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Abstract
We prove that a deterministic n-person shortest path game has a Nash equlibrium in 
pure and stationary strategies if it is edge-symmetric (that is (u, v) is a move when-
ever (v, u) is, apart from moves entering terminal vertices) and the length of every 
move is positive for each player. Both conditions are essential, though it remains an 
open problem whether there exists a NE-free 2-person non-edge-symmetric game 
with positive lengths. We provide examples for NE-free 2-person edge-symmetric 
games that are not positive. We also consider the special case of terminal games 
(shortest path games in which only terminal moves have nonzero length, possibly 
negative) and prove that edge-symmetric n-person terminal games always have Nash 
equilibria in pure and stationary strategies. Furthermore, we prove that an edge-
symmetric 2-person terminal game has a uniform (subgame perfect) Nash equilib-
rium, provided any infinite play is worse than any of the terminals for both players.

Keywords Nash equilibrium · n-Person deterministic graphical games · Shortest 
path games · Terminal games

1 Introduction

Given a finite directed graph G = (V ,E) , we interpret a vertex v ∈ V  as a position of 
a game and a directed edge e = (u, v) ∈ E as a move from u to v.

The set of players is denoted by I = {1,… , n} . Each player i ∈ I controls a subset 
Vi ⊆ V  of the positions, and we also have a nonempty subset VT , the set of so-called 
terminal positions that are not controlled by any of the players. We assume that the 
sets V1,..., Vn , and VT form a partition of V, and that terminals are the only positions 
with no directed edges leaving. Furthermore, we fix a position v0 ∈ V⧵VT and call it 
the initial position.
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A pure and stationary strategy �i of player i ∈ I is a mapping �i ∶ Vi ↦ V  such 
that (v, �i(v)) ∈ E for all v ∈ Vi . To simplify our notation, sometimes we also use �i 
as the set of edges {(v, �i(v)) ∣ v ∈ Vi} . In this paper we consider only pure and sta-
tionary strategies, and call them simply strategies.

Let us denote by Σi the set of strategies of player i ∈ I , and set Σ = Σ1 ×⋯ × Σn . 
The tuple � =

(
�i ∣ i ∈ I

)
∈ Σ is called a strategy profile or situation. Every situa-

tion determines uniquely a directed walk, called the play P(�) and defined as fol-
lows. In a position v ∈ Vi on this walk, player i makes the move (v, �i(v)) , after which 
the walk enters v� = �i(v) . Starting with v0 , this process creates a unique play P(�) . 
This play either comes to a terminal v ∈ VT , where it stops (no player handles the 
terminal and no moves are from it), or it repeats a position reached earlier, in which 
case it follows the enclosed cycle infinitely many times. In the first case we call P(�) 
a terminal play, while in the second case it is called an infinite play.

Each player i ∈ I has his own length function �i ∶ E → ℝ that assigns to every 
move e ∈ E a real number �i(e) that we interpret as the cost of this move for this 
player; we call it the �i-cost of the move and set � = (�i ∣ i ∈ I) . The cost of a 
sequence of moves is the sum of the costs of these moves. In particular, for a situa-
tion � ∈ Σ and player i ∈ I the effective cost of � for player i is

This kind of additive effective cost function, called total, is considered in Thuijsman 
and Vrieze (1987); see more analysis and variations in Boros et  al. (2018, 2017); 
Gurvich and Oudalov (2014). Note that the cost of an infinite play may not be well 
defined, in particular when the cost of moves can be both positive and negative. The 
above cited papers provide several possible solutions for this problem. In our paper 
we focus on the special case, when all cost functions are positive; in this case the 
cost of an infinite play is +∞ , while every terminal play has a finite cost.

All players aim to minimize their effective costs.
We will call the obtained class of games the shortest path games, or simply games 

in the sequel. Such a game Γ is defined by the triple (G, v0,�) . Note that we always 
assume a given partition V = V1 ∪⋯ ∪ Vn ∪ VT of the vertices of G; just we do not 
want to convolute our paper with extra notation.

A situation � ∈ Σ is called a Nash equilibrium (or NE, in short) if �i(�) ≤ �
i(��) 

for any player i ∈ I and any situation �� ∈ Σ that may differ from � only by the strat-
egy of player i. In other words, a situation is a NE if no player i ∈ I can reduce her 
effective cost by choosing another strategy, provided that all other players keep their 
old strategies. We call � a terminal NE if it is a NE and P(�) is terminal.

1.1  Edge‑symmetric and positive shortest path games

A local cost function � is called positive if �i(e) > 0 for all players i ∈ I and 
moves e ∈ E . This condition is equivalent to the seemingly weaker condition of ∑

e∈C �
i(e) > 0 for all directed cycles C of G and players i ∈ I . The equivalence is 

based on the concept of potential transformation introduced for directed graphs in 

�
i(�) =

∑

(u,v)∈P(�)

�
i(u, v).
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Gallai (1958). It is applied to the length function of each player, separately. Such 
an equivalent transformation can in fact be computed efficiently, by linear program-
ming. Since this transformation changes all path lengths between two vertices by the 
same constant, a shortest path game with positive cycle lengths can always be trans-
formed into an equivalent game with positive edge lengths.

A digraph G = (V ,E) is called edge-symmetric if (u, v) ∈ E whenever (v, u) ∈ E , 
except if u ∈ VT . Finally, we call a game Γ = (G, v0,�) edge-symmetric and positive 
if G is edge-symmetric and � is positive. Let us emphasize that the cost functions of 
the players are not assumed to be symmetric, that is �i(u, v) ≠ �

i(v, u) may hold for 
some edges (u, v) ∈ E and players i ∈ I.

Theorem  1 An edge-symmetric and positive n-person shortest path game 
Γ = (G, v0,�) has a NE. Furthermore, it has a terminal NE whenever VT is reach-
able from v0.

Let us add that the above result cannot be extended to the so-called limit mean 
effective payoff games (see Gillette 1957 for definitions). For mean effective payoff 
a 2-person NE-free example was constructed in Gurvich (1988) on an edge-symmet-
ric bipartite digraph with non-positive length function, and it is easy to make this 
example positive by adding a constant to the lengths of all edges.

Both conditions of edge-symmetry and positivity, are essential in Theorem 1. In 
Sect. 6 we provide examples of NE-free edge-symmetric (but not positive) 2-person 
games. For n ≥ 3 such examples were known earlier (Boros and Gurvich 2003; Gur-
vich and Oudalov 2014). Furthermore, a NE-free positive but not edge-symmetric 
3-person game was obtained in Gurvich and Oudalov (2014).

Another case, when the assumption of edge-symmetry helps to give criteria for 
the existence of a NE is the family of so-called cyclic games, in which each directed 
cycle is a separate outcome. For 2-person edge-symmetric cyclic games (Boros et al. 
2011) provides a criterion for the existence of NE for all cost functions. Without the 
assumption of edge-symmetry no such criterion is known.

In Fraenkel et al. (1993), a polynomial algorithm solving game “geography” was 
found for symmetric digraphs, while the problem is known to be PSPACE-complete 
in general (Lichtenstein and Sipser 1980; Schaefer 1978).

Note also that positivity is important even if we have only one player. In the pres-
ence of negative arc lengths (with some negative cycles) a shortest path may not 
exist, and computing a shortest simple path is NP-hard in this case.

A shortest path game is called play-once if |Vi| = 1 for all i ∈ I . It was shown in 
Boros and Gurvich (2003) that every play-once positive game has a NE.

It remains an open problem whether every 2-person non-edge-symmetric positive 
shortest path game has a NE or not.

1.2  Edge‑symmetric terminal games

A related family of games that in fact forms a special case of shortest path 
games is the family of terminal games. In many popular positional games (Go, 
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Chess, Checkers, etc.) players do not pay for moves; the effective cost for each 
player depends only on the terminal position. We assume, as before, that the set 
of positions and moves of the game form a directed graph, G = (V ,E) , players 
i ∈ I control distinct subsets Vi ⊆ V  of the positions, and VT is a nonempty subset 
of the terminal positions, such that V = V1 ∪⋯ ∪ Vn ∪ VT is a partition of the set 
of positions. In these games a situation may end up in a terminal position within 
VT or in an infinite play, going around the same cycle infinitely many times. We 
consider all infinite plays equivalent, and denote the corresponding outcome by 
c. Thus, to evaluate the outcome of these games we have mappings Li ∶ VT → ℝ 
for i ∈ I that evaluate the value of terminals for players.

Then, for a situation � that defines a play P(�) the effective cost of player i ∈ I 
is defined as

The infinite play c may be worse than some terminals and better than some oth-
ers for a player. As in shortest path games, all players minimize their own effective 
costs. We call such a game Γ = (G, v0,L) a terminal game.

In the 2-person zero-sum case, such games are also called deterministic 
graphical; see (Washburn 1990), where the existence of a NE (saddle point) in 
pure and stationary strategies was shown.

In Boros and Gurvich (2003), this result was extended to the non-zero-sum 
2-person case using a general criterion of Gurvich (1975, 1988). Recently these 
results were extended further for the so-called multi-stage deterministic graphi-
cal games; see (Gurvich 2018) and also (Gurvich and Koshevoy 2018). How-
ever, this line of arguments cannot be extended to the n-person case for n > 2 , 
since the criterion of Gurvich (1975, 1988) holds only for n = 2 . Examples for 
3- and 4-person NE-free terminal games were constructed in Boros et al. (2018); 
Gurvich (2015).

Let us also mention that Everett (1997) already in 1957 considered a closely 
related class of terminal games and, among other results, provided some NE-
free examples for concurrent zero-sum terminal games.

The existence of a NE for the above defined class of terminal games remains 
an open problem if we assume additionally that Li(v) < 0 for all terminals v ∈ VT 
and players i ∈ I . This condition describes a natural subclass of these games in 
which an infinite play is worse than any terminal play for each of the players. We 
can show that this subfamily of terminal games can be viewed as a subfamily of 
positive shortest path games, and thus the existence of a (terminal) NE for such 
a game is implied by Theorem 1. We can further generalize this by waiving the 
above assumption, and prove the following claim:

Theorem 2 An edge-symmetric n-person terminal game has a NE.

L
i(�) =

{
L
i(w) if P(�) is a finite play terminating at w ∈ VT ,

0 if P(�) is the infinite play c.
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1.3  Uniform Nash equilibrium for edge‑symmetric terminal games

We can further strengthen Theorem 2 for the case of 2 players. We call a situation 
(�i ∣ i ∈ I) a uniform Nash equilibrium (or a UNE, in short), if it is a NE no matter 
what the initial position is.

Theorem 3 Assume that Γ = (G,L) is a terminal game that satisfies the following 
conditions: 

 (TWO) n = |I| = 2;
 (SYM) G is edge-symmetric;
 (CIW) infinite plays are worse than any of the terminal plays for all players.

Then Γ has a UNE.
Let us add that all three conditions are necessary to guarantee the existence of 

a UNE, as we demonstrate it in Sect. 5.
We can also note that condition (CIW) is automatically satisfied by positive 

shortest path games. However, the theorem still fails even if we keep all three 
conditions but replace terminal games by shortest path games, see the last exam-
ple in Sect. 6.

2  Edge‑symmetric positive shortest path games

Assume that Γ = (G, v0,�) is an edge-symmetric and positive shortest path game. 
We denote by N+(v) = {u ∣ (v, u) ∈ E} the out-neighborhood of a position v ∈ V  
(and thus we have N+(v) = � for all terminals v ∈ VT ). Note also that since all plays 
reaching a terminal end there, we can merge all terminals into a single terminal posi-
tion without any loss of generality. Thus, in this section we assume that VT = {vt}.

Let us consider the subgraphs induced by vertex sets Vi , i ∈ I . Each such sub-
graph can uniquely be decomposed into strongly connected subgraphs. We denote 
by Q = {Q1,Q2,…} the family of all such components for all i ∈ I . For sake of sim-
plicity, we consider {vt} also as one of those components. Note that we adopt the 
name “component” for these subgraphs, even though they may not be strongly con-
nected components of our graph. They are strongly connected components of the 
subgraphs, induced by Vi , i ∈ I and VT = {vt}.

We use i(v) to denote the player who controls vertex v. We extend this notation 
even for the terminal node for notational convenience and assume i(vt) ∉ I , even 
though vt has no outgoing arcs, and no player controls it. We denote by i(Q) ∈ I the 
player who controls the vertices in such a component Q ∈ Q . Note that, due to the 
symmetric nature of the graph and the above definition of the components, we have 
the following property: 

(A) If u ∈ Q , v ∈ Q� , Q ≠ Q′ and (u, v) ∈ E then i(Q) ≠ i(Q�).
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Since a component Q ∈ Q is strongly connected, for any two vertices u, v ∈ Q player 
i(Q) can create directed path(s) between these vertices. We denote by di(Q)(u, v) the 
length of a shortest u → v path within Q, where the i(Q)-length is used to measure 
the length of the edges. Note that we do not assume the symmetry of the lengths, 
thus di(Q)(u, v) and di(Q)(v, u) may be different values.

Let us define Q(v) ∈ Q to be the component containing vertex v ∈ V .
For a v0 → vt path P let us call a sequence {vi, vi+1,… vi+j} a subpath of P. The 

sets P ∩ Q , Q ∈ Q partition P into a number of such subpaths. We denote by q(P) 
the number of these subpaths. In other words, if we denote by Q(P)j , j = 1, ..., q 
the components that P intersects as we follow P from v0 to vt , then q = q(P) , and 
Q(P)j ≠ Q(P)j+1 for all j = 1, ..., q − 1 . Note that we may have Q(P)j = Q(P)k for 
some j and k ≥ j + 2.

2.1  Special paths

Let us now consider a v0 → vt path P in G, a player i ∈ I , and the subgraph G(i, P) 
of G consisting of the moves in P and the moves (u, v) ∈ E with u ∈ Vi . We say that 
P is i-special if P is a shortest v0 → vt path in G(i, P) for player i.

Lemma 1 There exists a v0 → vt path P satisfying the following conditions: 

(B) q(P) is the smallest among all v0 → vt paths, and
(C) P is i-special for all i ∈ I.

Proof Let us first associate a new edge length � ∶ E ↦ {0, 1} by defining

and choose a �-shortest v0 → vt path P. By abusing our notations, we shall use P to 
denote both the set of vertices of P and also the set of edges in P. We hope that from 
the context it will always be unambiguous what we mean.

Note that q(P) is minimum among all v0 → vt paths, and that P does not cross any 
component Q ∈ Q twice. This is because Q is strongly connected and the �-cost of 
a path inside Q is zero, and outside is positive. Let us observe that the minimality of 
q(P) implies the following property: 

(D) For  al l  v ∈ Q(P)j  ,  1 ≤ j ≤ q(P) − 2 and j + 2 ≤ k ≤ q(P) we have 
N+(v) ∩ Q(P)k = �.

Let us introduce P[j] = P ∩ Q(P)j for j = 1, ..., q(P) and note that the edges in P 
leaving vertices in P[j] form a subpath ending in Q(P)j+1 . Let us next define

�(u, v) =

{
1 if Q(u) ≠ Q(v),

0 if Q(u) = Q(v),
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for j = 1, ..., q(P) − 1 , and set r(P) = (r(P)1, ..., r(P)q(P)−1) . Note that in a way r(P) 
measures the length of P such that the length of every move is measured by the 
length function of the player who controls that move.

Assume now that P is an arbitrary path that satisfies property (B). Our arguments 
above show that there are such paths. Assume also that it does not satisfy property 
(C), that is there exists a player i ∈ I that can improve on it. It means that there 
is an index 1 ≤ j < q(P) with i = i(Q(P)j) and a position v ∈ P[j] such that player 
i can deviate from P at v, return to P in Q(P)j ∪ Q(P)j+1 (due to property (D)) and 
make the i-length of the improved path P′ shorter than the i-length of P. Note 
that if P′ returns to P at or before the first position of P[j + 1] , then we must have 
r(P�)j < r(P)j and r(P�)k = r(P�)k for all k > j . If P′ returns to P at or after the second 
position of P[j + 1] (in case P[j + 1] has more than one vertex), then we must have 
r(P�)j+1 < r(P)j+1 and r(P�)k = r(P)k for all k > j + 1 . Note that in the second case 
we may have r(P�)j > r(P)j . In both cases however, the vector r(P�) is smaller than 
r(P) in the reverse lexicographic order. Note furthermore that P′ must also satisfy 
property (B).

Since we have only finitely many different paths, and thus r(P) vectors, after 
finitely many improvement steps we must arrive to a path that satisfies both (B) and 
(C), as claimed.   ◻

Let us call a path P satisfying both (B) and (C) a special path. By the above 
lemma such a special path exists. Let us now fix one v0 → vt special path P.

2.2  Extending a special path to a NE

Let us introduce for j = 1, ..., q(P) the sets

and let uj ∈ Q(P)j be the first vertex on P ∩ Q(P)j . Recall that for a vertex u ∈ Q(P)j 
and player i = i(Q(P)j) we denote by di(uj, u) the i-distance from uj to u inside com-
ponent Q(P)j.

We are ready now to define strategies for the players. 

 (i) If v ∈ P then we choose edge (v, u) ∈ P.
 (ii) If v ∈ V ⧵ P and N+(v) ∩ U(P)q(P) ≠ � , then 

 (ii-1) choose the smallest index k such that N+(v) ∩ Q(P)k ≠ � and set 
i = i(Q(P)k);

r(P)j =
∑

u ∈ P[j]

(u, v) ∈ P

�
i(Q(P)j)(u, v)

U(P)j =

j⋃

k=1

Q(P)k,
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 (ii-2) choose a vertex u ∈ N+(v) ∩ Q(P)k that minimizes di(uk, u);
 (ii-3) choose edge (v, u).

 (iii) If v ∈ V ⧵ P and N+(v) ∩ U(P)q(P) = � , then choose an arbitrary edge (v, u) ∈ E

.

Let us denote by �(P) = {�i(P) ∣ i ∈ I} one of the situations defined in this way.

Lemma 2 If P is a special v0 → vt path, then �(P) is a NE.

Proof Assume for contradiction that a player i ∈ I can deviate and improve on P. 
This means that there is a component Q(P)j controlled by i = i(Q(P)j) and there is a 
vertex in P ∩ Q(P)j such that player i can deviate from P starting at this vertex and 
create a new path P′ such that the i-length of P′ is smaller than the i-length of P. We 
can assume that P′ is the shortest path (according to �i ) player i can create, and that 
P ∩ Q(P)k = P� ∩ Q(P)k for all k < j.

In particular, P′ cannot return to P ∩ U(P)j−1 . Note first that if u ∈ U(P)j−1⧵P , 
i(u) ≠ i , and (u, v) ∈ �(P) , then we must have v ∈ U(P)j−1 by our definition of � , 
since our graph is edge-symmetric. Note next that if u ∈ U(P)j−1 , and i(u) = i , then 
u ∈ U(P)j−2 . These together imply that if P′ enters U(P)j−1 then it cannot reach vt.

Let us now focus on the segment of P′ that is outside of U(P)j−1 (note that this 
may be the entire path P′ if j = 1 .) Let us denote the vertices along this segment of 
P′ by uj = w0 , w1,..., wm = vt . Let k be the smallest index such that wk ∉ Q(P)j . By 
property (C) and the fact that P′ is the shortest path that player i can create, we can 
conclude that wk ∉ P . Then we must have i(wk) ≠ i by the definition of the compo-
nents, thus we have (wk,wk+1) ∈ �(P) . By the symmetric nature of our graph, by 
part (ii) of our definition of � , and by the fact that P′ does not enter U(P)j−1 we must 
have wk+1 ∈ Q(P)j . Since N+(wk) ∩ Q(P)j ⊇ {wk−1,wk+1} , we get that (ii-2) of the 
definition of � implies di(uj,wk+1) ≤ di(uj,wk−1) . Since player i can create such a 
shortest uj → wk+1 path inside Q(P)j he could replace w0, ...,wk+1 with this path, and 
create another path P′′ that is strictly shorter (by at least �i(wk−1,wk) + �

i(wk,wk+1) ) 
than P′ , contradicting the fact that P′ is the shortest path this player can create devi-
ating from P inside Q(P)j . This contradiction proves our claim.   ◻

Proof of Theorem 1 The claim follows by Lemmas 1 and 2.   ◻

3  Terminal games and shortest path games

It is easy to see that terminal games satisfying condition (CIW) of Theorem 3 can 
also be viewed as positive shortest path games.

Theorem  4 Assume that Γ = (G, v0,L) is a terminal game that satisfies condition 
(CIW). Then there exist positive local costs functions �i ∶ E ↦ ℝ for i ∈ I such that 
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Γ� = (G, v0,�) is a positive shortest path game such that any situation � that is a ter-
minal NE of Γ� is also a NE of Γ.

Proof Let us note first that condition (CIW) implies that Li(v) < 0 for all terminals 
v ∈ VT and players i ∈ I . Since we have only finitely many terminals and players, we 
can assume w.l.o.g. that Li(v) are all negative integers for all terminals v ∈ VT and 
players i ∈ I , and there exists a positive integer M such that

Let us next define the local costs for the players i ∈ I and moves (u, v) ∈ E by

Thus, for an arbitrary situation � for which P(�) is a finite play terminating at v ∈ VT 
and for a player i ∈ I we have

implying that for all situations � with a finite play and for all players i ∈ I we have

Now assume that � is a terminal NE in Γ� and let �′ be obtained from � by one of the 
players, say i ∈ I changing his strategy. If �′ is infinite, then Li(𝜎�) > L

i(𝜎) . Other-
wise, by the above inequalities we can write

where the second inequality follows from the fact that � is NE in Γ� . Since the Li 
values are integers, Li(�) ≤ L

i(��) follows, proving that � is also a NE in Γ .   ◻

Note, that in the above construction, Γ may have some NE that are not NE in 
Γ�.

Note also that Γ and Γ� in the above statement use the same underlying 
directed graph. Thus they are simultaneously edge-symmetric or non-edge-sym-
metric and we can derive the following claim:

Corollary 5 Edge-symmetric terminal games satisfying condition (CIW) have NE. 
Furthermore, there is a terminal NE whenever VT is reachable from v0.

Proof By Theorem 4, an edge-symmetric terminal game satisfying condition (CIW) 
can be viewed as a positive shortest path game, and thus the claim follows by Theo-
rem 1.   ◻

−M < L
i(v) < 0 for all i ∈ I, and v ∈ VT .

�
i(u, v) =

{
1

2|E| for all moves (u, v) ∈ E, v ∉ VT ,

M + L
i(v) for all moves (u, v) ∈ E, v ∈ VT .

�
i(�) =

∑

(u,v)∈P(�)

�
i(u, v) =

|P(�)| − 1

2|E|
+ (M + L

i(v))

M + L
i(𝜎) ≤ �

i(𝜎) < M + L
i(𝜎) +

1

2
.

M + L
i(𝜎) ≤ �

i(𝜎) ≤ �
i(𝜎�) < M + L

i(𝜎�) +
1

2
,
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4  Edge‑symmetric terminal games

Let us consider an edge-symmetric terminal game Γ = (G, v0,L) , and note that 
unlike in shortest path games, a loop (that is a move of the form (u,  u) for some 
position u ∈ V  ) may play a role in a NE, since the infinite play may not be the worse 
outcome for some players. Consequently, we have u ∈ N+(u) whenever (u, u) ∈ E.

Analogously to shortest path games, let us consider the family Q of strongly con-
nected components of the subgraphs induced by the subsets Vi , i ∈ I.

We associate to Γ its small version Γ� obtained by “merging” the strongly con-
nected components Q ∈ Q into single positions. More precisely, we introduce a new 
position vQ and set i(vQ) = i(Q) for all Q ∈ Q , and define a directed graph G′ on the 
set of positions V � = VT ∪ {vQ ∣ Q ∈ Q} . We define the edge set E′ of G′ by includ-
ing edges (vQ, vR) for Q,R ∈ Q , Q ≠ R if there are positions u ∈ Q and v ∈ R such 
that (u, v) ∈ E . We also include edge (vQ,w) for Q ∈ Q and w ∈ VT if there is a posi-
tion u ∈ Q such that (u,w) ∈ E . Furthermore, we include a looping edge (vQ, vQ) for 
all Q ∈ Q with |Q| ≥ 2 . Furthermore, if Q = {u} for some Q ∈ Q and (u, u) ∈ E , 
then we also include in E′ the loop (vQ, vQ) . Note that with the above definitions we 
avoided creating parallel edges, since they would be redundant in a terminal game. 
Finally, we define v�

0
= vQ if v0 ∈ Q . Note that this small game Γ� = (G�, v�

0
,L) is 

again an edge-symmetric terminal game with the same set of players and cost func-
tion as Γ.

Lemma 3 If the small game Γ� has a NE then so does Γ.

Proof Assume that 𝜎′ ⊆ E′ is a NE of Γ� . We associate to �′ a situation � in Γ as 
follows.

For every position vQ ∈ V � , Q ∈ Q there exists a unique edge (vQ, x) ∈ �� . We 
associate to (vQ, x) edges of E to be included in � in the following way:

If x = vR ≠ vQ , then by the definition of the small game we have (at least one) 
corresponding edge (u, v) ∈ E such that u ∈ Q , v ∈ R . Let us consider one of these 
(u, v) edges, and declare position u = uQ the root of the strong component Q ∈ Q . 
Since Q ∈ Q is a strong component, we have a directed tree TQ rooted at uQ ∈ Q 
such that from every vertex u� ∈ Q we have a unique directed path from u′ to uQ via 
the edges of TQ . Let us then include in � the edges of TQ and edge (u, v) = (uQ, v).

If x = vQ and |Q| ≥ 2 , then (by the definition of a component) Q is a strongly con-
nected subgraph with at least two vertices, u, v ∈ Q , u ≠ v . Let us declare u = uQ the 
root of Q and consider a directed tree TQ on the vertices of Q such that from all other 
vertices of Q there is a unique path to uQ . Let us then include in � the edges of TQ 
and the edge (uQ, v).

Finally, if x = vQ and Q = {u} , then by the definition of the small game we must 
have (u, u) ∈ E , and we include this loop in �.

Note that we have Li(�) = L
i(��) for all i ∈ I . Furthermore, for all positions 

v ∈ Q ∈ Q player i(v) = i(Q) can reach the same set of terminals (and/or the infinite 
play) in Γ and Γ� , assuming all other players keep their strategies. Thus, since �′ is a 
NE in Γ� , situation � must also be a NE in Γ .   ◻
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Proof of Theorem 2 Assume that Γ = (G, v0,L) is an edge-symmetric terminal game. 
By Lemma 3 we can assume that |Q| = 1 for all Q ∈ Q , or in other words that for all 
moves (u, v) ∈ E we have i(u) ≠ i(v) , unless u = v.

Clearly, if VT is not reachable from v0 then any situation is a NE. Assume for the 
rest of our proof that VT is reachable from v0.

For all positions v ∈ V  with N+(v) ∩ VT ≠ � let us denote by t(v) ∈ VT a terminal 
that is a most preferred by player i(v) in N+(v) ∩ VT.

We consider the following cases:

Case 1: N+(v0) ∩ VT = � and ∃ v1 ∈ N+(v0) such that N+(v1) ∩ VT = �.
In this case we can construct a NE � resulting in an infinite play. We 
include in � the moves (x, v0) for all x ∈ N+(v0) , (v0, v1) , and (y, v1) for all 
y ∈ N+(v1)⧵(N

+(v0) ∪ {v0}) . For all other positions we include an arbitrary 
move. Here P(�) is the infinite play v0 → v1 → v0 , and neither i(v0) nor i(v1) can 
achieve a better outcome. Note that v0 = v1 is possible in this case.
Case 2: N+(v0) ∩ VT = � and N+(v) ∩ VT ≠ � for all v ∈ N+(v0).
Let us define v1 ∈ N+(v0) as a position such that t(v1) is one of the most preferred 
terminals for i(v0) in the subset {t(v) ∣ v ∈ N+(v0)} ⊆ VT.
Subcase 2.1: Player i(v1) prefers t(v1) to an infinite play.
We can construct a NE � in this case as follows. We include the move (v0, v1) , the 
moves (x, v1) for all x ∈ N+(v1)⧵VT , the moves (v, t(v)) for all v ∈ N+(v0)⧵N

+(v1) , 
and arbitrary moves for all other positions. Now the play P(�) is the path 
v0 → v1 → t(v1) yielding Li(�) = L

i(t(v1)) for all players i ∈ I . Only two play-
ers are involved in the play, i(v0) and i(v1) . If i(v1) deviates from � then he can 
get either another terminal in N+(v1) ∩ VT or the infinite play, and neither one 
is better for him than t(v1) . If i(v0) deviates then he can get one of the terminals 
{t(v) ∣ v ∈ N+(v0)} , and by our choice, none of them is better for him than t(v1).
Subcase 2.2: For player i, the cost of t(v1) is at least that of the infinite play.
We can construct a NE � in this case as follows. We include the moves (x, v0) for 
all x ∈ N+(v0) , the moves (y, v1) for all y ∈ N+(v1) ⧵ VT , and an arbitrary move 
for all other positions. Now P(�) is the infinite play v0 → v1 → v0 . Player i(v0) 
can only deviate to another infinite play. Player i(v1) can deviate to either another 
infinite play, or to a terminal in N+(v1) ∩ VT , but those are not better for him then 
t(v1) , which is not better in this case than an infinite play.
Case 3: N+(v0) ∩ VT ≠ � and N+(v0) ⊈ VT.
Let us now create a smaller subgame Γ� = (G�, v0,L) by deleting from Γ the 
moves (v0,w) for w ∈ N+(v0) ∩ VT . Since Case 1 or 2 holds for Γ� , we have a NE 
�′ in Γ� by the previous arguments.
Subcase 3.1: Li(v0)(��) ≤ L

i(v0)(t(v0)).
In this case �′ is also a NE in Γ , since only player i(v0) gained extra options, 
and all of those options would take him to a terminal in N+(v0) ∩ VT , which are 
assumed to be not better in this case for i(v0) than the outcome of �′.
Subcase 3.2: Li(v0)(𝜎�) > L

i(v0)(t(v0)).
Let us modify �′ by replacing the move from v0 by (v0, t(v0)) , and denote by � the 
obtained situation of Γ . We claim that � is a NE in Γ in this case. This is because 
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P(�) is the single move v0 → t(v0) , and any deviation from � by player i(v0) yields 
either another terminal in N+(v0) ∩ VT , which is not better than t(v0) , or it yields 
�′ or a situation obtainable by a deviation from �′ in Γ� . Since �′ is a NE in Γ� 
none of these can give a better outcome to player i(v0) than �′ which is not better 
than t(v0) by our assumptions in this case.
Case 4: N+(v0) ⊆ VT.
In this case choosing �i(v0)(v0) = t(v0) trivially gives a NE.

  ◻

5  Existence of UNE in edge‑symmetric terminal games

In this section we prove Theorem 3 claiming that under conditions (TWO), (SYM), 
and (CIW) a terminal game has a UNE.

We consider an edge-symmetric terminal game Γ = (G,L) in which no initial 
position is fixed, and assume that I = {1, 2} . For a situation � and arbitrary posi-
tion v ∈ V  we denote by P(�, v) the unique walk starting from position v and fol-
lowing the moves in situation � . Such a walk either terminates in a terminal posi-
tion w = w(�, v) ∈ VT , or is infinite, cycling around a directed cycle infinitely many 
times. Accordingly, we define the effective cost for player i ∈ I for a position v ∈ V  
by

Note that the above definition and condition (CIW) imply that we have Li(w) < 0 for 
all players i ∈ I and terminals w ∈ VT.

Given a player i ∈ I we use �−i to denote the strategy of the opponent. Thus, we 
can write � = (�−i, �i) for an arbitrary situation and player i ∈ I , where �i ∈ Σi is a 
strategy for player i ∈ I . Note that in this section we have |I| = 2 , and thus for a situ-
ation � = (�1, �2) we have �−1 = �2 and �−2 = �1.

Given a player i ∈ I and �−i a strategy �i ∈ Σi is called a uniform best response of 
player i to �−i if the equality

holds for all positions v ∈ V  . Note that a uniform best response always exists, can be 
determined efficiently, and may not be unique.

We call a situation � = (�i ∣ i ∈ I) a uniform Nash equilibrium (or UNE, in short), 
if �i is a uniform best response of player i to �−i for all players i ∈ I.

Given a situation � = (�−i, �i) we say that strategy �′
i
 is a uniform best improve-

ment for player i if �′
i
 is a uniform best response to �−i , different from �i , and for 

all positions v ∈ Vi we have either �i(v) = ��
i
(v) or Li((𝜎−i, 𝜎�

i
), v) < L

i((𝜎−i, 𝜎i), v) . 
Note that every uniform best improvement is a uniform best response, but not neces-
sarily the other way around. Furthermore, if a situation is not a UNE, then at least 

L
i(�, v) =

{
L
i(w(�, v)) if P(�, v) is terminating, and

0 if P(�, v) is infinite.

L
i((�−i, �i), v) = min

��
i
∈Σi

L
i((�−i, ��

i
), v)
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one of the players have a uniform best improvement (and it can be determined effi-
ciently). Let us also note that a uniform best improvement may not be unique in case 
players have ties over the set of terminals.

Our first step is to show that it is enough to prove Theorem 3 for simplified, spe-
cial edge-symmetric terminal games.

Lemma 4 If Γ = (G,L) is an edge-symmetric terminal game, then we can assume 
w.l.o.g. that edges are between different vertices controlled by different players, i.e.,

We can also assume that from each position we have at most one terminal move, i.e.,

We can assume further that the terminals are reachable from each position v ∈ V  , 
i.e.,

Proof For condition (1) let us also note that Lemma 3 with the same proof works 
also for UNE (instead of NE).

For the inequalities (2) note first that if x, y ∈ N+(v) ∩ VT , x ≠ y , and 
L
i(v)(x) < L

i(v)(y) then the move (v,  y) can not belong to a UNE. Furthermore, if 
L
i(v)(x) = L

i(v)(y) and �′ is a UNE in Γ� obtained from Γ by deleting move (v, y), then 
�′ is also a UNE in Γ . This is because only player i(v) has an option in Γ that is not 
available in Γ� (namely the move (v, y)) but that move cannot be part of a uniform 
best improvement of player i(v) to ��−i(v) since the move (v, x) is available for player 
i(v) in Γ� , �′ is a UNE in Γ� , and Li(v)(x) = L

i(v)(y).
For property (3) let us consider the set of positions U ⊆ V  such that no directed 

path connects a vertex u ∈ U to the set of terminals VT . Then, assigning arbitrary 
moves to positions in U does not change whether a situation is a UNE or not. Since 
identifying the set of positions from which the set of terminals is not reachable is 
a computationally easy task, and since those positions have no influence on the 
existence of a UNE, we can assume w.l.o.g. that we preprocess the input game, and 
delete all such positions, before any further analysis.   ◻

Lemma 5 Assume that Γ = (G,L) is an edge-symmetric terminal game, satisfying 
conditions (1) and � is a situation such that for one of the players, i ∈ I , strategy 
�i is a uniform best response to �−i . Assume further that u ∈ Vj , v ∈ Vi are distinct 
positions with j ≠ i that are connected by edges in G. Then we have

Proof Let us note first that if (v, u) belongs to �i or P(�, u) contains position v, then 
we must have Li(�, v) = L

i(�, u) by the definition of a terminal game.
Assume next that the move (v, u) does not belong to �i and position v does not 

belong to P(�, u) . Let us define a new strategy �′
i
 for player i by

(1)(u, v) ∈ E, v ∉ VT ⟹ i(u) ≠ i(v).

(2)|N+(v) ∩ VT | ≤ 1 for all v ∈ V .

(3)for all v ∈ V there exist a v → VT path.

L
i(�, v) ≤ L

i(�, u).
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With this definition we have

Here the first two equalities follow by the definition of �′
i
 and the fact that position v 

does not belong to P(�, u) . The last inequality follows by the assumption that �i is a 
uniform best response to �−i .   ◻

Lemma 6 Assume that Γ = (G,L) is a terminal game satisfying condition (CIW), 
and � is a situation such that the plays P(�, v) are finite for all v ∈ V  . Then, if �′ 
is obtained from � by a uniform best improvement of one of the players, the plays 
P(��, v) , v ∈ V  are also all finite.

Proof This is an immediate consequence of condition (CIW) and the definition of 
uniform best improvement.   ◻

Our proof of Theorem 3 is based on an iterative process, the finiteness of which 
depends on a strictly monotone decreasing measure of progress. The proof of that 
monotonicity depends critically on the following definition.

Let us assume, for the rest of this section, that by (2) of Lemma  4 we have 
|N+(v) ∩ VT | ≤ 1 for all v ∈ V  . Let us then denote by t(v) ∈ N+(v) ∩ VT the unique 
terminal for vertices v ∈ V  with N+(v) ∩ VT ≠ �.

Let us call a situation � i-basic for a player i ∈ I if for all positions v ∈ V  with 
N+(v) ∩ VT ≠ � we either have �(v) = t(v) or Li(v)(𝜎�, v) < L

i(v)(t(v)) hold for all 
situations �′ obtained from � by a uniform best improvement of player i. In other 
words, a situation is i-basic if a uniform best improvement by player i provides every 
position that it controls and has an unused terminal move with a strictly better out-
come than that terminal move would provide.

Lemma 7 Assume that Γ = (G,L) is an edge-symmetric terminal game that satisfies 
the conditions in Lemma 4. Then we can efficiently find a situation � that is i-basic 
for all players i ∈ I , and for which the plays P(�, v) are finite for all v ∈ V .

Proof We can construct a situation � satisfying the claimed properties by the 
following approach. Let us define W = {v ∈ V ∣ N+(v) ∩ VT ≠ �} and note 
that by our assumptions we have a terminal t(v) ∈ VT for all v ∈ W such that 
N+(v) ∩ VT = {t(v)} holds. Let us now choose the moves (v,  t(v)) for all positions 
v ∈ W , and color all positions in W ∪ VT blue. In the sequel, while there exists an 
uncolored position v ∈ V  from which we can reach a blue position u in one move, 
we choose the move (v, u) and color v blue. In a finite number of steps this proce-
dure will stop, and all positions will be colored blue, since we assume that there is a 
finite directed path from all positions to the set of terminals. In this way we define a 
situation � such that all plays P(�, v) are finite.

��
i
(w) =

{
�i(w) for all w ∈ Vi ⧵ {v},

u for w = v.

L
i(�, u) = L

i((�−i, ��
i
), u) = L

i((�−i, ��
i
), v) ≥ L

i((�−i, �i), v).
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To see that � is i-basic, for all players i ∈ I , let us consider one of the play-
ers  i, and derive �′ by applying a uniform best improvement of player i to � . 
Now, for a position v ∈ W ⧵ Vi we have ��(v) = �(v) = t(v) by our definitions 
of � and �′ , while for a position v ∈ W ∩ Vi we have either ��(v) = �(v) = t(v) or 
L
i(𝜎�, v) < L

i(𝜎, v) = L
i(t(v)) , by the definition of a uniform best improvement.   ◻

Lemma 8 Assume that Γ = (G,L) is a 2-person edge-symmetric terminal game sat-
isfying conditions (CIW), conditions in Lemma 4, and that � is a 1-basic situation 
such that all plays P(�, v) are finite. Assume further that �1 is obtained from � by a 
uniform best improvement of player 1, and �2 is obtained from �1 by a uniform best 
improvement of player 2. Then we have the inequalities

for all positions v ∈ V .

Proof Since �2 is obtained from �1 by a uniform best improvement of player 2, the 
claim follows for all v ∈ V2 by the definition of a uniform best improvement.

Let us next consider positions v ∈ V1 . If P(�1, v) = P(�2, v) , then we have the 
equality L1(�2, v) = L

1(�1, v).
Assume for the rest of our proof that P(�2, v) ≠ P(�1, v) . Since P(�2, v) is a finite 

play by Lemma 6, positions controlled by player 1 and 2 alternate along this finite 
path, due to our assumption (1). Since P(�2, v) ≠ P(�1, v) , we must have some 
positions w ∈ V2 on the path P(�2, v) such that �2

2
(w) ≠ �1

2
(w) . Let us number all 

such positions as w1, ...,wk ∈ V2 for some k ≥ 1 , in the order we pass through them 
along the path P(�2, v) , when we start from v. Since � is 1-basic, we cannot have 
�2(wk) ∈ VT , and thus we have vj ∶= �2(wj) ∈ V1 for all indices j = 1, ..., k . Now, 
let us observe that the moves (vj,wj) exist, since this is an edge-symmetric terminal 
game, and thus they were considered in the uniform best improvement �1 , for all 
j = 1, ..., k . Since they were not chosen, we must have the inequalities

for all j = 1, ..., k by Lemma  5 applied for the moves (vj,wj) with player i = 1 , 
j = 1, ..., k . We also have the equalities

for j = 1, ..., k − 1 , due to our selection of vertices wj , j = 1, ..., k . These two groups 
of equations and inequalities imply that

Since we also have L1(�2, v) = L
1(�2, vk) = L

1(�1, vk) and L1(�1, v) = L
1(�1,w1) , 

the stated inequalities follow.   ◻

L
i(v)(�2, v) ≤ L

i(v)(�1, v)

L
1(�1, vj) ≤ L

1(�1,wj)

L
1(�1, vj) = L

1(�1,wj+1)

L
1(�1,w1) ≥ L

1(�1, vk).
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Lemma 9 Assume that Γ = (G,L) is a 2-person edge-symmetric terminal game sat-
isfying conditions (CIW), conditions in Lemma 4, and that � is a 1-basic situation 
in which all plays P(�, v) are finite. Assume further that �1 is obtained from � by a 
uniform best improvement of player 1. Then situation �1 is 2-basic.

Proof Let us apply a uniform best improvement of player 2 to �1 , and denote the 
obtained situation by �2.

Let us define W = {v ∈ V ∣ N+(v) ∩ VT ≠ �} and note that by Lemma 4 we have a 
terminal t(v) ∈ VT for all v ∈ W such that N+(v) ∩ VT = {t(v)} holds.

Now, for a position v ∈ W ∩ V2 we have either �2(v) = �(v) and 
thus L

2(�2, v) = L
2(�, v) , or we have �2(v) ≠ �1(v) = �(v) and thus 

L
2(𝜎2, v) < L

2(𝜎1, v) = L
2(𝜎, v) by the definition of a uniform best improvement. In 

both cases the claimed property follows by our assumption that � is 1-basic.
Finally, for positions v ∈ W ∩ V1 we have �2(v) = �1(v) . Thus, we either have 

�2(v) = �1(v) = t(v) , or �1(v) ≠ t(v) , in which case we have L1(𝜎
1, v) < L

1(t(v)) by 
the definition of a uniform best improvement. In this latter case we apply Lemma 8 
and conclude L1(𝜎2, v) ≤ L

1(𝜎1, v) < L
1(t(v)) .   ◻

Proof of theorem  3 Let us first recall that the effective cost of an infinite play is 
defined as 0, and thus condition (CIW) is equivalent with saying that Li(w) < 0 for 
all players i ∈ I and terminals w ∈ VT . We also assume that the simplifying condi-
tions in Lemma 4 hold.

Our proof idea is to show that if players alternate in making their uniform best 
improvements, then after a finite number of such iterations we arrive to a situation 
on which neither of the players can improve, showing that it is a UNE. While this 
idea would work starting with an arbitrary situation, our proof becomes simpler 
if we choose a special initial situation �0 = (�0

1
, �0

2
) , in which all plays are finite 

and which is 1-basic. According to Lemma 7 such a situation exists and is easy to 
construct.

After this, players, starting with player 1, alternate in making their uniform best 
improvements, as long as there is some change. This creates a series of situations, 
�j , j = 1, 2, ... . To be very precise, situation �j for an odd j ≥ 1 is obtained from �j−1 
by a uniform best improvement of player 1, while for an even j ≥ 2 it is obtained 
from �j−1 by a uniform best improvement of player 2.

Note that by our definitions, if a player has a uniform best improvement, it actu-
ally improves strictly his local costs in at least some of the positions it controls, and 
degrades in neither. If the above process terminates, the last situation is a UNE by 
definition.

On the other hand, a uniform best improvement by one of the players may actu-
ally increase some of the local costs for the other player, and thus the above proce-
dure may start cycling through a number of situations, never terminating. To prove 
our theorem, we are going to show that such cycling cannot happen. To this end, we 
associate a quantity that can take only finitely many different values to every situa-
tion, and show that this decreases strictly in every step in the above process.

To a situation � let us associate for i ∈ I
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and define the quantity associated to situations � as

We claim that for all j ≥ 1 we have

Note that by the definition of a uniform best improvement we have

Thus, to prove our main claim (4), and consequently the theorem, it is enough to 
show that for all j ≥ 1 and positions v ∈ V  we have

Note that since �0 is 1-basic, this claim follows by Lemma 8 for j = 1.
By applying Lemma 9, recursively, we can conclude that �j for an even j ≥ 2 are 

all 1-basic, and for an odd j ≥ 1 are all 2-basic.
Note also that inequality (5) holds for positions v ∈ V1 whenever j is even, for 

v ∈ V2 whenever j is odd, simply by the definition of a uniform best improvement. 
For the remaining cases, we can prove (5) by induction on j, starting with j = 1 , and 
applying Lemma 8, with interchanging the players role’s in it, alternately.

The above arguments prove (5), and thus (4) follows. Since �(�) can only take 
finitely many different values, this completes the proof of our theorem.   ◻

Remark 1 Though our paper is not of algorithmic nature, we would like to remark 
that such a UNE for an edge-symmetric terminal game Γ can be computed efficiently.

First of all, computing a uniform best improvement is equivalent with solving a 
so-called reachability problem in G, and thus can be done in O(|E|) time.

A starting strategy �0 can be computed in O(|V||E|) time, according to the proce-
dure in Lemma 7.

According to our assumptions, as in Lemma 4 and to condition (CIW), we can 
assume w.l.o.g. that

for all terminals w ∈ VT and players i ∈ I . Thus we have

for all situations � . Thus we need only to consider at most |V||VT | many uni-
form best improvements before termination, showing that our total complexity is 
O(|V||VT ||E|).

�i(�) =
∑

v∈Vi

L
i(�, v),

�(�) = �1(�) + �2(�).

(4)𝜈(𝜎j+1) < 𝜈(𝜎j).

𝜈1(𝜎j+1) < 𝜈1(𝜎j) if j is even, and

𝜈2(𝜎j+1) < 𝜈2(𝜎j) if j is odd.

(5)L
i(v)(�j+1, v) ≤ L

i(v)(�j, v).

−|VT | ≤ L
i(w) < 0

−|V||VT | ≤ 𝜈(𝜎) < 0



 E. Boros et al.

1 3

Remark 2 We also mention that this theorem is sharp in the sense that all three listed 
conditions, (TWO), (SYM), and (CIW) are necessary, as we can demonstrate this by 
the next three examples:

• Consider Γ2 from Boros et  al. (2012) (see also Fig.  1). This example satisfies 
(TWO) and (SYM), but not (CIW) and has no UNE.

• Consider Γ3 from Boros et al. (2012) and symmetrize it (see Fig. 2). This exam-
ple satisfies (SYM) and (CIW), but has three players and has no UNE.

• Consider finally Γ6 from Boros et al. (2012) (see also Fig. 3). This example satis-
fies (TWO) and (CIW), but not (SYM) and has no UNE.

Most of these claims are very easy to check, based on the graphical description of 
these terminal games given in Figs. 1, 2, and 3, except the last one, where the lack 
of a UNE is more complicated to check. We refer the reader to Boros et al. (2012) 
where this claim is demonstrated by describing the 8 × 8 normal form of Γ6.

6  NE‑free examples

In this section we provide examples for edge-symmetric shortest path games that 
have no NE (and of course violate in some way the positivity condition). We also 
provide an example for a positive edge-symmetric shortest path game that has no 
UNE.

a1 1 2 a2

Terminal Costs

a1 a2 c
Player 1 −1 0 −2
Player 2 2 1 0− −

Fig. 1  Terminal game Γ2 from Boros et  al. (2012). This example satisfies (TWO) and (SYM), but not 
(CIW) since Player 1 prefers the infinite play, denoted by c to both terminals a

1
 and a

2
 . It is easy to 

verify that this game does not have a UNE

a1 1

2

a2

3 a3

Terminal Costs

a1 a2 a3 c
Player 1 −2 −3 −1 0
Player 2 −1 −2 −3 0
Player 3 −3 −1 −2 0

Fig. 2  A symmetrized variant of terminal game Γ3 from Boros et  al. (2012). This example satisfies 
(CIW) and (SYM), but not (TWO). It is easy to verify that this game does not have a UNE
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Let us recall (e.g., from Boros et al. 2017, 2018) that the effective cost of infi-
nite plays can be defined in different ways, where differences are due to cycles in 
which the sum of edge lengths is zero (for some of the players). Accordingly, we 
provide two examples.

The first example shown in Fig.  4 is a 2-person nonzero sum shortest path 
game on an edge-symmetric digraph that has both positive and negative edge 
lengths and no cycle has length zero. The corresponding normal form is shown in 
Fig. 7 proving that this example has no NE.

1

2

1

2

1

2

a1

a2

a3

a4

a5

a6

Terminal Costs

Player 1 Player 2
a1 −3 −1
a2 −4 −5
a3 −2 −6
a4 −1 −3
a5 −5 −2
a6 −6 −4
c 0 0

Fig. 3  The terminal game Γ6 from Boros et al. (2012). This example satisfies (CIW) and (TWO), but not 
(SYM). We refer the reader to Boros et al. (2012) for a proof of the claim that this game does not have a 
UNE

s

u

v t

1
0

−12

1
1

0
0

3
2

0
00

−1

Fig. 4  A 2-player edge-symmetric non-zero sum shortest path game example with no NE. Edge lengths 
are arbitrary real numbers, and there is no zero-cycle. Player Red controls the initial position s, and Blue 
controls positions u and v. Both players are minimizing the length of the (infinite) path starting in the ini-
tial position s. Note that all stationary strategies yield a play that is ending in either a cycle yielding ±∞ 
as game value, or in a finite path terminating at t and yielding finite values for the players. For example, 
the play s → u → s has a value −∞ for Red, and ∞ for Blue 
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The second example shown in Fig. 5 is a 2-person nonzero sum shortest path 
game on an edge-symmetric digraph that has nonnegative edge lengths but some 
of the cycles have zero length. In fact only cycles have zero length in which all 
edges have zero lengths. The corresponding normal form is shown in Fig. 8 prov-
ing that this example has no NE, either.

Let us add that all meaningful definitions of the cost of an infinite play (that 
may lead to a NE) agree on the following facts (see Boros et  al. 2017, 2018): 
if for a situation � the corresponding play P = P(�) ends in a cycle C and ∑

e∈C �
i(e) > 0 , then �i(�) = +∞ , and if 

∑
e∈C �

i(e) < 0 , then �i(�) = −∞ . Fur-
thermore, if all edges e ∈ C have �i(e) = 0 , then �i(�) =

∑
e∈P⧵C �

i(e) , or in other 
words, the effective cost of the play ending in cycle C is the length of the path of 
P leading to cycle C. In this sense, the above two examples show that positivity 
of the edge lengths in edge-symmetric shortest path games is “essential” to guar-
antee a NE.

Finally we show an example for a 2-person positive edge-symmetric shortest 
path game that has no UNE. This game, Γ6s is shown in Fig. 6 is derived from the 
terminal game Γ6 shown earlier. Note first that the counter clockwise moves have 
a large length for both players, larger than the length of any terminating move. 
This implies that in any UNE these moves will not be used. Let us also observe 
that from any position v and for any two terminals ai and aj , i ≠ j the i(v)-lengths 
of the paths from v to these terminals (via the clockwise moves) compare exactly 
the same way as in the terminal game Γ6 : the i(v)-length of the v → ai path is 
shorter than the i(v)-length of the v → aj path if and only if player i(v) prefers ter-
minal ai to aj in Γ6 . Thus, any UNE in this shortest path game would correspond 
to a UNE in Γ6 , and Boros et al. (2012) proved that no such UNE exist.

s

v

u t

1
0

0
1

0
1

2
1

0
00

0

1
1

Fig. 5  A 2-player edge-symmetric non-zero sum shortest path game example with nonnegative edge 
lengths in which there is no NE. All edge lengths are nonnegative and some are equal to zero; there are 
full zero cycles. Player Red controls the initial position s, and Blue controls positions u and v. Both play-
ers are minimizing the length of the (infinite) path starting at the initial position s. Note that all cycles are 
either positive (limit is +∞ ), or have only arcs of length 0. For instance, the play s → v → s has value 0 
for Red and ∞ for Blue 
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7  Open problems

Two important questions concerning the existence of NE remain open. The first 
one is about terminal games.

(Q1) Does an n-person terminal game satisfying condition (CIW) have a NE?
In this paper question (Q1) is answered in the positive for games on edge-sym-

metric digraphs. Moreover, in this case condition (CIW) is not essential.
It was shown in Boros et  al. (2018) that in general (for non-symmetric 

digraphs) condition (CIW) is essential when n > 2 , while for n = 2 (CIW) is not 
needed (Boros and Gurvich 2003). Interestingly, if the answer to (Q1) were nega-
tive then paradoxically there should be a terminal game satisfying (CIW) in which 
all NE are infinite, that is, realized by infinite plays; see (Boros et al. 2018).

The second open problem is about shortest path games.
(Q2) Does a positive 2-person shortest path game have a NE?
The answer is negative for more than two players, see (Gurvich and Oudalov 

2014). In the present paper it is shown that the answer is negative for general 

1

2

1

2

1

2

a1

a2

a3

a4

a5

a6

0
.010
.01

0
.01

0
.01

0.
01

0.
01

0.010.01

0
.0
1

0
.0
1

0.
01

0.
01

7
7

7
7

7 7

7
7

7
7

77

4
6

3
2

5
1

6
4

2
5

1
3

Fig. 6  A 2-person positive edge-symmetric shortest path game Γ6s derived from the terminal game Γ6 in 
Boros et al. (2012)
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edge-symmetric 2-person games, while it is positive for edge-symmetric positive 
games with any number of players.

s

v

u t s

v

u t

s

v

u t s

v

u t

+∞
−∞

s

v

u t

−∞
+∞

s

v

u t s

v

u t

+∞
+∞

s

v

u t

+∞
+∞

s

v

u t s

v

u t

1
0

s

v

u t

−∞
+∞

s

v

u t s

v

u t

1
0

s

v

u t

2
4

s

v

u t s

v

u t

∞
∞

s

v

u t

−∞
∞

s

v

u t s

v

u t

∞
∞

s

v

u t

∞
∞

Fig. 7  Normal form of Example given in Fig.  4. The columns represent the two possible strategies of 
player Red and the rows represent the six possible strategies of player Blue. Both players are minimiz-
ing their respective costs, indicated in the upper right corner in each cell. Row minimizing and column 
minimizing costs are underlined. Since no situation is simultaneously row and column minimizing, this 
example has no NE
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Fig. 8  Normal form of the example given in Fig. 5. The columns represent the two possible strategies of 
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