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Abstract: In this study, we present a novel comparison between pore-structure (PS) and representative
elementary volume (REV) methods for modelling fluid flow through porous media using a second-
order lattice Boltzmann method (LBM). We employ the LBM to demonstrate the importance of the
configuration of square obstacles in the PS method and compare the PS and the REV methods. This
research provides new insights into fluid flow through porous media as a novel study. The behaviour
of fluid flow through porous media has important applications in various engineering structures.
The aim of this study is to compare two methods for simulating porous media: the PS method, which
resolves the details of the solid matrix, and the REV method, which treats the porous medium as a
continuum. Our research methodology involves using different arrangements of square obstacles
in a channel including in-line, staggered and random for the PS method and a porosity factor and
permeability value for the REV method. We found that the porosity and obstacle arrangement have
significant effects on the pressure drop, permeability and flow patterns in the porous region. While
the REV method cannot simulate the details of fluid flow through pore structures compared to the
PS method, it is able to provide a better understanding of the flow field details around obstacles
(Tortuosity). This study has important applications in improving our understanding of transport
phenomena in porous media. Our results can be useful for designing and optimizing various
engineering systems involving porous media.

Keywords: Lattice Boltzmann modelling; porous media; pore-structure method; porosity factor;
fluid flow

1. Introduction

Transport phenomena in porous media are receiving a great deal of attention from
many investigators due to their importance in a wide variety of natural and industrial
systems. Such systems include electric energy, transportation, construction, metallurgy,
food industry, biomedical engineering, groundwater hydrology and oil reservoirs [1,2].
The performance and efficiency of these systems are controlled and/or affected by the
movement of fluids, solutes, particles, electrical charges and heat through porous media.
Therefore, the characterisation of different transport phenomena through porous media in
various engineering structures is pivotal in improving their applications [3].

Regarding numerical simulations, various numerical techniques such as finite dif-
ference, finite element, finite volume and spectral methods are conventionally used for
the simulations of fluid flow phenomena. Several approaches have been developed to
focus on studying fluid flow in porous media [4,5]. In this regard, it is well known that
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porosity is one of the most important parameters of a permeable channel. It is often used
as an adjustable parameter in models of transport properties through porous media geome-
tries [6,7]. The complex nature of porous media has caused challenges in describing their
behaviour in detail. For example, porous media with identical porosity values often have
different topologies, and this difference can significantly affect the relationship between
their porosity and permeability.

Fluid flows in porous domains are complex fluid-solid systems where the solid matrix
is usually fixed. Moreover, they are characterised by a typical multiscale system. Laut-
enschlaeger et al. [8] proposed a novel model for simulating multi-phase flows in porous
media with the lattice Boltzmann method. It integrates two methods to capture fluid
interactions at different scales. This model is consistent, accurate, efficient and versatile for
various applications involving porous media.

Porous flow is generally modelled by two well-known methods: the Representative
Elementary Volume (REV) approach and the Pore-Structure approach. In the REV ap-
proach, the porous medium can be seen as a continuum and the fluid flow is characterised
by empirical models such as Darcy’s law. The REV approach allows us to capture the
macroscopic behaviour of the fluid flow without resolving the microscopic details of the
pore structure. This method has been widely used and validated in previous studies using
LBM for fluid flow in porous media [9,10]. The PS approach thoroughly describes the
solid matrix and provides detailed flow information within the pores. This can help to
understand the underlying physics of porous flow and its fundamental mechanisms.

Recently, computational fluid dynamics has made significant progress and the lattice
Boltzmann (LB) approach is one of the most reliable methods for simulating flow in porous
domains. The numerical techniques and approaches can be applied to discretize and solve
the Navier–Stokes equations (nonlinear partial differential equations) for fluid flow as a
top-down approach. Moreover, the lattice Boltzmann method (LBM) utilizes a bottom-
up approach and arrives to recover Navier–Stokes equations as it evolves in the discrete
(lattice) space; this evolution can be demonstrated by performing a Chapman–Enskog
expansion [11].

One of the important advantages of the LBM is its capability for simulating fluid flow
in complex geometries that involve easy construction of boundary conditions in terms of
simple rules [12,13]. LBM has proven to be highly efficient in simulating both two and
three-dimensional fluid flow applications [14,15].

The applications of the pore-scale approach with LBM can be dated back to 1989 when
Succi et al. [16] studied a random porous medium using this method. Soleimani et al. [17]
studied heat transfer in channels with extended surfaces and nanoparticles using LBM.
They utilized a two-distribution functions model that accounts for the non-homogeneous
nanoparticle distribution and compared it with a single-distribution function model that
assumes a uniform nanoparticle distribution. They examined how different parameters
affect heat transfer and flow dynamics. They proposed a design guideline based on heat
transfer enhancement and pressure drop. Similarly, Vasheghani Farahani and Mousavi
Nezhad simulated fluid flow in porous media with regular and random packing using LBM.
Their study compares the velocity fields and PDFs at different Reynolds numbers and pore
structures. It also observes different types of recirculating flow structures in the stagnant
zones and the main pathways and discusses their implications for transport phenomena in
porous media [18]. Mahmoudi et al. [19] used LBM to investigate pore-scale mechanisms
of fluid flow through porous media. They developed a reactive LBM on Quadtree meshes
for the first time using the cell-centered approach and discussed the advantages of this
scheme. They also studied the effects of dimensionless parameters such as Reynolds,
Peclet, Damköhler and Sherwood numbers on the flow and transport phenomena in porous
media. Psihogios et al. [20] performed pore-scale simulations of non-Newtonian fluid
flows using LBM. To date, pore-scale simulations of flows of simple/complex fluids in
porous media are still an active topic of research. Parvan et al. [21] investigated the effect of
porosity and topology on LBM’s porosity-permeability relationship. They simulated fluid
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flow in cases of identical topologies but different porosities to investigate the geometrical
effects on fluid flow, as well as in cases of different porosities; along with the porosity
factor, the arrangement, shape and size of obstacles are parameters that characterise the
structure of porous media geometries [22,23]. With regard to the REV approach with LBM,
Feng et al. [24] used the Cascaded lattice Boltzmann (CLB) approach in which the flow
field is solved on the D2Q9 lattice by an isothermal CLB model based on the generalised
non-Darcy model, while a temperature-based CLB model with the D2Q5 lattice solves the
temperature field.

The effect of obstacle geometry on fluid flow is a complex and important topic in many
engineering applications, such as thermal fields like heat exchangers. Different geometries
can affect the fluid dynamics, such as vortex formation, pressure distribution and drag
coefficient. For example, a rectangular obstacle can cause a larger vortex formation than a
circular one [25]. Similarly, an angled obstacle can have different aerodynamic coefficients
depending on its orientation [26]. Therefore, it is expected that other primitive geometries
or even irregular geometries have different effects on the fluid flow than square obstacles.
However, the exact nature and magnitude of these effects would depend on several factors,
such as the obstacle size, shape, arrangement, porosity, Reynolds number, as well as
boundary conditions. A comprehensive study of these factors is beyond the scope of this
paper, which focuses on the flow through square obstacles with different arrangements
and porosity.

We investigate the effect of porosity ranging from 60 to 95 percent on the fluid flow
in porous media. This range of porosity covers a wide spectrum of possible applications
of porous media. In this study, we perform 2D fluid flow simulations through porous
media, assuming the properties are uniform in the third dimension. This simplifies the
computational problem and is valid for some cases with a third-dimensional isotropic,
such as cross-flow around tube bundles can be approximated by 2D simulations, as the
tubes are aligned along one direction and the flow is mainly perpendicular to it. While 2D
simulations are valid for some cases with a third-directional isotropic, for more realistic
and complex porous geometries with anisotropic properties, 3D simulations are required
to capture the effects of the third dimension on fluid dynamics, such as toroidal and strike-
slip motions, asymmetry and pulsation of flow patterns and forces. Indeed, a number of
studies have demonstrated that 2D simulations can lead to strong artifacts and may not be
representative of the real-world behaviour of porous media [27–29].

In this study, we used a two-dimensional lattice Boltzmann model to simulate Newto-
nian incompressible fluid flow through a porous medium in a channel for four different
porosities. Simulations have been performed by means of both the PS method using a num-
ber of obstacles with different sizes, and the REV method. Two methods were employed
for simulating porous media: the PS method, which resolves the details of the solid matrix,
and the REV method, which treats the porous medium as a continuum. The porosity factor
and permeability for each case study in both methods are equal and comparison has been
performed in an identical situation, focusing to pressure drop as an effective output pa-
rameter. The results provide new insights into fluid flow through porous media as a novel
study. The behaviour of fluid flow through porous media have important applications in
various engineering structures.

2. Problem Definition

In this study, we model a two-dimensional channel containing porous media using
the pore-structure (PS) method and the representative elementary volume (REV) method.
Figure 1 shows the different configurations of the porous media part inside the channel.
In PS modelling, we simulate fluid flow in three pore-structure geometries with different
porosities and calculate their permeability using Darcy’s law. In the REV method, we use
the porosity and permeability values to define an external force in the lattice Boltzmann
method (LBM) that represents the effect of the porous media part. Hence, the pressure drop
values are compared to demonstrate the difference between the two methods.
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Figure 1. Scheme of different configurations for the pore-structure and the REV methods; In-line (A),
Staggered (B), Random (C) and the REV scheme (D).

In the first method, we generate a certain number of square obstacles with the same
side lengths to create a porous medium and a set of three different pore-structures with
porosity factors of 70, 80 and 90 percent. We emphasise that the porosity factors describe
just the porous region with obstacles inside the channel, not the entire domain. To change
the porosity factor, we vary the dimension of obstacles.

In this study, a uniform fluid flow enters from the channel’s left side, and a fully
developed velocity field exits at the right side (outlet boundary condition). No-permeable
and no-slip boundary conditions are imposed on the walls of the channel and the obstacles.

The porosity of porous media is defined as the ratio of the pores area to the total bulk
area of the media (usually expressed as a fraction or percent) [30]. Hence, ε = 100 means
there are no blocks in the channel. The total area A(tot) is defined as:

A(tot) = A(p) + A(s) (1)

where A(p) is the void surface (pore’s area) and A(s) is the area of the solid materials;
porosity can be expressed as:

ε =
A(p)

A(tot)
=

A(tot)− A(s)
A(tot)

(2)

Table 1 shows the geometries’ properties of the channel and the obstacles geometry,
such as h (side length of the obstacles), H (channel width), and L (channel length).
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Table 1. Characteristics of the channel with porous part.

Parameters Value Dimensions

L 250 mm
H 25 mm

Reynolds number 50 -
h 2.5–3.47–4.4 mm

ε Porosity factor 90–80–70 %

Permeability can be defined by means of Darcy’s law or the modified Kozeny–Carman
equation. Darcy’s law describes a single-phase (fluid) flow in porous media as a benchmark
approach [31]. Ignoring the effect of gravity, the following formula is typically used to
describe Darcy’s law, which is only valid for the laminar fluid flow through a porous
medium [32]:

K = −µ ∗ L
∆p

u (3)

The equation defines the permeability of the medium by K (m2), µ is the dynamic
viscosity (Pa·s) of the fluid, the absolute value of velocity is obtained by u = Q/A (m·s−1)
and ∆p = pout − pin is the pressure difference (Pa) between the inlet and outlet section of
the porous region over a given distance L (m).

Next, we present the physical properties of porous media geometries. In case of the
PS approach, obstacles are defined by a solid, impermeable, and no-slip wall; the solid
obstacles are square-shaped and arranged in three configurations: in-line, staggered and
random. There is no overlap; for applying different porosity factors, the size of blocks is
changed. In case of the REV approach, a homogenized porous part was imposed by using
the porosity factor and permeability value in the governing equations.

Using a pseudo-random number generator algorithm can be an appropriate approach
to achieve a random configuration by randomly placing the obstacles in the domain.
Another approach is to use a genetic algorithm or other optimization techniques to find a
suitable configuration that satisfies the desired criteria. The choice of approach may depend
on the complexity of the simulation and the desired level of randomness in the configuration.
However, for the so-called random configuration, we considered the requirements such as
equal porosity, obstacles overlapping, shape and the position of the obstacles to generate the
third geometry. It should be noted that the configuration is not truly “random”. Geometries
are generated using a Fortran code.

We show the position of cross sections in the x and y directions on the geometries. They
will be used in the results section to show and compare the velocity across the obstacles.

2.1. Governing Equations

In LBM, we solve the fluid flow field using a discrete version of the Boltzmann
equation. The LBM approximates the continuous Boltzmann equation by discretising a
physical space with lattice nodes and a velocity space by a set of microscopic velocity
vectors [33,34]. The discretized velocities system depends on the selected lattice. In this
work, we use the D2Q9 approach.

The Boltzmann equation without external force (the first methodology for simulating
fluid flow through obstacles) and under the Bhatnagar–Gross–Krook approximation can be
formulated as follows [35]:

∂ fi
∂t

+ ci . ∇ fi =
1
τ
( fi

eq − fi) (4)
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The discrete distribution functions evolve on the lattice nodes of the discretized
space, satisfying the following evolution equation [33], consisting of the propagation to the
neighbouring nodes and a collision process.

fi(x + ciδt, t + δt)− fi(x, t) = − 1
τ

[
fi(x, t)− f eq

i (x, t)
]

(5)

where the subscript i represents the lattice directions around the node, fi is the discrete
Boltzmann distribution function and f eq

i is the equilibrium distribution function; ci is
the microscopic velocity (particle velocity vector) at lattice node x at time t and τ is the
hydrodynamic relaxation time, which is a function of fluid viscosity as follows

τ = 0.5 + v
δt
c2

s
(6)

where v is kinematic viscosity, cs =
c√
3

is the lattice speed of sound and c = δx
δt is the velocity

at the lattice unit (δx = δy = δt = 1). The distance and time step in LBM are denoted by δx
and δt, respectively. They are related to the lattice spacing and the time interval between
two consecutive collisions of the fictitious particles. The following equation relates the
kinematic viscosity to the Reynolds number (Re):

v =
ulu . Ny

Re
(7)

The equation shows where ulu is velocity in lattice unit and Ny denotes the number of
nodes in y direction.

The equilibrium distribution function is derived from a continuous Maxwellian func-
tion; the function is given in the following form for the two-dimensional model with nine
microscopic velocity vectors (D2Q9):

f eq
i = ωiρ

[
1 +

ci.u
c2

s
+

(ci.u)
2

2c4
s
− (u.u)2

2c2
s

]
(8)

The equation defines where ρ is the fluid density at the node, as defined by the density
distribution function in the lattice Boltzmann method and ωi is the weight factor in the
ith direction. The lattice Boltzmann method considers the fluid flow domain as discrete
particles that move on a regular lattice and collide with each other according to some
rules [34]. Here, the following equation expresses the weight factors for the D2Q9 LBM:

ωi =
16
36 (i = 0) For rest particle

ωi =
4

36 (1 ≤ i ≤ 4) For particles streaming to the face connected neighbours
ωi =

1
36 (5 ≤ i ≤ 8) For particles streaming to the edgeconnected neighbours

(9)

The weight factors are derived based on the lattice type (D2Q9). The following
equation defines the discrete velocities based on the D2Q9 model [36]:

ci =


(0, 0)→ i = 0(

cos π(i−1)
2 , sin π(i−1)

2

)
→ i = 1− 4

√
2
(

cos π(2i−9)
4 , sin π(2i−9)

4

)
→ i = 5− 8

(10)

The macroscopic variables of fluid flow, such as density ρ, velocity u and pressure p
are calculated using the following relations:

ρ =
8

∑
i=0

fi (11)
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ρu =
8

∑
i=0

ci fi (12)

p = c2
s ρ (13)

External forces can be taken into account by adding forcing terms in the evolution
equation.

It can be demonstrated that the following macroscopic set of equations can be de-
rived using the Chapman–Enskog expansion in the limit of a small Mach number, for
more details see this reference [33]. The following equations show the continuum and
momentum equations:

∇.u = 0 (14)

∂u
∂t

+ (u.∇)
(u

ε

)
= −1

ρ
∇(εp) + ve ∇2u + F (15)

The equation shows where ρ is the fluid density, u and p are the apparent velocity
and pressure, ve is the effective viscosity, F is the total force including both the medium
resistance and external forces,

F = − εv
K

u− εFε√
K
|u|u + εG (16)

where v is the fluid viscosity and G is the external body force. The structure function Fε

depends on the permeability K and the porosity ε. The first part on the right side describes
Darcy’s term, and the second part represents Forcheimer’s term (here, G = 0). In this work,
the term F as total external force consists of only a linear term (Darcy’s term).

In order to simulate the porous media by means of the REV method [37], a porosity
factor was introduced into the equilibrium distributions and the effects of viscous and
inertial flow resistance in the porous medium were incorporated in the form of force terms
in Boltzmann’s equation as follows:

fi(x + ciδt, t + δt)− fi(x, t) = −
fi(x, t)− f eq

i (x, t)
τ

+ δtFi (17)

where,

Fi = wiρ

(
1− 1

2τ

) [
ciF
c2

s
+

uF : (cici − c2
s I)

εc4
s

]
(18)

In this model, the equilibrium distribution function was defined as:

f eq
i = ωiρ

[
1 +

ci.u
c2

s
+

uu : (ci.ci − c2
s I)

2εc4
s

]
(19)

The macroscopic fluid volume-averaged density is given by,

ρ =
8

∑
i=0

fi (20)

Additionally, the fluid velocity was defined as,

ρu =
8

∑
i=0

ci fi +
δt
2

ρF (21)

The general form of an external force with considering the non-linear term in the
channel has been described in Equation (16).
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Because of the strong non-linearity of Equation (16) together with (21), Guo and
Zhao [10,33] suggested using a temporal velocity (v), to incorporate the presence of porous
media. Then, the fluid velocity can be calculated as

u =
v

L0 +
√

L2
0 + L1|v|

(22)

Here, the temporal velocity (v) and two parameters can be determined as,

v =
∑8

i=0 ci fi

ρ
+

δt
2

εG (23)

L0 =
1
2

(
1 + ε

δt
2

ν

K

)
(24)

L1 = ε
δt
2

Fε√
K

(25)

Here, L0 and L1 are two constant parameters, Fε denotes the geometric function and
can compute by

Fε =
1.75√
150ε3

(26)

The simulation consists of three major phases. The initial conditions of the simulation
are set in the first phase; to increase the computational efficiency, the relaxation time is set
to unity, resulting in the non-equilibrium distribution function initially being equal to the
equilibrium distribution function.

In the second phase, the propagation of the distribution function to the neighbouring
nodes and the collision process are performed, then assigning boundary conditions. Each
node’s new density and macroscopic velocity for the next time step are computed.

The third phase involves calculating new equilibrium distribution functions for the
final calculation and checking the criteria value.

2.2. Boundary Conditions at the Domain and Solid Nodes in the D2Q9 Approach

At the domain boundary, specific components of the distribution function (i.e., in-
let, outlet, top and bottom nodes and obstacles boundaries) are unknown, as shown in
Figure 2. These unknown components are calculated from the known components by
setting appropriate constraints depending on the desired boundary condition.
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Figure 2. Different domain boundary conditions for the channel. The unknown components are
shown in green colour and the known ones in blue.

If the spatial derivative of the velocity on the boundary is prescribed, the velocity
boundary condition can be assigned to the boundary. This boundary condition is known as
the Zou/He [38] boundary condition and can be used to model inflow and outflow bound-
aries. The boundary nodes are “wet nodes” since they can be thought of as representing
the last physical fluid particle adjacent to the wall and so are “fluid”. For the D2Q9 lattice,
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constraints to construct the velocity boundary condition are the zero and first-order discrete
moments of the distribution function.

The components f1, f5 and f8 at the inlet boundary are calculated from the known
components f2, f4, f3, f6, f7 and f0 and inlet velocity at the same position.

To calculate the outlet unknowns f3, f6 and f7, which come from outside the compu-
tational domain, we use an extrapolation scheme. The unknown distribution functions
at the x-last node (n) on the right side of the channel are calculated using the following
second-order extrapolation relationship:

fi(xn, t) = 2 fi(xn−1, t)− fi(xn−2, t) (27)

An on-grid bounce back is applied for the solid walls (top and bottom walls of the
channel and obstacles walls) [39]. The unknown components on the solid surfaces can be
defined as:

Full−way : fi(x, t + δt) = fi(x, t) (28)

Note that i is the inverse direction to i. The final relations for all boundaries are
provided in Table 2.

Table 2. Relations for computing unknowns on boundaries for the D2Q9 model.

Boundaries Known Components Unknowns Relations

Inlet ux, uy, f0, f2, f4, f3, f6, f7ρ, f1, f8, f5

ρin = 1
1−ux

[ f0 + f2 + f4 + 2( f3 + f6 + f7)]

f1 = f3 +
2
3 ρux

f8 = f6 +
1
2 ( f2 − f4) +

1
6 ρux − 1

2 ρuy

f5 = f7 − 1
2 ( f2 − f4) +

1
6 ρux +

1
2 ρuy

Outlet f0, f2, f4, f1, f5, f8 f3, f6, f7

f3 = 2 f3,m−1 − f3,m−2
f6 = 2 f6,m−1 − f6,m−2
f7 = 2 f7,m−1 − f7,m−2

Bottom ux, uy, f0, f1, f3, f4, f7, f8 f2, f5, f6

f2 = f4
f5 = f7
f6 = f8

Top ux, uy, f0, f1, f2, f3, f5, f6 f4, f7, f8

f4 = f2
f7 = f5
f8 = f6

On the obstacles

Top side Bottom side Left side Right side

f2 = f4
f5 = f7
f6 = f8

f4 = f2
f7 = f5
f8 = f6

f3 = f1
f5 = f7
f6 = f8

f4 = f2
f8 = f6
f1 = f3

2.3. Lattice Grid Independency and Validation

The lattice grid independency of the solution was evaluated for the first case in
Figure 1 to select the appropriate lattice grid. Different lattice grids included 75∗750,
150∗1500, 300∗3000 and 500∗5000 in y and x directions, respectively. The comparison of
the velocity profiles at x/L = 0.30 and x/L = 0.37 sections for the in-line configuration are
shown in Figure 3.
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Figure 3. Dimensionless x-velocity distribution through In-line obstacles at Reynolds Number 50;
Positions x/L = 0.3 (A) and x/L = 0.37 (B).

We compared the dimensionless x-velocity at different lattice nodes and calculated
the maximum difference using the following relationship. Table 3 shows the details. The
results indicate that the first and second lattice nodes are inaccurate for the lowest porosity,
while the third and fourth grid sizes have no significant difference.

Table 3. Lattice grid study calculations for in-line arrangement at porosity factor=70%.

Re Number of Lattice Nodes Error (%) Error = |Unew−Uold|
Unew

*100

50

75 ∗ 750
150 ∗ 1500
300 ∗ 3000
500 ∗ 5000

3.45
1.7104
0.074

The results showed less than a 1% difference between the grid size of 300 ∗ 3000 and
500 ∗ 5000. It is concluded that the grid of 300 ∗ 3000 provides a good compromise between
precision and calculation time.

3. Result and Discussion

This study presents the fluid flow simulation through the porous medium using the PS
and the REV methods; in the pore-structure method, different arrangements such as in-line,
staggered, and random are modelled. The porosity factor was changed by increasing the
dimension of square obstacles in pore-structure modelling. There are various arrangements,
but the porosity is the same for all. All case studies were simulated at Re = 50 with the
same boundary conditions for both methods. In the following sections, the obtained results
are presented.

• Streamline plots of the velocity field for different arrangements

The effect of different configurations on streamlines inside the channel for a selected
porosity factor is shown in Figure 4. The porosity factor is fixed at 80 percent for all geometries.
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As the flow was approaching the obstacles, the streamlines were compacted. Therefore,
near the obstacles, the streamlines were denser. It can be seen that there was a weak
circulation eddy behind the obstacles that were near the bottom and top walls. Different
arrangements did not significantly affect the streamlines at a constant porosity because
there was no very tight passage or a compact pass for fluid flow; in contrast, it can occur in
low porosities. Minimal negative values emerged due to the circulation of the flow behind
the objects.

It can be found that the velocity distribution of the in-line and staggered structures
was relatively concentrated and very uniform. In contrast, the random form’s velocity
distribution was nonuniform, with different velocity peaks at the pores.

It is demonstrated that the frequency of the flow recirculation in the wake of the obsta-
cles decreased as the arrangement became random (see random arrangement streamline
graph, C). This is because the random arrangement created more irregular and asymmetric
flow structures that interfered with each other and reduced the formation of coherent
vortices. As can be seen from the figure, the flow recirculation was more frequent and
regular for the inline and staggered arrangements than for the random arrangement, which
confirms our qualitative observation.

• Velocity profiles at different cross-sections

The dimensionless longitudinal velocity profiles at different cross-sections of the
channels are shown in Figure 5. The position of these sections is shown on the geometries
in Figure 1. They are located at the entrance region of the channel, at the entrance section
of the porous part and into the porous region.

We compared velocity profiles at different sections within the same arrangements.
This allowed us to examine how the velocity distribution varied at different positions in the
channel under the same flow conditions. Furthermore, different sections were chosen to
demonstrate velocity behaviour in different positions of the channel, such as the entrance
region (shown for all cases), the position that borders the first column of obstacles (shown
for all cases), the middle of the obstacles, etc. Evaluating the velocity distribution at these
different positions provided important insights into the flow dynamics of the system.

Fluid flow was fully developed at x/L = 0.12, then it entered to the porous part. It is
observed that some low-velocity zones were formed in porous parts due to boundary-layer
separation. On the contrary, there was a very high-velocity zone between the obstacles,
x/L = 0.3 for A and B cases. The effect of the presence of the porous medium becomes
more evident with velocity line graphs at cross-sections of obstacles. The highest value of
the dimensionless x-velocity showed in the third cross-section x/L = 0.3 for in-line and
staggered arrangement geometries; its value was ux/uin = 3.64.
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Figure 5. Dimensionless x-velocity distribution through the channel at different cross sections,
porosity = 80%.

The results in Figure 5 show that the obstacle arrangements influence the velocity
distribution. As can be seen, the in-line and staggered arrangements have more uniform and
predictable velocity patterns than the random arrangement. This is because the obstacles
in the regular arrangements create periodic flow structures that facilitate the momentum
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transfer and increase the local velocities. However, in a random arrangement, the obstacles
create more complex and chaotic flow structures that reduce the momentum transfer and
decrease local velocities.

• The effect of the porosity factor on the velocity field

The effect of various obstacle sizes on the velocity field is shown in Figure 6 in terms
of streamlines and velocity contours in the case of configuration B (staggered obstacles) for
three values of porosity factor (90%, 80%, 70%).
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Figure 6. Streamline and velocity contours for Staggered arrangement with different porosities
including (A) 90%, (B) 80% and (C) 70% at Reynolds number = 50.

As the size of the obstacles increased, the porosity factor decreased. The porosity
factor is the ratio of the pore area to the total area of the porous domain. When the porosity
factor decreased, the pore area becomes smaller and the flow resistance increased. This
caused the flow to separate more sharply from the edges of the blocks, creating stronger
and longer vortices behind them. The strength and length of vortices are proportional to
the local Reynolds number, which is a function of both the pathway width and the flow
velocity. When the porosity factor decreased, the pathway width also became smaller and
the flow velocity increased due to conservation of mass. Therefore, when the porosity factor
decreased, the local Reynolds number increased, resulting in stronger and longer vortices.
The minimum velocity values occurred due to flow circulation behind the obstacles in the
case with the lowest porosity. This is consistent with previous studies [40,41].

The velocity ratio and the pattern of streamlines do not change much when the channel
contains a high-porosity medium (smaller obstacles). This means that the pressure drop
in the channel does not increase due to the high-porous medium compared to the low-
porous medium cases. This result can be seen by comparing different porosity parts inside
the channel. A high-porosity case has less resistance to the fluid flow and thus does not
affect the velocity or pressure distribution significantly. On the other hand, a low-porosity
medium (larger obstacles) creates more turbulence and drag in the flow, resulting in a
higher pressure drop and a lower velocity ratio.
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The contours show that the streamlines near the walls of the channel or obstacles in the
porous zone are more compact. In other words, the velocity contours become denser with
decreasing porosity factor. It can be concluded that the effects of the velocity gradient near
the walls of the channel become more significant as the value of the porosity decreased,
which in turn increased the rate of pressure drop.

• Velocity profiles through the central axis of the channel

Figure 7 shows the longitudinal velocity along the x-axis of the channel at position
y = H/2, for the configurations A, B and C for three values of porosity factor. This position
is important because it allows us to compare the velocity profiles of different configurations
and porosities, as they have the same initial and boundary conditions. Fluid flow with a
uniform velocity profile enters the channel after developing through the hydrodynamic
entrance region, then it enters the porous part as a developed fluid flow. When it reaches
the first obstacles, it diverts from the straight path and moves toward the blocks with
different arrangements, which leads to an increase in velocity. In this case, the high-velocity
regions are created between the obstacles. By decreasing the porosity factor to 70%, the
velocity increased rapidly. After passing the porous region, the fluid flow reached its fully
developed situation. Based on the velocity pattern, it seems that the first case study should
have the highest pressure drop and the third geometry the lowest one. This is because the
in-line arrangement has a shorter distance between all block columns, while fluid flow
in the random configuration can pass through the obstacles more easily. The maximum
velocity was enhanced by decreasing the porosity factor in all cases. The arrangement of
obstacles is an essential factor in controlling the maximum velocity.

Figure 8 presents a comparison of dimensionless normalized velocity along the channel.
The porosity factor for all cases was fixed at 80%. Different configurations have a specific
pattern with an increasing and decreasing trend; the highest value was for the in-line
configuration, while the lowest velocity was reported for the random arrangement. The
results show how different configurations affect the flow resistance and cause the pressure
drop in porous media. It is shown that the value of velocity changed subsequently after the
obstacles in the porous part for redistribution, as in Poiseuille flow.

In Figure 9, pressure drop results across the porous region for all configurations are
reported for four values of porosity factor. As one can see, the highest pressure drop occurs
in case of the in-line arrangement. It is clear that more obstacles in one column occupying
the section in the porous region cause higher resistance to the flow and lead to higher
pressure drop. It can be said that a viscous layer surrounds the obstacles, which leads to
the creation of an adverse pressure gradient behind the blocks.

As the arrangement of obstacles is changed, from in-line to staggered and then to
a random one, the pressure drop decreases significantly, mainly for larger obstacles size.
Naturally, the resistance force reduces at lower obstacles size, resulting in passing flow
through it quickly.

By increasing the porosity to higher values (90% and then 95%), the pressure drop for
all cases is almost very close to each other because the effect of resistant force decreases
and the fluid can flow through the porous part without high geometrical effects.

As shown, the distribution of irregular structures and larger pores enables most of the
fluid flow with relatively better permeability. Conversely, the solid in-line structure causes
a higher pressure drop and lower permeability than other arrangements. In the case of the
lowest porosity factor [42], the pressure drop in the in-line geometry was more than double
compared to the random arrangement, so a regular and uniform pore structure can cause
higher fluid flow resistance than the staggered and random configurations.
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of changing the porosity on velocity distribution in the centerline for (A) In-line, (B) Staggered and
(C) Random arrangements.
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Energies 2023, 16, 5354 17 of 20

• The second method for simulation of porous media; using obtained results in pore-
structure for re-modelling by the REV method

In this section, we present the results obtained by the representative elementary vol-
ume (REV) method. Moreover, to compare this method with the PS method, we use
pressure drop results as an important output. We modelled three different obstacle configu-
rations using the PS method and we used the same porosity and permeability values in the
PS simulation to define each porous medium (in the REV method) as an external force in
the lattice Boltzmann method that represents the effect of the porous media part. We used
Darcy’s law to calculate the permeability value of each case.

Figure 10 presents a longitudinal velocity contour corresponding to the in-line arrange-
ment with a porosity of 70%.
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• Comparison between Pore- Structure and REV methods in terms of pressure drop
results

We compared the Pore-Structure and the REV methods for modelling equal case
studies with the same porosity and permeability. The REV method gave higher pressure
drop results than the Pore-Structure method in all cases. We used in-line, staggered and
random arrangements with porosity factors of 70, 80, 90 and 95 percent for the Pore-
Structure cases. We calculated permeability by Darcy’s law after modelling the case
studies by the Pore-Structure method. For the REV method, we defined the porous part
using Darcy’s term as an extra term to standard lattice Boltzmann method. Finally, we
compared the results for the same porosity and permeability values. Table 4 summarizes
the comparison results.

Table 4. Pressure drop difference between PS and REV method using Darcy’s law.

Porosity 70% 80% 90% 95%

Pressure
drop

difference (%)

In-line 3.04 4.61 9.09 11.02
Staggered 2.84 4.82 7.09 9.37
Random 3.91 6.42 10.21 11.87

The in-line arrangement generated the highest pressure drop and the random one
generated the lowest one because of the geometrical resistance.

The difference, E %, between the pressure drop obtained by the REV method and
the PS simulations (as defined in Equation (29)) ranges from 2.84% to 11.87%, with more
considerable values for higher porosities.

E% = 100 ∗ |∆PREV − ∆PPore−stucture |
∆PREV

(29)

One of the influential parameters for the flow is the tortuosity factor, which accounts
for the difference related to the different arrangements. By means of the REV method, we
cannot detect nor impose the geometrical effect on the equations for modelling porous
medium, since in the REV method permeability is placed into the equations as a computed
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parameter from PS-modelling. In order to evaluate the tortuosity effect on velocity and
pressure fields, future works will be performed.

4. Conclusions

In this paper, we employed a two-dimensional lattice Boltzmann model to simulate
fluid flow through porous media using two different methods: the pore-structure (PS) and
the representative elementary volume (REV). We compared the pressure drop and velocity
profiles for different porosities and arrangements of square obstacles in a channel as a novel
study. Our main findings are:

1. We have evaluated the results regarding streamlines, velocity profiles, and pressure
drop results for different porosities and configurations, including in-line, staggered
and random.

2. We demonstrated that the PS method can capture the true details of the fluid flow
through the pore structures compared to the REV method, which assumes a homoge-
nized porous region with a constant porosity factor and permeability value.

3. Comparison in terms of pressure drop between the methods shows that the REV
method gives a similar pressure drop behaviour and values to the PS method (with
a percent error between 2.84 and 11.87), and the difference was higher for higher
porosities. This difference is related to the lack of a geometrical parameter in the
empirical permeability equations.

4. The tortuosity can affect the pressure drop and hence the permeability of the porous
media. We have observed that different arrangements of obstacles can result in
different streamline patterns (tortuosity) for the same porosity degree.

5. The porosity factor and the arrangement of obstacles significantly affect the pressure
drop and the flow field in the porous region. The lower porosity factor (70%) leads to
more extensive and robust vortexes near the walls, which are effective for increasing
the pressure drop. Additionally, the regular arrangement of obstacles causes a more
significant resistance and a higher pressure drop.

The original findings contribute to a better understanding of the transport phenomena
in porous media, which is essential for many engineering applications such as energy,
transport in different heat exchangers. In addition, they can improve the design and
performance of these systems.

We have demonstrated the advantages and limitations of PS and REV methods for
modelling porous flow using LBM. We have also shown how different geometrical parame-
ters can influence flow characteristics and transport properties as novel research.

For future research, we suggest extending our study to three-dimensional simulations,
which can account for more realistic and complex porous geometries with anisotropic
properties. We also recommend exploring other types of obstacles, such as circular or
irregular shapes.
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Nomenclature

Greek Symbols Greek Symbols
Ac Area of the obstacle m2 β Forchheimer coefficient/Beta factor
c Lattice speed δx Lattice spacing
cs Lattice speed of sound δy Lattice spacing
Da Darcy number Ω Collision operator
e Discrete velocity vector or streaming speed for single particle δt Lattice timestep
f Density distribution function ε Porosity
f eq Equilibrium density distribution function ν Kinematic viscosity m2/s
F Total External force µ Dynamic viscosity, N m−2 s
Fε Geometric function ρ Density
G External force ω Weight function

h Side length of the obstacles τ
Dimensionless single relaxation time
for the flow computation

H Channel width m
I Unit tensor Subscripts
K Permeability, m2 f Fluid flow field
L Length of the channel m i Move the direction of single particle
P Pressure in Inlet
qr Volumetric flow rate out Outlet
Q Number of microscopic velocity vectors p Pore area
Re Reynolds number, uin

2H/ν s Solid area
t Time s tot Total
uin u-component at the channel inlet m s−1 w Wall
u, v Velocity components m s−1 Superscripts
x, y Cartesian coordinates m eq Equilibrium
w Weight factor neq Non-equilibrium
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