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INTRODUCTION 
 

Down Syndrome (DS) represents human most frequent 
aneuploidy, characterized by an extra complete or 

segment of chromosome 21 (trisomy 21), eventually 

triggering the dysregulation of several factors [1]. 

Besides the well-established neurodevelopmental 

defects and neuronal dysfunction, it has been recently 

reported how DS individuals also display a plethora  
of conditions related to unbalanced reactive oxygen 

species (ROS) production [2]. Such phenotype is 

dependent on chromosome 21 triplication, triggering the 
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ABSTRACT 
 

Down Syndrome (DS) is a common genetic disorder characterized by an extra copy of chromosome 21, 
leading to dysregulation of various metabolic pathways. Oxidative stress in DS is associated with 
neurodevelopmental defects, neuronal dysfunction, and a dementia onset resembling Alzheimer's disease. 
Additionally, chronic oxidative stress contributes to cardiovascular diseases and certain cancers prevalent in 
DS individuals. This study investigates the impact of ageing on oxidative stress and liver fibrosis using a DS 
murine model (Ts2Cje mice). Our results show that DS mice show increased liver oxidative stress and 
impaired antioxidant defenses, as evidenced by reduced glutathione levels and increased lipid peroxidation. 
Therefore, DS liver exhibits an altered inflammatory response and mitochondrial fitness as we showed by 
assaying the expression of HMOX1, CLPP, and the heat shock proteins Hsp90 and Hsp60. DS liver also displays 
dysregulated lipid metabolism, indicated by altered expression of PPARα, PPARγ, FATP5, and CTP2. 
Consistently, these changes might contribute to non-alcoholic fatty liver disease development, a condition 
characterized by liver fat accumulation. Consistently, histological analysis of DS liver reveals increased 
fibrosis and steatosis, as showed by Col1a1 increased expression, indicative of potential progression to liver 
cirrhosis. Therefore, our findings suggest an increased risk of liver pathologies in DS individuals, particularly 
when combined with the higher prevalence of obesity and metabolic dysfunctions in DS patients. These 
results shed a light on the liver's role in DS-associated pathologies and suggest potential therapeutic 
strategies targeting oxidative stress and lipid metabolism to prevent or mitigate liver-related complications 
in DS individuals. 
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upregulation of proteins involved in redox homeostasis 

as superoxide dismutase 1 (SOD1), the transcription 

factor BTB and CNC homology 1 (BACH1), the Protein 

C-ets-2 (ETS2), carbonyl reductase (CBR), S100 

calcium-binding protein B (S100B) [3]. Furthermore, it 

has been reported that the major regulator of antioxidant 

response elements (ARE) nuclear factor (erythroid-

derived 2)-like 2 (NRF2) is transcriptionally activated 

in DS individuals [4]. This effect has been reported to 

be related to the hyperphosphorylation of mitogen-

activated protein kinases (MAPKs) which in turn 

mediates NRF2 phosphorylation thus, promoting its 

dissociation from Kelch-like ECH-Associating protein 1 

(Keap1) but preventing its nuclear translocation [5]. In 

addition, the high oxidative environment might be 

responsible for several of the outcomes characterizing 

DS, including accelerated aging, eventually triggering 

several of the mental disorders characterizing DS 

individuals. To this regard, recent studies performed in 

Ts2Cje DS mouse model [5–7], showed an increased 

risk of developing a type of dementia mimicking the 

clinical and pathological course of Alzheimer’s disease 

(AD) already at the age of 40s [8]. These results are 

strictly related to the triplication of genes associated 

with AD such as amyloid precursor protein (APP),  

β-secretase 2 (BACE2), and S100 calcium binding 

protein B (S100B) [9], which along with the oxidative 

unbalance characterizing DS, promote the accumulation 

of amyloid beta-peptide (Aβ) [3]. Furthermore, the 

chronic condition of oxidative stress accounts for several 

comorbidities, including cardiovascular diseases, and 

certain types of cancer characterizing DS individuals 

[10, 11]. In this context, liver may also represent one  

of the organs involved in the complex metabolic 

impairment of DS, even though liver function in DS 

patients is poorly described, and the molecular basis 

involved in the pathophysiological processes remain 

elusive. To this regard, a vascular portohepatic anomaly 

in DS individuals has been characterized to impair the 

direct communication between the right portal vein and 

the inferior vena cava [12], potentially linking congenital 

vascular malformation and hepatic vascular shunt  

[13]. Furthermore, DS individuals show a significant 

enhanced production of hepatitis B antigen which might 

be responsible for the occurrence of the autoimmune 

hepatitis, a chronic and progressive inflammation of the 

liver from an unknown cause [14]. In addition to this, 

the alternated levels of several amino acids, along with 

several metabolites involved in the methylation cycle 

have been detected in blood samples derived from DS 

individuals, pointing out metabolic dysfunctions as one 

of the drivers of DS liver pathologies [15]. Consistently, 

DS individuals, since childhood, are typically obese  
and also presenting dyslipidemia and hyperinsulinemia 

[16]. Previous studies showed that DS patients exhibit  

a marked trend in developing overweight and obesity, 

mostly as a result of a lower resting metabolic rate, a 

higher consumption of energy-rich foods, and a poor 

physical activity. As a result, these subjects display a 

higher risk in developing type 2 diabetes, dyslipidemia, 

hyperinsulinemia, hypertension, and cardiovascular 

diseases [16]. However, the recent improvement of 

surgical and early therapeutic intervention in DS 

morbidities, increased patients’ life expectancy. On the 

other hand, there exists an enhanced risk of chronic 

noncommunicable disease as non-alcoholic fatty liver 

disease (NAFLD), a pathology characterized by the 

accumulation of fat in the liver, a condition strictly 

associated to the enhanced insulin resistance reported  

in DS individuals [15–17]. Furthermore, DS liver  

is characterized by significative changes in liver 

morphology showing sinusoidal dilatation, central-vein 

sclerosis, and portal fibrosis [18]. Finally, other key 

factors to take into due account are several single 

nucleotide polymorphisms (SNPs), such as patatin  

like phospholipase domain containing 3 (PNPLA3), 

Transmembrane 6 superfamily member 2 (TM6SF2), and 

Klotho eventually promoting hepatic fat accumulation 

[19]. Given the correlation standing between DS and 

NAFLD occurrence, further research is needed to  

fully understand the pathophysiological mechanisms 

underlying such association. 

 

MATERIALS AND METHODS 
 

Mouse colony 
 

Ts2Cje (Rb(12.Ts171665Dn)2Cje) mice are an 

established DS murine model displaying a triple  

copy of a Robertsonian fusion chromosome where the 

distal end of Chr16 and Chr12 are located. Parental 

generations were purchased from Jackson Laboratories 

(Bar Harbour, ME, USA). The mouse colony was 

raised by a crossbreed of Ts2Cje trisomic females 

with euploid (B6EiC3SnF1/J) F1 hybrid males (Eu). 

The parental generations were purchased from 

Jackson Laboratories (Bar Harbour, ME, USA). These 

breeding pairs produce litters containing both trisomic 

(Ts2Cje) and euploid (Eu) offspring. Pups were 

genotyped to determine trisomy by standard PCR, 

using Reinoldth’s method [20, 21]. Mice were housed 

in clear Plexiglas cages (20 × 22 × 20 cm) under 

standard laboratory conditions with a temperature of 

22 ± 2°C and 70% humidity, a 12-h light/dark cycle, 

and free access to food and water, as previously 

described [21]. All the experiments were performed  

in strict compliance with the Italian National Laws 

(DL 116/92), and the European Communities Council 

Directives (86/609/EEC). The experimental protocol 
was approved by the Italian Ministry of Health 

(#1183/2016-PR). All efforts were made to minimize 

the number of animals used in the study and their 
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Table 1. Real time PCR primers’ list. 

Gene Forward 5′ --> 3′ Reverse 5′ --> 3′ Accession number 

Hmox1 TGACACCTGAGGTCAAGCAC CAGCTCCTCAAACAGCTCAATG NM_010442.2 

Il1β TGCCACCTTTTGACAGTGATG CGTCACACACCAGCAGGTTA NM_008361.4 

Il10 GTAGAAGTGATGCCCCAGGC GACACCTTGGTCTTGGAGCTTATT NM_010548.2 

Pparα TGCCTTCCCTGTGAACTGAC CACAGAGCGCTAAGCTGTGA NM_001113418.1 

Pparγ GGTCAGTCATGGAACAGCCA TTCTGGGAGAGGTCTGCAC NM_001411509.1 

Fatp5 TGTAACGTCCCTGAGCAACC TAAGCCCACATTGCCCTCTG NM_009512.2 

Cpt2 GAATGACAGCCAGTTCAGGAAG GCATGCAGCTCCTTCCCAAT NM_009949.2 

Col1a1 CCCTGGTCCCTCTGGAAATG GGACCTTTGCCCCCTTCTTT NM_007742.4 

Gapdh AACCCTTAAGAGGGATGCTGC TCTACGGGACGAGGAAACAC NM_001289726.2 

 
suffering. For this reason, our cohort was composed  

by 49 mice subdivided as following: 3 months  

(6 Eu; 6 TS2Cje); 6 months (5 Eu; 6 TS2Cje); 9 

months (6 Eu; 6 TS2Cje) and 12 months (6 Eu; 6 

TS2Cje). Immediately after isolation, samples were 

put into liquid nitrogen and then stored at −80°C until 

utilization. 

 

GSH evaluation 

 

GSH levels were assayed on tissues homogenized 

performing a spectrophotometric assay based on the 

reaction of thiol groups with 2,2-dithio-bis-nitrobenzoic 

acid at a wavelength of 412 nm (εM = 13,600 M−1 cm−1, 

where εM is a wavelength-dependent molar absorptivity 

coefficient) [22]. Measurements were performed 

quantified using Synergy H1 (Biotek, Milan, Italy) in 

quadruplicate per each sample. 

 

LOOH measurement 

 

Lipid peroxide assay was performed as already reported 

[22]. Briefly, the reaction is based on the oxidation of 

Fe2+ to Fe3+ in the presence of xylenol orange at 560 

nm. Measurements were performed quantified using 

Synergy H1 (Biotek, Milan, Italy) in quadruplicate per 

each sample. 

 

RNA extraction and cDNA preparation 

 

Tissue sections were resuspended in 500 mL of 

PRImeZOL Reagent (#AN1100, Canvax Biotech, 

Andalusia, Spain). RNA extraction was then performed 

as previously described [23] and resuspended in 

RNase-free water. RNA was quantified using Synergy  

H1 (Biotek, Milan, Italy). 2 μg of RNA from each 

sample were retro-transcribed using High-Capacity 

cDNA Reverse Transcription Kit (#4368814; Applied 

Biosystems; Waltham, MA, USA) according to 

manufacturer instructions. 

Real time PCR 

 

Gene expression analysis was performed as  

previously described [24]. As probe, PowerUP SYBR 

Green Master Mix (#A25742; Applied Biosystems, 

Waltham, MA, USA) was used. Primers are listed in 

Table 1. 

 

Western blot analysis 

 

Tissue sections were homogenized for protein extraction 

as already described [25]. Briefly, a small section of 

liver was resuspended in 1 mL of phosphate buffer 

solution (PBS) and then mechanically homogenized by 

Dounce homogenizer. The suspension was centrifuged 

15 minutes at 13000 Rpm and supernatant was collected 

for further analysis. Therefore, we performed western 

blot analysis as described in [26]. Rabbit anti heat shock 

protein 90 (HSP90) (ab59459), heat shock protein 60 

(HSP60) (ab46798), and glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) (ab8245) were purchased 

from Abcam (Cambridge, UK). Rabbit anti CLPP 

(PA5-52722) was purchased from Thermo Fisher 

Scientific (Waltham, MA, USA). Secondary antibody 

anti Rabbit-HRP (ab6721) was purchased from Abcam 

(Cambridge, UK). 

 

Histopathological analysis 

 

Liver sections were formalin-fixed, paraffin-embedded 

and treated for histological examination using a 

standard method [27]. Two pathologists (R.C. and 

G.B.) separately evaluated all histological slides, 

blinded to sample identity. The following histological 

features were assessed on 5 micron-thick sections 

stained with hematoxylin and eosin and Masson’s 

trichrome, as previously described [28]: fibrosis, 

inflammation, steatosis and hepatocellular ballooning. 

Fibrosis was graded on a 0–3 scale: 0, absence of 

fibrosis; 1, portal spaces expanded by fibrosis with  
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or without fibrous septa; 2, portal areas expanded  

by fibrosis with formation of fibrous bridges; 3, 

numerous fibrous bridges with formation of nodules. 

The following score was used to grade inflammation: 

0, lack of inflammation; 1, periportal inflammation; 2, 

mild/moderate portal inflammation; 3, marked portal 

inflammation. Hepatocellular ballooning was scored on 

a 0–2 scale: 0, absent; 1, mild; 2, moderate/severe. The 

following 0–3 score was used to quantify steatosis: 0, 

absent; 1, mild; 2, moderate; 3, diffuse. For each case, 

the final histological score was performed by summing 

the scores of fibrosis, inflammation, steatosis, and 

ballooning. 

 

Statistics 

 

Data are shown as mean ± standard deviation (SD). 

Statistical analysis was performed by using Prism 

8.0.2. software (GraphPad Software, San Diego, CA, 

USA). Significant differences were assessed using a 

one-way ANOVA or the student test, when needed. A 

value of p < 0.05 was considered statistically significant 

and symbols used to indicate statistical differences are 

described in figure legends. 

 

RESULTS 
 

DS liver displays an enhanced exposure to oxidative 

stress 

 

DS individuals display an impaired ROS  

scavenging system, which might be also hampering 

liver homeostasis [2]. To investigate this outcome  

also in our mice model, we therefore assayed the 

accumulation of glutathione (GSH) and lipid peroxide 

(LOOH) in wild type (Eu) and DS Ts2Cje liver 

homogenates derived from 3-, 6-, 9-, and 12-months 

old mice (Figure 1). Our cohort was composed by 49 

mice: 3 months (6 Eu; 6 TS2Cje); 6 months (5 Eu; 6 

TS2Cje); 9 months (6 Eu; 6 TS2Cje) and 12 months (6 

Eu; 6 TS2Cje). Ts2Cje, but not Eu, were characterized 

by a deficit of GSH at 12-months. Any significant 

change was evident at any stage before the 12-months 

(Figure 1A). LOOH levels, on the other hand, were 

increased in 12-months old Ts2Cje liver homogenates 

compared to the Eu counterpart (Figure 1B). Similarly 

to GSH, also LOOH levels were not significatively 

changed at any of the time points assayed before 

(Figure 1B). Given this evidence, we next sought to 

investigate heme oxygenase 1 (HMOX1) expression in 

3-, 6-, 9-, and 12-months old mice models by qPCR 

(Figure 1C). Our results show that there is a trend in 

increasing HMOX1 expression at 3-, 6-, and 9-months, 

but it turns to be significatively downregulated at 12-

months in Ts2Cje livers compared to Eu counterpart 

(Figure 1C), overall highlighting an important increase 

in oxidative stress in DS mice model liver, and an 

impairment of the antioxidant defenses.  

 

DS mice livers show an increase of inflammatory 

markers 

 

An increase in oxidative stress as the one we reported 

in Ts2Cje livers, might be correlated with an increase 

in the overall inflammatory status [29]. The latter  

is strictly linked to the accumulation of heat shock 

proteins (Hsps) [30]. For this reason, we sought to 

investigate the accumulation of Hsp90 and Hsp60 in 

our model. Western blot analysis unveiled a marked 

decrease of both Hsp90 and Hsp60 in Ts2Cje liver 

protein extract compared to Eu counterpart (Figure 

2A–2C; Supplementary Figure 1). 

 

The increased inflammatory status has been reported  

to also affect the mitochondrial dynamics [31]. In  

this context, the Caseinolytic Mitochondrial Matrix 

Peptidase Proteolytic Subunit (Clpp) has been described 

as one of the major regulators of mitochondrial quality 

control system [32]. Interestingly, western blot analysis 

highlighted a marked increase in Clpp protein level in 

Ts2Cje liver homogenates compared to Eu counterpart 

(Figure 2A, 2D; Supplementary Figure 1). Overall, these 

data describe a scenario in which the increase in 

oxidative stress triggers an inflammatory status activating 

Hsp machinery and possibly impairing mitochondrial 

quality system. 

 
DS liver increases lipid metabolism 

 

The decreased level of Clpp has been described to be one 

of the NASH hallmarks, a pathology strictly associated 

to liver lipid accumulation [32]. To assay lipid 

accumulation in our model we assayed the expression  

of two members of peroxisome proliferator-activated 

receptors (PPARs) family. Interestingly, the expression 

of both PPARα and PPARγ in Ts2Cje liver were 

markedly decreased compared to the Eu counterpart 

(Figure 3A, 3B). Furthermore, qPCR analysis also 

described a marked increase in fatty acid transport 

protein-5 (FATP5) and Carnitine palmitoyl transferase 2 

(CTP2) in Ts2Cje, but not in Eu livers (Figure 3C, 3D). 

Taken together these data we unveil an increase in fatty 

acids metabolism in DS mice livers. 

 
DS livers display an increased fibrosis 

 

The accumulation of lipids within the hepatic tissue 

might drive the shift from NASH toward cirrhosis 

[33]. This process is characterized by the accumulation 

of collagen. To test this outcome, we performed  

a qPCR testing Collagen Type I Alpha 1 Chain 

(Col1a1) expression, which was significantly increased 
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in Ts2Cje livers compared to the Eu counterparts 

(Figure 4A). 

 
Furthermore, we also performed a histological analysis 

on Ts2Cje and Eu liver sections, evaluating the fibrosis 

percentage (Figure 4B, 4C). Histologically, Eu group 

showed lack of fibrosis and hepatocellular ballooning, 

along with low levels of steatosis and inflammation 

compared to Ts2Cje counterpart (Figure 4B, 4C). 

Conversely, the Ts2Cje group fibrosis formation with, at 

least focal, fibrous septa/bridging and a more widespread 

inflammation and steatosis than controls (Figure 4B, 4C). 

Taken together, these data report an increased fibrotic 

rate in DS liver compared to healthy controls. 

 

 
 

Figure 1. DS mice are characterized by an increased oxidative stress. (A) GSH levels are decreased in Ts2Cje 12-months old mice 

liver. Representative scheme for GSH quantitation in Eu and Ts2Cje livers obtained from 3-, 6-, 9-, and 12-months old mice. (B) LOOH levels 
are increased in Ts2Cje 12-months old mice liver. Histograms representative of LOOH spectrophotometric evaluation on Eu and TS2Cje 
livers obtained from 3-, 6-, 9-, and 12-months old mice. (C) HMOX1 expression is downregulated in Ts2Cje 12-months old livers. 
Representative histogram of the real-time PCR against HMOX1 on the liver extract obtained from 3-, 6-, 9-, and 12-months old Eu and 
Ts2Cje mice. GAPDH was used as housekeeping gene. Histograms are representative of four different experiments (*P ≤ 0.05; ***P ≤ 0.001). 
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DISCUSSION 
 

Trisomy of chromosome 21 is the genetic signature of 

DS, impairing the cognitive and intellectual abilities  

of individuals with this condition. Previous reports 

showed that DS individuals are characterized by 

changes also on their metabolic profile [15] eventually 

affecting the homeostasis of several organs, including 

liver. The aim of the present study was to study the liver 

of a DS mouse model, which was previously generated 

and characterized by Barone and Perlugi’s lab [6, 7, 21, 

34]. Interestingly, we found that 12-months old mice 

liver were characterized by a decreased GSH con-

centration, a well-known antioxidant molecule [35]. The 

decreased level of antioxidant defenses prompted us to 

investigate the concentration of LOOH in this context. 

 

 
 

Figure 2. DS mice show a marked increase in liver inflammation. Western blot analysis on 12-months old Eu and Ts2Cje liver extracts 

against Hsp90, Hsp60, and Clpp (A). Ts2Cje mice showed a decreased Hsp90 (B), Hsp60 (C) levels, while Clpp accumulation is increased (D). 
GAPDH was used as housekeeping protein. Histograms are representative of four different experiments (*P ≤ 0.05; **P ≤ 0.01). 

 

 
 

Figure 3. DS mice have a marked increase in lipid metabolism. PPARα, PPARγ, FATP5, and CTP2 are differently regulated in Ts2Cje livers. 

Representative histogram of the real-time PCR against PPARa (A), PPARg (B), FATP5 (C), and CTP2 (D) on the liver extract obtained from 12-
months old Eu and Ts2Cje mice. GAPDH was used as housekeeping gene. Histograms are representative of four different experiments (*P ≤ 0.05). 
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Consistently, we also showed a concomitant increased 

oxidative environment in DS 12-months old mice liver 

as the result of the possible dysregulation of different 

factors occurring in redox homeostasis, as recently 

reviewed by our group [3]. Interestingly, we also 

reported a significant decrease in HMOX1 expression 

in 12-months old livers which is consistent with the 

increased expression of transcription factor Bach1, a 

master transcription repressor having HMOX1 as one 

of the main targets [36, 37], reported in the brain of DS 

subject, and further demonstrated in Ts2Cje mice model 

by Perluigi’s et al. [34, 36]. In particular, HMOX1 

protein plays a role in the complex pathophysiological 

cascade involved in insulin resistance mechanisms, 

oxidative stress, metabolic syndrome and cardiovascular 

diseases [37–39]. The rewire of the oxidative balance  

in DS livers might also have a crucial role in rewiring 

the inflammatory response of this organ. Interestingly, 

we report here a repression of IL-1 transcription, 

along with an increase of IL-10 expression. As 

recently reported, an enhancement of IL-10 expression 

inhibits IL-1 production [40]. This result might be 

related to the increased susceptibility displayed by DS 

individuals in the development of several infections, 

given the lack of an inflammatory response [41]. To 

further assess the inflammatory response in our model, 

we also evaluated the protein accumulation of Hsp90, 

which was decreased in DS-livers. Noteworthy, no 

significative change in Hsp90 accumulation within DS 

brains has been reported [42] thus suggesting that such 

pathway may be specifically involved in the liver of DS. 

In addition, we also reported a decrease in the protein 

levels of the mitochondrial shock protein Hsp60. This 

data is consistent with a previous report describing a 

deficit in Hsp60 on skin fibroblasts derived from DS 

individuals [43]. In particular, Hsp60 is the major 

mitochondrial HSP, in charge for preventing protein 

aggregation following ROS unbalancing [44]. Therefore, 

we sought to assess the protein accumulation of one  

of the major regulators of mitochondrial fitness,  

Clpp, which we found to be upregulated in our DS 

model. Interestingly, it has been reported that under 
 

 
 

Figure 4. DS mice show a marked increase in fibrotic markers. (A) Col1a1 expression level is increased in Ts2Cje livers. 

Representative histogram of the real-time PCR against Col1a1 on the liver extract obtained from 12-months old Eu and Ts2Cje mice. GAPDH 
was used as housekeeping gene. (B) Ts2Cje liver section shows an increased fibrotic level. Representative histological images of the rat 
livers from control and Ts2Cje group. (Top left panel) Mouse liver from control group showing absence of steatosis (score 0) and mild 
periportal inflammation (score 1) (hematoxylin and eosin; original magnification 100x). (Bottom left panel) Mouse liver from Ts2Cje group 
exhibiting moderate steatosis (score 2) and moderate portal inflammation (score 2) (hematoxylin and eosin; original magnification 150x). 
(Mid panel) Mice liver from control group showing absence of fibrosis (score 0) (Masson’s trichrome; original magnification 50x). (Right 
panel) Mice liver from Ts2Cje group exhibiting diffuse fibrosis (score 3) with fibrous bridging (arrows) (Masson’s trichrome; original 
magnification 50x). (C) Histological score quantified as in B. Histograms are representative of four different experiments (*P ≤ 0.05; ***P ≤ 
0.001). 
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high fat diet, Clpp downregulation correlates with  

an increased protection against obesity and hepatic 

steatosis, also preventing insulin resistance [45, 46]. 

Furthermore, Clpp is also part of the machinery 

preventing hepatocytes senescence [45]. Therefore,  

we here hypothesize that the upregulation of this 

protein might be linked to the increased insulin 

resistance extensively described in DS individuals [15]. 

Furthermore, it might also be part of a compensatory 

effect preventing cellular senescence and liver cirrhosis, 

typical of DS individuals. To further investigate such 

possibility, we also assessed the expression level of 

PPARα and PPARγ, two ligand-activated transcription 

factors part of the nuclear hormone receptor super-

family, in turn in charge for regulating adipogenesis 

and insulin resistance [47]. Interestingly, the down-

regulation of PPARα and PPARγ, such as the one  

we highlighted in our model, could be related to  

the accumulation of lipid droplets within hepatocytes, 

also contributing to the insulin resistance reported in 

DS individuals [48, 49]. The accumulation of lipid 

droplets in DS liver is further supported by our  

data showing an increased expression of FATP5 and 

CTP2 in 12-months old liver compared to the wild-

type counterpart. The former is responsible for the 

uptake of long-chain fatty acids [50]. Consistently, its 

expression has been reported to be inversely correlated 

to NAFLD progression [51]. The increase in fatty 

acids uptake might also be correlated to increased 

CTP2 expression, in turn in charge for initiating fatty 

acids oxidation eventually promoting their clearance 

[52]. In this context, fatty acids accumulation might 

work as a driver for the onset of liver fibrosis. 

Consistently, we reported an enhanced expression  

of Col1a1 in 12-month-old DS mice liver. Since  

an increased Col1a1 is usually associated with an 

enhanced fibrotic rate in hepatocellular carcinoma 

[53], we also decided to assess fibrosis of wild-type 

and DS livers by histopathology. Interestingly, our 

results corroborated a scenario in which DS livers 

display higher fibrosis and hepatocellular ballooning, 

together with increased steatosis and inflammation. 

Overall, these data unveil a significant increased  

risk for DS individuals to develop liver pathologies. 

Interestingly, liver failure has been reported to DS 

newborns showing transient abnormal myelopoiesis,  

a pathology characterized by transient appearance  

of blast cells and eventually also affecting liver 

homeostasis [54]. Furthermore, a diffuse lobular fibrosis 

around proliferating ductular elements and residual 

hepatocytes, as the one characterizing our DS models, 

was reported in DS newborns individuals presenting  

a severe liver disease [55]. These effects are further 
enhanced by the higher obesity rate reported in DS 

individuals, in turn promoting NAFLD onset by 

accumulation of hepatic fatty acids [56]. 

Overall, our work unveils a scenario in which DS liver 

is characterized by an impaired ROS scavenging 

system resulting in a significant impairment of redox 

homeostasis and leading to an impaired response to 

inflammatory stimuli. Finally, such results correlated 

with the increased fibrosis of DS animals, along  

with the accumulation of fatty lipids. In conclusion, 

our results put the basis for the use of antioxidants 

supplementation in DS patients to prevent liver-

associated pathologies. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Western blot analysis on Hsp90, Hsp60, GAPDH and Clpp. Full membranes derived by the western blot 
analysis on Hsp90, Hsp60, GAPDH and Clpp. 
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