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Abstract—One of the current gaps in teleaudiology is the lack of 

methods for adult hearing screening that are accurate and reliable 

in individuals of unknown language and in varying environments. 

Recently, we have developed a novel automated speech-in-noise 

test for future implementation via web and mobile platforms. The 

test uses speech material viable for use in nonnative listeners, is 

fast, and is reliable in laboratory settings and in uncontrolled 

environmental noise settings. The aim of this study was: (i) to 

evaluate the ability of the test to identify slight/mild hearing loss 

using a multivariate classifier and (ii) to evaluate the influence of 

transducers’ characteristics on the ear-level sound pressure levels. 

The measures provided by the test had an accuracy of 0.79, 

sensitivity 0.79, specificity 0.79, and area under the curve of about 

0.9, as measured in a population of 148 adults. The analysis of the 

ear-level sound pressure levels using several consumer transducers 

as a function of the test volume showed substantial variability, 

with earphones yielding up to 22 dB lower levels than headphones. 

Overall, these results suggest that the proposed approach may be a 

viable method for hearing screening at a distance if an option to 

self-adjust  the volume is included and if headphones are used in 

uncontrolled environmental noise settings. Future research is 

needed to fully demonstrate the viability of the test for screening at 

a distance, for example by addressing test performance, including 

the influence of the user interface, device, and settings, on a large 

sample of participants with varying degrees of hearing loss. 

 
Index Terms—Hearing Screening, Mobile Applications, 

Speech-in-Noise Test, Teleaudiology, Telemedicine.  
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I. INTRODUCTION 

HE ongoing telehealthcare revolution is opening new 

opportunities to deliver audiological services at a distance, 

including hearing screening, hearing aid fitting, and adult 

audiologic  rehabilitation [1]-[3]. The concept of teleaudiology 

was introduced as early as in 1994 by Cherry & Rubinstein [4] 

who suggested remote follow-up by telephone following 

face-to-face hearing aid fitting. Since then, a variety of services 

were created for delivery at a distance, via web or mobile app 

technology [2], [5]. Today, during the current pandemic 

emergency, teleaudiology services are even more necessary as 

patients with hearing loss are typically at the highest risk for 

COVID-19 due to their age. Today, key health authorities such 

as the CDC and the WHO lobby for ways to minimize physical 

contact between patients and healthcare providers [6]-[7].  

From a more general perspective, the value of teleaudiology 

is widely recognized not only in contexts of reduced access to 

care (e.g., during and after a pandemic, in underserved areas, 

and in individuals with low socio-economic status) but also in 

usual care contexts. Teleaudiology has the potential to increase 

cost-efficiency, improve patient outcomes and satisfaction, and 

support widespread access to care [2], [8].  

Increasing access to hearing health care is therefore a key 

challenge as there is substantial unmet need in adults and older 

adults. Hearing loss is one of the most important health burdens 

globally (about 466 million people with disabling hearing loss 

today, and over 900 million estimated by 2050 [9]) and is 

ranked by the World Health Organization as one of the top 

leading causes of number of years lived with disability globally 

[10]. Nevertheless, hearing loss is frequently considered as an 

inevitable component of aging and, typically, individuals with 

age-related hearing loss tend to seek help when it is too late or 

do not seek help at all. This leads to decreased quality of life and 

increased healthcare costs [11] as untreated hearing loss may 

trigger a cascade of effects that include isolation, depression, 

cognitive decline and dementia [12]-[13].  

Early identification and timely intervention are key to limit 

the possible impact of hearing loss in older adults. Hearing 

screening can help increase awareness about hearing loss and its 

impact on communication, it can help identify individuals with 

Evaluation of a Novel Speech-in-Noise Test for 

Hearing Screening at a Distance: Classification 

Performance and Transducers’ Characteristics 

Marco Zanet*, Edoardo M. Polo*, Marta Lenatti, Toon van Waterschoot, Member, IEEE, Maurizio 

Mongelli, Riccardo Barbieri, Senior Member, IEEE, and Alessia Paglialonga. 

T 

mailto:marco.zanet@ieiit.cnr.it
mailto:maurizio.mongelli@ieiit.cnr.it
mailto:alessia.paglialonga@ieiit.cnr.it
mailto:polo@diag.uniroma1.it
mailto:marta.lenatti@mail.polimi.it
mailto:riccardo.barbieri@polimi.it
mailto:toon.vanwaterschoot@esat.kuleuven.be


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

2 

hearing loss early, when the first difficulties in communication 

occur, thus enabling timely intervention [14]-[15]. To identify 

the earlier effects of age-related hearing loss, speech-in-noise 

tests are particularly appropriate as one of the earliest 

complaints of older adults with hearing loss is just a decreased 

ability to understand speech in noisy environments (e.g., in 

crowded places, at the restaurant). Noticeably, many adults may 

experience difficulties in speech communication even when the 

outcomes of the standard clinical hearing test (i.e., pure tone 

audiogram) are within the normal limits [16]-[17].  

Examples of self-administered speech-in-noise tests viable 

for use at a distance include: the digits-in-noise test, based on 

sequences of three random digits in speech-shaped noise and 

delivered in various formats (telephone, online, and mobile) 

[18]-[19]; the Earcheck and Occupational Earcheck online tests, 

based on consonant-vowel-consonant words in stationary 

masking noise [20]; the Speech Perception Test, an online test 

to address aided speech perception that uses speech features 

recognition for consonant-vowel-consonant words [21]; and the 

Speech Understanding in Noise (SUN) test, that uses a list of 

VCV stimuli in a three-alternatives multiple-choice task 

presented at predetermined signal-to-noise ratios (SNRs) [22]. 

However, none of the abovementioned speech-in-noise tests is 

readily applicable to widespread screening as these tests make 

use of speech material (e.g., words, digits) in specific languages 

and their accuracy in testing nonnative listeners is unknown.  

This article presents original research towards the 

development of a novel methodology for widespread hearing 

screening. Specifically, in this study:  

(i) we evaluate the performance of a newly developed 

speech-in-noise test in terms of ability to identify hearing loss in 

an unscreened population of adults, using an original 

multivariate classifier based on machine learning; and  

(ii) we evaluate the influence of transducers’ characteristics 

on the ear-level sound pressure levels of test stimuli to address 

the viability of the test for screening at a distance.  

The novel test is an automated procedure for hearing 

screening at a distance (e.g., via web or mobile devices) that 

makes use of speech material viable for use in nonnative 

listeners [23]-[25]. The test is based on a user-operated 

speech-in-noise recognition task delivered in a 

three-alternatives multiple-choice format via an easy-to-use 

graphical interface. The recognition task is based on 

meaningless words, specifically vowel-consonant-vowel (VCV) 

stimuli (e.g., aba, ada, afa) in stationary speech-shaped noise. 

The set of stimuli includes 12 consonants common across some 

of the top spoken languages worldwide (i.e., English, Spanish, 

French, Portuguese, German, and Italian) [25]. The test is based 

on a novel one-up/three-down staircase [26]-[27] that uses 

optimized upward and downward steps and that is about two 

minutes shorter than conventional staircases both in individuals 

with normal hearing and with hearing loss [22], [28]. 

In an earlier study, we assessed the ability of the test to 

identify ears with pure-tone thresholds higher than 25 dB HL in 

the range from 1 to 4 kHz in a population of 98 unscreened 

adults [23]. Specifically, we used a univariate classifier based 

on the speech reception threshold (SRT), in line with the typical 

approach followed by previous studies in the literature (e.g., 

[18]-[21]). The results were promising as the accuracy was 

equal to 0.82, the area under the receiver operating 

characteristic (AUC) was equal to 0.84, and the test reliability 

was high, with no observable perceptual learning effects in test 

and retest trials [23], [28]. However, there is evidence that other 

features, in combination with the SRT, may be significant 

predictors of hearing loss - for example, the subject’s age and 

the average reaction time [24], [29]. In this study, we addressed 

the ability of the test to identify hearing loss in a population of 

unscreened adults using an original approach, based on machine 

learning algorithms using a set of features in addition to the SRT 

(e.g., average reaction time, age, test duration, number and 

percentage of correct responses, and so on). 

Regarding the viability of the test for screening at a distance, 

in a preliminary study we showed that the test provided 

consistent results in controlled laboratory settings and in 

uncontrolled environmental noise settings. Specifically, 

repeatable SRT estimates and similar test-retest repeatability 

were observed in normal hearing individuals who were given 

the option to self-adjust the output volume before the test in 

uncontrolled environmental noise settings [28]. However, for a 

full demonstration of the viability of the test for screening at a 

distance, a comprehensive analysis of the possible influence of 

the hardware and the environment is necessary. In fact, 

individuals performing the test at a distance, e.g. via a web or 

mobile app, may use different transducers and therefore the 

actual ear-level sound pressure levels of test stimuli will depend 

on the transducer’s characteristic. Considering the complex 

nature of the speech signal, the actual sound pressure levels 

cannot be accurately estimated using the transducer’s technical 

specifications (e.g., sensitivity, calibration table). To better 

understand the influence of the transducers’ characteristics on 

the actual sound pressure levels of the test and identify possible 

minimum requirements for transducers to be used in the test, in 

this study we measured the characteristics of several consumer 

transducers, including commercially available headphones and 

earphones, as a function of the volume level set by the user. 

 

II. MATERIALS AND METHODS 

A. Evaluation of Classification Performance 

An outline of the experiment is shown in Fig. 1. Participants 

underwent pure-tone audiometry at 0.5, 1, 2, and 4 kHz in their 

left and right ears using a clinical audiometer (Amplaid 177+, 

Amplifon with TDH49 headphones). The pure-tone thresholds 

average (PTA) was computed as the average of hearing 

thresholds measured at the tested frequencies. Ears were 

classified into two classes using the World Health Organization 

(WHO) criterion for slight/mild hearing loss: PTA ≤ 25 dB HL 

(no hearing loss) and PTA > 25 dB HL (slight/mild hearing loss) 

[30]. Participants performed the newly developed 

speech-in-noise test in uncontrolled environmental noise 
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settings using a graphical user interface to adjust the volume at a 

comfortable level before the test. The test and graphical user 

interface were implemented in Matlab (MathWorks, version 

R2019b) and run on an Apple® Macbook Air® 13’’ (OS X 

Yosemite version 10.10.5 and macOS High Sierra version 

10.13.6) connected to Sony MDRZX110APW headphones. A 

set of eight features were extracted from the test software: SRT, 

total number of trials (#trials), number of correct responses 

(#correct), percentage of correct responses (%correct), average 

reaction time (i.e., the average of individual response time 

throughout the test), test duration, self-adjusted volume, and 

age. A machine learning approach was then used to classify ears 

into ‘pass’ and ‘fail’ considering the PTA class (no hearing loss 

vs slight/mild hearing loss) as the target variable. 

The experiment was run on 148 unscreened adults (age = 52.1 

± 20.4 years; age range: 20-89 years; 46 male, 102 female) of 

varying native language (Italian, English, French, German, 

Spanish, Filipino, Efik, and Igbo). Participants were recruited 

and tested in opportunistic health screening initiatives (i.e. at 

universities of senior citizens, health prevention and awareness 

events for the public) to reflect the potential target group of 

typical screening initiatives and a realistic proportion of 

subjects with and without hearing loss . Eight out of 148 

participants performed the test in both ears and 140 performed 

the test only in one ear, resulting in 156 ears tested. The 

experimental protocol was approved by the Politecnico di 

Milano Research Ethical Committee (Opinion n. 2/2019, Feb 19 

2019). Participants received detailed information about the 

protocol and took part in the experiment on a voluntary basis. 

To evaluate the classification performance of the test, a 

logistic regression algorithm was used in this study following 

preliminary evaluations that showed improved classification 

performance of this algorithm compared to other widely used 

ones (e.g., decision tree, support vector machine, k-nearest 

neighbor, random forest) [31]. The dataset was split randomly 

into training (80% of the sample, 124 ears) and test (20% of the 

sample, 32 ears) datasets. Stratification was applied to maintain 

the same percentage of records in the two PTA classes in the 

original dataset and in the training and test partitions. 

Considering the relatively small size of the dataset, the 

classification model was optimized using 5-fold 

cross-validation on the training dataset and its predictions were 

tested on the test dataset. The performance of the classification 

model was assessed by measuring accuracy on the training 

dataset (i.e., the average accuracy obtained following 5-fold 

cross-validation), accuracy on the test dataset, AUC, sensitivity, 

specificity, and F1-score. Given the relatively small sample 

size, we addressed the variability of classification performance 

by changing the underlying data. Specifically, we run 1000 

iterations of the model optimization process on 1000 random 

partitions of the training and testing datasets and we computed 

the average and standard deviation of the abovementioned 

performance measures. 

  

B. Evaluation of the Sound Pressure Levels 

An outline of the experiment to evaluate the actual sound 

pressure levels of the test with different consumer transducers is 

shown in Fig. 2. The ear-level sound pressure levels of the test 

obtained with different consumer transducers across the full 

range of test volume were measured in the lab using a dummy 

head. First, an audio file was created by joining the 12 VCV 

recordings with no pauses. The file was recorded via the dummy 

head (Neumann KU 100 dummy head powered by an external 

P48 phantom power supply) and a sound card (RME Babyface 

Pro) with low input gain. The same laptop computer described 

in Section II.A was used, coupled with eight different 

transducers, across the full range of output volumes (0 to 100%, 

in 6.25% steps) (Fig. 2(A)).  

The following consumer transducers were evaluated, 

covering a price range from €9.99 to €299: Bose Quitecomfort 

II headphones with noise canceling mode ON and OFF, Sony 

MDRZX110APW headphones, Sony MDR-7506 headphones, 

Sennheiser PC 310 headphones, Akg Y45 headphones, Apple 

 
Fig. 2.  Outline of the experiment to evaluate the sound levels of the test with 

different transducers. Panel (A): recording of the sequence of VCV stimuli via 

the dummy head using the different transducer models across the full range of 

volume output levels; Panel (B): calibration of the sound card by adjusting the 

output gain to reach a white noise level of 90 dB SPL at the SLM. Panel (C): 

recording of the sequence of VCV stimuli via the dummy head using the setup 

and output gain set in (B). R = right; L = left; SLM = sound level meter. 

 
Fig. 1.  Outline of the experiment to evaluate classification performance. Top 

panel: Pure-tone audiometry was performed at 0.5, 1, 2, and 4 kHz and the 

PTA was computed as the average of hearing thresholds measured at the tested 

frequencies. Ears were classified using the WHO criterion for slight/mild 

hearing impairment: PTA ≤ 25 dB HL (no hearing loss) and PTA > 25 dB HL 

(mild hearing loss). Bottom panel: The speech-in-noise test was executed in a 

self-administered way and eight features were extracted. Ears were classified 

by a machine learning approach into ‘pass’ and ‘fail’ using the PTA class as 

the target variable.  

PTA = pure-tone threshold average; WHO = World Health Organization. 
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EarPods earphones, and Mpow BH319 wired In-ear earphones.  

Then, the setup was calibrated to convert wave units into 

sound pressure levels (SPL), as shown in Fig. 2(B) and Fig. 

2(C). Calibration was performed using white noise, as the 

recorded loudness of this wideband signal is minimally 

influenced by acoustical attenuation. The output gain of the 

sound card was adjusted to reach a white noise level of 90 dB 

SPL as measured by a Sound Level Meter (SLM; Brüel & Kjær 

Type 2250 Hand Held Analyzer with BZ-7222 Sound Level 

Meter Software) at a distance of 1 meter from a loudspeaker. 

Finally, the SLM was removed and the dummy head, placed in 

the same position as the SLM, was used to record the white 

noise at the adjusted sound card output gain. This calibration 

procedure was used to convert the level of the recorded 

sequences of VCV stimuli in dB SPL. A-weighted filtering was 

applied to the audio files to approximate the SPL perceived by 

the average human ear.  

 

III. RESULTS 

A. Characterization of features 

The distributions of the eight features in the two PTA classes 

(no hearing loss vs slight/mild hearing loss) are shown in Fig. 3. 

Fig. 3 also shows, for each feature, the median values in the two 

classes as well as the percent overlap between the distributions 

of the two classes, computed from the probability distributions. 

In general, the distributions of features such as SRT, age, #trials, 

#correct, %correct, and average reaction time were different 

between the two classes whereas features such as test duration 

and volume did not change substantially. Statistical analysis 

(Wilcoxon rank sum test for SRT, age, %correct, reaction time, 

test duration, volume; t-test for #trials and #correct) showed that 

the observed differences in SRT, age, #trials, #correct, 

%correct, and average reaction time between the two classes 

were statistically significant whereas the differences between 

test duration and test volume were not significant. The percent 

overlap ranged from about 17% to about 35% overall. The 

observed values of percent overlap suggest that features such as 

test duration and volume tended to have a similar distribution in 

the two classes, with percent overlap around 35%. Features such 

as SRT, age, and #correct had more distinct distributions in the 

two classes, with percent overlap below 0.2. Therefore, these 

features are likely to contribute more substantially to the 

classification algorithm compared to the features with higher 

percent overlap. Accordingly, the classification algorithm was 

built using both the full set of eight features and a reduced set of 

features, specifically SRT, age, and #correct.  

B. Classification Performance 

Table I shows the average and standard deviation of the 

observed performance measures (accuracy on training dataset, 

accuracy on test dataset, AUC, sensitivity, specificity, and 

F1-score) computed over 1000 iterations for the logistic 

regression classifier using both the full set of eight features as 

well as a reduced set of three features (SRT, age, and #correct).  

Overall, the average performance of the models with eight 

and three features was strikingly similar. Minor differences 

were observed, lower than 0.01, in terms of average AUC, 

sensitivity, specificity, and F1-score. The observed differences 

were not statistically significant, except for the accuracy on the 

 
Fig. 3.  Distributions of the eight features in the two PTA classes: (A) PTA ≤ 25 dB HL (no hearing loss): dashed line; (B) PTA > 25 dB HL (slight/mild hearing 

loss): continuous line. The text boxes show the median values in the two PTA classes and the percent overlap between the frequency distributions. 

TABLE I 

CLASSIFICATION PERFORMANCE OVER 1000 ITERATIONS 

Measure 8 features 3 features 

Accuracy (training) 0.80 ± 0.02 0.81 ± 0.02 

Accuracy (test) 0.79 ± 0.07 0.79 ± 0.07 

AUC 0.89 ± 0.05 0.90 ± 0.05 

Sensitivity 0.79 ± 0.13 0.79 ± 0.13 

Specificity 0.79 ± 0.09 0.79 ± 0.10 

F1-score 0.72 ± 0.09 0.72 ± 0.09 
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training test and AUC (t-test, p < 0.05). Slight, but statistically 

significant, differences in accuracy were observed between the 

training and test datasets (0.01 in the model with eight features 

and 0.02 in the model with three features; t-test, p < 0.05), 

suggesting a sufficiently stable performance and therefore 

limited overfitting effects. The AUC was about 0.9, with a slight 

increase in the model with three features, indicating very good 

classification performance. Sensitivity and specificity were, on 

average, around 0.79, which is a relatively high value 

considering the different nature of the new test (that measures 

the ability to recognize speech in background noise) and the 

target outcome, i.e. the degree of hearing impairment defined by 

the average pure-tone thresholds (that measure hearing 

sensitivity to detect simple frequency tone stimuli).  

The observed values of standard deviation for all the 

performance measures were relatively low and very similar for 

the two models, suggesting that the variability of the model 

performances was inherently related to changes in the 

underlying datasets across the 1000 iterations rather than to the 

input features used by the algorithms. The observed standard 

deviations were, overall, smaller than 0.1 for all the measures, 

except for sensitivity for which it was about 0.13 for the two 

models. This is possibly due to the lower number of ears in the 

slight/mild hearing loss class compared to the no hearing loss 

class that may have led to a higher variability of the number of 

ears correctly classified as ‘fail’.  

C. Sound Pressure Levels 

Table II shows the sound pressure levels measured with the 

different transducers here tested as a function of the test volume 

at the following percent volume levels: 25%, 50% (default 

settings), 75%, and 100%.  

Overall, lower sound pressure levels were measured with the 

earphones compared to headphones, with maximum output 

levels of about 67 and 68 dB SPL with the Apple EarPods and 

Mpow in-ear, respectively. At the default volume level of 50%, 

earphones reached sound pressure levels lower than or equal to 

50 dB SPL whereas headphones provided sound pressure levels 

in the range from 60 to 70 dB SPL. Among the headphones 

models here used, the highest output levels were observed with 

the Akg Y45 BT that provided an output equal to about 71 dB 

SPL at the default volume level of 50% and up to about 90 dB 

SPL when the maximum volume level was used. The Bose 

QuiteComfort II with noise canceling mode OFF and the Sony 

MDRZX110APW headphones used in the first part of this study 

showed similar characteristics, with differences below 1 dB 

across the volume range. Differences of about 20-22 dB were 

observed, at each of the tested volume levels, between the 

earphones and the Akg Y45 BT headphones. 

 

IV. DISCUSSION 

The first aim of this study was to address the performance of 

logistic regression for classifying ears with slight/mild hearing 

loss vs ears with no hearing loss in a population of unscreened 

adults using a previously developed automated speech-in-noise 

test [23], [28]. Using eight input features and a subset of three 

input features, we observed similar average performance, as 

determined by running 1000 iterations of model optimization on 

different realizations of the training and test datasets (Table I). 

In addition, the variability of classification performance, as 

measured by the standard deviation of the performance 

measures across the 1000 iterations, was strikingly similar 

between the two models. Features such as SRT, age, and 

number of correct responses in the test had more distinct 

distributions in ears with and without slight/mild hearing loss 

compared to features such as, e.g., average reaction time, test 

volume, and test duration. Accordingly, the simpler model using 

only SRT, age, and #correct as input features had a similar 

performance as the model using the full set of eight features. 

Specifically, the same accuracy was obtained (i.e., 0.79) and a 

slightly improved AUC for the model with three features 

compared to the one with eight features (0.90 vs 0.89).  

Compared to our earlier investigations, where different 

classification algorithms were applied, the logistic regression 

model here used provided better classification performance. For 

example, when only the SRT was used to classify 106 ears from 

98 subjects into pass and fail (cut-off SRT = -8 dB SNR), we 

observed an accuracy equal to 0.82, sensitivity equal to 0.70, 

specificity equal to 0.90, and AUC equal to 0.84 [23]. When a 

decision tree algorithm with full set of eight features was used 

on the same dataset here used (156 ears from 148 subjects), the 

average accuracy was 0.76, sensitivity was 0.67, specificity 

0.81, and the AUC was equal to 0.74 [24]. The results of this 

study showed that the logistic regression algorithm 

outperformed the decision tree and that a subset of three features 

(SRT, age, and #correct) was appropriate for the sake of 

identifying ears with slight/mild hearing loss, yielding the same 

average performance and the same variability as the model with 

eight features. The importance of age, in addition to SRT, was 

suggested by a preliminary study where, using a generalized 

linear model with age and SRT as input variables on a dataset of 

91 ears from 84 subjects we observed that the interaction 

between age and SRT (and not age as a single factor) was a 

significant predictor of hearing loss [29]. The results of the 

current study suggest that the number of correct responses 

obtained in the test, in addition to SRT and age, could be an 

important factor to determine the hearing loss class. Moreover, 

the degree of overlap between the distributions of #correct in 

the two classes was similar to the overlap observed for the 

distributions of SRT and age and was below 0.2.  

TABLE II 

TRANSDUCERS SOUND LEVELS (dB SPL) AS A FUNCTION OF THE PERCENT 

VOLUME LEVEL 

Transducers models  25% 50%                           75% 100% 

Apple Earpods 35.30 48.06 58.09 66.58 

Mpow BH319 wired In-ear 37.49 50.13 60.38 68.12 

Bose QuiteComfort II (n.c. ON) 46.79 60.03 69.84 78.35 

Sennheiser PC310 47.31 60.33 71.00 78.85 

Sony MDR-7506 50.10 63.11 73.24 81.72 

Bose QuiteComfort II (n.c. OFF) 52.23 65.26 76.00 84.01 

Sony MDRZX110APW 52.97 66.03 76.01 85.20 

Akg Y45 BT 57.26 70.93 80.92 89.44 
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Compared to the classification performance of other 

speech-in-noise tests based on multiple-choice recognition of 

short words, the logistic regression model using age in 

combination with two features extracted from the newly 

developed speech-in-noise test (i.e., SRT and #correct) showed 

similar if not better performance in identifying ears with hearing 

thresholds in the slight/moderate hearing loss range. For 

example, for the digits-in-noise test delivered by telephone a 

sensitivity equal to 0.75 and a specificity equal to 0.91 to 

identify ears with average hearing thresholds higher than 20.6 

dB HL were observed [18]. Similarly, the sensitivity and 

specificity of the U.S. version of the digits-in-noise test were 0.8 

and 0.83, respectively [19]. The Earcheck and the Occupational 

Earcheck online tests had a sensitivity of 0.51 and 0.92 and a 

specificity of 0.90 and 0.49, respectively, for the identification 

of ears with noise-induced hearing loss [20].  

Taken as a whole, the results are encouraging as very good 

classification performance is obtained using logistic regression 

and a reduced set of features. However, further research is 

needed to demonstrate the viability of the proposed approach 

for adult hearing screening. It will be important to investigate 

test performance on a larger sample of participants, including 

subjects with varying degrees of hearing loss and across a larger 

set of native languages. Also, it would be interesting to 

investigate the ability of the proposed approach to identify the 

degree of hearing loss, e.g. moderate hearing loss (PTA > 40 dB 

HL) vs slight/mild hearing loss vs normal hearing. In the dataset 

used in this study, only 18 ears had moderate hearing loss 

therefore analyzing further data from a population of adults with 

hearing thresholds in the moderate hearing loss range would be 

crucial to investigate this aspect. It would also be important to 

address the performance of the test when delivered via 

interfaces that mimic those of web browsers or mobile devices 

and to compare it with other validated speech-in-noise 

screening tests, to fully understand the viability of the method in 

realistic settings in light of other currently available methods. 

The second aim of this study was to address the 

characteristics of several consumer transducers to estimate the 

actual sound pressure levels of the test (i.e., the level at which 

the speech-in-noise stimuli are delivered to the users’ ears) as a 

function of the test volume. In general, an increase in test 

volume from the default level of 50% to the maximum device 

level corresponded to an increase of about 18 dB in the actual 

sound pressure levels irrespectively of the transducer used. For 

example, the sound pressure levels increased from about 50 to 

about 68 dB SPL with the Mpow BH319 wired In-ear earphones 

and from about 71 to about 90 dB SPL with the Akg Y45 BT 

headphones (Table II). Considering the full range of volumes 

shown in Table II, i.e. from 25% to 100%, the resulting dynamic 

range at the level of the ears is about 32 dB. With the prospect of 

an application of the test for screening at a distance, a measured 

dynamic range of 32 dB suggests that the end users have 

relatively ample room to adjust the sound pressure levels of the 

test and reach a comfortable loudness level, which depends on 

the ear-level SPL all the other things being equal (hearing 

thresholds, environmental noise, and device characteristics). 

Individuals with slight/mild hearing loss, for example, would 

hear the test stimuli attenuated by at least 25 dB compared to 

individuals with hearing thresholds close to the ideal value of 0 

dB HL and they may therefore feel the need to increase the test 

volume to reach a sufficiently audible level. It is worth noting 

that in speech-in-noise tests, such as the one here used, the test 

outcome (i.e., the SRT) is related mainly to the individual 

speech recognition performance and hearing thresholds rather 

than to the absolute sound pressure levels as long as these levels 

are set at a comfortable level [32]. Therefore, having a volume 

adjustment option incorporated in the test is important in view 

of future implementation of the test into a web or mobile app as 

users can, at least in part, compensate for possibly 

lower-than-ideal audibility of test stimuli due, for example, to 

environmental noise, higher individual hearing thresholds, or 

lower transducer gain.  

However, it is important to notice that substantial variability 

of sound pressure levels was observed across the range of 

transducers here tested, with differences in SPL up to 22 dB. All 

the headphones here tested reached substantially higher sound 

pressure levels compared to earphones, with the Akg Yx45 BT 

headphones yielding the highest output levels across the range 

of test volumes. The two models of earphones had substantially 

similar characteristics, with differences in SPL of about 2 dB 

and maximum levels up to 68 dB SPL. These maximum levels 

are close to the average conversational speech levels. 

Conversational speech occurs at an average of 65 dB SPL and 

has a typical dynamic range of 30 dB, i.e. about 12 dB above 

and about 18 dB below the average [33]-[34]. Therefore, with 

commercially available earphones similar to the ones here 

tested and in the current settings, individuals with elevated 

hearing thresholds due to hearing loss and individuals 

performing the test in a noisy environment might not be able to 

reach sufficiently comfortable speech levels with the volume 

adjustment procedure even if the maximum test volume is set. In 

addition, it might happen that individuals undergoing the test in 

an unsupervised way on a web or mobile app may not use the 

volume adjustment option at all. For example, in this study we 

observed a median test volume of 0.5 both in the no hearing loss 

class (s.d. = 0.11) and in the slight/mild hearing loss class (s.d. = 

0.12), with 83 out of 148 participants using the default volume 

level of 50%, corresponding to about 66 dB SPL with the Sony 

MDRZX110APW headphones. Thus, as a general criterion it 

would be safer to recommend use of headphones in place of 

earphones to enable higher sound pressure levels when the 

default volume settings are used. Specific benchmarks, in terms 

of minimum requirements for transducers characteristics to 

reach a desired ear-level SPL cannot be set as, in this study, the 

measured output levels were derived from a specific laptop 

model. In future studies, it will be important to assess the 

amount of change in the actual sound pressure levels when 

different devices are used, for example different computers, 

smartphones, and tablets. This will help identify minimum 

requirements for devices and transducers to deliver the test.  
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In summary, this study showed that the newly developed test 

combined with a multivariate classification algorithm may be a 

viable method for identifying slight/moderate hearing loss at a 

distance and that the self-adjustment volume option may help 

compensate for the different transducers used. However, results 

also indicate that it may be important to recommend use of 

headphones rather than earphones to ensure sufficiently high 

sound pressure levels, particularly in individuals with hearing 

loss. Future research is needed to investigate the viability of the 

test for screening at a distance. It will be important to address 

test performance, including the possible influence of the user 

interface, device, and settings, on a large sample of participants 

with varying degrees of hearing loss, also including subjects 

with moderate hearing loss. 
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