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Abstract Global Navigation Satellite System Ionospheric Seismology investigates the ionospheric
response to earthquakes and tsunamis. These events are known to generate Traveling Ionospheric Disturbances
(TIDs) that can be detected through GNSS‐derived Total Electron Content (TEC) observations. Real‐time TID
identification provides a method for tsunami detection, improving tsunami early warning systems (TEWS) by
extending coverage to open‐ocean regions where buoy‐based warning systems are impractical. Scalable and
automated TID detection is, hence, essential for TEWS augmentation. In this work, we present an innovative
approach to perform automatic real‐time TID monitoring and detection, using deep learning insights. We utilize
Gramian Angular Difference Fields (GADFs), a technique that transforms time‐series into images, in
combination with Convolutional Neural Networks (CNNs), starting from VARION (Variometric Approach for
Real‐time Ionosphere Observation) real‐time TEC estimates. We select four tsunamigenic earthquakes that
occurred in the Pacific Ocean: the 2010Maule earthquake, the 2011 Tohoku earthquake, the 2012 Haida‐Gwaii,
the 2015 Illapel earthquake. The first three events are used for model training, whereas the out‐of‐sample
validation is performed on the last one. The presented framework, being perfectly suitable for real‐time
applications, achieves 91.7% of F1 score and 84.6% of recall, highlighting its potential. Our approach to improve
false positive detection, based on the likelihood of a TID at each time step, ensures robust and high performance
as the system scales up, integrating more data for model training. This research lays the foundation for
incorporating deep learning into real‐time GNSS‐TEC analysis, offering a joint and substantial contribution to
TEWS progression.

Plain Language Summary Global Navigation Satellite System Ionospheric Seismology investigates
how the ionosphere responds to earthquakes and tsunamis, detecting TIDs through GNSS‐derived TEC
observations. Real‐time TID identification aids tsunami detection, enhancing early warning systems by
extending coverage to open‐ocean regions. Automated TID detection is crucial for early warning system
improvement. In this study, we propose an innovative approach using deep learning insights to perform
automatic real‐time TID monitoring and detection. We leverage GADFs and CNNs with VARION real‐time
TEC estimates. We train the model on four tsunamigenic earthquakes in the Pacific Ocean and validate it on an
out‐of‐sample event. The framework achieves promising performance metrics, highlighting its potential for
real‐time applications. Our approach improves false positive detection, ensuring robustness and scalability as
the system integrates more data for training. This research paves the way for integrating deep learning into real‐
time GNSS‐TEC analysis, contributing significantly to the advancement of early warning systems.

1. Introduction
Nowadays, it is commonly renowned that the Total Electron Content (TEC) retrieved from Global Navigation
Satellite System (GNSS) can be used to estimate fundamental information to assess the genesis of a tsunami
(Astafyeva, 2019; Manta et al., 2020; Meng et al., 2019; Ravanelli et al., 2021). This particular branch of GNSS
Remote Sensing is referred as GNSS Ionospheric Seismology since it studies the ionospheric response to natural/
man‐made hazards through GNSS‐TEC observations.

Indeed, earthquakes and tsunamis, as well other natural hazards, can produce acoustic and gravity waves (AGWs)
which, due to the decrease in atmospheric density, can reach ionospheric heights, causing disturbances in the
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electron content (Daniels, 1952; Hines, 1972, 1974; Peltier & Hines, 1976). Some of these perturbations can be
classified as acoustic gravity wave epicenter (AGWepi) and internal gravity waves tsunami (IGWstsuna), following
the nomenclature firstly introduced by (Occhipinti, 2015). Particularly, AGWepi can provide timely information
(after 8 min from the earthquake) of the vertical displacement at the source, a fundamental parameter for the
estimation of tsunami genesis (Astafyeva, 2019; Ravanelli et al., 2021). Furthermore, IGWstsuna can share insights
about the propagation of the tsunami offshore, that is where data are lacking the most (Hohensinn et al., 2024).
AGWepi and IGWstsuna can be generally referred as Traveling Ionospheric Disturbances (TIDs) (Azeem
et al., 2017; Vergados et al., 2020).

This is the reason why GNSS‐TEC information needs to be used in real‐time since it provides continuing updates
on tsunami potential and arrival times, reducing the risk of false alarms (LaBrecque et al., 2019) and, hence, it can
be used to enhance tsunami early warning systems (TEWS) (Kamogawa et al., 2016; Manta et al., 2020; Ravanelli
et al., 2021; Savastano et al., 2017). This goal was expressed in Resolution #4 of the International Union of
Geodesy and Geophysics General Assembly 2015 which encourages the real‐time GNSS Augmentation of the
Tsunami EarlyWarning System (International union of Geodesy and Geophysics, 2015). Indeed, existing systems
such as the Deep‐ocean Assessment and Reporting of Tsunamis (DART) can be effective, but they are often
limited to specific geographic locations, due to the use of specialized hardware (the DART system utilizes ocean‐
based buoys placed in strategic locations around the Pacific Ocean).

Operative tools like the GUARDIAN system, developed by NASA Jet Propulsion Laboratory and based on near
real‐time GNSS‐TEC estimates for natural hazard monitoring, do not provide a real‐time detection module yet
(Martire et al., 2023). Indeed, what is still lacking is a scalable, real‐time and automated detection of TIDs: this
feature stands as the pivotal element to augment TEWS. Furthermore, the volume, variety and velocity of
available GNSS data cause to also explore machine learning approaches which can effectively capture complex
non‐linear relationships. In this direction, it is worth mentioning the work from (Brissaud &Astafyeva, 2022) that
explores Random Forest models for detecting TIDs, but to date these models require significant feature engi-
neering, leveraging not only TEC and but also ionospheric spectrograms. Furthermore (Fuso et al., 2024), also
explored classification architectures for automatically detecting earthquake‐induced TIDs, albeit with a smaller
data set and testing on a single event. Recently, deep learning has been employed thanks to its ability to auto-
matically discover complex features without the need for domain knowledge (Munir et al., 2019). This trait can be
leveraged and used toward TID detection. TID detection may be characterized as a distinct anomaly detection
problem involving multivariate time‐series data. The advancements of deep learning and the development of new
network architectures have led to improvements in the performance of time series anomaly detection solutions
(Bontemps et al., 2017; Chauhan & Vig, 2015; Hundman et al., 2018; Malhotra et al., 2015, 2016; Nanduri &
Sherry, 2016; Taylor et al., 2016) which–together with new data transformation approaches (Wang &
Oates, 2015)–may present an alternative approach for TID detection over Random Forests. Automatic TID
detection approaches have the potential to greatly improve the detection of tsunami waves and the character-
ization of tsunami events by providing open‐ocean detection capability unconstrained by a fixed geographic
locations such as the DART system.

In this work, for the first time, we decided to use the insights of deep learning for TIDs detection on a multiple
tsunamigenic events. This approach is far from self‐evident, since GNSS‐TEC observations are time series and
not images. Yet encoding the data as images can provide significant advantages, as it allows the use of modeling
approaches not reliant on continuous data streams. We applied Gramian Angular Difference Fields (GADFs)
(Wang & Oates, 2015)–a method which converts time‐series data to images–and Convolutional Neural Networks
(CNNs)–a type of deep neural network (Ranzato et al., 2007; Szegedy et al., 2015; Wickramaratne & Mah-
mud, 2021)–for tsunami‐induced TID detection starting from TEC observations. In detail, we employed VAR-
ION (Variometric Approach for Real‐time Ionosphere Observation), that is, a well‐known algorithm to estimate
TEC variations in real‐time (Ravanelli et al., 2021; Savastano et al., 2017).

We selected four tsunamigenic earthquakes that occurred in the Pacific Ocean, as the most devastating tsuna-
migenic events often occur in that region: the 2010Maule earthquake, the 2011 Tōhoku earthquake (coastal Japan
tsunami), the 2012 Haida‐Gwaii earthquake (coastal Hawaii tsunami) and the 2015 Illapel earthquake (coastal
Chile tsunami). The first three events were used for model training, whereas the out‐of‐sample validation was
performed on the last one.
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In detail, extending the research conducted in the previous study by (Constantinou et al., 2023a, 2023b), this work
provides an in‐depth description of the proposed deep learning framework, offering comprehensive insights into
its structure and methodology.

The paper is structured as follows. In Section 3, we describe the framework for using deep learning to detect TIDs,
and assess the generalizability of the framework by utilizing multiple, separate events for model training and an
unseen, future event for validation. Section 4 describes the proposed framework and the resulting model per-
formance in this paper. In Section 5, we present an in‐depth discussion of the experimental results, valuable
lessons learned and observations from our efforts which we believe may be important in further developing deep
learning‐based TID detection systems. A description of the practical trade‐offs of employing simple false positive
mitigation strategies and the importance of employing data management best practices is also provided. Finally,
Section 6 illustrates conclusions and future works.

2. Earthquake Information and Data Set
As stated before, we focused on four major Pacific tsunamigenic earthquake events. In detail, we used the 2010
Maule earthquake, the 2011 Tōhoku earthquake, the 2012 Haida‐ Gwaii earthquake and the 2015 Illapel to assess
the viability of data transformation and modeling strategies that we will describe in Section 3.

To this aim, different GNSS data sets were employed for the respective events.

On 27 February 2010 an earthquake of magnitude 8.8 stroke the Chilean coastal region of Maule (36.1221°S
72.8981°W) (USGS, 2021b). The shock triggered a tsunami that propagated all over the Pacific region, reaching
over 700 km of coastline (Istituto Nazionale di Geofisica e Vulcanologia, 2021). The maximum run‐up (i.e., the
maximum topographic height reached by the tsunami) peak (29 m) was recorded at Constitución, Chile (Yue
et al., 2014). The Pacific Tsunami Warning Center (PTWC) issued the warning 12 min after the earthquake (EQ)
(Soulé, 2014). The tsunami arrived within 30 min at many locations in Chile, therefore, official evacuations and
warnings by local authorities were not available at many places prior to the arrival of the tsunami (Center, 2021b).
Finally, the tsunami accounts for 124 victims concentrated in the coastal regions of Maule and Biobío, Juan
Fernández Archipelago's Robinson Crusoe Island and Mocha Island (Fritz et al., 2011). For this event, we used a
data set of 30 GPS stations located in Chile from the UNAVCO network (UNAVCO, 2021). For that event, we
don't have the data from the regional chilean network of Centro Sismológico Nacional, Universidad de Chile
(CSN) network that started at collecting data in 2010, but after the EQ. Nominally, we investigated a data set of
34 days, 20 of which before the EQ and 13 after the EQ at a 30 s rate.

The infamous Tōhoku‐Oki earthquake of magnitude Mw 9.1 occurred near the northeast coast of Honshu
(38.297°N 142.373°E) in the Tōhoku region on 11 March 2011 (USGS, 2021c). The shock triggered powerful
tsunami waves that struck the Pacific coast of Honshu within about 20 min and that was observed all over the
Pacific region. 15270 and 8499 people were reported to be killed and missed respectively because of the
earthquake and tsunami. In Sendai, maximum tsunami run‐up heights (15–20 m range) were registered. The Japan
Meteorological Agency's national tsunami warning center issued a tsunami warning 3 min after the earthquake
triggering the alerting process that immediately broadcasted by mass media and locally activated sirens and other
mitigation countermeasures such as flood gate closures. Nevertheless, many casualties resulted: waves over-
topped tsunami walls and destroyed many structures, especially wooden homes (Center, 2021a). In this case, we
had available an extraordinary data set composed of 1237 GPS receivers belonging to the very dense Japanese
GEONET network (Geospatial Information Authority of Japan, 2021). Precisely, stations sampling data at 30 s
rate were employed. The data set includes 30 days, nine of which before the EQ and 19 after the EQ.

On 28 October 2012 an earthquake of moment magnitude 7.8 hit offshore of the island of Haida Gwaii, Canada
(52.788°N 132.101°W) (USGS, 2020). The quake engendered a non‐destructive tsunami that was registered
throughout the Pacific, hitting the coast of Alaska, of British Columbia, of California and of Hawaii. The PTWC
issued a tsunami warning (19:09 HST 27 October) that was then downgraded (01:01 HST 28 October). Obser-
vations of tsunami waves up to 1.5 m were registered in Maui and the Hawaii Island, while no great damages were
reported statewide (Center, 2021c). For this case study, we collected a data set composed of 56 GPS stations
placed on Hawaii islands belonging to UNAVCO network (UNAVCO, 2021). Thoroughly, 15 days were
analyzed: 12 days before the EQ and 2 after the EQ at 30 s rate.
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Finally, we used the 2015 Illapel earthquake and tsunami to test our model.
The event took place 46 km offshore of the Coquimbo region on 16
September 2015 with a moment magnitude of 8.3 (31.573°S 71.674°W)
(USGS, 2021a). The tremor generated a tsunami that spread across the Pacific
Ocean. Tsunami waves heights up to 9 m on the coast were measured between
29°S and 32°S and smaller further south and north. Along the Chilean coast,
the PTWC and National Hydrographic and Oceanic Service (SHOA) issued
tsunami threat messages 7 and 8 min following the earthquake, respectively.
Tsunami linked casualties were minimized by these prompt messages and
evacuation (Satake & Heidarzadeh, 2017). Specifically, we collected data
from 80 GPS stations located in Chile from Centro Sismológico Nacional,

Universidad de Chile (CSN) for the 2015 Illapel earthquake and tsunami. These GPS receivers gather data at 15 s
rate (Centro Sismológico Nacional, 2021). Nominally we analyzed 26 days starting from 19 days before the EQ to
6 days after.

To have a visual overview of the selected events, we reported the epicenters and magnitudes of the selected
earthquakes in Table 1 and in Figure 1, respectively.

Finally, it is important to recall that all these events were selected since they were recognized to generate clear
ionospheric perturbations as previously studied in the literature: the 2010 Maule earthquake (Galvan et al., 2011;
Ravanelli et al., 2020), the 2011 Tohoku earthquake (Astafyeva et al., 2011; Rolland et al., 2011), the 2012 Haida‐
Gwaii earthquake (Grawe & Makela, 2015; Savastano et al., 2017) and the 2015 Illapel earthquake (Meng
et al., 2022; Ravanelli et al., 2021; Shrivastava et al., 2021).

3. Methods
3.1. Real‐Time TEC Data

The retrieval of TEC data in real‐time represents the starting point of our work. In this work, we employed the
VARION (Variometric Approach for Real‐Time Ionosphere Observation) algorithm to retrieve TEC estimates in
real‐time (Ravanelli et al., 2021; Savastano et al., 2017). In detail, VARION is based on the single time differ-
ences of geometry‐free combination of GNSS carrier‐phase observations, being suitable for real‐time applications
(Fortunato et al., 2019; Fratarcangeli et al., 2018; Ravanelli et al., 2020, 2023; Savastano et al., 2017, 2019).
Indeed, VARION only relies on a standalone GNSS receiver and on standard GNSS broadcast products: these
information are available in real‐time. Here, we refer to slant TEC (sTEC, TEC on the line of sight satellite‐
receiver) variations related to every station‐satellite pairs (Ravanelli et al., 2021). More specifically, we employed
sTEC variations over time (δsTEC/δt [TECU/s]), that represent the first VARION output and that is obtainable in
real‐time.

The Ionospheric Pierce Point (IPP) is the point to which every TEC measurement is referred in a 2D represen-
tation of the ionosphere and is given by the intersection of the line of sight satellite–receiver with the single thin
layer used to approximate ionosphere. The sub‐Ionospheric Pierce Point (SIP) represent the projections onto the
ellipsoid of IPP. Finally, it is important to highlight that we can apply a machine or deep learning algorithms since
with the high volume and breadth of data produced. Indeed, several TECmeasurements can be retrieved for every
GNSS station: nominally, one for each satellite in view (Ravanelli et al., 2021). Nowadays, thanks to the actual
multiplication of GNSS systems ‐i.e., GPS (US), GLONASS (Russia), Galileo (EU), BeiDou (China), to mention
only the ones that reached the full operational capability–the ionospheric coverage is increasing day by day,
opening ambitious perspectives for GNSS Ionospheric Seismology especially in a machine learning outlook.

3.2. Deep Learning Framework

Deep learning approaches have been developed that effectively model temporal information. Recurrent Neural
Networks (RNNs), and more specifically Long Short‐Term Memory networks, have shown the ability to capture
long‐term dependencies and their ability to handle high‐complexity, sequential and temporal data has resulted in a
wide variety of applications using time‐series data (Bontemps et al., 2017; Hundman et al., 2018; Malhotra
et al., 2015, 2016). Similarly, CNNs–neural networks well suited for image recognition and classification
problems (Ranzato et al., 2007; Szegedy et al., 2015; Wickramaratne & Mahmud, 2021)–have demonstrated

Table 1
Events Are Sorted According to the Event Year

Earthquake characteristics

Year Magnitude

Maule 2010 8.8

Tohoku 2011 9.1

Haida‐Gwaii 2012 7.8

Illapel 2015 8.3
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Figure 1. Central map showing the epicenters of the tsunamigenic earthquakes used in model training. Those used in the
training set are represented as circles, with any events used in out‐of‐ sample validation shown as stars. Side maps
representing the data set related to each event used in this study.
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impressive performance several benchmark data sets such as the Modified Institute of Standards and Technology
(MNIST) database of hand‐written digits, where CNNs were demonstrated to achieve around 99.77% accuracy
(Ciresan et al., 2012). Recently, the introduction of the Gramian Angular Summation Field (GASF), Gramian
Angular Difference Field (GADF) and Markov Transition Field (MTFs) (Wang & Oates, 2015) has led to ap-
plications of CNNs for time series anomaly detection (Chen & Tsai, 2019; Xu et al., 2020), a relatively new area
of research. The use of CNNs–a computer vision (CV) technique–with methods like GADFs provide significant
advantages.

GADF–more generally Gramian Angular Fields (GAF)–are methods for encoding time series data into images by
converting scaled time‐series data observations into a polar coordinate system, and then using the angular
components and a specified inner product to construct a Gram matrix. Specifically, GADF computes the inner
product with sine of the differences between the angular components of the converted polar coordinates. In effect,
the GAF and related methods convert a one‐dimensional time series into a two‐dimensional image. By converting
windows of time series into images, characteristics of the time series (and the relationship to the classification
labels) can be captured visually, negating the need to utilize sequence‐to‐sequence deep learning methods such as
RNNs which have difficulty being applied in the presence of significant missing data without feature or model
engineering.

Identifying TIDs in time series data is achievable with a variety of signal processing and applications of machine
learning (Brissaud & Astafyeva, 2022) due to similarities in the scale and format of data and the task (i.e.,
classification of a window in time) with other applications of anomaly detection, such as anomaly detection for
spacecraft (Hundman et al., 2018). However, the introduction of Gramian Angular Summation Fields (GASF),
GADFs (GADF) and Markov Transition Fields (MTF) (MTFs) (Wang & Oates, 2015) and advancements in time
series anomaly detection approaches allow the conceptualization and development of a deep‐learning‐based
framework for TID detection which leverages these advancements.

The source code for the proposed deep learning framework is available at https://doi.org/10.5281/zenodo.
12571500 (Constantinou & Liu, 2024).

3.2.1. Step 1 Data Sources, Format and Requirements

The input data utilized in this framework are a collection univariate time series X = {x(1), x(2), …, x(n)} of n real‐
valued observations (TEC estimates), with each univariate time series representing a connection between a
satellite and ground station (there is a one to many relationship between satellite and ground station (receiver)).
Data refresh rates and sampling rates depend on the GNSS and supporting software used to observe, downlink and
process data–Glonass, Global Positioning System (GPS), Beidou etc. Different approaches to TEC estimation
may be utilized depending on how the system will be applied in practice, the source of the data and other elements
described earlier. Machine and deep learning approaches utilized in the context of TID detection–and more
broadly anomaly detection–are agnostic to how data is produced. Rather, the data–more specifically data from the
minority target variable (the anomaly or TID)–must contain distinguishable differences when compared to the
majority class (normal behavior) to enable modeling success. In many cases, these differences are visually
interpretable as those shown in Figure 2.

Data may be resampled to a different rate from the source data (e.g., from every second to 1 min averages of the
original data). Several trade‐offs are made when electing to resample the originating data stream. While
resampling the data to larger time scales, the computational resources needed to train machine and deep learning
models is significantly reduced. However, care must be taken when resampling as to not dampen behaviors in the
time series important for detecting TIDs or other disturbances in time series. An additional trade‐off is made
between computational resources required for modeling and the alert latency of the overall system. Illustrated
through a brief example, if data is processed in near‐real‐time at the minute label, in practice several positive TID
detections (e.g., a sustained period of at least several minutes) may first need to be before being considered a true
signal of an earthquake or resulting tsunami. Sampling at larger levels (e.g., 1 min) could add several seconds of
latency not present when processing data each second. Finer sampling rates could mitigate system latency, but
require additional training time, with larger data sets and predictive models. Researchers and developers of deep
learning based anomaly detection systems assess these trade offs and select ideal parameters for their system. The
“sweet spot” is unique combination of data, decisions made, software and supporting ground systems and
capabilities.
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3.2.2. Step 2 Data Labeling and Transformation

Described in more detail in the following subsections, we leverage supervised models in this framework,
necessitating the need for Subject Matter Expert (SME) labels for model training and validation. As with many
anomaly detection applications of machine and deep learning, the target for detection–the earthquake and tsunami
induced TID–is a rare event (powerful earthquakes and tsunamis are rare) and short‐lived (earthquakes on average
last only 10–30 s), adding difficulty to the detection process. Additionally, TIDs generated from tsunami waves
may share similar patterns to ionospheric disturbances generated from other phenomena, such as meteorite ex-
plosions in the atmosphere (Luo et al., 2020; Yang et al., 2014), volcanic eruptions (Igarashi et al., 1994; Rozhnoi
et al., 2014) or large human‐driven explosions (Kundu et al., 2021). Careful examination, labeling and SME
validation of the data is needed prior to effectively leverage in machine and deep learning.

Thorough understanding of the data and subject matter is of upmost importance to the success of any framework
which leverages machine and deep learning. The labels used in model training and validation are of primary
importance. Similar to other time series anomaly detection problems, each univariate time series (a TEC estimate
for a particular satellite and ground station, e.g., ahup‐G10) is labeled such that any known anomalies are rep-
resented by a start time and finish time (the data contained between those times is considered to be anomalous).
These labels are used together with data transformation approaches to alter the data into images, which are then
used in both model training and validation.

In early stages of data and model development, training data (historical or simulated) must be labeled–an often
arduous and time‐consuming process. However, while adjustments can be made to improve model performance,
updates to data and labels often have the most profound effect on all elements of the modeling process (by existing
further forward in the modeling pipeline). Incorporating labels from multiple SMEs is a also an important
component of generalizing a model. To ensure models remain relevant after initial training and validation, a
human‐in‐the‐loop (HIL) process could be leveraged that presents possible TIDs identified to the system for
SMEs for review, in turn providing labels that can be used to update and improve the performance of the model. In
the case of supervised learning, these science‐driven HIL labels can update previously existing labels in the
training data (Waszczak et al., 2017).

Described in more detail in the following subsections, computer vision approaches are utilized to detect tsunami‐
induced TIDs in this framework. As such, image data is needed for model training, validation and (later) inference
when using the trained model in a real‐world scenario.

TEC estimates for each satellite and ground station and labels are converted into images. More specifically, for
each univariate time series X = {x(1), x(2), …, x(n)} of n TEC estimates, a consistent window size w is used to split

Figure 2. The diagram illustrates how chronological windows of time series data are encoded into images using Gramian Angular Difference Fields (GADF) for both the
anomalous TID (left) and normal (right) classes in a time‐series. The pattern shown in the left image is distinct to the anomalous class, an important characteristic that
must be produced regardless of encoding method used (GASF, GADF or MTF).
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the data into a set of windows. Each window of data (TEC estimates) are converted into images using one of a set
of available transformation approaches. Images are sorted according to the ground truth provided. If any of the
image was generated from a window of data overlapping ground truth ranges, this image is categorized as rep-
resenting a TID–if not, normal ionospheric TEC. The labels provided earlier in the framework are utilized directly
in the creation of training and validation data.

The transformation from float data to image data is made using one of a variety of available approaches. Gramian
Angular Summation Fields (GASF), GADFs (GADF) and MTF are described in detail in (Wang & Oates, 2015).
Each approach utilizes a separate method for converting time‐series data into a 2D matrix which may be rep-
resented as an image suitable for CNNs.

As GADF is utilized in our experimental work, we further detail this transformation approach. Specifically,
GADF computes the inner product with sine of the differences between the angular components of the converted
polar coordinates. Given a time series X = {x(1), x(2), …, x(n)} of n real‐valued observations, the method first
entails rescaling the data to an interval of values between [− 1, 1] which we will denote with x̃i where i represents
the time step in the series and X̃ as the rescaled time series.

x̃i =
(xi − max(X)) + (xi − min(X))

max(X) − min (X)
(1)

Now given these rescaled values, the implementation computes the polar coordinates where at the ith time step, ϕi

is the angular component and ri is the radial component that is computed from the time step and a regularizing
factor R.

ϕi = arccos(x̃i), − 1≤ x̃i ≤ 1, x̃i ∈ X̃

ri =
i
R
, 1≤ i≤ n

(2)

With the angular components of each time step, a vector ϕ = {ϕ1, ϕ2, … , ϕn} can used to create the GADF by
using the sine of the angular difference. This resulting matrix can then be read in as an image (Wang &
Oates, 2015).

GADF = sin(ϕi − ϕj),1≤ i,j≤ n (3)

This method provides several advantages with regards to time‐series data. First, it preserves temporal dependence
since the time step increases as position moves from the top‐left to the bottom‐right of the Gramian Angular Field.
The matrix is bijective, that is, the inverse function yields an absolute reconstruction the original time series data
given the image (Hong et al., 2020). Second, temporal correlations between each different time step of our
windowed data images are easily detectable due to how we construct the Gram Matrix and how it shows every
possible angular difference between each time step in the window. Since temporal information is captured in the
encoded resulting image and not during model training, GADF–as well as GASF and MTF–are robust to missing
data. The ability to capture time‐series behavior in images allows artificial intelligence practitioners the ability to
the use image‐based deep learning model architectures for time‐series anomaly detection in the face of large
periods of missing data, specifically CNN (CNN) architectures that are well‐understood, high‐performing and
readily available as open source software. Lastly, these image transformation approaches produce visually‐
interpretable differences in images across classes as shown in Figure 3.

3.2.3. Step 3 Selecting a Deep Learning Architecture

In this framework, data from multiple univariate time series are utilized to train a deep learning model. A single
model is trained for TID detection across data from different satellites and ground stations. Additionally, a single
model is trained over multiple distinct tsunami‐inducing earthquake events. Training a single model across ex-
amples from various geolocations, events of interest, satellites and ground stations provides the model with the
exposure to many different scenarios. Since information and characteristics about the time series are transformed
into images in this framework, artificial intelligence approaches which learn information from images are needed.
This single model is then tested over another set of distinct tsunami‐inducing events mostly to measure the
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classification performance and test if the model can generalize toward unseen data. Using this validation per-
formance, we can then select the architecture and/or the parameters of the architecture.

A variety of deep learning architectures have been developed specifically for image data, including CNNs. The
type of deep learning architecture used in this framework is dependent only on the modeling performance (i.e.,
whether or not it is satisfactory) on time series data from unseen tsunami‐inducing earthquake events and the type
of image‐encoding approach used. Unsatisfactory performance with one type of architecture does not preclude the
failure of another–certain types of architectures, depending on the data and image encoding, may be highly
successful and used in production. Certain image encoding (data transformation) approaches like GASF, GADF,
and MTF might provide different modeling and classification performance when paired with different types of
deep learning architures, specifically CNNs like AlexNet, ResNet, or VGGNet. This training framework over
multiple TID events can be used with any type of deep learning architecture, provided the architecture can be used
effectively and reliably with images created using the selected encoding methodology.

3.2.4. Step 4 False Positive Mitigation Strategies

Time ranges predicted to represent TIDs may not always span large periods of time, depending on the data used in
model training and validation, as well as other factors in the modeling process such as hyperparameter selection.
Depending on the modeling results, short time periods may disproportionally represent false positives, or periods
classified as TIDs but are in fact representative of noise or normal behavior. In these cases, false positive miti-
gation strategies may be employed to reduce false positive rates, improving precision.

The simplest strategy for mitigating false positives is to delay TID detection until they are consecutively classified
by the machine learning model. Thus, only periods of sustained detection are considered seriously. This simple
strategy can have a dramatic improvement in cases when false positive periods are far shorter in overall length

Figure 3. Normal and anomalous classes for GADF‐generated images. Note the pattern in the top‐right image, which is
distinct to the anomalous class (a result of using GADF and patterns in the data).
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compared to true positives. However, this strategy can also have a significant
adverse impact on real‐world alerting speed, depending on the sampling rate
of the time series used in modeling. For example, a minute‐level sampling rate
could be delayed by 5 min if it is determined that five consecutive periods of
classification as a TID are needed prior to alerting without producing sig-
nificant amounts of false positives.

An alternative strategy instead considers all ground stations downlinking data
from a satellite. More specifically, the set of all univariate time series for a
satellite Xs–which contains many univariate time series Xg = {x(1), x(2), …,

x(n)} of n TEC estimates, one time series X for each ground station–is considered in unison in near‐real‐time. A
boolean vector Xs,t of 1xg dimension, where g is the number of ground stations, is generated by representing TID
detections (anomalies detected) as 1s and normal behavior as 0s. Vector values are summed and divided by g,
generating a float value Fs,t representing the overall share of time series representing a possible TID. A threshold
Ts,t is selected such that any time periods t where Fs,t > Ts,t are considered as strong candidates of representing
TIDs. These time periods (indices) are compared to individual TID detections within each satellite univariate time
series Xs, with periods of overlap considered as true TID detections by the system. The threshold parameter Ts,t is
adjustable, with higher values reducing recall but improving precision. This approach provides a means of
ensuring some level of agreement is reached across ground stations before a TID is detected.

4. Results
The framework described is utilized in the context of training a model for TID detection. Precisely, sTEC var-
iations over time (δsTEC/δt) were used in model training and out‐of‐ sample validation, with labels provided by a
SME indicating the start and finish times of TIDs in the training and validation data. Start times and finish times
were provided for distinct sets of satellites and ground stations for each earthquake event. These labels were used
to generate modeling data using GADF, with the 2010 Maule, 2011 Tōhoku and 2012 Haida‐Gwaii tsunami
events used for model training and testing. The 2015 Illapel event was used for out‐of‐sample validation (in out‐
of‐sample validation, the model is exposed to previously unseen data). During validation, a false positive miti-
gation strategy described earlier in methods is applied. The ResNet (He et al., 2015) architecture (50‐layers) is
used in this work. Training and validation metrics from using this framework configuration are reported, along
with summary statistics about the data set.

We placed our research emphasis on evaluating the effectiveness of the described framework when using data
from multiple tsunami‐inducing earthquake events. Utilizing multiple historical events for training data is needed
to train a generalized model that can be used across geographic regions, satellites and ground stations. While we
utilize a CNN architecture in our experiments (ResNet with no pre‐trained weights), no comparisons are made
between various CNN architectures such as DenseNet (Huang et al., 2016) or VGG (Simonyan & Zisser-
man, 2015). Similarly, no comparisons are made between various types of image encoding methodologies
described earlier in the paper. A “balanced” data set was created by undersampling the normal (majority) class
such that the minority class represented 10% of the number in the normal class. Table 2 describes the number of
samples in each class before and after balancing the data.

4.1. Setup

Each time series data stream corresponds to a particular satellite and ground station. For each unique stream of
sTEC data, 60‐min windows of values were converted to images using the described GADF approach and
assigned to the appropriate class using the SME derived ground‐truth start and finish times for each TID. A single
model was trained on the set of training events and subsequently evaluated on multiple unique streams of sTEC
data from ground stations and satellites in a validation set.

Two sets of tsunami‐inducing earthquake events are utilized in our experiments. The first set of data is used in
model training and generating testing scores, leveraging data available from three tsunami‐inducing earthquake
events–the 2010 Maule, 2011 Tōhoku and 2012 Haida‐Gwaii earthquake–available in the training set. Both
anomalous data (which contains TIDs) and normal data from each event are utilized in model training. Training
data is randomly sampled prior to model training, with precision, recall, accuracy, and F1‐score metrics provided
on the test set (see Table 4).

Table 2
The Number of Samples Available in Each Class in the Original Data and the
Balanced Data Set, the Latter Which Was Utilized in This Work

Number of samples

Original Balanced

anomalous 90201 90201

normal 18756848 900329
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The second set of data contains tsunami‐inducing earthquake events
occurring after (chronologically) the events in the training set, ensuring
validation is performed on data unseen by the model during model training.
To simulate real‐world use and evaluate the effectiveness of the trained
model, the model is utilized on out‐of‐sample validation data occurring
several years after the events in the training data, more specifically the 2015
Illapel earthquake off the coast of Chile. Each minute, every unique stream
of data is processed chronologically with a 60‐min window of sTEC data,
with a GADF‐generated image created and assessed by the trained model to
contain a TID (anomalous) or not (normal). These labels are concatenated
to produce an anomalous sequence (i.e., a range of time representing
anomalous behavior). Each labeled ground truth anomalous sequence
xa ∈ xa of values across the satellites and ground stations in the validation

data are then evaluated against the final set of predicted anomalous sequences identified according to the
below rules (Hundman et al., 2018). Regions that overlap or touch after expansion are combined into a single
region to account for situations where multiple anomalous regions represent a single event (Hundman
et al., 2018).

1. A true positive is recorded if:

⃒
⃒
⃒e(t)a ∈ eseq ∈ eseq : x(

t)
i ∈ xa

⃒
⃒
⃒> 0

for any xa ∈ xa. In other words, a true positive results if any portion of a predicted sequence of anomalies falls
within any true labeled sequence. Only one true positive is recorded even if portions of multiple predicted
sequences fall within a labeled sequence.

2. If no predicted sequences overlap with a positively labeled sequence, a false negative is recorded for the
labeled sequence.

3. For all predicted sequences that do not overlap a labeled anomalous region, a false positive is recorded.

We do not make any scoring adjustments based on how early an anomaly was detected or the distance between
false positives and labeled regions (Lavin & Ahmad, 2015) for simplicity. The recall, precision, accuracy, and F1

score performance metrics on the validation set are calculated and provided according using the above (bulleted)
definitions. The validation metrics reported provide a representative viewpoint of model's performance and
generalizability.

The false positive mitigation strategy described in the last paragraph of Section 3.2 utilizing data across all ground
stations for each satellite is used as part of our experiments. The results of utilizing this strategy are reported in
precision, recall and F1 score metrics. Labels time ranges indicating TIDs produced by the false positive miti-

gation strategy are considered against available ground truth as described in
the preceding paragraphs, and provide a reliable point of comparison between
performance metrics with and without using a false positive mitigation
strategy.

4.2. Model Parameters and Evaluation

The CNN architecture and model parameters used in this experiment are
described in Table 3. A thorough description of the ResNet architecture is
provided in (He et al., 2015). We utilize a sequence length of ls = 60 min, but
this can be adjusted and in addition to the model architecture and input image
sizes. Steps are taken to minimize over‐fitting, such as reducing the learning
rate on loss plateauing and using early stopping. As earlier described, per-
formance metrics were generated for both test and validation sets, with
accompanying visualizations. The threshold Ts,t used in false positive miti-
gationwas kept constant at 0.75 (the threshold has a range of [0,1]). Predictions
and metrics were generated on the test set and validation set. Visualizations

Table 4
Performance Metrics From Various Stages of the Experiment

Metrics

testing–recall 96.1%

testing–precision 93.5%

testing–F1 score 94.8%

validation–recall 96.2.%

validation–precision 34.7%

validation–F1 score 51.0%

validation (false positive mitigation)–recall 84.6.%

validation (false positive mitigation)–precision 100.0%

validation (false positive mitigation)–F1 score 91.7%

Table 3
The Parameters Employed in the Experimental Model

Model parameters

Architecture resnet50

Max training iterations 50

Batch size 512

Optimizer Adam

Beginning learning rate 0.00025

Loss function Cross‐Entropy Loss

Image size (in pixels) 224 × 224
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were also generated illustrating the ground truth labels and data, the predictions and the model's confidence in that
prediction (see Figure 4).

5. Discussion
As illustrated in the metrics shown in Table 4, the false positive mitigation strategy has a profound impact on
reducing false positives, thus improving the precision from 34.7% to 100.0% and F1 score from 51.0% to 91.7%.
While this reduces the overall recall from 96.2% to 84.6%, it reduces the false positive rate considerably which is
an important consideration for a real‐world system. The threshold Ts,t was kept constant in these experiments, but
may be varied such that a higher precision or a higher recall can be achieved in future work. The 91.7% F1 score is
achieved with a significantly smaller amount of events used for training compared to recent work leveraging
Random Forest models (Brissaud & Astafyeva, 2022).

Model training, testing and validation took approximately 59 hr and 40 min, consuming approximately 16
gigabytes of memory across three NVIDIA Tesla P100 Graphical Processing Units. The Python (van Ros-
sum, 1995) programming language was used, together with SciPy (Virtanen et al., 2020) and pyts (Faouzi &
Janati, 2020) libraries for image encoding, Numpy (van der Walt et al., 2011) and FastAI (Howard & Gug-
ger, 2020) for model training and inference, and the Matplotlib (Hunter, 2007) and Seaborn (Waskom et al., 2020)
libraries for visualization.

The parameters utilized in the experiments were chosen based on previous work and trail and error, however a
grid‐based or evolutionary‐algorithm‐based parameter search may be an effective means of improving perfor-
mance in future work. As with previous work, short‐length sequences (within a few minutes) are a common
source of false positives in our experiment. However, contrary to previous work many true positives also share
short sequence lengths in these results despite a much longer average length (13.81 min for true positives,
2.38 min for false positives). Figure 5 shows the distributions of sequence lengths for true positives and false
positives.

5.1. Impacts of Employing a False Positive Mitigation Strategy

It is clear from the metrics provided in Table 4 that employing the satellite‐based false positive mitigation strategy
has a profound impact on the overall performance of the approach. In Figure 6, the differences between utilizing
this strategy and not mitigating false positives are shown. Areas shown in darker shades on the plot indicate
periods classified as a TID in isolation, but are re‐classified to normal behavior when considered in aggregate
(lighter shades in the plot indicate time periods considered representative of a TID). The final TID classifications
for satellites G12 and G25 are illustrated geographically in Figure 7.

The ideal threshold Ts,t can be selected based on the requirements of the end‐users or systems accessing pre-
dictions made using this framework. For example, a cautious system may provide false positives but a significant
ability to capture all relevant instances of a TID. However, a system tuned to capture all relevant instances without
regard for false positives would not be practical as an alerting system. In general, a higher threshold reduces the
false positives (improving precision) but decreases recall.

5.2. Good Data Delivers

Data from multiple tsunami‐inducing earthquake events were used in this work to support the goal of training a
generalized model as described in Table 1. A single set of labels is produced for each earthquake event, by a
single SME. This expert utilized his or her scientific knowledge to best represent TID start and finish times,
which were used to generate training data as well as perform out‐of‐sample validation. While this approach has
shown respectable results in this work, utilizing the labels of multiple SMEs would provide additional training
data and a broader perspective on what constitutes a TID–a perspective translated to the model during training.
Broad consensus is better than a single opinion, and this is best captured in data by utilizing multiple SMEs for
labeling. Additionally, introducing a human‐in‐the‐loop (HIL) process would provide a means of continuously
reviewing and assessing time periods predicted as TIDs by a near‐real‐time system by multiple SMEs. A HIL
process could be considered as part of a software package employing this framework in near‐real‐time. Even
with the performance level of 91.7% F1 score achieved using this framework for TID detection, additional
performance gains are achievable by exposing the model to a larger variety of events and geographic regions
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Figure 4. The VARION‐produced δsTEC/δt estimates are visualized together with ground‐truth labels, alongside
classifications (anomalous or not) and classification confidence (on bottom) for the G24 satellite and ovll, pazu, plvp, tamr
ground stations during the 2015 Illapel earthquake.
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during model training (Brissaud & Astafyeva, 2022). Data from additional tsunami‐producing earthquake
events such as the 2010 Sumatra (Banyaks), 2009 Fiordland or 2013 Solomon Islands earthquakes could be
incorporated into model training, among others. While components of this approach such as the model
hyperparameters, batch size or false positive mitigation strategy remain adjustable, large gains in model per-
formance are likely best achieved by training the deep learning model with data from a larger number of
historical events than this work. Future work should seriously consider continuing to focus on data preparation
and management, from increasing the number of events to improving data labeling processes as this area will
also be critical in a real‐world system.

Figure 5. The distribution of predicted sequence lengths for true positives and false positives. Note that while shorter lengths
of sequences are observed in the false positives, a significant amount of true positives are short length sequences.

Figure 6. The TID classifications across all univariate time series during the 2015 Illapel earthquake and tsunami for satellite G12 are shown, one stream for each ground
station. The weighted score Fs,t is shown on top. Shown on bottom, the highlighted time periods are those considered as TIDs following mitigation of false positives,
with those in the darker shade no longer considered truly representative of a TID.
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5.3. Detecting Ionospheric Perturbation Caused by Other Phenomena

It is also important to underline the generableity of the presented framework
for other kind of TID detection (e.g., from volcanoes, earthquakes, large
explosions and other events), creating a database of trained events. As
described throughout this work, earthquakes and tsunami waves can cause
acoustic and gravity wave which generate perturbations in the TEC. As such,
TIDs can be an important indicator to monitoring the progression of a tsunami
wave, especially in open‐ocean areas not covered by buoy systems. However,
ionospheric perturbation can also be caused by other natural events such as
volcanic eruptions (Igarashi et al., 1994; Ravanelli et al., 2023; Rozhnoi
et al., 2014) and meteorite explosions in the atmosphere (Luo et al., 2020;
Yang et al., 2014). Additionally, ionospheric perturbation can be caused by
man‐made hazards such as large explosions, rocket and missile launches,
mine blast (Astafyeva, 2019; Calais et al., 1998; Savastano et al., 2019).
While this framework was developed with the intent of detecting earthquake
and tsunami‐induced TIDs, other data sets could be utilized with this
approach to detect TIDs more broadly or detect ionospheric perturbation from
different sources (creating a multi‐classification problem). Certainly, it is
important to underline that detecting various kind of TIDs involves
discrimination, and discrimination necessitates understanding features. To
this point, the creation of a database with several TIDs scenario could be
effective. Finally, while challenges will be present with data curation and
labeling, a system that can identify and differentiate ionospheric perturbation
in near‐real‐time would represent a significant new capability in continuously
monitoring the ionosphere for various signs of Earth activity.

6. Conclusions
GNSS‐TEC observations are routinely used to detect earthquake and tsunami
induced TIDs. In this work, we presented an innovative approach to perform
real‐time TID detection, on the basis of computer vision and deep learning.
Being aware of the ionospheric condition variability, we used a multi‐event
approach, focusing on the Pacific area, to train and to test our framework.
Our model is trained using data from multiple events and subsequently tested
on a completely independent event. This aspect underscores the high gener-
alizability of our approach.

The presented framework is based on the joint use of GADFs and of CNNs,
achieving 91% of F1 score, 84% of recall and 100% of precision. The False
Positive Mitigation Strategy–an approach for identifying TIDs, based on the
likelihood of a TID at each time step‐proves highly effective as it enhances
precision, offering a means to ensure the robust performance of the system as
it scales up, incorporating more data for model training. Further improve-
ments in performance can be attained by incorporating data from additional
events and using data at higher rate (1 Hz). Leveraging labels from multiple

SMEs in conjunction with a human‐in‐the‐loop (HIL) process would offer a more nuanced perspective on
defining and identifying TIDs.

Furthermore, the presented framework should be also able to detect ionospheric perturbations induced by
moderate Mw earthquakes as long they can produce a signature in the ionosphere. Indeed, it is known that the
characteristics of the ionospheric TEC perturbations depend of seismic and non‐seismic factors (such as he
geometry of GNSS sounding or the background ionospheric electron density (Astafyeva, 2019; Meng
et al., 2019)). Nonetheless, as outlook of this work, it could be interesting to test the proposed framework on
ionospheric perturbations induced by moderate earthquakes (ranging between Mw 6.5 and Mw 7.5).

Figure 7. Satellite tracks (gray) with TID detections (yellow) for the G12 and
G25 satellites, 2015 Illapel earthquake (epicenter shown on bottom left). The
TID detections shown correspond to those remaining following pruning of
false likely false positives.
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Although this framework was initially designed for identifying earthquake and tsunami induced TIDs, it has
broader applicability. This approach can be extended to detect ionospheric perturbations stemming from various
sources, thereby addressing a multi‐classification challenge, or identifying time series anomalies in other geodetic
applications such as glacier and ice sheet monitoring.

In conclusion, this work represents a first feasibility demonstration of applying deep learning to real‐time TID
detection with the final aim to augment tsunami early warning system. Finally, this work is perfectly aligned with
the objectives and research interests of the AI for GNSS Remote Sensing study group of the GGOS Focus Area on
Artificial Intelligence for Geodesy (AI4G) (Global Geodetic Observing System (GGOS), 2023), representing a
relevant and valuable contribution to developments of AI‐driven techniques for the TEWS enhancement through
real‐time GNSS Ionospheric Seismology.

Data Availability Statement
Global Navigation Satellite System data for the 2012 Haida Gwaii earthquake and the 2010 Maule earthquake are
available from UNAVCO Data Archive Interface (UNAVCO, 2021) at https://www.unavco.org/data/gps‐gnss/
data‐access‐methods/gnss‐data‐access‐notebooks/gnss‐permanent‐station‐data‐access‐notebook‐embed.html.
Thirty second GNSS data for the 2011 Tōhoku earthquake are available under request fromGEONET network (of
Japan (GSI), 2021) from Geospatial Information Authority of Japan website https://www.gsi.go.jp/ENGLISH/
geonet_english.html. Global Navigation Satellite System data for the 2015 Illapel earthquake are available from
Centro Sismológico Nacional, Universidad de Chile (CSN) (Centro Sismológico Nacional, 2021) http://gps.csn.
uchile.cl/data/2015/, accessed on 2021‐10‐18. Source code is available at: https://doi.org/10.5281/zenodo.
12571500 (Constantinou & Liu, 2024).
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