-day dynamics of FC between brain networks 
in patients with CM remain unresolved, which leads to 
an unsettled question of how the classification model 
performs for the factor of headache status. Third, we 
demonstrated the reliability and generalizability of using 
MEG-based electrophysiological features. However, 
whether the aforementioned brain signatures are shared 
with primary headaches or chronic pain disorders other 
than CM, EM, and FM remains unknown. Finally, MEG 
is expensive and not easily accessible, thus limiting the 
clinical application of this classification model; therefore, 
translations between MEG and high-density EEG are 
warranted.

Conclusion
These resting-state MEG-based electrophysiological 
features yield oscillatory connectivity to differenti-
ate patients with CM from those with a different type 
of migraine and chronic pain disorders with good reli-
ability and generalizability. This classification model 
may help in an objective and individualised diagnosis 
of migraine. However, the present findings need fur-
ther studies to examine their diagnostic value in real-
world clinical settings and to justify their link to the CM 
pathophysiology.
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