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Abstract We find a new solution to calculate the orbital
periastron advance of a test body subject to a central gravita-
tional force field for relativistic theories and models beyond
Einstein. This analitycal formula has general validity that
includes all the post-Newtonian (PN) contributions to the
dynamics and is useful for high-precision gravitational tests.
The solution is directly applicable to corrective potentials
of various forms, without the need for numerical integra-
tion. Later, we apply it to the scalar tensor fourth order
gravity (STFOG) and noncommutative geometry, providing
corrections to the Newtonian potential of Yukawa-like form
V (r) = α e−βr

r , and we conduct the first analysis involving all
the PN terms for these theories. The same work is performed
with a Schwarzschild geometry perturbed by a Quintessence
Field, leading to a power-law potential V (r) = αqrq . Finally,
by using astrometric data of the Solar System planetary pre-
cessions and those of the S2 star around Sgr A*, we infer new
theoretical constraints and improvements in the bounds for
β. The resulting simulated orbits turn out to be compatible
with general relativity.

1 Introduction

Despite the unquestionable and numerous successes accom-
plished by general relativity (GR) [1] over the past century,
observational studies have clearly shown that the dynamics
of astrophysical objects at extragalactic scales are dominated
by an invisible form of matter called dark matter. In partic-
ular, the effects of dark matter are manifest also at galactic
scales, since rotation curves of galaxies show unexpected
flat trends if Newtonian gravity is assumed with respect to
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the observed amount of baryonic emitting light matter [2–4].
In addition to dark matter, the discovery that the universe
is currently accelerating has led to the realisation that it is
dominated by a form of energy of unknown origin and is
supposed to be responsible for such a relevant phenomenon,
called dark energy [5–10]. However, until now, no results
have been obtained from the final experimental projects to
detect particles that might form dark matter. However, if
we give up the paradigmatic constraint that the gravitational
anomalies observed at galactic and extragalactic scales are
only caused by invisible matter composed of a new form
of exotic particles, many other theoretical proposals can be
taken into account. Another approach to understanding the
nature of dark matter is represented by the extended theory
of gravity (ETG), whose paradigm follows Einstein’s phi-
losophy of curvature-based gravity field theory. The basic
idea is that the Lagrangian density of the gravitational action
(from which the field equation descends) is not simply the
Hilbert–Einstein’s one, i.e. a linear function of Ricci scalar,
but a more general function of curvature invariants, possibly
coupled on non-minimally coupled scalar field. For instance,
including higher order invariants such as L = f (R) and
L = f (R, R2, RμνRμν, �R, φ), which we can link to Ein-
stein’s gravity plus one or multiple coupled scalar fields by
moving from the Jordan frame to the Einstein frame through
a suitable conformal transformation [11–22]. Other possibil-
ities are given by the noncommutative geometry [23] which
turns out to belong to the ETG class, and compactified extra
dimension/Kaluza–Klein models [24–29]. Such a theoretical
framework has aroused a growing interest in the scientific
community, which lies in the fact that both dark matter and
dark energy may be explained in a pure gravitational envi-
ronment, and whose effects are interpreted to be provoked by
the extra-curvature terms of spacetime. Importantly, one of
the most relevant consequences is that the law of gravity has
different strengths of attraction on different scales. The GR’s
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gravitational pull is preserved in the Solar System, but in
galaxies and clusters, it undergoes a variation of its strength
due to the growing contribution of extra-curvature terms. In
other words, the gravitational pull is not scale-invariant, in
agreement with the Mach principle. The necessity of explor-
ing the theoretical proposals inevitably leads to investigating
the dynamics of celestial bodies in gravitating systems, and
one of the most widespread and studied is the relativistic 2-
body problem as a baseline for many astrophysical scenarios
and tests of gravity.

In this paper, we present the scalar-tensor fourth order
gravity (STFOG), which includes several sub-classes of ETG
and noncommutative spectral gravity (NCSG), and thus we
consider the weak field limit providing new hypothetical
forces, of which we aim to constrain the sizes. Correction of
the Newtonian potential is in the form of a Yukawa-like func-
tion (5th force), that is, V (r) = α e−βr

r , where α is the param-
eter related to the strength of the potential and β to the force
range. We also take into consideration the Schwarzschild
geometry deformed by a quintessence field, associated with
the dark energy responsible for the present accelerated phase
of the Universe and yielding a corrective power-law poten-
tial V (r) = αqrq . Subsequently, we determine a general
solution to calculate the relativistic periastron advance tak-
ing into account all kinds of perturbing potential terms. The
final formula is found as a generalisation aiming to account
independently of the form of the potentials, and it is based
on the epicyclic perturbation method, on which Bertrand’s
Theorem was demonstrated [30], and is currently employed
in the study of the physics of galaxies [31]; furthermore,
such a formalism has already been successfully introduced
for the GR perihelion advance (see Wald [32] or [33]), and
has also been developed for some modified gravity models,
first in Ref. [34] for Hořava–Lifshitz (HL) gravity, and then
for the study of GR gravitational tests in the Solar System
modified by the presence of a subdominant dark-matter halo
[35]. Putting together all these concepts, with the choice of
the Binet (and Bertrand-like) approach [33,36–39], here we
demonstrate how the epicyclic method can be performed to
achieve a generalised analytical solution formula for theories
beyond Einstein that leads to a correction of the Newtonian
potential, and how this leads to a straightforward calculation
of the relativistic periastron advance. This is valid not only
for the Solar System (or some binary star systems), where the
orbit eccentricities of the main objects are small, but also for
more general deviations from circularity (as occurs for the
stars of the Sgr A* cluster). Such a solution is independent of
the form of the corrective perturbing potential and is appli-
cable to any gravity field theory beyond GR, or a relativistic
model within a certain theory, and it incorporates all post-
Newtonian contributions with no need to involve numerical
integration. First, we obtain the final analytic result and then

deduce the expressions for the theories examined, through
which new computations of the bounds can be performed,
thus improving the results of our previous paper [40]. Finally,
by taking advantage of the current astrometric data com-
ing from the precession of planets, we analyse the effects of
the post-Newtonian corrections to the periastron advance of
planets in the Solar System and derive a lower bound on the
adiabatic index of the equation of state. We proceed to infer
constraints on the free parameter of the gravitational models.
Non-commutative spectral geometry (NCSG) is also studied,
since it is a particular case of STFOG. Here, we show that
our analytical results on the periaston advance of the plan-
ets, along with the S2 star around the Sagittarius A* Super
Massive Black Hole at the centre of the galaxy, allow us to
improve the bounds on the parameter β by several orders
of magnitude in this new work. Finally, such an analysis
is studied to the case of power-law potential, referring in
particular to the presence of a quintessential field around
a Schwarzschild black hole, associated with the dark energy
responsible for the present accelerated phase of the Universe.
Before going on, we also mention that models of star orbits
around the galactic centre in f (R)-gravity are investigated
in [41], whereas for f (R,�R)-gravity one refers to [42].

In summary, the paper is organised as follows. In Sect.
2 we introduce scalar-tensor-fourth-order gravity and non-
commutative spectral gravity as a particular class of ETG,
then we show the weak field limit and the case relative to
the quintessence field perturbing the Schwarzschild geom-
etry. In Sect. 3, we show the calculations by starting from
the epyclic expansion and find an analytical solution for
the relativistic periastron advance beyond Einstein theory,
whose formula allows us to include all post-Newtonian con-
tributions to the total precession. In Sect. 4, we perform a
direct application and obtain the analytical results regarding
STFOG, noncommutative spectral gravity and quintessence
field around a Schwarzschild black hole; this allows us to
study the effects of the post-Newtonian corrections on the
precession shift of planetary motions in the Solar System
and of the S2 star motion around Sagittarius A*, and thus we
derive new lower bounds on strengths and length of interac-
tion of the Yukawa-like forces of the extended theories, as
such as on the adiabatic index in the equation of state related
to the power-law force due to the quintessential field. In Sect.
5, we finally draw our conclusions with some remarks.

2 Beyond Einstein theory

2.1 Scalar tensor fourth order gravity

As a general class representative of extended theories of grav-
ity (ETG), we consider the action for the scalar-tensor-fourth-
order gravity (STFOG) given by (see [43])
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S =
∫

d4x
√−g

[
f (R, RμνR

μν, φ) + ω(φ)φ;αφ;α

+XLm

]
, (1)

where f is a generic function of the invariant R (the Ricci
scalar), g is the determinant of metric tensor gμν , the invariant
RμνRμν = Y (Rμν is the Ricci tensor), φ is a scalar field
and ω(φ) is a generic function of it, X = 8πG/c4. The
Lagrangian density Lm is the minimally coupled Lagrangian
density of ordinary matter. The field equations are obtained
by applying the variational principle to the action (1) with
respect to gμν and φ. They read:1

fR Rμν − f + ω(φ)φ;αφ;α

2
gμν

− fR;μν + gμν� fR + 2 fY Rμ
αRαν (2)

−2[ fY Rα
(μ];ν)α + �[ fY Rμν] + [ fY Rαβ ];αβgμν

+ω(φ)φ;μφ;ν = X Tμν,

2ω(φ)�φ + ωφ(φ)φ;αφ;α − fφ = 0, (3)

where:

fR = ∂ f

∂R
, fY = ∂ f

∂Y
, ωφ = dω

dφ
, fφ = d f

dφ
,

and Tμν = − 1√−g
δ(

√−gLm )

δgμν is the the energy-momentum
tensor of matter. We confine ourselves to the case in which
the generic function f can be expanded as follows (notice
that the all other possible contributions in f are negligible
[16,44–46])

f (R, Rαβ R
αβ, φ) = fR(0, 0, φ(0)) R+ fRR(0, 0, φ(0))

2
R2

+ fφφ(0, 0, φ(0))

2
(φ − φ(0))2

+ fRφ(0, 0, φ(0))R φ + fY (0, 0, φ(0))Rαβ R
αβ. (4)

2.1.1 Weak field limit and solutions

We are interested to solve the field equations for a non-
rotating ball-like source of matter; thus the energy-momentum
tensor reads

Tμν = ρ(x)c2 uμuν, T = ρc2, (5)

where ρ(x)c2 is the energy density of matter with ρ(x)
density of matter at rest, c2 the square light speed, in the
source’s proper frame of reference uμ fulfills the conditions
uσuσ = 1. In particular, for a ball-like source described
as a perfect fluid without pressure, the components of the

1 We use, for the Ricci tensor, the convention Rμν = Rσ
μσν , whilst for

the Riemann tensor we define Rα
βμν = �α

βν,μ + · · · . The Christoffel

symbols are �
μ
αβ = 1

2 g
μσ (gασ,β + gβσ,α − gαβ,σ ), and we adopt the

signature is (+,−,−,−).

energy-momentum tensor are T00 = ρc2 and Ti j = 0. The
physical conditions of a static and weak gravitational field
generated by a massive source (e.g. as it occurs in the Solar
System), lead to study the weak-field limit of the theory. For
Eqs. (2) and (3), this means that we can search for solu-
tions as expressions of the metric tensor gμν perturbing the
Minkowski space-time ημν [44] as follows

gμν �
(

1 + 2
g00(x0, x) 0

0 −δi j + 2
gi j (x0, x)

)

=
⎛
⎜⎝1 + 2

c2 �(x) 0

0 −(1 − 2

c2 �(x))δi j

⎞
⎟⎠ , (6)

and

φ ∼ φ(0) + φ(2) + · · · = φ(0) + ϕ.

Through the overset number 2 reported on the temporal

and spatial components {2
g00,

2
gi j } of the metric tensor, we

recall that the related gravitational potentials {�,�} and the
scalar field ϕ are of the order c−2 in the post-Newtonian
framework. Thus, by solving the resulting linearised version
of field equations (2) and (3) for a non-rotating source with
radius R [16,45], one obtains the following gravitational
potentials and scalar field

�(x) = −GM

|x|
[
1 + g(ξ, η) e−m+|x|

+
[1

3
− g(ξ, η)

]
e−m−|x| − 4

3
e−mY |x|], (7)

�(x) = −GM

|x|
[
1 − g(ξ, η) e−m+|x|

−
[1

3
− g(ξ, η)

]
e−m−|x| − 2

3
e−mY |x|], (8)

ϕ(x) = GM

|x|
√

ξ

3

2

ω+ − ω−

[
e−m+ |x| − e−m− |x|

]
, (9)

where fR(0, 0, φ(0)) = 1, ω(φ(0)) = 1/2, and

g(ξ, η) = 1 − η2 + ξ +√η4 + (ξ − 1)2 − 2η2(ξ + 1)

6
√

η4 + (ξ − 1)2 − 2η2(ξ + 1)
,

(10)

ξ = 3 fRφ(0, 0, φ(0))
2
, η = mφ

mR
, (11)

while for the masses of Yukawa-like potentials in Eqs. (7)
and (8), one has the relations

m2± = m2
R w±,

w± = 1 − ξ + η2 ±√(1 − ξ + η2)2 − 4η2

2
, (12)
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with

mR
2 .= − fR(0, 0, φ(0))

3 fRR(0, 0, φ(0)) + 2 fY (0, 0, φ(0))
,

mY
2 .= fR(0, 0, φ(0))

fY (0, 0, φ(0))
, mφ

2 .= − fφφ(0, 0, φ(0))

2ω(φ(0))
. (13)

Since we are interested to the fields generated by ball-like
source, we remind that the Gauss theorem is satisfied only in
General Relativity, where the exterior solution for a material
point distribution coincide with the exterior solution for a
generic spherically symmetric matter distribution. But in a
Fourth Order Theory, this is no longer valid because of the
Yukawa-like corrective terms in the potentials and a sphere
cannot be reduced to a point. In this case, the equivalence
no longer holds, and the type of distribution in the space
is relevant. Therefore, in Fourth Order Theories, the Gauss
theorem is not generally satisfied. In fact, if one considers a
spherical mass with arbitrary density ρ(x) and radius R, the
solutions relative to � and � show a geometric corrective
factor that multiplies the Yukawa-like term depending on the
form of the source [40,47,48]. For each term ∝ e−mr

r , this
geometric factor is given by the function

F(mR) = 3
mR coshmR − sinhmR

m3R3 . (14)

If we set x = mR in F(mR), when x � 1, we have
limx→0 F(x) = 1 so that a point-like source solution is
recovered. In particular, the potentials in Eqs. (7) and (8)
become

�ball(x) = −GM

|x|
[

1 + g(ξ, η) F(m+R) e−m+|x|

+
[

1

3
− g(ξ, η)

]
F(m−R) e−m−|x|

−4 F(mYR)

3
e−mY |x|

]
,

�ball(x) = −GM

|x|
[

1 − g(ξ, η) F(m+R) e−m+|x| −

−
[

1

3
− g(ξ, η)

]
F(m−R) e−m−|x|

−2 F(mYR)

3
e−mY |x|

]
. (15)

Some of the main ETG models studied in the literature, which
can be summarised as subclasses of the more general STFOG,
are reported in Table 1 (see [16] for other details). As we
notice, generally the correction to the Newtonian potential is
Yukawa-like with V (r) = α e−mr

r
For our aims, as well as for many other astrophysical sce-

narios, it is more convenient (or simply required) to study
models by resorting to spherical symmetry. For example, this
is the case when the radial symmetry of the problem leads

to central force fields, or the potentials are dependent on the
mutual spatial distances between the positions of the bodies
belonging to a given system or distribution of matter. It is
readily possible to pass from space-time in isotropic coordi-
nates xα = (x0, x1, x2, x3)

ds2 =
[

1 + 2

c2 �(x)
]
c2dt2 −

[
1 − 2

c2 �(x)
]
δi j dx

i dx j ,

(16)

to a spherically symmetric one xα = (ct, r, θ, φ), by per-
forming the transformation [49]

r2 = [1 − 2�(|x|)]|x|2, |x| = xi x
i , (17)

on the relativistic invariant (16) with potentials (15); working
out the computations at first order with respect to the quantity
rs/|x| with rs = 2GM/c2 Schwarzaschild radius, we are able
to find the STFOG space-time in spherical coordinates for a
non-rotating ball

ds2 =
[

1 − rs
r

(
1 + g(ξ, η) F(m+R) e−m+ r

+
[

1

3
−g(ξ, η)

]
F(m−R)e−m− r − 4F(mYR)

3
e−mY r

)]
dt2

−
[

1 + rs
r

(
1 − g(ξ, η)(1 + m+ r)

F(m+R)e−mRr −
[

1

3
−g(ξ, η)](1+m− r)F(m−R)e−mR r

−2(1 + mY r)

3
F(m−R) e−mY r

)]
dr2

−r2dθ2 − r2 sin2 θ dφ2. (18)

2.2 NonCommutative spectral geometry

NonCommutative spectral geometry (NCSG) is a special
case of scalar-tensor-fourth-order gravity, which is sparking
growing interest in the scientific community as a theoreti-
cal candidate for the unification of all fundamental interac-
tions, due to its intriguing properties [50–53] and offering a
unique framework for studying several topics [54–61]). Fur-
thermore, satellite experiments allow us to identify precise
constraints (Table 2). At the scale of Grand Unification (fixed
by the cutoff �), the Higgs field H is coupled to the gravi-
tational sector of the action, and its variation with respect to
gμν (see [16,17,50,54,62]) yields the field equation

Gμν + 1

β2
NCSG

[2∇λ∇κCμνλκ + Cμλνκ Rλκ ] = X Tμν,

(19)

where Gμν is the Einstein tensor, X ≡ 8πG/c4, Tμν the
energy-momentum tensor of matter and β2 = 5π2/(6X f0).
A remarkable point is that neglecting the non-minimal cou-
pling between the Higgs field and the Ricci curvature, the
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Table 1 We report different
cases of extended theories of
gravity including a scalar field
and higher-order curvature
terms. The free parameters are
given as effective masses with
their asymptotic behaviour.
Here, we assume
fR(0, 0, φ(0)) = 1,
ω(φ(0)) = 1/2

Case ETG Parameters

m2
R m2

Y m2
φ m2+ m2−

A f (R) − fR (0)

3 fRR (0)
∞ 0 m2

R ∞
B f (R, Rαβ Rαβ ) − f (0)

3 fRR (0)+2 fY (0)

fR (0)

fY (0)
0 m2

R ∞
C f (R, φ) + ω(φ)φ;αφ;α − fR (0)

3 fRR (0)
∞ − fφφ(0)

2ω(φ(0))
m2
Rw+ m2

Rw−

D f (R, Rαβ Rαβ , φ) + ω(φ)φ;αφ;α − f (0)
3 fRR (0)+2 fY (0)

fR (0)

fY (0)
− fφφ(0)

2ω(φ(0))
m2
Rw+ m2

Rw−

Table 2 Values of periastron
advance for the first six planets
of the Solar System. In the table
we present the values of the
eccentricity ε, semi-major axis a
in metres, the orbital period P in
years, the periastron advance
predicted in General Relativity
(GR)

Planet ε a (1011 m) P (yrs) �θGR (′′/century) �θobs

Mercury 0.205 0.578 0.24 43.125 42.989 ± 0.500

Venus 0.007 1.077 0.62 8.62 8.000 ± 5.000

Earth 0.017 1.496 1.00 3.87 5.000 ± 1.000

Mars 0.093 2.273 1.88 1.36 1.362 ± 0.0005

Jupiter 0.048 7.779 11.86 0.0628 0.070 ± 0.004

Saturn 0.056 14.272 29.46 0.0138 0.014 ± 0.002

NCSG does not lead to corrections for homogeneous and
isotropic cosmologies. This physical approximation enables
us to analytically obtain a lower bound on f0. By referring to
the resolution of the linearised field equations, presented in
[16,63] and achieved in harmonic coordinates, for the grav-
itational field potentials, one finds

�(x) = −GM

|x|
(

1 − 4

3
e−β|x|

)
,

�(x) = −GM

|x|
(

1 + 5

9
e−β|x|

)
. (20)

Performing once again the transformation (17) on the met-
ric tensor in isotropic coordinates (16) that originates from
solutions (20), after computations, we obtain the following
spherically symmetric space-time (rs = 2GM/c2)

ds2 =
[

1 − rs
r

(
1 − 4

3
e−β r

)]
dt2

−
[

1 + rs
r

(
1 + 5(1 + β r)

9
e−β r

)]
dr2

−r2dφ2 − r2 sin2 φ dθ2. (21)

2.3 Quintessence field: dark energy

The Quintessence Field represents another interesting pro-
posal to deal with problems of the Dark Universe. In particu-
lar, this is invoked to explain the speed-up of the present uni-
verse [64]. Quintessence may generate a negative pressure,
and, being diffuse everywhere in the Universe, it is invoked to
be the reason for the observed phase of positive cosmological
acceleration [64] and it may also be present around a massive
astrophysical object that warps the space-time around it [65].

Studies of quintessential black holes are also motivated by
M-theory/superstring inspired models [66] (see [64,67–69]
for applications). The solution of Einstein’s field equations
for a static spherically symmetric quintessence surrounding
a black hole in 4 dimensions is given by [65,67]

gμν = diag

⎡
⎣1 − rs

r
− 2λ

r3ωQ+1 ,

− 1(
1 − rs

r − 2λ

r3ωQ+1

) , −r2, −r2 sin2 φ

⎤
⎦ , (22)

where rs = 2GM/c2 is the Schwarzschild radius, ωQ is
the adiabtic index of the equation of state, −1 � ωQ � − 1

3 ,
and λ the quintessence parameter. The cosmological constant
(�CMD model) follows from (22) with ωQ = −1 and λ =
�c2/6, leading to the components of the metric tensor

gtt = 1 − rs
r

− �c2

3
r2, grr = − 1

1 − rs
r − �c2

3 r2
. (23)

As we see, in this case, the corrective potential has the power-
law expression V (r) = αq rq .

3 Solution formula for the periastron advance
determination

In this section, we elaborate a general analytical expression
for the periastron advance in the relativistic 2-body prob-
lem, valid and applicable to any theory and model, e.g. ETG,
quintessence field, but also non-local gravity, GR plus dark
matter, anti-de Sitter solution, Reissner–Nordstrom solution,
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Fig. 1 Plot of the function
|γ − 1| vs {βr, |Fi |}, with
γ = �/� and {�,�} given by
Eq. (15) for STFOG. The part of
the graphic below the plane
|γ − 1| = 4.4 × 10−5

corresponds to the domain
satisfying the physical condition
of small deviations from GR

etc., independently of the fact that the solution of the field
equation is exact or inferred in the Weak Field limit. The res-
olution is based on the mathematical idea of epicyclic expan-
sion. Epicycles were first introduced by ellenistic mathemati-
cians and astronomers to reproduce the retrograde observed
motion of the planet on the celestial sphere [31]. The final
dynamics results as the composition of oscillations around
a point moving along the trajectory executed by the body.
Bertrand [30] used this approach to prove the Theorem stat-
ing that the only potentials yielding closed elliptical orbits
are the Newtonian and elastic ones. Diverse applications to
galactic dynamics and GR are provided in Refs. [31–33]; for
the first works in which the formalism is developed for mod-
ified gravity vacuum solutions (more specifically the Hořava
gravity as a quantum gravity proposal) and GR plus a dark-
matter halo, in order to study classical tests in the Solar Sys-
tem (where the planetary eccentricities are small), see Refs.
[34,35].

We demonstrate here how it is possible, through the
epicyclic-based formalism, to find an analytical solution that
generalises the result to any form of potential and is also
valid for systems where large deviations from circularity
are present (e.g. stellar motions within the Sagittarius A*
cluster). This will be applicable to ETG and other alterna-
tive/modified theories, represented by a final expression suit-
able for any other model.2

2 Besides Einstein’s first derivation, commonly known techniques for
the calculation of the precession shift in general relativity were given by
A. Eddington (we also mention T. Levi–Civita), as well as interesting
known resolutions, were proposed by Whittaker, Robertson [70] (using
Hamiltonian formalism), Chandraskhar (resorting to elliptical integrals)
[71] and Weinberg [72]. Commonly used techniques can be found in
[9] and [33]. Furthermore, Adkins and MacDonell [73] established a
method to treat the precession shift for a greater number of potentials
and, as a result, a class of integrals with respect to the potential exam-
ined.

3.1 Equation of orbit and epicyclic method

From a physical point of view, the epicyclic method consists
in the fact that an elliptic orbit can be produced exactly by a
perturbation of the stable circular orbit. Since the stable circu-
lar trajectory of radius r0 corresponds to the orbital solution
relative to the point of minimum r0 of the effective potential
of a test particle which moves subject to a central force field
as the one given a Schwarzschild post-Newtonian field (e.g.
motion of a satellite around the Earth, or planet around the
Sun), this technique involves that we need a Taylor series
expansion around the minimum point of the gravitational
effective potential. Especially, it allows us to incorporate
all the post-Newtonian potentials descending from the entire
theory, not only those related to General Relativity. Consis-
tently with Bertrand’s theorem and Refs. [30,33–36,39], we
decided to deal with the problem by resorting to the Binet
equation of orbits. Since we are considering the restricted
2-body problem, i.e. we reduce to the model of a massive
test particle moving on the geodesics of a (Schwarzschild-
like) space-time warped by a central dominant non-rotating
spherical mass (Fig. 1). Such a method is based just on the
assumption on the spherical symmetry of the model. Let us
consider a generic spherically symmetric space-time

ds2 =
[

1 + 2

c2 �(r)

]
c2dt2 −

[
1 − 2

c2 �(r)

]
dr2 − r2d�,

(24)

where d� = dφ2 +sin2 φ dθ2. Starting from the Lagrangian
of the system 2 L = gμν ẋμ ẋν, we impose the initial con-
ditions φ̇ = 0 and φ = π/2 on the metric (24), so that the
motion is planar with respect to the coordinates r and θ . For
the quintessence field, the metric is given by Eq. (22), which
automatically provides �(r) = �(r).

Concerning the ETG, we take into consideration the
metrics given by Eqs. (18) and (21), arising from solu-
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Fig. 2 Plot of the function |γ − 1| vs βr (blue color), with γ = �/�

and {�,�} given by Eq. (21) for noncommutative spectral geometry
(NCSG). The part of the graphic below the constant line |γ −1| = 4.4×
10−5 (cyan color) corresponds to the interval satisfying the physical
condition of small deviations from GR

tions (15). Furthermore, we recall that in the framework
of the parametrized post-Newtonian (PPN) formalism (see
[33,74,75]), a test of Einstein theory conducted in the Solar
System, using radio links with the Cassini spacecraft [76],
obtained a tight constraint for the post-Newtonian parameter3

γ = �

�
, |γobs − 1| = (2.1 ± 2.3) × 10−5, (25)

in agreement with the general relativity’s value γ = 1.
According to Einstein theory, this value should also hold at
the scales of Sgr A* stellar cluster, and therefore the departure
from the GR’s behaviour γ → 1 (e.g. due to extra-curvature
fields) must be very small. If we look at the potentials (15),
this occurs when the masses m+, m−, mY of the gravitons
associated with Yukawa-like interactions are large compared
to the function 1/r ; while if these masses are small, we would
find γ → 1/2 at the examined scales. This value strictly vio-
lates the PPN parameter (25), and such a situation would
cause higher-order theories to be immediately ruled out. The
same holds for the mass β of the Yukawa-like interaction
in NCSG (see Eq. (20)). Being γ = �/�, if we look at
the graphic for |γ − 1| (Fig. 2) as a function of βr and |Fi |,
with i = ±,Y see Eq. (7)), it is possible to identify the
domain of physical parameters that satisfies the experimen-
tal constraint |γobs − 1| = 2.1 ± 2.3 × 10−5. For example,
if we consider |Fi | ∼ 10−1 and βr ∼ 10, we see that the
tiny percentage variation between the potentials {�,�} is
approximately 9 × 10−6 % from each other, meaning that �

has a behaviour similar to �. Therefore, in such a domain,
deviations from general relativity turn out to be tiny, and the
range of parameters dictated by Eq. (25) is the one within the
contribution of Yukawa-like potentials must exist (i.e. large
mi as Yukawa-like interaction masses). Similarly, for NCSG

3 It represents the quantitative contribution of the spatial part of the
metric gi j to the space-time curvature.

(special case of ETG), the experimental constraint is satis-
fied for βr � 12.19 and, if we consider the example value
βr ∼ 14, once again the variation between the potentials
{�,�} is very small, around 8.04 × 10−6 %. Now, we can
start from the Lagrangian

2L =
[

1 + 2

c2 �(r)

]
c2 ṫ2 −

[
1 − 2

c2 �(r)

]
ṙ2 − r2θ̇2.

(26)

where the dot indicates the derivative with respect to the
proper time. The Euler–Lagrange equations

d

dλ

∂L

∂ ẋα
− ∂L

∂xα
= 0, (27)

with respect to coordinate time t and the angle θ , implies the
constants of motion E = [1 + (2/c2)�(r)] ṫ , and h = r2θ̇ ,
which corresponds the conservation of energy (measured by
a static observer) and azimuthal angular momentum per unit
mass of the test particle. If we now insert these two relations
into the first integral gμν ẋμ ẋν = c2, one gets

E2[
1 + 2

c2 �(r)

]c2 −
[

1 − 2

c2 �(r)

]
ṙ2 − h2

r2 = c2, (28)

from which, after some computations, we have

1

2
ṙ2
(

1 + 2

c2

[
�(r) − �(r)

]− 4

c4 �(r)�(r)

)
+ �(r)

+ h2

2r2

(
1 + 2

c2 �(r)

)
+ 1 − E2

2
c2 = 0 . (29)

By assuming � ∼ � due to the above physical considera-
tions4 (whereas for the Quintessence field, the exact solution
(22) automatically has γ = 1, i.e. � = �), and neglecting
the higher order terms of the type ∼ �� ∼ O(c−4) because
irrelevant, the approximation leads the equation to be recast
in the new form

1

2
ṙ2 + �(r) + h2

2r2

(
1 + 2

c2 �(r)

)
+ 1 − E2

2
c2 = 0.

(30)

It is now possible to deduce the equation of motion in the suit-
able Binet form by operating the substitution of the variable

u(θ) ≡ 1/r , from which follows ṙ = −h
du(θ)

dθ
. Thus,

(
du(θ)

dθ

)2

+ u2
[

1 + 2

c2 �(u)

]
− 2

h2 �(u) + 1 − E2

h2 c2

= 0 . (31)

4 Alternatively, since � = γ �, we also remark that � can equivalently
be replaced with γ � in Eq. (26), where γ ∼ 1. In this way, we also
notice that the negligible term −ṙ2/c2 (γ − 1) � 10−13 appears (with
|γ − 1| � 10−5), which is much smaller than the order O(c−2), that is
∼ 10−5.
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Hereafter, we appropriately divide the potential � into the
sum of two separate contributions as � = �N + �p, that
is, into the usual Newtonian potential and the perturbing
Yukawa-like potential. Then, differentiating with respect to θ

this equation, we finally obtain the relativistic Binet equation
of orbit

d2u

dθ2 + u = GM

h2 + 3GM

c2 u2 − 1

h2 �′
p(u)

−2
u

c2 �p(u) − u2

c2 �′
p(u), (32)

where the prime denotes the derivative with respect to u.
Since the second member can be identified with the function

J (u) = GM

h2 + 3GM

c2 u2 − 1

h2 �′
p(u) − 2

u

c2 �p(u)

−u2

c2 �′
p(u), (33)

the differential equation equation reads

d2u

dθ2 + u = J (u), (34)

where we recognize J (u) = −h−2 V ′
e(u) as the function

associated to the derivative with respect to u of the effective
gravitational potential [third, fourth, fifth terms at first mem-
ber of Eq. (32)] multiplied by −h−2, expressed by the second
member of Eq. (32). We rapidly notice that the first term at the
second member leads to the classical elliptic orbit of New-
tonian gravity, while the second term is the post-Newtonian
contribution of General Relativity to the central force leading
to the Rosette orbit arising from the rotation of the apsidal
line. The fourth, fifth, and sixth terms represent the post-
Newtonian Yukawa contributions of the ETG to the dynam-
ics. Now we apply the epicyclic perturbation: since the cir-
cular motion of radius u0 = 1/r0 occurs at the point of min-
imum of the effective potential, namely, the potential is such
that the motion is stable and the solution u results bounded
also after a small variation from u0, in order to describe the
elliptic orbit, we add a slight perturbation so that

u = u0 + x, (35)

with u0 = GM/h2 = [a(1−ε2)]−1 obtained from the equa-
tion u0 = GM/h2 + (3GM/c2) u2

0.

3.2 Solution for small deviations from circularity

Inserting the relationship (35) into the differential equa-
tion and expanding J (u) in the Taylor series around u0 =
GM/h2 as

J (u) � J (u0) + J ′(u0)x, (36)

where J ′(u0) is the derivative evaluated at the point value u0,
we get

d2x

dθ2 + n2
1x = 0, n2

1 = (1 − J ′(u0)), (37)

which is the second-order harmonic oscillator equation. By
integrating it, we obtain the solution

x(θ) = a1 cos(n1θ + f0), (38)

with arbitrary constant f0 set equal to f0 = 0. Compared
to the closed Newtonian orbit u = GM/h2 (1 + ε cos θ),
if we define ε = h2a1/GM , from Eq. (35), we see that
the motion of the particle is suitably described by u =
GM/h2 (1 + ε cos nθ), where n leads to the orbital preces-
sion of relativistic origin.

In fact, periastron occurs when the test particle arrives at
the minimum distance point in the orbit given by the radius
r0 = 1/u0, and corresponds to the maximum point of the
variable u. This maximum point is reached when cos(n1θ) =
cos(2π) = 1, that is cos

(√
1 − J ′(u0) θ

) = cos(2π) = 1,
from which it follows

θ = 2π
(√

1 − J ′(u0)
)−1

. (39)

By expanding the Taylor series (1 − s)−1/2, s = J ′(u0) and
s � 1, it follows that

θ � 2π

(
1 + J ′(u0)

2

)
(40)

and this quickly leads to the final quantity expressing the
angular anomalistic precession of the total angle θ � 2π +
2πδθ = 2π +�θ wiped out by the test particle, that must be
identified with the second term of the last relation as follows

�θETG = π J ′(u0) = − π

h2 V
′′
e (u0). (41)

Therefore, performing a straightforward computation, we
finally obtain

�θETG = �θGR + �θp, �θGR = 6πGM

ac2(1 − ε2)
, (42)

where the General Relativity’s contribution to the periastron
advance stems from the first two terms at the second member
of Eq. (32), and

�θp = −2π

c2 �p(u0) − 4πu0

c2 �′
p(u0)

−πu2
0

c2 �′′
p(u0) − π

h2 �′′
p(u0), (43)

represents the additional shift containing all the post-
Newtonian corrections to the advance related to the corrective
potentials coming from the theory (e.g. see Eqs. (15), (18),
(20), (21)). The derivatives of the potentials are evaluated in
u0 = [a(1 − ε2)]−1. Putting all together, we find out
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�θETG = 6πGM

ac2(1 − ε2)
− 2π

c2 �p(u0)

−4πu0

c2 �′
p(u0) − πu2

0

c2 �′′
p(u0) − π

h2 �′′
p(u0) .

(44)

It must be noted that this final expression holds for small
perturbations from the circular orbit and could be applied to
systems where small eccentricities are involved, for example,
as in the case of the Solar System.

3.3 Solution for large deviations from circularity

However, if we want to include more general elliptic orbits
whose deviations from circularity are remarkable, therefore
involving much larger eccentricities as occurs in the Sgr A*
cluster, we have to consider deviations so large that the Taylor
series of J (u) in Eq. (36) must be adequately expanded to
the order [36,37]

J (u) = J (u0) + J ′(u0)x + J ′′(u0)

2
x2 + J ′′′(u0)

6
x3

+O(u4
0). (45)

Referring to the identity J (u) = h−2V ′(u), this implies
that around the stable equilibrium point, the potential has
even been developed up to the fourth order of the series,
which can be physically considered a good approximation.
Thus, the equation of the orbit assumes the new form

d2x

dθ2 + n2
1 x = J ′′

2
x2 + J ′′′

6
x3, (46)

with n2
1 = 1− J ′(u0). To solve this equation, we resort to the

Poincaré–Lindstedt method [77,78]. Hence, we now expand
x into a perturbative series as

x = x1 + x2 + x3, (47)

with x1 = a1 cos nθ , and thus perform the change of variable
σ = nθ , where

n = n1 + n2 + n3, (48)

represents the exact value of the new total frequency with
respect to the contributions due to the larger deviations
from circular orbit. Therefore, the fundamental frequency n1

undergoes a variation, with respect to its initial value, that is
not affected by successive values. This is what we are look-
ing for in achieving the final expression for the periastron
precession determination. Equation (46) can be rewritten as

n
d2x

dσ 2 + n2
1 x = J ′′

2
x2 + J ′′′

6
x3. (49)

After inserting Eqs. (47) and (48) in Eq. (49), we obtain
the following system of differential equations in the corre-

sponding required order of expansion

d2x1

dσ 2 + x1 = 0 , (50)

d2x2

dσ 2 + x2 = −2n2

n1

d2x1

dσ 2 + 1

2n2
1

J ′′ x2
1 , (51)

d2x3

dσ 2 + x3 = −2n3

n1

d2x1

dσ 2 − n2
2

n2
1

d2x1

dσ 2 − 2n2

n1

d2x2

dσ 2

+ 1

n2
1

J ′′ x1x2 + 1

6n2
1

J ′′′ x3
1 . (52)

From the homogeneous Eq. (50), we readily have

x1(σ ) = a1 cos(σ ), (53)

where the arbitrary constant is set to σ0 = 0; if we substitute
it into Eq. (51), it becomes

d2x2

dσ 2 + x2 = 2n1

n2
a1 cos σ + a1 J ′′

4n2
1

(1 + cos 2σ). (54)

We notice that the first term in the second member of the
equation is a resonant term, since it has the same frequency
of solution x1; it has an increasing amplitude over time5 and
would lead to a solution that includes an aperiodic secular
term, responsible for unbounded growth with respect to σ .
Since epycicles are almost periodic oscillations around the
equilibrium point, we have to impose the condition for the
vanishing of such a resonant factor. This leads us to set n2 =
0. Then, by solving Eq. (54), the solution reads

x2(σ ) = a2 cos σ + a2 sin σ + a2
1 J

′′

4n2
1

(
1 − cos 2σ

3

)
. (55)

Now, by inserting Eqs. (53) and (55) in Eq. (52), we have

d2x3

dσ 2 + x3 =
(

2n3

n1
a1 + 5(J ′′)2

24n4
1

a3
1 + J ′′′

8n2
1

a3
1

)
cos σ

+ J ′′

2n2
1

a1a2

(
1 + cos 2σ + a3

a2
sin 2σ

)

+a3
1

24

(
J ′′′

n2
1

− (J ′′)2

n4
1

)
cos 3σ , (56)

Applying, once again, the vanishing condition of the resonant
factor on the cos σ term amplitude, we find a non-zero value
for the correction n3 to the fundamental frequency n1 (as a
relation between n1 and n3) of the form

n3 = −5
(J ′′)2

48n3
1

− J ′′′

16n1
a2

1 . (57)

5 This is physically incompatible with the system itself, in the absence
of external sources of energy.
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and the consequent solution turns out to be

x3(σ ) = a3 cos σ + a3 sin σ

+a1a2
J ′′

2n2
1

(
1 − cos 2σ

3
− a3 sin 2σ

3a2

)

+ ((J ′′)2 − n2
1 J

′′′)
192n4

1

cos 3σ . (58)

We recall that the a2 amplitude of the solution (55) has a mag-
nitude smaller than a1, and the a3 amplitude of the solution
(58) must be of even lower order than a2.

Finally, repeating the procedure in Sect. 3.2, the test par-
ticle arrives at the periastron when the maximum point of the
orbit u is reached, that is, when cos σ = cos nθ = cos 2π .
Here, n is the new value that contains corrections to the fun-
damental frequency n1; therefore, we insert this expression,
together with Eq. (57), in Eq. (48), and obtain

n = n1 + n2 + n3 ⇒ n = (1 − J ′(u0))
1/2

− 5a2
1 J ′′(u0)

2

48(1 − J ′(u0))3/2 + 3a2
1 J ′′′(u0)

48(1 − J ′(u0))1/2 . (59)

Thus, from the relation

cos (n1 + n2 + n2) θ = cos 2π, (60)

it follows

θ = 2π

(1 − J ′(u0))1/2 − 1
48

(
5 a2

1 J ′′(u0)2 (1 − J ′(u0))−3/2 + 3a2
1 J ′′′(u0) (1 − J ′(u0))−1/2

) . (61)

Proceeding as before, a multivariable Taylor expansion
series up to the first order provides the following6

θ�2π

(
1+ J ′(u0)

2
+a2

1

16
J ′′′(u0) + 3a2

1

32
J ′(u0) J

′′′(u0)

)
,

(62)

from which, we quickly infer that the total precession of the
periastron with respect to the angle θ = 2π + �θ wiped out
by the test particle, is given by

�θETG = π J ′(u0) + 1

8
J ′′′(u0) (u0 ε)2

+ 3

16
J ′(u0) J

′′′(u0)(u0 ε)2. (63)

Therefore, recalling Eq. (33) and discarding all the negligible
higher order terms, we finally find

�θETG = �θGR + �θp,

�θGR = 6πGM

ac2(1 − ε2)
; (64)

6 We recall that in the previous subsection, we defined the relation
ε = h2a1/GM , with u0 = GM/h2.

�θp = −2π

c2 �p(u0) − 4πu0

c2 �′
p(u0) − πu2

0

c2 �′′
p(u0)

− π

h2 �′′
p(u0) + −3πu2

0 ε2

2c2 �′′
p(u0)

−πu3
0 ε2

c2 �′′′
p (u0) − πu2

0 ε2

8h2 �(4)
p (u0). (65)

This solution is entirely analytical, and the determination
of the relativistic periastron advance beyond Einstein the-
ory is now simply resorted to this final formula, including
the post-Newtonian terms of the perturbing potential and
also holding for large orbital eccentricities due to remark-
able deviations from the circularity. In fact, thanks to Eqs.
(64) and (65), the corrective and total precession are easily
calculated, respectively. By comparison, we notice that the
latter formula yields an extension of Eq. (43) which is valid
for binary systems where eccentricities are small (e.g. Solar
System), but does not rely on the best physical approxima-
tion when applied to orbits with higher eccentricities (for
instance, the S2 star around the Sgr A* black hole). Espe-
cially Eq. (65) consistently reduces to (43) for low eccen-
tricities of the elliptic orbit, since the other four successive
contributions become negligible. Hence, the pair of Eqs. (64)
and (65) are generally much more indicated for gravitational
tests where a high level of accuracy is required, for example,

beyond the Solar System (whose planetary orbits have low
eccentricities).

This relativistic precession formula has universal validity
independently of a given class of theories, according to the
assumptions of radial symmetry of the model, consistency
with GR, and Lagrangian 2L = gμν ẋμ ẋν , without the need
to choose a specific method, which can be convenient only
if used for a certain theory. Equations (64) and (65) are then
an effective product of the epiciclyc method and reduce the
evaluation of the periastron advance to a direct application
of the analytic formula (44), independently of the analytic
form of the perturbing potential (Yukawa, power-law or log-
arithmic) and its nature. Furthermore, it turns out to be eco-
nomical because it allows for a fast and simple calculation,
since derivatives are much easier to compute than integrals. It
does not require numerical integration techniques if the ana-
lytic form of the potential is too laborious or even impossible
to treat when a given method is employed. In particular, it
comprises all post-Newtonian terms at the required level of
accuracy, thus enabling improvements by several orders of
magnitude of the previous bounds on the theories. Alterna-
tively, it can be easily used for testing gravitational effects if
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the physical parameters of a theory/model have already been
estimated.

In the end, it also provides an exact mathematical frame-
work for constructing further orbital simulations without
making use of numerical techniques or codes. In the fol-
lowing, we directly apply it in its more general form (65)
in order to perform high-precision tests on the Solar System
and the S2 star for the STFOG, NonCommutative Geometry
and Quintessence Field.

4 Tests on the solar system

4.1 Applications to the ETG

In this section, we apply the previous result and constrain
the sizes of the hypothetical fifth forces arising from scalar-
tensor-fourth-order gravity, noncommutative geometry and
quintessence field, respectively. The analysis is carried out by
calculating the analytical expression in Eq. (64) for their rel-
ativistic precession shifts. The Eq. (7) show that the STFOG
field equations lead to a gravitational potential of the Yukawa-
like form (r = |x|)

�(r) = −GM

r

⎛
⎝1 +

∑
i=±,Y

Fi e
−βi r

⎞
⎠ , (66)

where Fi and β are the strength and range of the interaction
corresponding to each mode i = +,−,Y . Referring to the
ball-like solution for a non-rotating source7 (15) and the Eqs.
(7) and (8), and comparing (66) with the form of a Yukawa
potential

VY (r) = α
e−r/λ

r
≡ α

e−βr

r
, (67)

it follows the correspondence

α → −GMFi , β → βi , i = ±,Y, (68)

with

F+ = g(ξ, η) F(m+R), F− =
[

1

3
− g(ξ, η)

]
F(m−R),

FY = −4

3
F(mYR), (69)

β± = mR
√

w±, βY = mY . (70)

We can now proceed with the analysis for the STFOG and
NCSG.

7 It means that the g0i mixed term of the metric is set to 0. For example,
in certain models like the one we are treating, it is a good assumption
when the rotation of the source is so small that its influence can be
neglected.

4.1.1 Scalar-tensor-fourth-order gravity

On the basis of Eqs. (15), (18), (66), (68), by applying formula
(65), we determine the additional periastron advance due to
the post-Newtonian terms is �θp(κ, ε) for the Scalar-Tensor-
Fourth-Order Gravity, and find

�θp(β, ε) =
∑
i=± Y

Fi

{
6πGM

ac2(1 − ε2)
+ 4πGM

c2 βi

+πGM

c2 β2
i a(1 − ε2) + πβ2

i a
2(1 − ε2)2

+27πGMa ε2

2c2 (1 − ε2) + 3πε2

2
β2a2(1 − ε2)2

+9πGM ε2

c2 β2a2(1 − ε2)2

+πGM ε2

8c2 β4a3(1−ε2)3−πβ3a3ε2(1 − ε2)3

+9πGMε2

8c2 β4a3(1 − ε2)3

+π ε2

8
β4a4(1 − ε2)4

}
e−βi a(1−ε2). (71)

Equation (64) yields the total precession. We recall that Fi
and βi are the strength and range of the interaction corre-
sponding to each mode i = +,−,Y respectively, and their
expressions are given in Eqs. (69) and (70). To infer theo-
retical constraints, we impose that the additional periastron
shift �θp(κ, ε) given by (71), with κ = βa, is less than the
astrometric error η. Maximising �θp(κ, ε) with respect to
the constrained problem

|�θp(κ, ε)| � η, (72)

we obtain the bounds of the parameters {β, |Fi |}, with
i = ±,Y , by fixing a given known astrometric error η and
eccentricity ε, where the maximum value of the precession
|�θp(κ, ε)| is reached at the point βi = βmax

i . In Fig. 3,
the function |�θp(κ, ε)| is plotted relative to Mercury, Mars,
Jupiter, and Saturn. In Table 3, the corresponding bounds on
Fi are reported, and, as we can see, the post-Newtonian con-
tributions of relativistic origin allow us to achieve a further
improvement on the bound of the theory.

4.1.2 NonCommutative geometry

Considering the potential in Eqs. (20) and (21), with the appli-
cation of Eq. (65) we compute the additional post-Newtonian
periastron advance, and find

�θp(β, ε)

= −
{

8πGM

ac2(1 − ε2)
+ 16πGM

3c2 β

+4πGM

3c2 β2a(1 − ε2) + 4π

3
β2a2(1 − ε2)2
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Fig. 3 (a) |�θp(κ, ε)| vs β for Mercury. (b) |�θp(κ, ε)| vs β for Mars. (c) |�θp(κ, ε)| vs β for Jupiter. (d) |�θp(κ, ε)| vs β for Saturn. |�θp(κ, ε)|
is in ′′/century units and is plotted by a blue line, for STFOG

+18πGM ε2

c2 β2a(1 − ε2) + 2π ε2 β2a2(1 − ε2)2

−12πGM ε2

c2 β3a(1 − ε2)2 + 6πGM ε2

c2 β2a3(1 − ε2)3

−4π ε2

3
β3a3(1 − ε2)3 + 3πGM ε2

2
β4a3(1 − ε2)3

+π ε

6
β4a4(1 − ε2)4

}
e−βa(1−ε2). (73)

Here, with respect to the adopted sign convention, the cou-
pling constant of the induced Yukawa-like potential and the
rage of interaction are

α = 4

3
GM, β = βNCSG , (74)

respectively. The constraint in NCSG for the planets of the
Solar System is identified by

|�θp(β, ε)| � η → |β| � �̃(η, ε), (75)

where �̃(η, ε) is defined as the expression from which we
infer the new bounds on β with respect to a certain known
value of the astrometric error |η| and the eccentricity, or
equivalently an upper bound on its characteristic length β−1.
Results are reported in Table 4 (see also Fig. 4). These results
show that the bounds on β reach a further improvement in
their precision β ≥ 7.55 × 10−13 m−1 [79,80].

Table 3 New bounds on Fi , i = ±, Y obtained from (72) using the
values of periastron advance for planets of the Solar System, in STFOG

Planet |η| βmax
i (m−1) � |Fi | �

Mercury 0.5 3.54 × 10−11 3.44 × 10−12

Mars 5 × 10−4 8.84 × 10−12 2.69 × 10−11

Jupiter 4 × 10−3 2.57 × 10−12 1.36 × 10−9

Saturn 2 × 10−3 1.40 × 10−12 1.70 × 10−9

Table 4 Lower bounds on β obtained from (75) using the values of
periastron advance for the planets of the Solar System, in NCSG

Planet |η| β(m−1) >,

Mercury 0.5 5.15 × 10−10

Mars 5 × 10−4 1.46 × 10−10

Jupiter 4 × 10−3 3.61 × 10−11

Saturn 2 × 10−3 1.97 × 10−11

4.1.3 Quintessence field

The quintessential potential reads �p(r) = − λ

r3ωQ+1 , so that

compared to a power-law potential VPL(r) = αq rq and Eq.
(22), one has

q → −(3ωQ + 1) αq → λ. (76)
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Fig. 4 (a) |�θp(β, ε)| vs β for Mercury. (b) |�θp(β, ε)| vs β for Mars. (c) |�θp(β, ε)| vs β for Jupiter. (d) |�θp(β, ε)| vs β for Saturn. |�θp(β, ε)|
(blue line) and the constant η (red line) are plotted in ′′/century units, for NCSG

Concerning the additional relativistic precession (65) due to
the Quintessence Field, we obtain the expression

�θp(ωQ , ε) = 2πλ

[a(1 − ε2)]3ωQ+1 + 4πλ(3ωQ + 1)

[a(1 − ε2)]3ωQ+1

+3πωQλ(3ωQ + 1)

[a(1 − ε2)]3ωQ+1 − 6πωQλ (3ωQ + 1)

rs [a(1 − ε2)]3ωQ

+9πωQλ(3ωQ + 1)ε2

2[a(1 − ε2)]3ωQ+1 +
3πωQλ(9ω2

Q − 1)ε2

[a(1 − ε2)]3ωQ+1

+
3πωQλ(9ω2

Q − 1)(3ωQ − 2)ε2

4rs [a(1 − ε2)]3ωQ
, (77)

where the Schwarzshild radius is rs = 2GM/c2. By requir-
ing |�θp(ωQ, ε)| � η as a constrained problem, one gets the
bounds of the parameters {ωQ, λ}. The results are reported
in Table 5 and Fig. 5 for the different values of λ.

5 Tests and orbital simulations on S2 star

In this last section, we conclude our analysis testing the
Extended Gravity predictions for S2 star orbiting around
Sagittarius A*, the Super Massive Black Hole at the centre
of the Milky Way. Sgr A * has a mass equal to M = (4.5 ±
0.6) × 106M� and a Schwarzschild radius rs = 2GM/c2 =
1.27×1010 m, the eccentricity of its orbit is ε = 0.88, and the

Table 5 Values of the parameter ωQ obtained from (77) using the values
of periastron advance for planets of the Solar System, in QF

Planet |η| λ(m3ωQ+1) ωQ �

Mercury 0.5 4.19 × 10−32 −0.78

Mars 5 × 10−4 9.05 × 10−33 −0.71

Jupiter 4 × 10−3 7.88 × 10−32 −0.69

Saturn 2 × 10−3 1.51 × 10−32 −0.70

semimajor axis has a value a = 1.52917×1014 m. According
to Ref. [81] (see also [82,83]), periastron precession of the S2
star is 0.2 +0.057

−0.014 deg, therefore, a positive error η = 0.057
and a negative error η = −0.14 with respect to the mea-
sured angle of precession. The general relativistic S2 star
orbit around Sgr A* is reported in Fig. 6, as an outcome of
a numerical simulation carried out in order to illustrate the
predicted GR’s precession. In fact, the effect on dynamics is
more clearly visible because of the large value of the orbital
eccentricity and the proximity of S2 to the Black Hole, espe-
cially when it reaches the periastron.

We now present the results on the periastron advance for
the examined gravitational models. Orbital simulations have
been numerically performed with respect to the new bounds
in order to highlight the relativistic precessions with addi-
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Fig. 5 (a) |�θp(ωQ , ε)| vs ωQ for Mercury. (b) |�θp(ωQ , ε)| vs ωQ for Mars. (c) |�θp(ωQ , ε)| vs ωQ for Jupiter. (d) |�θp(ωQ , ε)| vs ωQ for
Saturn. |�θp(ωQ , ε)| (blue line) and the constant η (red line) are plotted in ′′/century units, for QF

Fig. 6 Orbital simulation of the
S2 star around Sgr A* Super
Massive Black Hole obtained by
numerical solution of the Eq.
(32) for the GR case (recovered
when �p(r) = 0). Axes are
measured in astronomical units
(AU). Sgr A* is oversized for
better display

tional angular precession and eventually compare outcomes
with GR’s orbit.

• STFOG – Referring to scalar-tensor fourth order gravity,
from Eq. (72) we obtain the new bound

|�θp(κ, ε)| � η → |Fi | ∼ 5.15 × 10−4,

i = ±,Y. (78)

In Fig. 7(a), we have plotted the function �θp(κ, ε) for
the S2 star. The maximum value of �θp(κ, ε) corre-
sponding to β � 4.31 × 10−14 m−1 (see Fig. 7a) has
been considered, while in Fig. 8, we illustrate the orbital
simulation of the S2 star with respect to these values.
The orbit exhibits a prograde rosette motion analogous
to that of GR in Fig. 6 with a close value of the angular
periastron precession.
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Fig. 7 (a) |�θp(κ, ε)| vs β for
S2 star in
scalar-tensor-fourth-order
gravity (STFOG). (b)
|�θp(β, ε)| vs β for S2 star in
noncommutative spectral gravity
(NCSG). (c) |�θp(ωQ , ε)| vs
ωQ for S2 star in Quintessence
Field. |�θp| precessions (blue
line) and the constant η (red
line) plotted in ◦/orbit

• NCSG – The S2 star values {ε, η, a}, from (75), imply
that

|�θp(β, ε)| � η → |β| � �̃(η, ε). (79)

The result is reported in Fig. 7b. The further improved
lower bound for β, with respect to |η| = 0.014, is
β � 5.43 × 10−13 m−1, compatible with the astrophys-
ical bounds in [79,80] [Eq. (73)]. In Fig. 9, the orbital
simulation of the S2 star for such a value is reported. Its
prograde rosette motion highlights a periastron advance
similar to the GR (Fig. 6) as well, but a bit smaller because
of the negative sign of the angular corrections to the total
precession [see Eq. (73)].

• Quintessence - In the case of Quintessence field deform-
ing the Schwarzschild geometry, Eq. (77) implies

|�θp(ωQ, ε)| � η. (80)

We reported the results in Fig. 7(c), from which it follows
that for Quintessence |�θp(ωQ, ε)| � 0.057 provided
ωQ � −0.93. Thus, the exact value ωQ = −1 that cor-
responds to the cosmological constant is excluded; the
orbital simulation of S2 is finally reported in Fig. 10 with
a behaviour close to that of the GR orbit (Fig. 6).

These new results generally lead to improvements in the
constraints for curvature-based ETG, NCSG, and Quintessence
Field models computed in our previous paper [40]. In partic-
ular, we notice that the sizes of the S2 orbits arising from
numerical simulations are comparable with the orbit pre-
dicted by General Relativity and astronomical data. The
relativistic periastron advance occurs in a prograde rosette
motion for each theory, and the angular precessions are close
to the general-relativistic value. Furthermore, it should be

noted that the effects due to screening mechanisms, under-
lying the ETG models and operating on Earth and Solar
System scales, could exist and be effective on larger scales,
such as the galactic and extragalactic scales [84–88]. Fur-
ther observations over larger distances could provide limits
on both screening mechanisms and higher derivative cor-
rections, in particular, on the effective gravitational models
discussed here. In this regard, new measurements on the
S2 star orbit precession by the GRAVITY interferometer
would be important in order to improve the level of accu-
racy, infer tighter constraints, and estimate the precise dis-
tance scale at which deviations from general-relativistic pre-
dictions become detectable.

6 Conclusions and remarks

In this paper, after an epistemological introduction to the
importance of anomalistic precessions in binary systems for
the comprehension of new physics, we have studied the rela-
tivistic periastron advance beyond Einstein theory, in partic-
ular curvature-based extended theories of gravity (ETG) and
quintessence field have been considered. The gravitational
interactions between massive bodies are thus described by
extended/modified theories of gravity. In these models, the
corrections to the Newtonian gravitational interaction are
of the Yukawa-like form V (r) = VN (1 + αe−βr ) (where
VN = −GM/r is the Newtonian potential), or of the power-
law form V (r) = VN + αq rq in the case of quintessen-
tial fields. The 2-body system constitutes a good model for
many astrophysical scenarios, such as those at the scale of
Solar System, constituted by the Sun and a planet, as well
as binary system composed by a Super Massive Black Hole
and an orbiting star, which are both the most suitable can-
didates to test a gravitational theory. In particular, for Solar
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Fig. 8 Orbital simulation of the
S2 star around Sgr A* predicted
by scalar-tensor-fourth-order
gravity (STFOG). The
numerical solution of Eq. (32) is
performed with respect to
strength and range of interaction
values β � 4.31 × 10−14 m−1

and |Fi | ∼ 5.15 × 10−4

respectively. The axes are
measured in astronomical units
(AU). Sgr A* is oversized for
better display

Fig. 9 Orbital simulation of the
S2 star around Sgr A* predicted
by noncommutative spectral
geometry (NCSG). Numerical
solution of the Eq. (32)
performed by assuming the
lower bound to be
β � 5.43 × 10−13 m−1. Axes
are measured in astronomical
units (AU). Sgr A* is oversized
for better display

Fig. 10 Simulation of the S2
star orbit around Sgr A*
predicted by a Quintessence
Field surrounding a Black Hole.
The numerical solution of Eq.
(32) is performed with respect to
the bound ωQ � −0.93 and
λ = 1.81 × 10−33

(quintessential parameter)
estimated from Eq. (80). The
axes are measured in
astronomical units (AU). Sgr A*
is oversized for better display

System planets and the S2 star around Sagittarius A*, we
have dealt with a restricted version of the problem, namely
systems which can be modelled as a test particle orbit-
ing in central force field, i.e. moving along the geodesics
of a Schwarzschild-like spherically symmetric space-time
around a massive non-rotating ball-like source.

To this aim, we have found a new analytical solution
through the epyciclic method, formally represented by a
formula leading to a straightforward determination of the
relativistic periastron advance beyond Einstein theory [Eq.

(64)] or models starting from the General Relativity’s frame-
work (e.g. GR plus dark matter), that is, a theory-independent
solution beyond GR. This includes the presence of all post-
Newtonian potentials implied by the theories and it is also
valid for large eccentricities, when deviations from the circu-
lar orbit are considerable. Equation (65) is related to the total
angular advance (64), and therefore provides the additional
relativistic precession due to the post-Newtonian terms of
the corrective potentials. We remark that the analytical solu-
tion is independent of the form (Yukawa-like, Power-Law,
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etc.) of the corrective potentials descending from a given
theory. Moreover, it reduces to its restricted version, given
by Eqs. (43) and (44), when we consider systems with small
orbital eccentricities; such a version turns out to be good for
the Solar System. The generalisation of the result was based
on the epicyclic method and the expansion to higher-order
perturbations in the equation of orbit, which also involves
relativistic corrections to the Newtonian potential. At the
end of the process, indeed, we achieve an effective analyti-
cal formula that makes it immediately possible to calculate
the orbital precession and includes all the post-Newtonian
potentials beyond Einstein theory useful for analysing the
dynamics of the system. By simply starting from the generic
assumption of a spherical symmetric metric, such a resolution
is universally valid and can be applied to analyse 2-body sys-
tems beyond general relativity, or models within GR itself.
Furthermore, it enables simple direct computations for the
total precession, which is useful for high-precision gravita-
tional tests. The results are analytical without the need for
numerical integration, as might happen in other approaches.
Afterwards, the main result (64) and (65) was directly applied
to the Solar System and the S2 star in order to perform high-
precision tests. The analysis for scalar-tensor-fourth-order
gravity [Eq. (71)], noncommutative spectral geometry [Eq.
(73)], and quintessence field related to dark energy [(Eq.
(77)], has been performed to find improvements and, there-
fore, new constraints on the strength and range of interaction
of such theories, because terms of relativistic origin can affect
the final result.

Thus, in the Solar System, we have found improvements
leading to new bounds as follows: the highest value of βi

is βi � 3.54 × 10−11 m−1, with a constraint in |Fi | being
|Fi | � 3.44 × 10−12. In the case of Non-Commutative
Spectral Gravity (NCSG), the analysis shows that the pre-
cession shift of planets allows us to constrain the parame-
ter β at β > (10−11 − 10−10) m−1. For the Quintessence
Field, the adiabatic index ωQ and the quintessence param-
eter κ are the parameters that characterise the gravitational
field; we have found that κ assumes tiny values, as expected,
being essentially related to the cosmological constant, while
ωQ � −(0.78 − 0.69), that is, it never assumes the value
ωQ = −1 corresponding to the pure cosmological constant.

For the S2 star around Sagittarius A*, we have found
that for STFOG β � 4.31 × 10−14 m−1, for NCSG we
obtain β � 5.43×10−13 m−1 compatible with astrophysical
constraints, and finally for the Quintessence Field, we have
ωQ � −0.93. Orbital simulations, numerically performed
by assuming these bounds for the examined models, show
a typical prograde rosette motion with relativistic periastron
advance close to the GR’s value. The sizes of the orbit pre-
dicted for STFOG, NCSG and Quintessence are comparable
with the observed one traced on astrometric data and the one
of Einstein theory itself. For NCSG, the dominant sign of

the corrections is negative; then the prograde rosette motion
performed by S2 has a tiny lower angle of precession than the
general-relativistic one. For these theories, the S2 orbit sim-
ulations turn out to overall be consistent with the prograde
rosette motion of the Einstein theory. New constraints and
simulation tests leading to further improvements will even-
tually be obtained when a new tighter error η on the S2 star
precession from the interferometer GRAVITY is available.
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