
ar
X

iv
:2

00
6.

00
93

7v
1

 [
cs

.L
G

]
 1

 J
un

 2
02

0

Concept Matching for Low-Resource Classification

Federico Errica 1 Ludovic Denoyer 2 Bora Edizel 2 Fabio Petroni 2

Vassilis Plachouras 2 Fabrizio Silvestri 2 Sebastian Riedel 2 3

Abstract

We propose a model to tackle classification tasks

in the presence of very little training data. To this

aim, we approximate the notion of exact match

with a theoretically sound mechanism that com-

putes a probability of matching in the input space.

Importantly, the model learns to focus on ele-

ments of the input that are relevant for the task at

hand; by leveraging highlighted portions of the

training data, an error boosting technique guides

the learning process. In practice, it increases the

error associated with relevant parts of the input

by a given factor. Remarkable results on text clas-

sification tasks confirm the benefits of the pro-

posed approach in both balanced and unbalanced

cases, thus being of practical use when labeling

new examples is expensive. In addition, by in-

specting its weights, it is often possible to gather

insights on what the model has learned.

1. Introduction

Gathering and labeling data is a task that can be expen-

sive in terms of time, human effort and resources. When

practitioners cannot rely on public large datasets, training

a model with acceptable performance on a few data points

becomes critical in a variety of applications. It is not un-

common that the data is also imbalanced, and as such the

demands of gathering samples of the minority class are

high. A natural domain in which these issues arise is,

for instance, text classification, with notable tasks being

hate-speech (Waseem & Hovy, 2016) and abuse detection

(Mishra et al., 2018). For these reasons, the study of tech-

niques that address this problem can have a tangible impact

on society.

One effective approach to overcome the lack of training

data is to augment the elements of the input with extra

1Department of Computer Science, University of Pisa, Pisa,
Italy 2Facebook AI 3Department of Computer Science, University
College London, London, United Kingdom. Correspondence to:
Federico Errica <federico.errica@phd.unipi.it>.

annotations, which has proved to be effective when cou-

pled with feature engineering approaches (Zaidan et al.,

2007; Zaidan & Eisner, 2008). Such annotations, e.g., high-

lighted words in a sentence, serve the purposes of guiding

the learning process toward good solutions and to prevent

overfitting the scarce amount of training samples. The goal

of this work is to investigate this idea from a pure represen-

tation learning perspective, where there is no human inter-

vention on the raw data but for the extra annotations.

To tackle this challenge, we design an architecture that

learns to extract relevant semantic concepts from each

input sample, such as words in a sentence or nodes in

a graph. We assume each input is made by a set of

individual representations: in scenarios like natural lan-

guage processing where words are the main constituents

of the input, we can rely on unsupervised pre-trained meth-

ods to represent them as vectors (Bojanowski et al., 2017;

Devlin et al., 2018; Hu* et al., 2020). As we act solely on

the model, the technique is flexible and task-agnostic; this

is in contrast with task-dependent feature engineering meth-

ods (Zaidan & Eisner, 2008). Here, the task is assumed to

be new, and as such labels need be (slowly) gathered by

someone with domain-specific expertise.

In particular, we introduce a new mechanism to match con-

cepts in each input sample and an effective error “boost-

ing” technique to exploit the additional annotations. We

also provide a theoretical analysis that justifies the choice

of our matching mechanism; on the empirical side, we will

see how cheap annotation costs can make up for a much

larger number of training samples, that is a desiderata for

low-resource classification.

Additionally, in this scenario, it is of practical importance

to have some degree of reassurance about what the model

has learned; by direct inspection of the weights, we show

how it is possible to gain human-readable insights about

its decision process. Results across a consistent number

of baselines indicate a significant improvement in perfor-

mance with respect to neural competitors as well as foun-

dational methods that make use of the given annotations.

To summarize, we make the following contributions: (i) We

introduce PARCUS, a new architecture that effectively com-

bines concept matching and error boosting techniques for

http://arxiv.org/abs/2006.00937v1

Concept Matching for Low-Resource Classification

low-resource classification; (ii) We support our intuition

with a theoretical analysis; (iii) We empirically validate the

approach against a consistent number of baselines, demon-

strating strong performance improvements; (iv) We per-

form ablation studies to disentangle the contributions of

the architecture main constituents; (v) Qualitative analyses

show that the model works according to intuition and can

be inspected to gain insights into what it has learned.

The rest of the paper is structured as follows: Section 2 re-

views the existing literature; Section 3 formally introduces

our model; Section 4 details our experiments and discusses

our findings; Section 5 analyzes limitations future works;

finally, Section 6 summarizes our work.

2. Related Works

There are different ways in which extra annotations can be

used. Some works generate annotations as a way to in-

terpret the model, while others exploit them to inform the

learning process. Natural language processing is the field

in which these techniques have been investigated the most.

In particular, the method proposed by Lei et al. (2016) tack-

les text classification by learning the distribution of annota-

tions given the text and that of the target class given the an-

notations. Interestingly, an additional regularization term

is added to the loss to produce annotations that are short

and coherent. The model makes use of high-capacity recur-

rent neural networks (Schuster & Paliwal, 1997), thus it is

tested on large amounts of training data to prevent overfit-

ting. This work was later refined by Bastings et al. (2019),

who proposed a probabilistic version of a similar architec-

ture, where a latent model is responsible for the generation

of discrete annotations. The main advantage of predicting

discrete annotations is that it is possible to constrain their

maximum number per sample, thus effectively controlling

sparsity. However, it usually requires a large number of

data points to be effective.

The first to exploit annotations (also called rationales in

this case) in a low resource scenario were Zaidan et al.

(2007) and Zaidan & Eisner (2008), by means of a

rationale-constrained SVM (Cortes & Vapnik, 1995) and

a probabilistic model. Moreover, the latter is realized

as a log-linear classifier that makes heavy use of feature-

engineering. On the other hand, when annotations are de-

fined on features rather than on samples, one can use the

Generalized Expectation (GE) criteria (Druck et al., 2007;

McCallum et al., 2007) to improve the performance of clas-

sifiers.

Annotations can also be incorporated in the loss func-

tion as done in Barrett et al. (2018), where an atten-

tion module (Vaswani et al., 2017) on top of an LSTM

(Hochreiter & Schmidhuber, 1997) is forced to attend

words in a document. A similar approach has been suc-

cessfully applied by Bao et al. (2018) to the weak super-

vision problem. However, the model assumes one source

domain, with supervised labels, to learn an attention gener-

ation module that is then applied to the target domain. In

contrast, our method can be built on a given embedding

space with minimum supervision.

Apart from incorporating prior knowledge in the form of an-

notations, we also mention other ways in which neural net-

works can be augmented: first-order logic (Li & Srikumar,

2019; Hu et al., 2016a); a corpora of regular expres-

sions (Luo et al., 2018); or massive linguistic constraints

(Hu et al., 2016b). While generally powerful and effective,

all these methods require domain-specific expertise to de-

fine the additional features and constraints that have to be

explicitly incorporated into the network; our method, in-

stead, is designed to be task-agnostic. In a different manner,

the SoPA architecture of Schwartz et al. (2018) learns to

match surface patterns on text through a differentiable ver-

sion of finite state machines, which relies on fixed-length

and linear-chain patterns to classify a document. Instead,

BabbleLabble (BL) (Hancock et al., 2018) is a method for

generating weak classifiers from natural language explana-

tions when supervision is scarce. On the one hand, BL

works well because it exploits a domain-specific grammar

to parse explanations; on the other hand, this grammar must

be carefully designed by domain experts.

Perhaps the most similar to this work, the Neural Bag Of

Words (NBOW) model (Kalchbrenner et al., 2014) takes an

average of the elements belonging to an input sample and

applies a logistic regression to classify a document. Its ex-

tension, NBOW2 (Sheikh et al., 2016), computes an impor-

tance score for each word by comparing it with a single ref-

erence vector that is learned. Despite the underlying idea

being similar, we propose a more general mechanism to fo-

cus on relevant words and use the given annotations.

As a final remark, notice that our setting is substantially dif-

ferent from the more common literature on few-shot learn-

ing (Snell et al., 2017; Garcia & Bruna, 2018; Chen et al.,

2019), where the goal is to classify classes that were un-

seen at training time. Here, we use annotations to be able

to associate concepts with the right class, something which

must be known in advance for the method to work properly.

In the following, we describe the architecture. As we shall

discuss, the model has a strong inductive bias that reflects

our intuition about how a model should work in the ab-

sence of large amounts of data. Hereinafter, we refer to our

new architecture with the name PARCUS (the Latin word

for “parsimonious”).

3. The PARCUS model

Let us consider a classification task in which a very small

labelled dataset D = {(x1, r1, y1), . . . , (xL, rL, yL)} is

Concept Matching for Low-Resource Classification

given. Here, xi is an input sample, ri represents the ex-

tra (optional) annotations provided by a human, and yi is

a discrete target label. For the purpose of this paper, an

input is a set of tokens xi = {x1
i , . . . , x

Ti

i } of arbitrary

size Ti. In addition, x
j
i ∈ R

n, where n is the size of

an embedding space. Finally, each token in the training

set may be marked as relevant or not by annotators, i.e.,

ri = {r1i , . . . , r
Ti

i } ∈ {0, 1}Ti .

3.1. Intuition

When humans are asked to solve a classification problem af-

ter seeing a few examples, they tend to look for very simple

patterns across the dataset, and text classification is an ex-

cellent use case. For instance, assume the word “excellent”

is important to classify a movie review as positive; if we

were to work in the character space, a straightforward so-

lution would be to match specific (sub-)strings in the input,

an instance of the so-called pattern matching technique. At

the same time, however, humans are able to generalize to

semantically similar concepts, and our goal is to exploit

similar embeddings to reflect this ability.

In this work, we transfer the concept of pattern match-

ing into the embedding space, where semantically similar

words are assumed to have similar representations. We

achieve this via a mechanism that outputs a probability of

matching between an input token and a prototype vector,

the latter of which is learned to capture discriminative con-

cepts. Differently from bag-of-words methods of Section 2,

our model can accommodate multiple prototypes and focus

on concepts that are useful for the task.

Moreover, in order to guide the learning process using the

extra annotations, it seems sensible to magnify the error for

those tokens that have been marked as relevant by annota-

tors. Notwithstanding the simplicity of the idea, the under-

lying challenge this work addresses is to effectively embed

such human knowledge into the prototypes. In other words,

each matching probability should be highly correlated with

a particular target class. In addition, it would be desirable

that a user could understand what the model has learned,

something of great interest when working with the uncer-

tainty caused by a scarce number of training samples. In

this respect, we will provide a practical example in Section

4.5.

We now show how to compute and combine multiple

matching probabilities, and then we introduce a technique

to incorporate extra annotations in the training process. It is

worth mentioning that both techniques have been designed

to coexist, even though the latter is not strictly necessary.

To provide a graphical representation of the proposed archi-

tecture, Figure 1 depicts a use case for text classification.

3.2. Concept Matching

We now present the core mechanism that implements con-

cept matching. Let us define a set P = {p1, . . . , pN |
pi ∈ R

n} of prototypes to be learned, where N is an hyper-

parameter of the model. Each pi ∈ P should ideally adapt

to be similar (in the embedding space) to the representation

of important tokens.

To learn the N prototypes, we employ the cosine similar-

ity metric. Cosine similarity has been often used to mea-

sure semantic similarity (Landauer & Dumais, 1997); its

co-domain ranges from −1, i.e., opposite in meaning, to 1,

i.e., same meaning, with 0 indicating uncorrelation. Ideally,

we would like our prototypes to have high similarity with

the relevant tokens in the input. To this aim, we further de-

fine an exponential activation function g : [−1, 1] → [0, 1]
that takes the distance between a token x

j
i and a prototype

pk and outputs a probability of matching:

P (xj
i matches pk) = g(d(xj

i , pk)) = ad(x
j

i
,pk)−1 (1)

where a is an hyper-parameter and d(xj
i , pk) computes the

cosine similarity between x
j
i and pk. In practice, the closer

to 1 the similarity is, the greater the output of this gated

activation, and g(v) = 1 ⇔ v = 1. By choosing a high

value of a we strongly penalize tokens that are associated

with low similarity scores.

3.3. Combining Multiple Prototypes

As we saw, Equation 1 computes the matching probabil-

ity between a token and a prototype. Because we have N

prototypes, we treat the associated N probabilities as a fea-

ture vector for the input token, and we denote each feature

as φk(x
j
i) = g(d(xj

i , pk)) ∀k ∈ 1, . . . , N . Interestingly,

working with matching probabilities allows us to combine

all of them through AND/OR/XOR logical functions. An

approximation of such functions can be straightforwardly

implemented through the pseudo-differentiable version of

min and max (Paszke et al., 2019), though a fully differ-

entiable version exists:

φAND(xj
i) = min({φk(x

j
i) ∀k}) (2)

φOR(x
j
i) = max({φk(x

j
i) ∀k}) (3)

φXOR(x
j
i) = φOR(x

j
i)− φAND(xj

i) (4)

In our experiments, the use of min and max func-

tions significantly sped up convergence due to the ab-

sence of non-linearities. Moreover, we chose to aug-

ment ∆(xj
i) with the probability of opposite matching:

φ¬k(x
j
i) = g(−d(xj

i , pk)) ∀k ∈ 1, . . . , N . Specifically,

when φ¬k(x
j
i) ≈ 1 it means the token x

j
i and pk have oppo-

site meaning. Finally, notice how our method differs from

NBOW2 (Sheikh et al., 2016), as we use prototypes to com-

pute per-token features rather than an importance score.

Concept Matching for Low-Resource Classification

Alice is married to Bob

∗ ∗ ∗ ∗∗

y1
i y2

i y3
i y4

i y5
i

x1
i x2

i x3
i x4

i x5
i

∗

x
j
i

pN

x
j
i

p1

φN

φ1

∆(xj
i)

W y
j
i

r1
i r2

i r3
i r4

i r5
i= = = = =

0 0 1 0 0

yi =
∑

j y
j
if

(

r
j
i

)

g ◦ d)(,

,()g ◦ d

x
j
i

.
.
.

Figure 1. The PARCUS architecture is applied to the i-th example of a dataset, i.e., “Alice is married to Bob”, with “married” being

highlighted. We extract features by computing the similarity between the token’s embedding and the prototypes of our model. Then,

we combine these features with a linear layer that outputs per-token predictions. At training time only, predictions are multiplied by a

boosting factor f(rji). Individual tokens’ predictions are then summed to yield the sentence prediction yi.

3.4. Inference

Once we have a feature vector for each token, we need to

combine all F = N + 3 features to output a token predic-

tion y
j
i . Let us first define an auxiliary term (omitting the

argument x
j
i to make notation less cluttered):

∆(xj
i) = [φ1, . . . , φN , φAND, φOR, φXOR] (5)

where square brackets denote concatenation. Then, we

compute token predictions by linearly combining features:

y
j
i = ∆(xj

i)W + b (6)

where W ∈ R
F×C is a matrix of parameters (multi-class

prediction with C classes) and b is the (optional) bias. The

linear model is useful when we want the user to analyze

the importance given to each matching probability, as dis-

cussed in Section 3.1, as well as to restrict the number of

parameters of the model (see discussion below). Finally,

the input prediction is just a sum of the individual y
j
i

yi = σ(

Ti
∑

j

y
j
i), (7)

where σ is the softmax activation.

Discussion Regularization of the matrix W plays an

important role to answer our research questions. We use

both L1 and L2 regularization terms on W, as done in

(Zou & Hastie, 2005), for two main purposes. First, the L1

term enforces sparsity and discourages the mixing of too

many concepts. Secondly, L2 limits the magnitude of the

weights, hence avoiding over-compensation of low cosine

similarity scores. Consequently, in order to increase one of

the matching probability features, the model is encouraged

to make changes to the prototypes rather than to the linear

weights; In other words, relevant information for the task

will be stored inside prototypes in the form of semantic

embeddings.

3.5. Annotation-driven Error Boosting

So far, we have not made use of annotations, which are of

fundamental importance to guide the learning process in

low-resource scenarios. To learn prototypes that match rel-

evant concepts, the proposed technique should weight the

importance of tokens rather than whole samples. It follows

a boosting approach (Freund et al., 1999) is not feasible in

this scenario; instead, our method exploits prior informa-

tion in an efficient way. The idea is to modify the error

associated with specific tokens to encourage prototypes to

be similar to them. To be more precise, at training time we

modify Equation 7 to take into account the given annota-

tions:

yi = σ(

Ti
∑

j

y
j
i · f(r

j
i)), (8)

where f : [0, 1] → R is an arbitrary exponential function

of our choice that boosts the error, e.g., f(rji) = er
j

i . In

terms of learning, f(rji) boosts the gradient of highlighted

tokens while leaving unchanged the rest (i.e., if r
j
i is 0, our

f(rji) outputs a multiplicative factor of 1). From a math-

ematical standpoint, we cannot achieve the same result as

Equation 8 by means of an additional loss term, as done in

Lei et al. (2016), because gradients would be summed and

not multiplied as done here.

Concept Matching for Low-Resource Classification

3.6. Model complexity and inductive bias

We conclude with remarks on the model complexity. The

total number of parameters is Θ(Nn + FC), which could

be much larger than that of a linear model (Θ(nC)) when

N is high and C is small. Usually, a restricted number of

parameters serves to counteract overfitting by limiting the

hypotheses space of the model (Vapnik, 1998). However,

this work tackles the problem from a novel perspective,

as we prevent the prototype weights from freely changing.

Specifically, prototype weights vary in a way that depends

on the given embedding space, because the learning pro-

cess makes them similar to some token x
j
i . If we allowed

the weights to freely change, we would get something sim-

ilar to an MLP; our experiments show how this way of con-

straining the weights fits particularly well the use case we

are considering. Finally, notice that PARCUS ignores the

structural dependencies between input tokens; this is in-

tended, as it is not feasible to learn complex interactions

with only a few data samples. Nonetheless, if semantic rep-

resentations x
j
i are obtained with a pre-trained model, they

will usually carry some structural information as well.

3.7. Theoretical analysis

The choice behind the concept matching mechanism of

Section 3.2 is backed up by a theoretical explanation. In-

deed, in the limit of the gating parameter a, Equation 1

converges to the discontinuous Kronecker delta function

δ(xj
i , pk) that is 1 when its arguments are equal and 0 oth-

erwise; hence, Eq. 1 is a sound approximation of a “hard

match” function.

Proposition 3.1. Let x, y ∈ R
n and d : R

n × R
n →

(−∞, 1] be a function such that d(x, y) = 1 ⇐⇒ x =
y. Then, the sequence of functions {fa}a>1 with fa =
ad(x,y)−1 is pointwise convergent to δ(x, y).

Proof. To prove pointwise convergence, it is sufficient to

show that

lim
a→+∞

ad(x,y)−1 = δ(x, y) ∀x, y.

Because the d cannot take values greater than 1, it follows

that d(x, y)−1 ≤ 0, and the equivalence holds if and only if

x = y. Therefore, fa(x, y) → 0 for x 6= y and fa(x, y) →
1 when x = y, that is δ(x, y).

From this proposition we can make another important con-

sideration. Given that it is not possible to have uniform

convergence to any discontinuous function, some parts

of δ(x, y) will be approximated more easily than others.

Specifically for cosine similarity, it can be shown that the

area comprised between the two functions, i.e., the error

of our approximation, is a2−1
a2 lna

; nonetheless, reasonable

values of a guarantee good performances and stable learn-

ing curves in our experiments. In summary, this result re-

veals that the best we can do is to look for approximations

that satisfy desirable properties, for example being more

accurate near the discontinuity and more “permissive” else-

where.

4. Experiments

This section reports the experimental setting as well as

our experimental findings. We compare PARCUS against

a large number of baselines. Additionally, we perform an

in-depth analysis of our model through ablation studies and

qualitative analyses of the effect of some hyper-parameters.

Then, we consider a practical scenario in which a user

wants to gather insights on how PARCUS predicts a class

for each input sample. We use natural language processing

benchmarks to validate our model, and all code to repro-

duce and extend our experiments is made available1.

4.1. Experimental Setting

Datasets We empirically validate our method on two

different datasets. First, the MOVIEREVIEW dataset

(Zaidan et al., 2007) contains balanced positive and nega-

tive movie reviews with annotations. Secondly, we use

the highly imbalanced (8% of positive samples) SPOUSE

dataset from Hancock et al. (2018), where the task is to tell

whether two entities in a given piece of news are married

or not. This is a harder task than standard classification, as

the same document can appear multiple times with differ-

ent given entities and the background context greatly varies.

Datasets statistics are reported in Table 1. We provide an-

notations for 60 randomly chosen positive samples of the

SPOUSE dataset; this process is fast and aims at replicat-

ing real world scenarios where labels are scarce and hard

to collect.

Table 1. Datasets’ statistics.
Train Valid. Test Annotations

SPOUSE 22195 2796 2697 60
MOVIEREVIEW 1800 - 200 1800

Setup We measure performances on the given test set

while varying the number of training data points. We use

balanced train splits for all models; on MOVIEREVIEW, the

validation set is taken as big as the training one to simulate

a real scenario. As for SPOUSE, we use the given validation

set for model selection to fairly compare with the results of

Hancock et al. (2018). We chose the pre-trained (unsuper-

vised) base version of BERT (Devlin et al., 2018) to pro-

vide an embedding space to our method and to other neural

baselines.

1
https://github.com/facebookresearch/parcus.

https://github.com/facebookresearch/parcus

Concept Matching for Low-Resource Classification

Table 2. Hyper-parameters tried during model selection.

LINEAR MLP/NBOW(2)/DAN BERT+FINETUNE OURS

LEARNING RATE {1e-2, 1e-3, 1e-4} {1e-3, 1e-4} {2e-5, 3e-5, 5e-5} {1e-2}
L1 - - - {1e-2, 1e-3}
L2 {1e-1, 1e-2, 1e-4} {1e-2, 1e-4} - {1e-3, 1e-4}
EPOCHS {50, 100, 150} {100, 500} {2, 4, 10} {500}
HIDDEN UNITS - {8, 16, 32} - -

BATCH SIZE 32 32 8 32

N - - - {5, 10}
f(r) - - - {er , 5r , 10r}
a - - - {10, 100}

We repeat each experiment 10 times with different random

splits; importantly, we train and validate different models

on the same data splits. The hyper-parameters for (hold-

out) model selection are reported in Table 2. Moreover,

to avoid bad initializations of the final re-training with the

selected configuration, we average test performances over

3 training runs. The optimized measure is Accuracy for

MOVIEREVIEW and F1-score for SPOUSE. PARCUS is

trained by gradient descent in an end-to-end fashion, from

the prototypes to the linear weights. We optimize the Cross-

Entropy loss using Adam (Kingma & Ba, 2015).

Methods To have a good comparison with embedding-

based models other than those reported in the literature,

we trained a linear model (Linear) and a single-layer MLP,

as well as NBOW (Kalchbrenner et al., 2014), NBOW2

(Sheikh et al., 2016) and the Deep Averaging Network

(DAN) of (Iyyer et al., 2015). We also fine-tune BERT

using the suggested hyper-parameters (Devlin et al., 2018),

adding 10 to the possible training epochs.

On SPOUSE, we devised a regular expression that asso-

ciates specific sub-strings (“wife”, “husb”, “marr” and

“knot”) to the positive class; ideally, models should be able

to focus on such words but also generalize. Moreover,

Traditional Supervision (TS) and Babble Labble (BL-DM)

were taken from the work of Hancock et al. (2018): the for-

mer method is a logistic regression using n-gram features,

whereas the latter is a complex pipeline tested on 30 nat-

ural language explanations provided by humans. Notably,

BL-DM exploits the relational information of the SPOUSE

dataset via task-specific grammar and parser, while PAR-

CUS simply ignores sentences where the entities of interest

are not present.

On MOVIEREVIEW, we also report results of an SVM

(Zaidan et al., 2007) and a log-linear model on language

features (Zaidan & Eisner, 2008), both of which are specif-

ically designed to exploit additional annotations.

Finally, we performed a number of ablation studies to

isolate the effect of different techniques: (i) an MLP

with the error boosting technique (MLP-W. H.) to

validate the use of prototypes; (ii) our method with-

out highlights (PARCUS-WO H.) to assess the im-

pact of rationales; (iii) our method with no logical fea-

tures (PARCUS-NO-LOGIC); (iv) our method with φk

features only (PARCUS-φk); (v) our method with bilin-

ear rather than cosine similarity (PARCUS-BILINEAR) to

show the importance of constrained weights; (vi) Par-

cus where the input is the average of all input to-

kens (PARCUS-AVG); (vii) Parcus where centroids are

pre-computed using the unsupervised k-means algorithm

(PARCUS-KMEANS).

4.2. Results & Discussion

Table 3 presents all our empirical results, including the ab-

lation studies. Results highlight that PARCUS has strong

performances in a low data regime, validating intuition and

theoretical results. On SPOUSE, our model strongly out-

performs other neural baselines and reaches the manually

tuned regular expression with just 60 training points. More-

over, TS needs ≈50x more data to achieve similar perfor-

mance. We also found that TS performs much worse than

our linear baseline (hence the need for a fair comparison in

the embedding space). Surprisingly, only 10 data points are

sufficient to perform better than almost all baselines with a

training size of 300, a >30x improvement which does not

depend on the chosen embedding space. With 300 data-

points and no annotations, our model has an average F1

score very close to that of BL-DM. Notice that the reported

result (BL-DM, 46.5) is not averaged over multiple runs,

and one of our random splits achieves a test score of 46.3;

this indicates the need for robust evaluation when it comes

to experimenting with few data points/natural language ex-

planations. Overall, we found that the proposed approach

can be helpful when data is greatly imbalanced and diverse

in nature, and outperforms powerful models like BERT that

are quite performing when fine-tuned on relatively small

datasets (Devlin et al., 2018; Howard & Ruder, 2018).

Similar arguments apply to MOVIEREVIEW, where our

model improves over the baselines. Interestingly, PARCUS

is able to improve the state of the art by a large margin when

very few data points are used. Here, NBOW and NBOW2

models proved to be the strongest competitors, as they rely

on the mean representation of a document.

Overall, the gap is more evident as training size is very

scarce, even when compared to other baselines that use ex-

tra annotations. This suggests the model could be a good

fit for all those practical scenarios where the data gathering

Concept Matching for Low-Resource Classification

Table 3. Results for all datasets. Standard deviation is shown in brackets. We report the F1-score as the evaluation metric for SPOUSE

and the accuracy for MOVIEREVIEW.

SPOUSE

MODEL/TRAIN SIZE 10 30 60 150 300 3K 10K

TUNED REGEXP - - - - - - - 40.5

TS - 15.5 15.9 16.4 17.2 41.8 55.0

BL-DM (30 EXPL.) - - - - - - - 46.5
LINEAR 18.2 (1.3) 20.6 (1.4) 22.5 (1.4) 26.1 (1.1) 26.1 (1.2) - - -

MLP 17.9 (2.4) 20.2 (3.1) 18.3 (0.6) 23.3 (1.2) 24.1 (1.3) - - -

NBOW 21.0 (2.3) 21.8 (1.7) 24.0 (1.0) 27.4 (2.0) 28.2 (1.8) - - -

NBOW2 19.5 (2.6) 22.3 (1.9) 25.9 (1.4) 29.6 (1.5) 31.7 (2.1) - - -

DAN 21.8 (3.2) 24.1 (2.5) 26.6 (1.7) 28.2 (1.6) 29.2 (1.5) - - -

BERT+FINETUNING 16.9 (2.6) 20.2 (2.1) 23.4 (1.2) 32.1 (2.0) 35.5 (3.2) - - -

(ABL.) MLP W. H. 16.7 (1.4) 20.8 (2.7) 20.9 (1.6) 22.7 (1.8) 23.1 (2.0) - - -

(ABL.) PARCUS-WO H. 27.0 (2.2) 31.6 (2.5) 34.2 (2.3) 41.8 (2.1) 44.0 (1.2) - - -

(ABL.) PARCUS-φk 32.4 (4.5) 34.4 (4.2) 37.8 (2.7) 42.7 (1.0) 41.4 (2.4) - - -

(ABL.) PARCUS-NO-LOGIC 32.7 (3.4) 34.5 (3.9) 36.8 (2.6) 42.7 (1.6) 42.0 (1.9) - - -

(ABL.) PARCUS-AVG 22.9 (3.7) 26.5 (2.9) 28.8 (2.2) 30.5 (1.1) 32.7 (0.9) - - -

(ABL.) PARCUS-KMEANS 30.3 (2.0) 33.5 (0.5) 32.93 (1.0) 32.8 (0.9) 34.2 (1.3) - - -

(ABL.) PARCUS-BILINEAR 29.1 (4.5) 31.4 (5.9) 36.0 (5.4) 36.1 (5.1) 33.1 (3.0) - - -

PARCUS 34.0 (4.5) 36.6 (4.3) 40.3 (2.5) 43.7 (1.7) 42.9 (1.6) - - -

MOVIEREVIEW

MODEL/TRAIN SIZE 10 20 50 100 200

SVM + RATIONALES - 65.4 - 75 83.2

LOG-LINEAR + RATIONALES - 65.8 - 76 83.8

LINEAR 60.4 (3.4) 64.0 (3.5) 70.2 (2.0) 77.2 (2.6) 80.3 (3.1)

MLP 59.1 (4.1) 62.6 (4.2) 69.7 (2.4) 73.3 (3.8) 80.0 (3.0)

NBOW 62.6 (4.6) 65.7 (4.8) 73.9 (1.6) 78.0 (2.0) 81.2 (3.6)

NBOW2 61.5 (4.5) 64.3 (4.9) 72.9 (1.4) 78.9 (4.4) 83.6 (1.8)

DAN 61.5 (6.2) 62.3 (4.8) 72.9 (3.3) 78.7 (3.2) 82.35 (2.7)

BERT+FINETUNING 53.5 (2.0) 54.8 (4.9) 59.7 (4.5) 67.7 (4.3) 79.2 (2.5)

(ABL.) MLP W. H. 61.5 (4.6) 63.1 (5.8) 68.9 (7.0) 72.4 (8.5) 74.6 (5.8)

(ABL.) PARCUS-WO H. 61.2 (4.3) 64.9 (5.0) 74.3 (2.4) 78.6 (2.3) 84.6 (2.8)

(ABL.) PARCUS-φk 66.1 (5.7) 68.4 (3.5) 77.8 (2.0) 80.7 (3.0) 83.4 (2.4)

(ABL.) PARCUS-NO-LOGIC 66.9 (5.9) 67.9 (3.5) 75.5 (4.0) 81.0 (2.4) 83.7 (2.7)

(ABL.) PARCUS-AVG 62.1 (4.9) 62.5 (4.4) 71.0 (3.5) 73.3 (3.1) 79.0 (3.4)

(ABL.) PARCUS-KMEANS 54.4(5.0) 53.2 (3.4) 54.2 (2.6) 53.6 (2.7) 58.0 (2.4)

(ABL.) PARCUS-BILINEAR 57.5 (5.1) 61.9 (6.7) 70.4 (3.7) 75.3 (2.9) 78.3 (3.6)

PARCUS 67.2 (5.5) 70.1 (5.6) 76.6 (2.4) 80.0 (2.6) 83.8 (2.8)

process is just started and one wants to boost performances

by means of extra annotations.

4.3. Ablation Studies

We performed ablation studies on both datasets to under-

stand whether the improvements are only due to proto-

types, error boosting technique or both. Overall, we ob-

serve that the use of prototypes provides a consistent im-

provement with respect to the other baseline, and this is

especially evident on the SPOUSE dataset. Interestingly,

MLP W. H. does not benefit from error boosting, which

is in accord with the fact that unconstrained weights make

it more difficult to select and isolate the contribution of

relevant tokens. In addition, it seems that the logical and

opposite matching features can help to boost the average

performance, as PARCUS-φk and PARCUS-NO-LOGIC al-

ways perform worse than PARCUS on SPOUSE. Because

annotations guide the learning process, these are most im-

portant in the extremely low resource scenario, but their

effect slowly fades as the training size increases; contrarily

to our expectations, PARCUS performs even better on larger

amounts of training points without annotations. This indi-

cates that, at a certain point, annotations may regularize the

model too much, and it suggests future works on adaptive

error boosting functions. Finally, note that neither averag-

ing tokens nor pre-computing centroids seem beneficial; in-

deed, models like DAN better exploit the average using an

MLP on top of the averaged representation, while we force

the model to align to some relevant input token. Also, the

use of pre-computed centroids will make the model focus

on the most common semantics in the dataset, which are

not necessarily the most adequate to solve the task.

4.3.1. MORE GENERAL DISTANCE FUNCTIONS

In Section 3.6 and in the above discussion, we argued that

the inductive bias of our architecture is favorable for the

specific problem we are tackling. Here, we empirically

validate our statement by showing that the use of a more

general distance function d tends to overfit the data and

achieves significantly worse performances. In particular,

we substitute the cosine similarity with its bilinear counter-

part dWb
(x, p) = tanh(xTWbp), where Wb ∈ R

d × R
d,

Concept Matching for Low-Resource Classification

1 5 10 20 50

Prototypes

0

5

10

15

20

25

30

35

S
c
o

re

a: 5

a: 10

a: 50

a: 100

a: 500

a: 1000

Figure 2. Here, 60 data points are used to train PARCUS on the

SPOUSE dataset. Our analysis reveals how larger values of a

should be associated with a reasonable number of prototypes

(much less than the size of the training set) to achieve good per-

formances.

and we ran the experiments on SPOUSE and MOVIERE-

VIEW (shown in Table 3 as PARCUS-BILINEAR). Bilinear

similarity can be seen as a generalization of cosine similar-

ity when individual features are given different importance

(specified by the matrix Wb). However, the number of pa-

rameters is quadratic in the dimension of the given embed-

dings, and this matrix is unconstrained, unlike prototypes.

Overall, we observe that the use of bilinear similarity still

yields good performances on the SPOUSE task, but it is not

capable of generalizing well on MOVIEREVIEW where the

average number of tokens in each sentence is much higher.

The reason may be that since SPOUSE contains pieces of

news related to different topics, focusing solely on those

concepts related to marriage may help.

These empirical results reinforce the belief that constrain-

ing the weights to match specific concepts in a low-

resource scenario helps to generalize to new instances.

4.4. Qualitative analysis on the effect of a

The parameter a plays an important role in controlling how

strict the model is in considering a matching to be highly

probable. Larger values of a should produce prototypes

that are more specific to a single concept, while smaller

values (but still greater than 1, see Proposition 3.1) allow a

prototype to match less similar tokens. To further confirm

our intuition, we run an experiment on the SPOUSE dataset

where we analyzed the trade-off between the value of a and

the number of prototypes. Figure 2 shows our results for

60 data points. We immediately see that using just 1 proto-

type with a large value of a may be too restrictive to solve

the task, which is in accord with common sense. However,

the general trend we observe is that enforcing separation

of concepts is usually beneficial, provided the number of

prototypes is sufficiently high.

hu
sb
an
d

wi
fe

m
ar
ry
in
g

fia
nc
e

sp
ou
se

m
ar
rie
d

fia
nc
ee

bo
yf
rie
nd

re
m
ar
rie
d

da
ug
ht
er

Word

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er
ag
e

Po
sit

iv
e

Sc
or

e

Figure 3. Top-10 most relevant tokens for positive prediction, av-

eraged on unseen data.

4.5. Gaining insights from the learned weights

The learned weights of the proposed model can be in-

spected to gain insights on what concepts it focuses on and

how they are related. To show this, we train a model using

N=3 prototypes on 60 examples taken from the SPOUSE

dataset. Then, we rank the tokens’ outputs of sentences be-

longing to unseen data, so that the outputs with the highest

rank correspond to semantic concepts that have been con-

sidered relevant for the task by the model. Specifically, as

shown in Figure 3, the model learns to focus on words re-

lated to marriage, as well as syntactic variations associated

with similar semantics. Importantly, some of the words

were not given as annotations in the training set, meaning

that the model is also able to recognize similar concepts.

We additionally show that annotators’ knowledge has been

effectively incorporated into the prototypes, and how the

features of Equation 5 have been combined together. We

start by inspecting the magnitude of the linear weights

W ∈ RF×2; specifically, if the i-th feature is discrimi-

native for a class c, then the i-th row of W will have the

c-th element larger than the others. In our example, we find

that φ1 was important for positive predictions, whereas the

other features did not contribute much to a particular class.

We then perform top-10 cosine similarity ranking between

tokens and the prototype p1. From the most similar to the

least one, we obtain: husband; marriage; marrying; wife;

married; marry; fiance; wedding; fiancee; and girlfriend.

This result gives insights on how PARCUS has learned to

match concepts similar to those provided in natural lan-

guage form by BL-DM (see Appendix of Hancock et al.

(2018)).

Concept Matching for Low-Resource Classification

5. Limitations and future works

Though PARCUS performs very well and its learning dy-

namics follow our intuition, there are some inherent limita-

tions to the method. The first is that it is not possible to uni-

formly approximate the Kronecher delta function of Propo-

sition 3.1, and as such we can only study further approxima-

tions that work better around the discontinuity. The second

is the need to map the input into embedding space before

training, which can be restrictive for less common applica-

tion domains. This has an impact on how easily we can

inspect the weights as done in Section 4.5; however, all

domains for which a pre-trained method exists should ben-

efit from our technique. Also, notice that cosine similarity

is just one of the functions that can be used: if we are in-

terested in the magnitude of the vectors when computing

similarities, a normalized Euclidean norm can be a valid

choice. Interesting future works will be the investigation of

PARCUS performance on larger training sets and its exten-

sion to an adaptive version of the error boosting function

f .

6. Conclusions

In this work, we presented PARCUS, a new representation

learning methodology to perform classification in the low

data regime. We coupled matching probabilities with er-

ror boosting to focus on concepts that are important for

the task at hand. After comparing it with a large num-

ber of baselines, the model performed very well and out-

performed most of them. We provided theoretical insights

on the design of our matching technique, and we make an

in-depth analysis of some characteristics of the model as

well as many ablation studies. Moreover, we showed with

a practical example that the weights can be inspected to

see what concepts the model focuses on. In summary, our

model can be very useful in tasks where gathering data is

challenging, and it can be used to assist users in training a

classifier for a very specific task.

References

Bao, Y., Chang, S., Yu, M., and Barzilay, R. Deriving ma-

chine attention from human rationales. In Proceedings

of the 2018 Conference on Empirical Methods in Natu-

ral Language Processing, pp. 1903–1913, 2018.

Barrett, M., Bingel, J., Hollenstein, N., Rei, M., and

Søgaard, A. Sequence classification with human atten-

tion. In Proceedings of the 22nd Conference on Com-

putational Natural Language Learning, pp. 302–312,

2018.

Bastings, J., Aziz, W., and Titov, I. Interpretable neural

predictions with differentiable binary variables. In Pro-

ceedings of the 57th Conference of the Association for

Computational Linguistics, ACL, 2019.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. En-

riching word vectors with subword information. Trans-

actions of the Association for Computational Linguistics,

5:135–146, 2017.

Chen, W.-Y., Liu, Y.-C., Kira, Z., Wang, Y.-C. F., and

Huang, J.-B. A closer look at few-shot classification. In

International Conference on Learning Representations,

2019.

Cortes, C. and Vapnik, V. Support-vector networks. Ma-

chine learning, 20(3):273–297, 1995.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:

Pre-training of deep bidirectional transformers for lan-

guage understanding. arXiv preprint arXiv:1810.04805,

2018.

Druck, G., Mann, G., and McCallum, A. Reducing annota-

tion effort using generalized expectation criteria. Techni-

cal report, Massacusetts University, Department of Com-

puter Science, Amherst, 2007.

Freund, Y., Schapire, R., and Abe, N. A short introduc-

tion to boosting. Journal-Japanese Society For Artificial

Intelligence, 14(771-780):1612, 1999.

Garcia, V. and Bruna, J. Few-shot learning with graph neu-

ral networks. In International Conference on Learning

Representations, 2018.

Hancock, B., Varma, P., Wang, S., Bringmann, M., Liang,

P., and Ré, C. Training classifiers with natural language

explanations. In Proceedings of the 56th Annual Meeting

of the Association for Computational Linguistics, ACL

2018, Melbourne, Australia, July 15-20, 2018, Volume 1:

Long Papers, pp. 1884–1895, 2018.

Hochreiter, S. and Schmidhuber, J. Long short-term mem-

ory. Neural computation, 9(8):1735–1780, 1997.

Concept Matching for Low-Resource Classification

Howard, J. and Ruder, S. Universal language model fine-

tuning for text classification. In Proceedings of the

56th Annual Meeting of the Association for Computa-

tional Linguistics (Volume 1: Long Papers), pp. 328–

339, 2018.

Hu*, W., Liu*, B., Gomes, J., Zitnik, M., Liang, P., Pande,

V., and Leskovec, J. Strategies for pre-training graph neu-

ral networks. In International Conference on Learning

Representations, 2020.

Hu, Z., Ma, X., Liu, Z., Hovy, E., and Xing, E. Harnessing

deep neural networks with logic rules. In Proceedings of

the 54th Annual Meeting of the Association for Compu-

tational Linguistics (Volume 1: Long Papers), volume 1,

pp. 2410–2420, 2016a.

Hu, Z., Yang, Z., Salakhutdinov, R., and Xing, E. Deep neu-

ral networks with massive learned knowledge. In Pro-

ceedings of the 2016 Conference on Empirical Methods

in Natural Language Processing, pp. 1670–1679, 2016b.

Iyyer, M., Manjunatha, V., Boyd-Graber, J., and Daumé III,

H. Deep unordered composition rivals syntactic meth-

ods for text classification. In Proceedings of the 53rd An-

nual Meeting of the Association for Computational Lin-

guistics and the 7th International Joint Conference on

Natural Language Processing (Volume 1: Long Papers),

volume 1, pp. 1681–1691, 2015.

Kalchbrenner, N., Grefenstette, E., and Blunsom, P. A con-

volutional neural network for modelling sentences. In

Proceedings of the 52nd Annual Meeting of the Associa-

tion for Computational Linguistics (Volume 1: Long Pa-

pers), pp. 655–665, 2014.

Kingma, D. P. and Ba, J. Adam: A method for stochastic

optimization. In 3rd International Conference on Learn-

ing Representations, ICLR 2015, San Diego, CA, USA,

May 7-9, 2015, Conference Track Proceedings, 2015.

Landauer, T. and Dumais, S. A solution to plato’s prob-

lem: The latent semantic analysis theory of acquisition,

induction, and representation of knowledge. Psychologi-

cal review, 104(2):211, 1997.

Lei, T., Barzilay, R., and Jaakkola, T. Rationalizing neural

predictions. In Proceedings of the 2016 Conference on

Empirical Methods in Natural Language Processing, pp.

107–117, 2016.

Li, T. and Srikumar, V. Augmenting neural networks

with first-order logic. arXiv preprint arXiv:1906.06298,

2019.

Luo, B., Feng, Y., Wang, Z., Huang, S., Yan, R., and Zhao,

D. Marrying up regular expressions with neural net-

works: A case study for spoken language understanding.

In Proceedings of the 56th Annual Meeting of the Asso-

ciation for Computational Linguistics (Volume 1: Long

Papers), pp. 2083–2093, 2018.

McCallum, A., Mann, G., and Druck, G. Generalized

expectation criteria. Computer science technical note,

University of Massachusetts, Amherst, MA, 94(95):159,

2007.

Mishra, P., Yannakoudakis, H., and Shutova, E. Neural

character-based composition models for abuse detection.

In Proceedings of the 2nd Workshop on Abusive Lan-

guage Online (ALW2), pp. 1–10, 2018.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,

Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,

L., et al. Pytorch: An imperative style, high-performance

deep learning library. In Advances in Neural Information

Processing Systems, pp. 8024–8035, 2019.

Schuster, M. and Paliwal, K. K. Bidirectional recurrent neu-

ral networks. IEEE Transactions on Signal Processing,

45(11):2673–2681, 1997.

Schwartz, R., Thomson, S., and Smith, N. A. Bridging

cnns, rnns, and weighted finite-state machines. In Pro-

ceedings of the 56th Annual Meeting of the Association

for Computational Linguistics, ACL, 2018.

Sheikh, I., Illina, I., Fohr, D., and Linares, G. Learning

word importance with the neural bag-of-words model.

In ACL, Representation Learning for NLP (Repl4NLP)

workshop, 2016.

Snell, J., Swersky, K., and Zemel, R. Prototypical networks

for few-shot learning. In Advances in Neural Informa-

tion Processing Systems, pp. 4077–4087, 2017.

Vapnik, V. Statistical learning theory wiley. New York, pp.

156–160, 1998.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,

L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-

tion is all you need. In Advances in neural information

processing systems, pp. 5998–6008, 2017.

Waseem, Z. and Hovy, D. Hateful symbols or hateful peo-

ple? predictive features for hate speech detection on twit-

ter. In Proceedings of the NAACL student research work-

shop, pp. 88–93, 2016.

Zaidan, O., Eisner, J., and Piatko, C. Using annotator ra-

tionales to improve machine learning for text categoriza-

tion. In Human language technologies 2007: The con-

ference of the North American chapter of the association

for computational linguistics; proceedings of the main

conference, pp. 260–267, 2007.

Concept Matching for Low-Resource Classification

Zaidan, O. F. and Eisner, J. Modeling annotators: A gen-

erative approach to learning from annotator rationales.

In Proceedings of the Conference on Empirical Methods

in Natural Language Processing, pp. 31–40. Association

for Computational Linguistics, 2008.

Zou, H. and Hastie, T. Regularization and variable selec-

tion via the elastic net. Journal of the royal statistical so-

ciety: series B (statistical methodology), 67(2):301–320,

2005.

