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We theoretically investigate the double-resonance Raman spectrum of monolayer graphene down to infrared
laser excitation energies. By using first-principles density functional theory calculations, we improve upon
previous theoretical predictions based on conical models or tight-binding approximations, and rigorously justify
the evaluation of the electron-phonon enhancement found in Venanzi, Graziotto et al. [Phys. Rev. Lett. 130,
256901 (2023)]. We proceed to discuss the effects of such enhancement on the room-temperature graphene
resistivity, hinting towards a possible reconciliation of theoretical and experimental discrepancies.
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I. INTRODUCTION

Raman spectroscopy is a widespread and versatile exper-
imental technique used to characterize graphitic materials.
In particular, in few-layer graphene it is commonly used to
determine the number of layers [1–5], carrier and defect con-
centrations [6–9], as well as phonon properties [10–12].

Raman scattering refers to the inelastic scattering of light
by a molecular or crystalline sample, due to the concurrent
excitation (Stokes processes) or deexcitation (anti-Stokes pro-
cesses) of vibrational degrees of freedom of the sample. In
a single-particle description, in the Stokes case, the incom-
ing photon (of frequency ωL) creates n phonons with total
energy h̄�tot

ph and then leaves the sample with a frequency
ωL − �tot

ph . In defect-free monolayer graphene, for laser ex-
citation energies εL = h̄ωL up to the near-UV, i.e., with wave
vectors much smaller than the size of the first Brillouin zone
(FBZ), conservation of crystal momentum requires the sum
of the wave vectors of the Raman scattered phonons to be
equal to zero. The one-phonon Stokes spectrum of defect-free
monolayer graphene (simply referred to as graphene in the
following) consists of the so-called G peak only, which is
due to the excitation of a single phonon at the � point of the
FBZ. The two-phonon spectrum is instead explained within
the double-resonance scheme [13], which amounts to con-
sidering the intermediate role played by electrons and holes
in the creation of the phonon pair. Indeed, the sharpness and
separation of the two-phonon lines arise due to the condition
that the intermediate states of the Raman process can be eigen-
states of the system, with a lifetime given by their many-body
interaction. The double-resonance scheme is then depicted as
an excitation by the incoming photon of an electron-hole pair
which excites a phonon through the electron-phonon coupling
(EPC), and then recombines with the emission of the outgoing
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photon. Conservation of crystal momentum requires that the
two phonons, which belong to either the same or to different
optical branches, have opposite momenta. The most relevant
double-resonance peaks are the so-called 2D and 2D′: the
former relates to the case in which both the electron and the
hole scatter between two different Dirac cones, hence the pair
of phonons has (opposite) wave vectors which are close to
the edge of the FBZ (K and K′ points in reciprocal space); the
latter relates to the case in which the scattering happens within
the same Dirac cone, hence the pair of phonons has wave
vectors close to the center of the FBZ (� point in reciprocal
space).

As addressed below, the intensity of the 2D (2D′) peak
scales with the fourth power of the EPC evaluated at the K
(�) point, hence the ratio of the two gives a clear indication
of how the EPC at K evolves with respect to the EPC at
� as a function of the excitation energy. In particular, Ra-
man measurements performed at a laser energy of 1.16 eV in
Ref. [12] show that the EPC is enhanced at zone boundary
while approaching the Dirac cone. This is due to an under-
lying enhancement of the electron-electron interaction, first
predicted in Refs. [14,15], which can be taken into account
via an excitation-energy-dependent coefficient. In this work,
we rigorously justify and test the boundaries of the theoretical
analysis of Ref. [12] using density functional theory (DFT)
ab initio calculations. As opposed to previous works which
employed the tight-binding approximation [13], our approach
allows us to convincingly put the analytical results of Ref. [16]
to the test, in particular regarding the role of the electron-hole
asymmetry, of the trigonal warping of both phononic and elec-
tronic dispersions, and of the inverse lifetime of the electronic
states in determining the line shape and the integrated area of
the Raman peaks.

The present results are also used to shed light on a open
question regarding the electronic transport of graphene. Refer-
ences [17,18] showed that the ab initio resistivity of graphene
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computed via Boltzmann transport equation largely under-
estimates the experimental value in the equipartition regime
(T > 270 K) especially at low doping levels. In those works,
it was argued that this could come from the enhancement of
the zone-boundary EPC studied here rather than other extrin-
sic mechanisms like remote polar-optical phonons from the
substrate. However, the enhancement needed to explain the
resistivity measurements appeared quite large at the time. We
discuss how the values obtained via Raman in Ref. [12] are
consistent with such a large enhancement, although they are
not directly applicable to transport due to different doping
setups.

The paper is organized as follows: In Sec. II we introduce
the model Hamiltonian and the formalism to calculate the
Raman scattering intensity (showing also a simplified model
to clarify the double-resonance mechanism). In Sec. III we
present the computational details of the implementation of the
calculation. In Sec. IV we show the results of the calculation
of the Raman spectrum, and its dependence on the various
parameters involved, and discuss its physical implications,
in particular its impact on the room-temperature resistivity.
Finally, Sec. V summarizes the main findings and outlines the
possibilities for further investigations.

II. THEORETICAL FRAMEWORK

We treat electrons, phonons, the EPC, and the response
to external perturbations within DFT. The DFT ground state
|GS〉 corresponds to the Fermi sea, i.e., all the electronic states
below the Fermi energy εF are occupied, and all the states
above εF are empty. In graphene εF corresponds to the energy
of the electronic state having wave vector K, for which the
conduction and the valence bands are degenerate. Introducing
fermionic creation and annihilation operators cα†

k , cα
k for an

electron belonging to band α, with wave vector k and energy
εα

k , we may write

|GS〉 =
∏
kv

cv†
k |0〉el ⊗ |0〉phot ⊗ |0〉ph, (1)

where |0〉el/phot/ph indicates the noninteracting
electronic/photonic/phononic vacuum and v indicates
valence states; we also call |eGS〉 = ∏

kv cv†
k |0〉el and omit

⊗ and the subscript el/phot/ph in the following, if not strictly
necessary. The electronic Hamiltonian is given by

HKS = p2

2me
+ VKS(r) =

∑
k,α

εα
k cα†

k cα
k , (2)

where me is the electronic mass. Since the Kohn-Sham band
structure is only an approximate description of the true ex-
citation spectrum, the quasiparticles of the system will have
complex eigenvalues with nonzero imaginary part, as it will
be more carefully addressed below. The interaction of the
electrons with the electromagnetic field is included in the
Hamiltonian via the minimal coupling, discarding the A2 term
since we are interested only in resonant processes:

Hel-em = − e

2me

∑
i

[pi · A(ri ) + A(ri ) · pi]. (3)

It is convenient to quantize the electromagnetic field, in-
troducing bosonic creation and annihilation operators aσ†

p , aσ
p

for a photon with polarization σ , wave vector p, and en-
ergy h̄ωp = h̄cp where c is the speed of light and p ≡ |p|.
The second-quantized vector potential [19] is given in the
Coulomb gauge and in the interaction picture by

A(r, t ) =
∑
p,σ

√
h̄

2ε0V ωp

[
ε̂σ

p aσ
p (t )eipr + ε̂σ∗

p aσ†
p (t )e−ipr],

(4)

where V indicates the volume inside which the field is quan-
tized, ε̂σ

p is the polarization vector for a photon of polarization
σ and wave vector p, and the time dependence of the cre-
ation and annihilation operators is given trivially by aσ

p (t ) =
e−iωpt aσ

p , and the corresponding adjoint equation; to ease the
notation, we will avoid to explicit the polarization index if not
necessary. The free electromagnetic field Hamiltonian is given
as usual by

Hem =
∑
p,σ

h̄ωp

(
aσ†

p aσ
p + 1

2

)
. (5)

The phonon Hamiltonian is given by

Hph =
∑
q,ν

h̄ων
q

(
bν†

q bν
q + 1

2

)
, (6)

where we have introduced bosonic creation and annihilation
operators bν†

q , bν
q for a phonon with wave vector q belonging

to branch ν with frequency ων
q, which is already dressed by

the electron-phonon interaction, i.e., the only ones that will
appear in the Raman diagrams; even these quasiparticles have
finite lifetime that will be taken into account in the follow-
ing. The electron-phonon interaction is introduced via the
following interaction Hamiltonian in the Born-Oppenheimer
approximation [20]

Hel-ph = 1√
Np

∑
k,q

α,α′,ν

gν
k+qα,kα′cα†

k+qcα′
k

(
bν

q + bν†
−q

)
, (7)

where Np is the number of unit cells in the Born–Von Karman
supercell and g is the EPC matrix element. If we consider the
atoms positioned at uR

s = R + τs, where R is a Bravais vector
and τs a basis vector, then collective displacements with wave
vector q of the atoms s along the Cartesian axis β induce a
cell-periodic potential variation V q

sβ (r) defined by

V q
sβ (r) = e−iq·r ∂VKS(r)

∂uq
sβ

= e−iq·r ∑
R

eiq·(R+τs ) ∂VKS(r)

∂uR
sβ

. (8)

Passing in the phonon eigenvector basis, the EPC matrix
elements may then be written as

gν
k+qα,kα′ =

√
h̄

2Mων
q
〈k + q, α|V q

ν (r)|k, α′〉

=
√

h̄

2Mων
q

Dν
k+qα,kα′ , (9)

where 〈k, α| (and its conjugate) are the cell-periodic parts of
the Bloch wave functions, M is the carbon atomic mass, and
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V q
ν (r) is obtained by the contraction of V q

sβ (r) with the phonon
mode of polarization ν.

A. Double-resonance scattering intensity

We will limit ourselves to the treatment of Stokes processes
only since in monolayer graphene at room temperature they
are the dominant ones. Our approach consists in computing
the two-phonon Raman intensity via the theory of scattering.
Although following the same approach of Ref. [13], we pay
particular care in this work to keep into account all the ener-
getic factors that appear in the intensity since we are interested
in comparing the results for different excitation energies. We
employ Fermi’s golden rule generalized to the fourth pertur-
bative order given that, being Raman scattering a two-photon
process, the second perturbative order in the interaction of the
electrons with the electromagnetic field is needed, and to deal
with the two-phonon spectrum we need two more perturbative
orders in the electron-phonon interaction. The intensity of
the Raman scattering as a function of the frequency of the
scattered photon ω defined within an interval dω is given [21]
by

I (ω)dω = 2π

h̄

∑
f

|〈 f |S|i〉|2δ(E f − Ei ), (10)

where |i〉 and | f 〉 represent the initial and final states with
energies Ei and E f , respectively. The above formula may be
extended at finite temperature but, as we will see, for our cal-
culations the zero-temperature formalism is a good descriptor.
The initial state consists of a coherent state of photons with
frequency ωL (which models the incoming laser beam [22]),
and the summation is performed over all the final states that
consist of a single photon with frequency ω = ωL − �tot

ph since
we are considering spontaneous Raman scattering, and two
phonons with total frequency �tot

ph . In fact, in spontaneous Ra-
man scattering experiments only the frequency of the outgoing
photon gets probed, while in both initial and final states the
crystal electrons are in the Fermi sea. The matrix element in
Eq. (10) is given by (see Ref. [23] and Appendix A)

〈 f |S|i〉 =
∑
α,β,γ

〈 f |HI |α〉〈α|HI |β〉〈β|HI |γ 〉〈γ |HI |i〉
(ωα − ωL )(ωβ − ωL )(ωγ − ωL )

, (11)

where HI is either the Hel-em or the Hel-ph interaction Hamil-
tonian, and |α〉, |β〉, and |γ 〉 are intermediate states with
energies ωα , ωβ , and ωγ , consisting in an arbitrary amount of
photons and phonons and excited states of the electronic sys-
tem. As already anticipated, the latter are commonly described
in terms of electron-hole pairs, which, being only approximate
eigenstates of the system, provide a nonzero imaginary part to
the intermediate state energies. Moreover, the difference in the
number of photons, phonons, and electron-hole pairs between
the initial, intermediate, and final states is constrained by
the fact that the electron-photon (electron-phonon) interaction
Hamiltonian has nonzero matrix element only between states
that differ by exactly one photon (phonon) and one electron-
hole pair.

So far the resonance condition has not been imposed, that
is, no restriction has been made on the energy of the inter-
mediate states, which may not fulfill energy conservation as a

consequence of Heisenberg’s uncertainty principle (so that in
general they are called virtual states). The resonance condition
amounts to consider real intermediate states, i.e., states which
fulfill energy conservation (up to an imaginary part which
describes the finite lifetime of the intermediate state), such
that the real part of the factors in the denominator of Eq. (11)
is zero: in graphene all three intermediate states can be real
states, that is, the initial (final) electron-hole pair has exactly
the energy of the incoming (scattered) photon, and energy is
conserved also in the scattering of the electron-hole pair with
the phonons. The resonance condition, which evidently can be
satisfied only when the absorption (emission) of the incoming
(scattered) photon is temporally ordered as the first (last)
process, is responsible for the narrowness of the two-phonon
Raman lines. Implementing this condition in the formalism of
Eq. (11) amounts to attributing the initial and final vertices
of the Feynman diagrams to electron-photon interactions, and
considering the 4 × 2 possible scattering processes between
the two phonons and the electron-hole pair, for both q and −q
phonon momentum (see Fig. 1). In our calculation we will
consider only these eight diagrams.

Given the frequency ωL of the incoming photons, the
intensity of the Raman line as a function of the scattered
photon frequency ω is obtained via Eq. (10), where as already
stated one has to sum over all the possible two-phonon final
states and integrate over the photon momenta. Due to crystal
momentum conservation, the scattered phonons will have op-
posite momenta q and −q, so the final states are specified by q
and by the branches μ, ν which the scattered phonons belong
to. Extending Eq. (10) to take into account finite-temperature
quasiparticle occupations, we obtain

I (ω, T )dω = 2π

h̄

V ω2dω

c3π2
NpĨ (ω, T ), (12)

where we have explicitly integrated out the scattered photon
density of states since the photon momentum is negligible and
thus does not play a role in the matrix elements, and

Ĩ (ω, T ) = 1

Nq

∑
q,μ,ν

Iνμ(q)δ
(
ωL − ω − ων

−q − ωμ
q

)
× [

n
(
ων

−q

) + 1
][

n
(
ωμ

q

) + 1
]
, (13)

where n(ωμ
q ) is the Bose-Einstein distribution function, i.e.,

the occupation number of the phonon state having energy ω
μ
q .

At room temperature, for the phonons in which we are inter-
ested in, h̄ω

μ
q � kBT , thus n(ωμ

q ) 	 0 and I (ω, T ) ∼ I (ω) as
anticipated. The total energy conservation between the initial
and final states is enforced by the Dirac delta function, but
since the final pair of phonons are quasiparticles and thus
possess a finite lifetime, we substitute it with a Lorentzian
function having the width equal to the inverse lifetime of the
final phonon pair (which is essentially due to anharmonicity,
see below). The square modulus of the matrix element 〈 f |S|i〉
of Eq. (10) becomes Iνμ(q), defined as

Iνμ(q) =
∣∣∣∣∣ 1

Nk

∑
k,β

Kβ (k, q, ν, μ)

∣∣∣∣∣
2

, (14)

where the expression for Kβ (k, q, ν, μ) can be deduced from
Eq. (11) and is detailed in Ref. [13]. Since all the resonant
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FIG. 1. Feynman diagrams considered in the formalism of
Ref. [13] and in this work. They correspond to the eight resonant
diagrams out of the 4! × 3 total ones (see Appendix A), where the
electron-photon vertices are the first and the last to appear. The
diagrams on the right (shaded region) correspond to the processes
in which both the electron and the hole undergo scattering with a
phonon (and they are four since we consider all the permutations
of the phonon pair), and they are the dominant ones, as already
shown in Ref. [13] and discussed below, while the diagrams on the
left (unshaded region) correspond to the processes in which both
phonons arise from scattering with either the electron or the hole.

processes happen between the π and π∗ electronic bands,
and given the constraint on the difference of the number of
photons and phonons between intermediate states which we
discussed above, to specify the intermediate state it is suffi-
cient to indicate the momentum k of the electron-hole pair and
the momentum q and branch indices ν and μ of the phonons.
β labels instead the eight different time orderings of the
electron- and hole-phonon scattering processes represented by
the diagrams of Fig. 1.

For the sake of completeness, we specify that in the limit
of infinite volume V , Eq. (12) gives formally zero since, as
it will be detailed below, the matrix element 〈 f |S|i〉 which
appears squared inside Ĩ (ω) scales as 1/V . One has indeed to
consider the scattering cross section, which is defined [21] as

dσ = V

n̄c
I (ω)dω, (15)

where n̄ is the average number of photons in the laser’s coher-
ent state, and which has the dimensions of a squared length,

I (ω) being adimensional. This corresponds experimentally to
the proportionality factor between the intensity of the scat-
tered photons and the power flux of incident laser photons.

1. Matrix elements

We proceed with the evaluation of the matrix elements
〈α|HI |β〉 of Eq. (11), where HI indicates either Hel-ph

or Hel-em. The initial state of the system is given by
|eGS〉(|n̄〉coh

ωL
|0〉ω )|0〉, where the electromagnetic field is de-

scribed by the product of a coherent state with n̄ average
photons at the laser frequency ωL with wave vector pL, and
a Fock state of zero photons at the frequency ω, while the
final state is given by 〈eGS|(〈n̄|coh

ωL
〈1|ω )〈ων

q, ω
μ
−q|, where there

is instead a photon of frequency ω in addition to the laser’s
coherent state and two phonons of frequencies ων

q and ω
μ
−q,

having opposite wave vectors q and belonging to branches ν

and μ, respectively.
The matrix element for the interaction of the incoming

laser beam with the electronic degrees of freedom is given
by

〈γ |Hel-em|i〉 = − e

m

√
h̄n̄

2ε0V ωL

×
∑
k,α

k′,α′

ε̂in
pL

· 〈k, α|p eipL ·r|k′, α′〉

× 〈γ |cα†
k cα′

k′ |eGS〉, (16)

where the polarization vector is assumed to lie in the graphene
(x, y) plane, remembering that in the Coulomb gauge ε̂pL ·
pL = 0. Notice that the factor

√
n̄, once the matrix element

is squared, will simplify with the photon flux of Eq. (15), so
that effectively one could describe the interaction with one
incoming photon only. Being the coherent state an eigenstate
of the annihilation operator, the electromagnetic field of the
|γ 〉 state is described by the same laser’s coherent state, and
in addition |γ 〉 contains an electron-hole pair which, due to
the fact that the photon wave vector is negligible, has zero
total momentum (k = k′); we also restrict to the resonant
case α′ = π and α = π∗. From now on, we will drop the
momentum index for the photon states. In complete analogy
one can obtain the matrix element for the interaction of the
scattered photon with the electronic degrees of freedom

〈 f |Hel-em|γ 〉 = − e

m

√
h̄

2ε0V ω

×
∑

k

ε̂out · 〈k, π |p|k, π∗〉. (17)

Notice that when a nonlocal pseudopotential is used to ap-
proximate the electron-ion interaction in the Hamiltonian,
such as in the ab initio calculations performed in this work,
the matrix element of the momentum operator of Eqs. (16) and
(17) must be replaced by the matrix element of the commuta-
tor between the Hamiltonian and the position operator [24,25].
The matrix element for the electron-phonon interaction is
readily given by Eq. (9), that is,

〈β|Hel-ph|γ 〉 = gν
k+qπ/π∗,kπ/π∗ , (18)
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TABLE I. Values employed in the calculation of the inverse
lifetime of the electronic states. 〈D2

�/K〉 are given in Ref. [15], and
by using ω�,K and the definition of Sec. II 1 we obtain 〈g2

�/K〉. The
values given in this table will be used also for later calculations, if
not specified differently.

〈D2
q〉 ( eV2/Å2) ωq ( cm−1) 〈g2

q〉 ( eV2)

� 62.8 1580 0.056
K 193 1220 0.222

which describes the scattering of an electron (or a hole) from
the state with wave vector k in band π/π∗ to the state with
wave vector k + q with the same band index [13], with the
simultaneous emission of a phonon with wave vector q be-
longing to branch ν. Again, in either the intermediate state
|β〉 or |γ 〉 the electromagnetic field is in the state |n̄〉coh

ωL
|0〉ω.

In the following we will deal with phonons belonging to the
TO branch, which is the highest-optical branch at K [26], with
wave vector q in the vicinity either of the K or the � point, so
we will omit the branch index ν when possible. It will also
prove useful in the following to define, as in Ref. [27], 〈D2

�〉
and 〈D2

K〉 as the average square of Dk+qπ/π∗,kπ/π∗ between
electronic states at the resonance wave vectors k ∼ K, for
q = � and q = K, respectively. We further define 〈g2

�〉 =
(h̄/(2Mω�))〈D2

�〉 and 〈g2
K〉 = (h̄/(2MωK ))〈D2

K〉.
Since the ratio between the EPC at K and at � is experi-

mentally related to the ratio of the integrated areas under the
2D and 2D′ resonance peaks, we further define

rvc =
〈
D2

K

〉
2
〈
D2

�

〉 =
〈
g2

K

〉
2
〈
g2

�

〉 ωK

ω�

, (19)

which evaluates to about one if all the ingredients are com-
puted in DFT [28]. The subscript “vc” stands for “vertex
correction” since in Ref. [12] the failure of DFT in explaining
the strong enhancement of the EPC is attributed to the neglect
of the Coulomb vertex corrections, and rvc will be employed
as a rescaling factor that keeps them into account.

2. Resonance conditions in the conical model
without matrix elements

To qualitatively explain how the resonance condition arises
in the scattering amplitudes Kβ of Eq. (14) we consider a
simplified conical description of the graphene bands,

ε
π∗/π
k = ±h̄vF |k|, (20)

where vF is the Fermi velocity evaluated via GW calculations
[29] (h̄vF = 6.44 eVÅ) and k is measured from the K point.
For the 2D peak (the case of the 2D′ peak is analogous) we
have for the TO phonon dispersion

ωq = ωK + h̄vph|q|, (21)

where ωK is the phonon frequency at the K point given in
Table I, vph is the slope of the Kohn anomaly obtained in
Ref. [28] (h̄vph = 0.047 eVÅ), and again q is measured from
K. Moreover, we consider neither the electron-phonon nor the
electron-light matrix elements, that is, we set the numerator
of Eq. (11) equal to one. In this approximation, the number

of independent diagrams of Fig. 1 reduces to 2, and their
amplitude is given by the following expressions:

Kaa(k, q)

= 1

εL − 2h̄vF |k| − 2ωK − 2h̄vph|q| − iγ /2

× 1

εL − h̄vF |k + q| − h̄vF |k| − ωK − h̄vph|q| − iγ /2

× 1

εL − 2h̄vF |k| − iγ /2
, (22)

Kab(k, q)

= 1

εL − 2h̄vF |k + q| − 2ωK − 2h̄vph|q| − iγ /2

× 1

εL − h̄vF |k + q| − h̄vF |k| − ωK − h̄vph|q| − iγ /2

× 1

εL − 2h̄vF |k| − iγ /2
, (23)

where γ is the total inverse lifetime of the intermediate states
[which is given by twice the inverse lifetime γ e/h of the
electron/hole, supposed equal, where γ e/h is the full-width
at half-maximum (FWHM) of the electronic spectral function
or, equivalently, minus two times the imaginary part of the
electronic self-energy], and the subscripts “aa” and “ab” refer
to the four diagrams on the left or on the right of Fig. 1, re-
spectively. The intensity as a function of phonon wave vector
q is given by Eq. (14) to be

I (q) =
∣∣∣∣∣ 1

Nk

∑
k

(Kaa(k, q) + Kab(k, q))

∣∣∣∣∣
2

. (24)

Let us first consider the case in which ωK = vph = 0: the
resonance condition corresponds to the vanishing of the real
part of the three factors in the denominators of Eqs. (22)
and (23), which can simultaneously happen for q = −2k,
|k| = εL/(2h̄vF ), giving rise to a triple resonance condition.
However, the behavior of Kaa and Kab near the resonance is
quite different (see Fig. 2), with the real part of Kaa changing
sign along the resonance region, while the real part of Kab

stays positive. This implies, as already shown in Ref. [13],
that the predominant contribution to the Raman intensity is
given by Kab, which add up coherently in a constructive way
when summing over the electronic wave vectors k in Eq. (24),
at variance with the destructive interference of the terms Kaa.
When a finite value is considered for both ωK and vph this dif-
ference is made even stronger by the fact that in Eq. (22) one
cannot achieve anymore the fully triple resonance condition
[16] (i.e., there is a double resonance at most).

Limiting then ourselves to the “ab” process only, we obtain
an analytical expression for I (q), which is formally identical
to the square modulus of Eq. (63) of Ref. [16], as it indeed
should be since we are eventually considering the same pro-
cesses, even if the two formalisms are different (one has to
remember the different definition of the total inverse lifetime
γ , which here is four times the γ of Ref. [16], since there it
refers directly to the negative imaginary part of the electronic
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FIG. 2. Real and imaginary parts of the amplitudes Kaa (k, q),
Kab(k, q) defined in Eqs. (22) and (23) evaluated at q = (εL/h̄vF , 0)
for the case ωK = vph = 0, with εL = 1.16 eV and γ = 64 meV, the
latter being double the value used in the calculations below for
illustrative purposes. The simultaneous vanishing of the real parts of
the factors at the denominator (i.e., the resonance condition) happens
at the intersection of the two red lines, which mark the direction
k = −q/2 and the circumference |k| = |q|/2. Notice how the real
part of Kaa changes sign near the resonant value k = −q/2, while
the real part of Kab does not. Moreover, notice the asymmetric shape
of the peak in the imaginary part of Kaa, as opposed to the symmetric
shape of the imaginary part of Kab. We point out that in the limit
γ → 0 the two peaks which one can distinguish in the panels super-
impose, and their values diverge.

self-energy):

I (q) = ωL

27v4
F

[
(ωL − ωK − (vF + vph)q)2 +

(γ

2

)2
]−3/2

,

(25)

which is peaked at q ≡ |q| = (ωL − ωK )/(vF + vph ), and it
has full-width at half-maximum

FWHM =
√

22/3 − 1

h̄(vF + vph)
γ . (26)

The analytical result is obtained by approximating the sum-
mation on k in Eq. (24) with an integral about the resonance
contour |k| 	 ωL/(2vF ). Notice that including the phononic
dispersion amounts simply to substitute vF → vF + vph in
the denominator of Eq. (63) of Ref. [16]. Neglecting for
simplicity the finite lifetime of the final phonon states, we
may further obtain the intensity as a function of the scattered

photon energy as

I (ω) ∝
[(

vF

vph

)2(
εL − h̄ω

2
− ωph

)2

+
(

γ

2

)2
]−3/2

, (27)

where we recognize the Raman shift as εL − h̄ω, which
is peaked at ω = 2ωph where ωph = ωK + h̄vph(ωL −
ωK )/(vF + vph).

The function described by Eq. (27) has the form

fB(ω) = I
β3

[(ω − ω0)2 + β2]3/2
, (28)

where I is a coefficient which contains the fourth power of the
EPC at K (�), ω0 is the central frequency of the peak, equal
to twice the value of the phonon energy at the resonance wave
vector near K (�), and the FWHM is given by

FWHMB = 2
√

22/3 − 1 β ≡ 2
√

22/3 − 1 γ
vph

vF
. (29)

The functional form fB(ω) will be referred to as Baskovian in
the following since it was first calculated by Basko in Eq. (2)
in Ref. [16]. One may further calculate the integrated area
under fB(ω), which gives

AB = 2Iβ. (30)

Taking into account all the proportionality factors, the coef-
ficients which appear in the matrix elements, and the factors
due to the final photon density of states [see Eq. (12)], the
integrated area under the 2D peak in the conical model ap-
proximation is given by Eq. (66) of Ref. [16]: here we notice
in particular that it scales as (ωL − 2ωph)2/γ 2. Since, as it will
be shown below, γ scales linearly with ωL, it follows that the
integrated area is almost constant as a function of εL.

III. COMPUTATIONAL APPROACH

The computational infrastructure used to compute the di-
agrams of Fig. 1 is the EPIQ code [30]. We now detail the
computational parameters used to determine all the physical
quantities presented in Sec. II.

A. Electronic states

The Kohn-Sham states and eigenenergies are obtained
within DFT using QUANTUM ESPRESSO (QE) [31] by model-
ing the monolayer graphene honeycomb structure with two
carbon atoms per unit cell (with four valence electrons each)
and lattice parameter a = 2.46 Å, on a 64 × 64 electronic
grid. From the energetically lowest 10 electronic bands, we
extract maximally localized Wannier functions [32] (MLWF)
using the WANNIER90 (W90) software [33]. As anticipated,
the π∗ and π bands are the only ones considered in the Ra-
man intensity calculation. We multiply them by a corrective
factor 1.18 (after setting the Fermi energy to zero) to repro-
duce the band energy slope obtained from GW calculations,
and which shows the best agreement with angular-resolved
photo-emission spectroscopy (ARPES) measurements [34].
As compared to the five nearest-neighbor tight-binding ap-
proach employed in Ref. [13], the approach we employed
in this work is better at reproducing the trigonal warping
and the electron-hole asymmetry of the electronic dispersion.
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FIG. 3. Comparison between the electronic dispersion calculated
with five-neighbor tight binding in Ref. [13] (orange curve), the
dispersion calculated within DFT multiplied by the GW correction
factor (black curve), and the dispersion which we employed in this
work, resulting from the Wannierization procedure (open circles),
along the high-symmetry �-K-M line.

Most importantly, it enables the use of MLWFs, which are
better suited to faithfully reproduce the matrix elements de-
pendence in k space rather than simplified models. In Fig. 3
we show a comparison of our GW-corrected DFT result and
of the tight-binding dispersion of Ref. [13], along the high-
symmetry �-K-M line. The fine momentum grids used for the
Wannier interpolation of electronic properties are built using a
“telescopic” procedure, and are different for every excitation
energy, as described in Appendix B.

B. Phononic states

The phonon dispersion of graphene computed in DFT
wrongly underestimates the slope of the Kohn anomalies at
the K and K′ points [associated to the transverse optical (TO)
mode [26], see Fig. 4] by a factor of 2 [15]. Indeed, as it was
shown in Ref. [28], the Kohn anomaly is entirely determined
by the contribution of the phonon self-energy between the
electronic π and π∗ bands. Therefore, following the same
procedure of Ref. [4], the dynamical matrix Dq is first cal-
culated with linear response in DFT on a 6 × 6 uniform grid
in the FBZ, then it is Fourier interpolated on a uniform finer
400 × 400 grid in the FBZ, and finally the GW correction is
applied to the TO mode. The details of the phonon disper-
sion, such as the slope of the Kohn anomaly and the trigonal
warping, bear a strong influence on the Raman spectrum: for
instance, as it will be discussed below, the trigonal warping of

FIG. 4. Phonon dispersion along the high-symmetry �-K-M
line. The three highest branches are shown and they are the result
of DFT calculation (black curves), and DFT corrected with GW with
the methodology of Refs. [4,12] (purple curves). Notice how DFT
alone is not able to reproduce correctly the Kohn anomaly at K.

the phonon dispersion is crucial in determining the shape of
the 2D peak, while it does not influence the total integrated
area under the peak. We remark in particular that the phonon
dispersion plays a negligible role in the denominators of the
amplitudes Kβ (k, q, ν, μ), i.e., we could replace it with a
constant energy equal to the TO frequency at the edge of the
FBZ with negligible error; instead, it is crucial to consider
it in the delta function of Eq. (13). As it was mentioned
above, the finite lifetime of the phonon states is taken into
account only by replacing the delta with a Lorentzian function
with full-width at half-maximum (FWHM) 5.3 cm−1, given
by twice the value of the linewidth of the TO phonons [35]
near the K point, since TO phonons are responsible for the 2D
and 2D′ peaks.

C. Electron-light scattering

The electron-light interaction is obtained via Wannier in-
terpolation of the unscreened electric dipole calculated within
the local-density approximation (LDA), following the same
procedure of Ref. [4]. We assume that the polarization of
the incoming and scattered light lies on the graphene (x, y)
plane, and although one can resolve both the incoming and
outgoing light polarization (as it has been done in Ref. [36])
we will display results obtained considering unpolarized laser
excitation and summing over all the possible polarizations of
the scattered light

Iunpol = 1

2

∑
i

∣∣∣∣∣
∑

o

Ai,o

∣∣∣∣∣
2

, (31)

where i, o = x, y label the polarization of the incoming and
outgoing light, respectively, while Ai,o represents the scat-
tering amplitude, i.e., the argument of the absolute value in
Eq. (14). This formula can be simplified in the following
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way: suppose that the impinging light has polarization ê =
cos(θ )ex + sin(θ )ey, while the outgoing light has polariza-
tion ê = cos(φ)ex + sin(φ)ey. When performing the square
modulus of the sum of the amplitudes, we will have terms
proportional to cos2(θ ) cos2(φ), cos2(θ ) cos(φ) sin(φ), . . .; if
we now assume that we are resolving the intensity over a time
period at the condition that the impinging light is unpolarized,
this is equivalent to average θ over a uniform distribution,
and integrating over φ. In such case, the only terms which
contribute to the intensity are the ones containing even powers
of the trigonometric functions, i.e., Ixx, Ixy, Iyx, Iyy. Hence,

Iunpol = 1
2 (Ixx + Ixy + Iyx + Iyy). (32)

D. Electron-phonon scattering

The EPC matrix element in the Bloch basis set is defined
as in Eq. (9), and computed ab initio and interpolated on the
same fine grids described in Secs. III A and III B. The GW
correction to the TO mode over the whole FBZ are included
following Ref. [13], i.e., considering the modification of the
phononic frequency and polarization vector.

E. Electron-hole linewidth

As already mentioned above, the description of the excited
states of monolayer graphene in terms of creation and anni-
hilation of electron-hole pairs is an approximated one, and
does not provide access to the real spectrum of the system.
Indeed, the quasiparticle electronic states |k, α〉 do possess a
finite lifetime τα

k (or analogously a nonzero FWHM linewidth
γ α

k = h̄/τα
k ) because they interact with phonons, with other

electronic states, or with defects. One can directly measure
the linewidth γ α

k as the FWHM of the electron or hole spec-
tral function, e.g., with ARPES, which has a crucial role in
determining the line shape of the double-resonance Raman
peaks. In fact, neglecting inhomogeneous broadening which
can arise from fluctuations of the strain of the sample [37],
there are two sources of homogeneous broadening of the
line shape: phononic, which as discussed in Sec. III B we
consider only through the delta function of Eq. (13), and
electronic, which depends on γ α

k . We neglect the contribu-
tion due to electron-defect scattering, which is suppressed in
pristine monolayer samples, and the electron-electron scat-
tering contribution, which for undoped graphene is proven
to be negligible [38]. According to Fermi’s golden rule, the
electron-phonon scattering contribution is given by Ref. [13]
to be

γ
α(el-ph)
k = 2π

∫
d2q

(2π )2

∑
ν

|〈k + q, α|�Hq,ν |k, α〉|2

× δ
(
εα

k − εα
k+q − h̄ων

−q

)
, (33)

where the integration is performed over the FBZ and the
summation over all phonon branches ν. Notice that the
electron-phonon scattering does not change the electronic
band α = π, π∗. Considering conical bands and only the two

FIG. 5. Typical Raman spectrum of monolayer graphene, mea-
sured with 2.33-eV excitation energy. The letters refer to the common
nomenclature of the Raman peaks. Notice the nonresonant first-order
G peak at a frequency of 1584 cm−1, which is due to the iTO and iLO
phonons at �, and the resonant second-order narrow peaks (D+D′′,
2D, and 2D′). The spectrum has been normalized to the intensity of
the 2D peak.

phonons at � and at K one obtains (see Ref. [13])

γ
α(el-ph)
conical (εL ) = π

2

[
2
〈
g2

�

〉
Na

(εL

2
− h̄ω�

)

+ 〈
g2

K

〉
Na

(εL

2
− h̄ωK

)]
, (34)

Na(ε) =
√

3

π

(
a0

h̄vF

)2

|ε|θ (|ε|), (35)

where a0 = 2.46 Å is the lattice constant and h̄vF =
6.44 eVÅ. Using the values given in Table I, the inverse life-
time of the electron or hole is given by the same result of
Ref. [13] to be

γ
α(el-ph)
conical (εL ) = 41.35(εL/2 − 0.166) meV, (36)

where εL is in eV. The inverse lifetime that appears in the
denominator of Kβ (k, q, ν, μ) is the inverse lifetime of the
total state which, neglecting the phonon contribution, is the
sum of the electron and hole lifetimes. Supposing electron-
hole symmetry and neglecting the dependence on k, as in
Ref. [13], the total electron-hole FWHM linewidth reads as

γtot ≡ γ α
k = γ

β

k = γ
γ

k = 2 × γ
α(el-ph)
conical , (37)

where the superscripts α, β, γ label the intermediate states
[see Eq. (11)]. Being dependent on the EPC, the electronic
linewidth is also affected by the rescaling factor rvc, as dis-
cussed in the following.

IV. RESULTS AND DISCUSSION

The experimental Raman spectrum of graphene is dis-
played in Fig. 5: one can recognize the nonresonant first-order
G peak at 1584 cm−1 Stokes shift, which as already explained
above is due to the degenerate in-plane optical modes at the �

point of the FBZ, and the second-order peaks D+D′′, 2D, and
2D′, which are explained within the double-resonance Raman
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(a) (b)

(c)

FIG. 6. Illustration of the resonant scattering processes in the
electronic [unshaded, (a) and (b)] and phononic [shaded, (c)] recipro-
cal spaces. (a) Trigonal warping of the electronic bands shown by the
isoenergy contours around the K and K′ points, at εL and εL − h̄�tot

ph ,
where h̄�tot

ph is the total energy of the two scattered phonons, respec-
tively. (b) Zoom-in on the relevant region of the reciprocal space.
Two interband scattering processes (both contributing to the 2D
peak) are shown: one where the initial electron-hole pair (white dot)
is generated near the �-K line (solid black arrow) and one where
the pair (green dot) is generated near the K-M line (dashed gray
arrow). (c) In the case of perfect trigonal warping compensation,
in the phononic reciprocal space the two scattering processes select
phonons on the energy isocontour h̄ωph having momenta close to
K, either near the K-M line (white dot, solid black arrow, usually
referred as outer [11]), or the �-K line (green dot, dashed gray arrow,
referred as inner). The two arrows are exactly the same as shown in
(b), but in the phononic reciprocal space their origin is �.

scheme. Being the sample pristine the defect-induced peaks
D, D′, and D′′ are not visible, and indeed the double-resonance
peaks are overtones of the defect peaks, as their nomenclature
suggests (see Ref. [39] for a historical overview of the under-
standing of the resonance Raman spectrum of graphene and
the evolution of the nomenclature of the peaks).

A. Double-resonance scattering intensity

1. Dependence of the linewidth on the trigonal warping

As it was already discussed in Ref. [13], the striking narrow
width of the double-resonance 2D and 2D′ Raman lines is
mainly attributed to an almost perfect compensation of the
trigonal warping of the electronic and phononic dispersions
and to a negligible effect of the electron-hole asymmetry for
excitation energies εL < 1.8 eV. At a given laser excitation
energy εL, the compensation of trigonal warping occurs when
the contour of the resonance phononic wave vectors coincides
with an isoenergy contour of the phonon dispersion, thus
narrowing the frequency distribution of the phonons involved.
The resonance wave vectors q̃ are such that Iνμ(q̃) defined
in Eq. (14) is a maximum: given that the phonon dispersion
plays a negligible role in the values of Iνμ(q̃) (so that Einstein
phonons give almost the same results), the contour of q̃ is
entirely defined by the electronic dispersion, and in particular
by its trigonal warping, as illustrated in Fig. 6.

In Fig. 7 we display the Raman intensity as a function
of phonon wave vector (reduced to the irreducible wedge of
the FBZ) for different excitation energies between 0.8 and
3.0 eV, and for the 2D peak only, that is I (q) = ∑′

ν,μ Iνμ(q)
where the summation is restricted to the energy window of the

FIG. 7. Intensity (for the 2D peak only) as a function of phonon
wave vector q in the irreducible wedge of the FBZ, for different
excitation energies between 0.8 and 3.0 eV, in steps of 0.2 eV. The
bright green region corresponds to the resonance wave vectors q̃.
Notice that it becomes more and more trigonally warped as we move
away from the K point, i.e., for higher εL . The white dashed lines
indicate the phonon isoenergy contour: notice how for εL > 1.8 eV
their shape deviates significantly from the resonance q̃ region.

2D line, compared to the phononic isoenergy contours. One
can clearly see how the contour of the resonance wave vec-
tors q̃ becomes more and more distorted (due to the trigonal
warping of the electronic dispersion) at increasing excitation
energies. In the same figure the isoenergy contours of the
phonon dispersion are shown as white dashed lines, and they
also become more distorted at increasing excitation energies,
even though in a different fashion with respect to q̃. As it was
already pointed out in Ref. [13], the largest contribution to
the Raman intensity comes from phonons having momenta
along the �-K line (which in literature are usually referred to
as inner phonons [11], as opposed to outer phonons, which
have momenta along the K-M line), although one truly has
to take into account the whole resonance region to properly
describe the width of the peak.

Indeed, the details of the trigonal warping of the phonon
dispersion bear a strong influence on the FWHM of the 2D
peak, in the sense that if, at fixed εL, the isoenergy contours of
the phonon dispersion do not lie entirely in the wave-vector
resonance region, then the resonance condition will select
phonons having different frequencies, thus broadening the
2D peak. Notice that moving closer to the K point (that is
lowering εL) both the electronic and the phononic dispersions
become more conically symmetric since the asymmetry term
scales as (q − K)2 [16,26], and the compensation is guaran-
teed. On the other hand, for higher excitation energies the
compensation becomes much worse, and eventually in the 2D
peak a low-energy “shoulder” develops for εL � 2.2 eV (see
Fig. 8). In Fig. 9 we report the FWHM of the 2D “main peak”
and of its shoulder as a function of the excitation energy, as
obtained via a fit with the sum of two Baskovian functions:
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FIG. 8. Shape of the 2D peak. All the peaks have been normal-
ized to the height of their maxima. The black curves are Baskovian
fitting functions, and we have separated the shoulder contribution for
εL � 2.2 eV (gray curves).

FIG. 9. FWHM of the 2D peak as a function of the laser exci-
tation energy, as extracted via the fitting with Baskovian functions
(black line). For εL � 2.2 eV we have separated the contribution to
the FWHM of the shoulder at lower energies, which would give
a much higher value of the width (gray line). We remark that the
procedure of fitting the 2D peak via the sum of two Baskovian
functions is customary in analyzing experimental data [11] as well.

it is evident that for larger εL the FWHM increases, as a
consequence of the worse trigonal warping compensation.
Indeed, the choice of fitting the 2D peak via the sum of
two Baskovian functions is also customary when discussing
experimental results [11]. In the following and if not specified
otherwise, we take the FWHM as the one of the main peak.

Since the trigonal warping compensation depends mainly
on the actual shape of the phonon dispersion, which is known
theoretically up to a certain approximation (GW corrections to
DFT as described in Ref. [4]), we can provide a lower bound
for the FWHM of the 2D peak by imposing the perfect com-
pensation of the trigonal warping by a geometrical argument.
We proceed as follows: since the position of the resonance
phonon wave vector is independent of the actual shape of the
phonon dispersion, we are free to choose a phonon dispersion
whose shape is suited to compensate the trigonal warping.
The simplest analytical expression for the trigonally warped
dispersion is

h̄ωq = P0 + P|q| − [A − B cos(3φq)]|q|2, (38)

where φq is the angle formed by q with the �-K-M line,
and P0, P, A, B are excitation-energy-dependent parameters to
be obtained. Notice that imposing the compensation of the
trigonal warping fixes only the values of the parameters A
and B (that is, the shape of the isoenergy contours) since the
values of P0 and P do not influence the asymmetry of the
phonon dispersion, and can be chosen at will (e.g., from the
experimentally determined position of the 2D peak). We can
determine the parameters A and B by fitting Eq. (38) to the
resonance contour displayed as a bright green region in Fig. 7,
obtaining A = 17.1 cm−1Å2, B = 120.7 cm−1Å2.

In Fig. 10 we report the 2D peak FWHM, as directly
extracted from the peak, for the case where the phonon disper-
sion is imposed to best match the resonance contour of phonon
wave vectors. In this case the 2D peak does not develop any
shoulder at all laser energies. However, the FWHM of the 2D
main peak computed with the GW corrected phonons, even
if the trigonal warping matching is not perfect, has a very
similar behavior. This shows the importance of employing
GW corrections in order to obtain very narrow peaks that
match the experimental one in the visible region. In fact,
in the same figure we also display the FWHM of the 2D
peak as obtained from measurements on hBN-encapsulated
monolayer graphene [12], and it is immediately clear that
while our model works in the visible, it fails to predict that
the width of the peak does not decrease for lower excitation
energies, but rather it stays almost constant between 16–18
cm−1. As we will see in the following, this inconsistency will
be solved when considering an enhancement of the EPC at
lower excitation energies.

It is worth mentioning that for the 2D′ peak we find in-
stead a constant behavior of the FWHM as a function of the
excitation energy (the width stays between 6–7 cm−1 for εL

between 0.8–3.0 eV), in agreement with the experimental
data [12]. Although near the � point in the FBZ the phonon
dispersion is circularly symmetric, due to the fact that the
Kohn anomaly is much weaker with respect to the anomaly
at K, the main reason of the 2D′ peak narrowness is that the
double-resonance condition selects almost only phonons with
wave vectors lying along the �-M line (as already noticed in
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FIG. 10. FWHM of the 2D peak as a function of the laser ex-
citation energy, with perfect compensation of the trigonal warping,
as obtained directly from the peak (gray solid line). The gray area
indicates how the result may change for inexact compensation of the
trigonal warping, and the black solid line is the result of the full
calculation displayed in Fig. 9 (“main peak”). The red squares in-
dicate the measurements on hBN-encapsulated monolayer graphene
[12]. The orange dashed line is the result of Eq. (29) with γ = γtot ,
shifted up by the inverse lifetime of the scattered phonon pair (i.e.,
5.3 cm−1). Notice how for εL < 1.8 eV, Eq. (29) reproduces the
result obtained for perfect trigonal warping compensation, as indeed
should be the case since it has been obtained in the conical model ap-
proximation, where no trigonal warping is present. For εL > 1.8 eV,
on the other hand, the electron-hole asymmetry plays the major role
in increasing the width of the peak.

Ref. [13], this is partly due to the role of the matrix elements,
and partly due to the fact that the resonance phonon wave
vector needs to connect electronic states placed on opposite
sides of the same trigonally warped Dirac cone), thus there
is no need for the phonon dispersion to match the contour of
the resonance wave vectors [see Fig. 11, where we plot I (q),
choosing the energy window corresponding to the 2D′ peak].

2. Dependence of the linewidth on the electron-hole asymmetry

Equation (27) [or (28)] is obtained by considering conical
electronic bands and neglecting the broadening of the line due
to the finite lifetime of the phonon states. Including the latter
means to convolve the Baskovian with the Lorentzian which
replaces the δ function in Eq. (13), and to a first approximation
one may consider the total FWHM as the sum of FWHMB

and the width of the Lorentzian. In our calculation we have
verified that both the 2D peak (up to εL 	 2.0 eV, for higher
εL a shoulder appears, see Sec. IV A 1) and the 2D′ peak (up to
εL 	 3.0 eV) can be almost perfectly fitted by a single Basko-
vian line shape. By varying the electronic inverse lifetime
γtot from the value given by Eq. (37) to twice this value we
have verified that, at small excitation energies εL < 1.8 eV,
the FWHM of both the 2D and 2D′ peaks depends linearly on
γtot, as predicted by Eq. (29), once one takes into account a
nonzero intercept due to the Lorentzian broadening of phonon
states. For larger excitation energies we still obtain a linear
behavior, but the slope is no more related simply to the ratio

FIG. 11. Intensity (for the 2D′ peak only) as a function of phonon
wave vector q in the irreducible wedge of the FBZ, for different
excitation energies between 0.8 and 3.0 eV, in steps of 0.2 eV. The
bright green region corresponds to the resonance wave vectors q̃:
notice that the resonance wave vectors are basically along the �-M
line. The white dashed lines indicate the phonon isoenergy contour:
close to εL = 3.0 eV the scattered phonon comes from the highest
point of the dispersion, hence the isocontours form closed curves.

vph/vF : one has indeed to take into account the electron-hole
asymmetry, which leads to an overall broadening of the peak.
In particular, by studying the intensity as a function of the
phonon wave vector q, e.g., for the 2D peak (Fig. 7), we notice
a much broader peak along the �-K direction compared to the
K-M direction (for εL � 2.0 eV): this is due to the fact that
phonons having q along �-K are scattered by electron-hole
pairs having wave vector k along the K-M direction (see
Fig. 6), and in this direction the electron-hole asymmetry is
higher, as visible in Fig. 3. For the 2D′ peak we notice the
same broadening of the I (q) (Fig. 11), but since the slope of
the Kohn anomaly at � is much lower than the slope of the
anomaly at K this broadening does not reflect substantially in
a wider I (ω) line.

3. Integrated area as a function of the electronic lifetime

Equation (28) predicts that, at fixed excitation energy εL,
the integrated area under the 2D and 2D′ peaks, A2D and
A2D′ , depends on the total inverse lifetime of the state γ as
A = A0/γ

2, where A0 is a constant [16]. We have verified
that in our calculation A2D follows almost exactly the same
behavior (we integrate both the main peak and the shoulder),
while A2D′ follows it only approximately. Indeed, we have
calculated the Raman intensity by varying the value of γ as
a parameter, between the value given by Eq. (37) to twice this
value (as we did in the previous section), and we display in
Fig. 12 (top panels) A2D and A2D′ as a function of γ , for εL =
1.16 eV and εL = 2.33 eV. We have performed a fitting via the
functional form A0/(γ 2 + B2), and we report the values of the
A0 and B parameters in the legends of Fig. 12 (top panels).
The discrepancy of the behavior of A2D′ from the analytical
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FIG. 12. Top panels: Integrated area under the 2D and 2D′ peaks
for laser excitation energy of 2.33 eV (left) and 1.16 eV (right), as a
function of the total inverse lifetime of the intermediate state γ . For
fixed excitation energy both areas have been normalized to the area
of the 2D peak at the lowest γ . The fitting functions are displayed in
the legend (and shown as the perfectly superimposed white dashed
lines): notice that while A2D follows the prediction of Ref. [16] of
a decrease as 1/γ 2, A2D′ follows this behavior only approximately.
The integration of the peak is performed on a range of 10 times the
FWHM centered on the maximum. Bottom panels: Ratio between
the integrated areas under the 2D and 2D′ peaks for laser excitation
energy of 2.33 eV (left) and 1.16 eV (right), as a function of the total
inverse lifetime γ .

prediction is most probably due to the fact that taking into
account nonconstant matrix elements over the FBZ results in
a strongly anisotropic I (q) near the � point (see Fig. 11).
Despite the nonperfect adherence to the model predictions,
our result improves on the conclusions reported in Ref. [13],
thanks to the use of finer electronic and phononic wave-vector
grids.

However, looking at Fig. 12 (bottom panels), where the
ratio between the integrated areas under the 2D and 2D′ peaks
is reported as a function of γ , one can conclude that the ratio
depends only weakly on γ (within a 10% error). As we will
see below, this means that the experimental strong increase
in the ratio A2D/A2D′ with lower excitation energies may be
entirely attributed to the enhancement of the EPC.

4. Integrated area as a function of the excitation energy

Having confirmed that, at fixed excitation energy, the ratio
between A2D and A2D′ depends only slightly on the total
inverse lifetime (see Sec. IV A 3) of the intermediate states,
we can compare the result of our numerical calculation with
the analytical result of Ref. [16], which predicts (notice that
therein λ�,K = 〈g2

�,K〉 is used)

A2D

A2D′
(ωL ) = 2

(〈
g2

K

〉
〈
g2

�

〉 ωL − 2ωK

ωL − 2ω�

)2

, (39)

FIG. 13. Ratio between the integrated areas under the 2D and 2D′

peaks as a function of the excitation energy, as calculated with DFT
ingredients in this work [apart from the correction to the electronic
and phononic dispersions, and with inverse electron or hole lifetime
given in Eq. (36), black solid curve], and as given by the analytical
result of Ref. [16] (gray dashed curve). The red points indicate
experimental data from Ref. [12], which are not in agreement with
either calculation, in particular for excitation energies below 2.3 eV.

where ωK,� are the frequencies of the scattered phonons at the
particular ωL, and the ratio 〈g2

K〉/〈g2
�〉 is given in Ref. [16] to

be 1.14, independent of the excitation energy.
In Fig. 13 we compare the result of our calculation, i.e.,

A2D

A2D′
(ωL ) =

∫
2D ω2I (ω)dω∫
2D′ ω2I (ω)dω

, (40)

where I (ω)dω is the Raman scattering intensity as a func-
tion of the frequency of the scattered photon ω defined in
Eq. (10) and calculated with DFT only ingredients (except
for the electronic and phononic dispersions, which have been
corrected via the procedure explained in Sec. III) in this work
[the ω2 in the factor given by the photonic density of states,
see Eq. (12)], with the analytical result of Eq. (39). We notice
that while Eq. (39) predicts an almost constant behavior as
a function of the excitation energy, our numerical calculation
shows an increase of the ratio with larger excitation energies,
in particular for εL > 1.5 eV, which we mainly attribute to
the role of the electron-hole asymmetry, which is neglected
in the conical model of Ref. [16]. The dependency of the ratio
on the excitation energy was already discussed in Ref. [13],
and in this work we have confirmed the behavior also for
excitation energies down to the infrared region, and employ-
ing finer electronic and phononic wave-vector grids. However,
both calculations fail to reproduce the experimental data from
Ref. [12] (which are shown in Fig. 13 as red points), in
particular for εL < 2.3 eV. From the analysis of the previous
sections it is left as the only possible explanation an increase
of the EPC with the lowering of the excitation energy [12],
which we will discuss in the next section.

5. EPC enhancement

As already anticipated in the previous section, the ratio
between the integrated areas under the 2D and 2D′ peaks

075420-12



THEORY OF INFRARED DOUBLE-RESONANCE RAMAN … PHYSICAL REVIEW B 109, 075420 (2024)

FIG. 14. Ratio between the integrated areas under the 2D and
2D′ peaks as a function of the excitation energy, as obtained by
our calculation and multiplied by the r2

vc rescaling factor. The black
dotted curve is the same solid curve of Fig. 13 (since rvc = 1). The
black dashed curve refers to the rescaling by the value obtained
from GW calculations on graphite. The black solid curve indicates
the rescaling by the excitation-energy-dependent rvc(εL ) defined in
Eq. (41).

gives crucial information about the EPC. In order to extract
this information, in the previous section we have studied the
behavior of A2D/A2D′ as a function of the excitation energy,
and found that we need to introduce a rescaling factor of the
EPC in order to explain the strong increase of the ratio for
lower excitation energies. A first attempt is to consider the
EPC enhancement as given by GW calculations on graphite
in Ref. [15], that is, we multiply the ratio as found by our
DFT calculation by the square (since two phonons are being
considered) of the rescaling factor rvc defined in Eq. (19),
which for graphite evaluates within GW to 1.4 (see black
dashed curve in Fig. 14). This rescaling is not enough to match
the experimental data of Ref. [12], hence, we have therein
introduced an excitation-energy-dependent rvc, defined by

rvc(εL ) =
{

1.4, εL > 2.33 eV
2.5(εL − 2.33)2 + 1.4, 1.1 eV < εL < 2.33 eV

(41)

which evaluates to 4.8 for εL = 1.16 eV (i.e., it matches
the data point at the lowest excitation energy), and consists
of a second-order polynomial for excitation energies up to
2.33 eV. This functional form has been chosen since it is
the simplest differentiable curve which interpolates between
the data, but it does not rely on a theoretical understanding
of the behavior of the EPC enhancement, which will be the
scope of a future work. In particular, by assuming that 〈D2

�〉 =
58.6 eV2/Å2 (the GW value obtained on graphite, which we
employ in place of graphene’s one since its calculation has
been studied in more detail in Ref. [15]) is not affected by
the EPC rescaling, we obtain the enhanced value of 〈D2

K〉 =
562.6 eV2/Å2.

We have then proceeded to calculate the effect of the EPC
enhancement on the electron or hole inverse lifetime [12], as
defined in Sec. III E. As already evident from Fig. 10 our

FIG. 15. FWHM of the 2D peak as calculated in this work using
the inverse electron or hole lifetime given by Eq. (36) (black dashed
line, which is the same black solid curve in Fig. 10), and the FWHM
obtained employing the inverse lifetime given by Eq. (44), which
takes into account the enhancement of the EPC for lower excitation
energies (black solid curve). Shifting up the latter curve by 5 cm−1

(thin solid line) reproduces the behavior of the experimental data of
Ref. [12] as a function of excitation energy.

calculation is indeed not able to reproduce the almost constant
behavior of the FWHM of the experimentally measured 2D
peak. Our previous analysis has excluded any role of the
trigonal warping or of the electron-hole asymmetry in this
failure, hence, the major role must be played by the total
inverse lifetime of the intermediate states. Assuming that the
enhancement affects mainly the EPC near the K point, that is
taking the value 〈g2

�〉 = 0.052 eV2 from GW calculations on
graphite, we can write〈

g2
K

〉 = 2
〈
g2

�

〉 ω�

ωK
rvc. (42)

Substituting in Eq. (34) we then obtain

γ
α(el-ph)
enhanced(εL ) = 0.248

〈
g2

�

〉[(
1 + ω�

ωK
rvc

)
εL

2

− h̄ω�(1 + rvc)

]
eV (43)

which, using the values given in Table I for the frequencies,
becomes

γ
α(el-ph)
enhanced = 13.2

[
(1 + 1.30rvc)

εL

2
− 0.196(1 + rvc)

]
meV.

(44)

To model the impact of the inverse lifetime change on the
FWHM we consider the expression for FWHMB obtained in
Eq. (29), which reproduces the result of our calculation for
excitation energies below 1.8 eV (see Fig. 10), and we employ
γ = 2γ

α(el-ph)
enhanced, obtaining the black solid line in Fig. 15 which,

shifted up by 5 cm−1 (thinner solid line), clearly matches
the almost constant behavior of the experimental data as a
function of the excitation energy.

As a final remark, one may inquire whether the EPC en-
hancement affects the slope of the Kohn anomaly, too. Indeed,
the real part of the phonon self-energy contributes to the
energy shift �ν

q of the harmonic phonon of mode ν with wave
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vector q via the following equation [40]:

�ν
q

2
= 2

Nk

∑
k,α,α′

∣∣gν
kα,k+qα′

∣∣2PV
[

fk+qα′ − fkα

εα′
k+q − εα

k − ων
q

]
, (45)

where PV is Cauchy’s principal value, and f is the Fermi
distribution function. However, one can analytically compute
the slope of the Kohn anomaly only under the assumption that
the EPC is constant in the vicinity of the K point [28], which
as we have shown is not the case for graphene. Nonetheless,
it can be argued that the enhancement of the EPC leads to a
steepening of the Kohn anomaly, even though its quantifica-
tion may be attained only accessing the full dependence of the
EPC on the electronic wave vector.

B. rvc enhancement and resistivity

As shown in Ref. [17], the resistivity of graphene computed
via the Boltzmann formalism using DFT or GW ingredients is
underestimated in specific regimes, similarly to what happens
for the ratio of the areas for the Raman spectrum. In partic-
ular, the experimental resistivity is significantly larger than
the theoretical one especially at low dopings, but only for
temperatures around room temperature and above, pointing
to thermally activated optical phonons as an underestimated
scattering source. Whether those optical phonons come from
graphene itself or the substrate present in the transport mea-
surement could not be definitely determined in Ref. [17].
However, it was argued that, since the coupling with substrate
phonons is field mediated, it would be strongly electro-
statically screened for the carrier concentrations relevant in
phonon-limited transport studies. Thus, the increase of resis-
tivity was attributed to the increase of the intrinsic coupling
between electrons and optical phonons of graphene at K,
namely, β2

K , beyond its GW value. The enhancement of β2
K

was fitted on transport measurements, while the coupling with
the zone-center modes (β2

O) was not enhanced beyond its GW
value. Since the couplings with optical modes involved in
transport and Raman processes are related by the following
relations [17,28]:

β2
O = 2

〈
D2

�

〉
, β2

K = 〈
D2

K

〉
, (46)

which allow to express the ratio of the scattering couplings in
terms of rvc, we can qualitatively support such conclusion in
light of the present Raman data.

Aside from the optical phonon frequency (which is the
same in both Raman and transport setups), there are two
important energy scales for electron-phonon interactions and
rvc: the energy of the electron being scattered εk and the
Fermi level εF characterizing the doping. In the transport case,
those two energy scales coincide. Indeed, the electronic states
participating to resistivity are within a relatively small energy
window of order kBT around the Fermi level. In the Raman
data considered here, there is no doping [12] such that the
Fermi level can be set to zero, while the energy of the scattered
electrons is half the laser energy since the resonance condi-
tion for the electronic contour is expressed as εL = 2h̄vF k.
Considering these two energy scales, the mechanisms involv-
ing electron-phonon interactions can be compared in both
experiments. In particular, the scattering processes relevant

FIG. 16. Electron-phonon coupling enhancement factor rvc de-
duced from resistivity (blue) and Raman (orange) experiments. The
gray curve represents the extrapolated expected behavior of the en-
hancement at large doping, i.e., returning to the ab initio GW value.

for resistivity satisfy the energy conservation of Eq. (56) of
Ref. [17] restricted to intraband transitions. At the Raman
resonance (εL = 2h̄vF k), the imaginary part of the second
denominator of Eqs. (22) and (23), in the limit of γ → 0,
reduces to the same intraband delta function of Eq. (56) of
Ref. [17] related to the emission of a phonon.

We thus report in Fig. 16 the fit of the couplings of Ref. [17]
as a function of the doping level, translated in terms of the
enhancement factor rvc. We also report the fit of rvc on Raman
measurements as discussed in this work. Note that the result of
the enhancement of rvc seen in Raman experiments is mostly
independent on the type and presence of a substrate [12].

Figure 16 first shows that the electron-phonon coupling
enhancements rvc deduced from Raman and resistivity ex-
periments are generally comparable, implying a potential
explanation of the resistivity increase without resorting to ex-
trinsic phonon contributions. One may compare the transport-
and Raman-deduced values of the enhancement at a fixed
value of εk, keeping in mind that the Fermi levels εF , and
therefore the charge configurations of the system, are different
(εF ≈ εk for transport, εF ≈ 0 for Raman). In that case, the
Raman-deduced value from this work is much larger than the
resistivity one. As hinted in Ref. [14], this is at least qualita-
tively expected. At large Fermi levels, the additional free car-
riers are expected to strongly screen the enhancement, while
at vanishing Fermi levels this is not the case. This dependency
on doping is further supported by the sharp increase of the en-
hancement in transport measurements close to the Dirac point.

V. CONCLUSIONS AND OUTLOOK

In this work we have studied the double-resonance Raman
intensity of monolayer graphene down to infrared laser ener-
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gies via the use of first-principles techniques. We found that
both the trigonal warping of the electronic and phononic dis-
persions and the electron-hole asymmetry play a fundamental
role in the determination of the line shape and linewidth of
the 2D and 2D′ peaks, and on their intensity as a function of
the electron-hole lifetime. Keeping these effects in account,
we are able to confidently justify the zone-boundary electron-
phonon enhancement found in Ref. [12] for laser energies in
the infrared light spectrum. We have also addressed the con-
sequences of such enhancement on the resistivity of graphene
at room temperature, hinting towards a reconciliation of the-
oretical and experimental results. We hope that this work
shall promote the interest in both performing Raman spectrum
measurements nearer to the Dirac cone and in predicting the
electron-phonon enhancement via the use of more refined the-
oretical many-body techniques: recent work shows indeed, by
investigating the massive Dirac fermions of bilayer graphene,
that the scale governing the enhancement may be the vicinity
in momentum to the Dirac point rather than the smallness of
the electron-hole pair energy [41].
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APPENDIX A: MATRIX ELEMENT DERIVATION

To obtain Eq. (11) in the main text, we consider the opera-
tor S that evolves the initial state into the final state, which is
formally given [44] by

S =
∞∑

n=0

(
− i

h̄

)n ∫ ∞

−∞
dt1

∫ t1

−∞
dt2· · ·

∫ tn−1

−∞
dtn

× e−ε(|t1|+···+|tn|)(HI (t1) . . .HI (tn)), (A1)

with the limit ε → 0 to be taken at the end. Notice in
particular the absence of the 1/n! factor and the upper ex-
trema of integration, which are different from infinity, since
we are not employing the T product. As discussed before,
we will limit ourselves to the fourth perturbative order in
HI (t ) = eiH0t/h̄HI e−iH0t/h̄, with HI being either the electron-
photon or the electron-phonon interaction Hamiltonian in the
Schrödinger representation, and H0 = HKS + Hem. We then

(a) (b) (c)

FIG. 17. Feynman diagrams considered in the formalism of
Ref. [16].

obtain the matrix element given in Eq. (11) in the main text
by inserting complete sets of electron, phonon, and photon
states, and integrating over the time variables.

Notice that the choice of not employing the T product in
Eq. (A1) (as opposed to the formalism of Ref. [16]) means that
we have to consider in Eq. (11) all the permutations of both
the electron-phonon and electron-photon interaction Hamilto-
nians which give rise to nonzero matrix elements. That is, one
has to consider the arbitrary time ordering of two electron-
phonon and two electron-photon interaction vertices, where,
for example, one may have that the phonon is emitted before
the photon is absorbed. One can identify three topologically
inequivalent diagrams (see Fig. 17), so that the total number
of Stokes diagrams is 4! × 3 [those depicted in Fig. 1(b) in
Ref. [45]]. On the other hand, in the formalism of Ref. [16]
only the three topologically inequivalent diagrams need to be
considered since the time ordering has already been taken care
of by the presence of the T product. We anyway choose not to
employ it since it is easier to enforce the resonance condition
having an explicit time ordering of the vertices, as discussed
in the main text.

On the other hand, in Ref. [16] the resonance condition is
enforced by throwing away the diagrams in Figs. 17(b) and
17(c) (which contains the resonant diagrams indicated as ee
or hh in Fig. 1, that are shown to be negligible with respect

(a) (b)

(c)

FIG. 18. (a) Telescopic grid which has been used to interpolate
the electronic momenta for 1.20-eV excitation energy. The parame-
ters are (l, L,N ) = (2, 10, 26). (b) Zoom-in on the resonance region
around the K point. (c) Zoom-in on the resonance region of the grid
employed for 2.40-eV excitation energy. (l, L,N ) = (2, 10, 23).
The marker sizes are proportional to the weights of the momenta in
the calculation.
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to the eh and he ones), and by neglecting the off-resonant
contributions to the diagram in Fig. 17(a) [see Eq. (58) of
Ref. [16], where the approximation consists in eliminating the
nonresonant denominator].

Finally, we notice that, in both formalisms, in principle
all vertices but one (at choice) contain electronic screening
[46]. We will consider all light vertices as unscreened in our
calculation, exploiting the fact that the electronic screening of
the electron-light matrix element is negligible in graphene for
in-plane light polarizations [47].

APPENDIX B: TELESCOPIC GRIDS

The grids on which the electronic momenta k have been
Wannier interpolated are built with a procedure analogous to
the one described in Ref. [47]. Indeed, an ultradense k mesh
is desired to be located around the k resonance region, which
lies in an annulus with average radius εL/(2h̄vF ), in order to
achieve a fast convergence of the summation in Eq. (14). The
procedure is the following: We generate the first k point (the
K point) to be the center of an equilateral triangle with side
4π/(

√
3a), i.e., the modulus of the reciprocal lattice vectors

[this defines the zeroth level, and the FBZ which we employ is
just given by two adjacent equilateral triangle, see Fig. 18(a)].

The first level is given by the four (including the one gen-
erated at the previous level) k points which are the baricenters
of the four smaller equilateral triangles in which the zeroth-
order triangle is partitioned into (i.e., they are the three points
located at the midpoint between the center of the zeroth-order
triangle and its three vertices, plus the center point itself).
The procedure is iterated and at level � the weight of the k
point is given by 1/4�. One then defines a minimum depth
l and a maximum depth L, and the k points generated via
the procedure above are kept only if their level is � l , or if
l < � � L and at the same time the point lies in the resonance
annulus within a range (D/N )4(L−�)/p, where D = 4π/(3a)
is the distance from K to a vertex of the zeroth-order triangle,
N is an integer, and p = 2 has been chosen by making sure
that the ultradense region fully includes the trigonally warped
electronic isoenergy contour at the excitation energy. There-
fore, the grids are dependent on the excitation energy and are
densified in the resonance annulus (so that in the resonance
region they are as dense as a 1448 × 1448 uniform grid), at
variance with the ones of Ref. [47].
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