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Abstract

With the increasing availability of temporal data, a researcher often analyzes infor-
mation stored in matrices, in which entries are replicated on different occasions. For
example, in the context of underwriting, pricing, or forecast, an actuary manages
a greater amount of information and could have to deal with the death rates (or
with log-death rates) by age and year (or different countries). The occasions can be
time-varying or refer to different conditions, and in these situations, data can be
stored in a 3-way array or tensor. Also, we can consider an additional dimension
(the second occasions) and the data are stored in a 4-way array or (4-way) tensor.
More in general, data can be stored in a N-way array or (N-way) tensor. These data
are called multi-way data and they are analysed and handled by multi-way models.
The aim of this work is to illustrate the different uses of DEDICOM, Tucker and
CANDECOMP/PARAFAC models in the context of mortality, such as: identifying
subgroups, modeling, forecasting and exploring causes of death. To achieve this aim,
we gradually approach the problem, considering respectively three and four dimen-
sions in different order and in various applications. In particular we focus on the
Tucker method to modeling and exploring data, on Canonical Polyadic Decomposi-
tion (CANDECOMP) or Parallel Factors (PARAFAC) (CANDECOMP/PARAFAC)
to forecasting data and on the nonnegative 3-way DEcomposition into DIrectional
COMponents (DEDICOM) method, that is a special case of Tucker decomposition,
to identify subgroups in the data. Aiming at identifying subgroups, we show how the
DEDICOM is able to extract meaningful relational patterns from multi population
log centered death rate mortality data. Our work, by specifically describing the
mesoscale interactions between countries, could help to design appropriate actions
against longevity risk that may impact on the stability conditions of life assurance
and pensions. Concerning the mortality modeling, firstly we refer to the three-way
Lee Carter model [91], that is based on Tucker 3 decomposition, and that can be
considered an extension of the classic Lee carter model [61]. The proposed approach
allows us to simplify the data structure and to obtain a rank reduced representation.
Then, following this line of research and focusing on the forecasting, we propose a
coherent mortality forecasting using a four-way CANDECOMP/PARAFAC decom-
position, hence considering another dimension. Our proposal based on the four-way
structure allows managing mortality data aggregated in multi-dimensional settings,
according to common demographic features: age class, time, country, and gender.
We deal with four-dimensional mortality data using two main approaches proposed
in the literature, the first one which works on centered mortality rates as in [28],
and the second one working on compositional data as in [13]. Here, we provide two
steps further on methodological developments in the field of mortality analysis and
forecasting in a high-dimensional space. Firstly, compared to the current literature,
we use an additional dimension, implementing a 4-way tensor decomposition. Thus,
we further extend this framework including the CoDa analysis in the spirit of [14].
In the last part, we apply the Tucker 4 method to the mortality by cause of death,
hence considering again four dimensions and referring to death rates. This four-way
component analysis is useful for the exploratory analysis of four-way data and in this
context it reveals some peculiar aspects of the mortality phenomenon. In particular,
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this analysis lets us understand how the longevity improvements, witnessed in many
high-income countries during the twentieth century, were determined especially by
the reduction in a few specific major causes of death groups.
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Chapter 1

Introduction

The aim of this chapter is to discuss the backgrounds behind the thesis, describing the
papers that led to the development of the work under consideration underlining its
aim: to illustrate in the context of mortality, the different uses of DEDICOM, Tucker
and CANDECOMP/PARAFAC model, such as identifying subgroups, modeling,
forecasting and exploring mortality data. Then, the thesis outline will be introduced,
where we describe the structure of the work, specifying the contents and describing
briefly the data of each chapter. Finally, to better understand the reference context,
the focus will be shift on a general description of the multi-way data and on a brief
history of the development of tensor-based methods.

1.1 Backgrounds

The area of mortality is of particular interest for researcher and actuaries. This
field of study includes the examination of historical mortality trends, the inspection
of mortality projections, the exploitation of data suitable for the underwriting,
pricing, and analysis of life assurance and pensions products [89]. The twentieth
century witnessed longevity improvements in many high-income countries. These
improvements were determined especially by the reduction in a few specific major
causes of death groups. Against this background, it is of utmost significance to
understand mortality behaviours related to countries, which share similar socio-
cultural roots, in order to evaluate the impact of longevity risk and for predicting
possible future impacts in the insurance sector, especially with reference to life
assurance and pensions. In this background it is also important to try to model
mortality. [28] summarizes the history of the development of mortality modeling into
four main stages. The first stage is characterized by the creation of deterministic
and one-dimensional models; the second step concerns the deterministic and two-
dimensional models; the third stage relies on the development of stochastic models.
The model that marks the beginning of this new era is [61]. Such kind of framework is
one of the earliest stochastic mortality models in the literature for a single-population.
The last stage is characterized by researches concerning multi-populations mortality
models. The milestone of this research line is the innovative paper of [65], which
extends the Lee & Carter model for a group of populations.
In parallel with the growing interest in the topic of mortality, there has also been
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a massive development of statistical methodologies to analyse multi-dimensional
mortality data. Indeed, the embedding of additional sources of information and
the introduction of multivariate data, i.e. age, year and countries, has called for
the exploitation of multivariate mathematical methods developed years earlier in
other field of research. Among these methodologies, multi-way tensor decomposition
models have been applied to the topic of mortality only recently. In fact, the tensor
algebra was established in the sixties, but for many years its applications were
confined to psychometrics and chemometrics (see [45, 43]). Only in more recent
times, have they been used in statistics, where the first attempts of using these models
concerns three dimensions [54], and the analysis of the mortality data [91, 36, 28].
[91] proposed a three-way extension of the Lee-Carter [61] model by considering death
rates aggregated over time, age-groups and country. The Lee-Carter model cannot
be applied to multi-population mortality data with 3 dimensions, so the three-way
Lee-Carter model can be applied to multi-population mortality modelling using
three-way methods. [36] applied the three-way Lee-Carter model developed in [91] to
a group of countries by extending the Lee-Carter model [61] to a three-way structure.
[28] generalises the model used in [91] by applying different tensor decompositions
and by considering death rates aggregated for age, year, and country/gender and
addresses the forecasting problem of multi-population mortality. [13] extend the
paper of [91] by introducing a compositional data framework to simultaneously
model and forecast the compositional structure of three-way mortality data.
As emerges from these papers, a researcher, who analyses multidimensional mortality
data, usually deals with statistics stored in different matrices, where the information
is replicated over different occasions. For example, in the context of underwriting,
pricing, or forecast, an actuary manages a greater amount of information and could
have to deal with the death rates (or with the number of deaths) by age, year,
and replicated for different countries. In other words, mortality data displays both
a cross-sectional and a temporal dimension and can be easily stored in a 3-way
array or tensor. The CANDECOMP/PARAFAC 3 (CP3) [18, 42] and Tucker3 (T3)
[105, 104, 59, 54, 34] represent the most common methods for 3-way analysis in
the actuarial field. In a nutshell, CANDECOMP/PARAFAC and Tucker methods
represent multi-way extensions of classical Principal Component Analysis (PCA),
which allow to discover the multi-way interactions among the dimensions.
Also, we can consider an additional dimension (the second occasions) and the data
are stored in a 4-way array or (4-way) tensor. These data are called in general multi-
way data and multi-way models were introduced to analyse them. The aim of this
work is to illustrate in the context of mortality, the different uses of these methods
of tensor decomposition, such as: identifying subgroups, modeling, forecasting and
exploring mortality data. To reach this aim, we gradually approach the problem,
considering respectively three and four dimensions in different order and in various
applications. In particular we focus on the Tucker method to modeling and exploring
data, on CANDECOMP/PARAFAC to forecasting data and on the nonnegative
3-way DEcomposition into DIrectional COMponents (DEDICOM) method, that is a
special case of Tucker decomposition, to identify subgroups in the data.
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1.2 Identifying subgroups

We have seen that it is of utmost significance to understand mortality behaviours
related to countries, which share similar socio-cultural roots, in order to evaluate the
impact of longevity risk and for predicting possible future impacts in the insurance
sector, especially with reference to life assurance and pensions. In other words, it
is important to identify persistent groups of countries with homogeneous mortality
behaviours related to the evolutionary process of longevity improvements.
Aiming at identifying subgroups, we propose an in-depth inspection of country
mortality data to uncover how the evolving relationships among multipopulation
log-centered death rates induce distinguishable subsets associated with socio-cultural
attitudes of such countries. First, we investigate the patterns of co-occurrences
of log-centered death rates through time to determine similarities and differences
across countries. Secondly, we exploit the nonnegative 3-way DEcomposition into
DIrectional COMponents (DEDICOM), with the aim to find persistent subsets of
countries with similar mortality behaviors.
The DEDICOM model was introduced for two-way data, stored in a standard matrix,
by Harshman and co-authors [see 43, 44, 45]. In short, DEDICOM is an algebraic
model which provides information on latent components in the data that can be
regarded as “properties” or “aspects” of the objects, by also providing patterns of
relationships among these components. In DEDICOM, individual objects can have
substantial weights on more than one of the latent components or patterns, meaning
that DEDICOM identifies types of correspondence patterns that have distinctive
properties, and these are then linked to the individuals that exhibit mixtures of these
patterns in their particular history. The DEDICOM model has also been formulated
for three-way data [55, 68, 9, 10, 86]. In this context, one is able to better investigate
the relationships among the data components by aggregating trends over time and
also to study the strength of each cluster’s participation in the third mode, i.e.
time. The intrinsically temporal nature of the methodology allows us also to shed
light on similarity patterns among countries during various temporal phases. Our
study reveals the existence of two components characterized by different mortality
traits; the first component mainly identifies countries well known for their longevity,
encompassing European countries, together with North America and Australia. The
second component is characterized by Hungary and Denmark, which despite the
geographical proximity with Northern Europe exhibit different mortality trend due
to lifestyle and specific risk factors.

1.3 Modeling and Forecasting

We have seen that the Lee-Carter model [61] is one of the earliest stochastic mortality
models in the literature for a single-population: it marks the beginning of a new era
of mortality modeling. [91] proposes a three-way extension of the Lee-Carter [61]
model by considering death rates aggregated over time, age-groups and country. So,
concerning the mortality modeling, firstly we refer to the three-way Lee Carter model
[91] that is based on Tucker 3 decomposition. [91] applies the method considering
ten European countries; here we apply the method to one of the resulting subgroups
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of countries obtained from the DEDICOM application. The proposed approach
allows us to simplify the data structure and to obtain a rank reduced representation.
Then, following this line of research and focusing on the forecasting aim, we pro-
pose a coherent mortality forecasting using a four-way CANDECOMP/PARAFAC
decomposition, hence considering another dimension. In this context we consider
the same ten European countries considered in [91] for a better comparison. Our
proposal based on the four-way structure allows managing mortality data aggregated
in multi-dimensional settings, according to common demographic features: age class,
time, country, and gender. We deal with four-dimensional mortality data using two
main approaches proposed in the literature, the first one which works on centered
mortality rates as in [28], and the second one working on compositional data as in
[13]. Here, we provide two steps further on methodological developments in the field
of mortality analysis and forecasting in a high-dimensional space. We offer a compre-
hensive picture of multiway decomposition on mortality analysis/forecasting. Firstly,
compared to the current literature, we use an additional dimension, implementing a
4-way tensor decomposition. Thus, we further extend this framework including the
CoDa analysis in the spirit of [14].

1.4 Exploring the causes of death

We have seen that since the nineteenth century, developed countries witnessed
improvements in longevity and the consequent decline in mortality rates across
ages and years ([80]). The decrease in mortality rates is mainly due to steps taken
in preventing diseases through advances in public health, nutrition, and medicine
([106]). However, this general decline in mortality rates may overshadow periods with
stagnation or deceleration in life expectancy for some groups of countries ([64]). In
particular, past studies highlighted the increase in life expectancy at birth for a group
of Scandinavian countries and stagnations for other ones ([67]), whereas, for example,
females in France and Japan, exhibit positive improvements in life expectancy. A
similar pattern has been shown in the United States and the Netherlands, which
experienced a slowdown in life expectancy at age 65 from 1984 to 2000 ([75]). Recently,
longevity decelerations have been extensively documented ([40]) e.g. improvements in
life expectancy have slowed in the United Kingdom ([63]). A profound understanding
of changing mortality patterns is important for several reasons. From a policy point
of view, it is important to establish the causes of the slowdown and, in particular,
what can be done to reverse these trends in order to better implement and target
health and financial policies. In this perspective, knowledge about mortality trends
by cause of death (CoD) and different populations can help governments manage
their health care costs and financial planning, including public pensions, and social
security schemes ([27],[79]). Thus a comprehensive analysis considering different
mortality features, such as age, period CoD, and countries, is crucial. However, this
task entails several difficulties. Indeed, mortality data are usually referred to as
overall mortality for a single country and gender, displayed as a matrix in order
to represent ages and periods (Lee-Carter[61] model). More recently, models have
been proposed that leverage a multi-population framework, as in the case of ([65])
model, which extends the Lee-Carter model to allow for a group of populations.
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They solve the higher dimensional issue, using a common factor to describe the
long-term mortality trend shared by all countries within a group and use a country-
specific factor to describe the short-term country-specific mortality patterns. This
aspect becomes more problematic if we look at the multi-population model in the
causes of death structure. The single-population mortality modeling problem can
be solved by using matrix decomposition (or matrix factorisation), which is to
approximate the original data matrix using low-rank matrix representations through
underlying components. For example, [61] uses the SVD method to forecast the
US mortality data. However, the single-population models cannot be applied to
multi-population mortality data with three or more dimensions. A natural extension
of the matrix decomposition (two dimensions) is tensor decomposition (three or
more dimensions), which can be used for multi-population mortality modeling. A
tensor is a multidimensional or N -way array, being N the number of dimensions.
It is only in more recent times that methods of tensor decomposition have been
used in the analysis of the mortality data [91, 36, 28], where the first attempts of
using these models concern the case with N = 3 and the so-called Tucker3 model,
originally introduced in [105], see also [58, 54]. In [91], a three-way extension of the
Lee-Carter model by considering death rates aggregated over time, age-groups and
country. Paper [13] proposes a compositional data adaptation of the Tucker3 model
using three-dimensional arrays indexed by time, age, and population, and providing
coherent forecasts of the mortality of Canadian provinces. In [36] the three-way
Lee-Carter model developed in [91] is applied to a group of countries by extending
the Lee-Carter model to a three-way structure. In [28] the model used in [91] is
generalized by using different tensor decomposition models and considering death
rates aggregated over age, year, and country/gender and addresses the forecasting
problem of multi-population mortality. Papers [91, 36, 28, 66] refer to cause of
death log-mortality rates, an alternative involves the use of cause of death rates:
in fact, in [57] cause-specific death distributions, rather than log-mortality rates,
using compositional data analysis are forecasted. Following this line of research,
considering cause of death rates, we can analyze the causes of death mortality by
taking into consideration an additional dimension. In this context we apply the more
general Tucker4 method, which contains Candecomp/Parafac as a special case. Such
a four-way analysis is useful for the exploratory analysis of four-way mortality data
and it reveals some peculiar aspects of the mortality phenomenon. More in general,
by the current applications, our aim is to stimulate the use of tensor decomposition
models whenever four-way data are available. Regardless of the specific domain
of research, any four-way analysis is composed of different steps involving crucial
choices to be made. These will be carefully described and motivated providing a
guidance for the practical use of N -way models.

1.5 Thesis outline

The rest of the thesis is organized as follows.

In Chapter 2, aiming at identifying subgroups, we apply the DEDICOM to the
log centered death rate mortality data. The dataset considered is provided by the
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Human Mortality Database (HMD) and refers to 3 dimensions: countries, age groups
and years. The steps we follow are description of the database, construction of
the 3-dimensional similarity tensor, the description of the decomposition method
and the reporting the findings of the analysis by showing the results of the tensor
decomposition.

In Chapter 3, concerning the mortality modeling, firstly in 3.1 we apply the
three-way Lee Carter, that is based on Tucker3 decomposition, considering again
the log centered death rate mortality data. The dataset considered is provided by
the Human Mortality Database (HMD) and refers to 3 dimensions: age groups,
years and countries. Here, to obtain different results compared to [91], we apply the
method to one of the resulting subgroups of countries obtained from the DEDICOM
application. The steps we follow are: description of the decomposition method
(Tucker 3), description of the three-way extension of the Lee Carter model, iden-
tification and description of the database, construction of a 3-dimensional array
(age × time × country), application of the decomposition method, choice of the
number of components. Then, in 3.2 following this line of research and focusing on
the forecasting aim, we propose a coherent mortality forecasting using a four-way
CANDECOMP/PARAFAC decomposition. The dataset considered is provided by
the Human Mortality Database (HMD) and refers to 4 dimensions: age groups, years,
countries and gender. Here, we apply this method for simplicity and also because
the gender dimension has only two different modes. We deal with four-dimensional
mortality data using two main approaches proposed in the literature, the first one
which works on centered mortality rates as in [28], and the second one working on
compositional data as in [13]. In this context we consider the same ten European
countries considered in [91] for a better comparison. The steps we follows are descrip-
tion of the decomposition method (CANDECOMP/PARAFAC 4), description of
the four-way models, identification and description of the database, construction of
a 4-dimensional array (age × time × country × gender), application of the decom-
position method, choice of the number of components and forecasting. The tensor
factorization can synthesize the behavior of the target variables through a few latent
components and highlight the evolution of the temporal patterns. These patterns
are employed to forecast future trajectories of mortality data with the Vector-Error
Correction model, which accounts for the non-stationarity of the series. We carry
out Monte Carlo simulations to obtain the distributions of the time component over
the forecasted period 2001-2015, and we evaluate the goodness of the prediction by
computing the Root Mean Square Error and the Mean Absolute Error.

In Chapter 4, we apply Tucker 4 method to the mortality by cause of death,
considering again four dimensions. In this case we consider the death rates and
we apply the more general Tucker4 method, which contains Candecomp/Parafac
as a special case. The dataset here considered is provided by the World Health
Organization (WHO) and refers to N = 4 dimensions: causes of death, age groups,
years, and countries. Such a four-way dataset is investigated by the Tucker4 model,
the four-way extension of Tucker3. We carry out the analysis by distinguishing the
results by sex, first considering the males and then the females. The steps we follow
are description of the methodology, identification and description of the database,
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Figure 1.1. Structure of the thesis.

construction of the four-dimensional array (causes of death, age, time, and country),
application of the tensor decomposition method, choice of the number of underlying
components and interpretation.

Fig. 1.1 clarifies the structure of the thesis, representing for each chapter: the
aim, the method of tensor decomposition applied, the information stored in the
tensor considered and the respective database, the structure of the tensor considered.

1.6 Data choices

Starting from these various applications, the versatility of the tensor decomposition
methods is clear. To give coherence to the work, with reference to each dimension
involved (where possible and according to the objectives of the specific chapter) we
have considered the same quantities for each dimension in the different applications.
In the second and third chapter the age dimension is organized in 21 classes from 0
to 99 years, with a step of 5 years, except for the first two classes, which represent
respectively the individuals aged 0, and aged 1-4. In the fourth chapter age is
organized like the others chapters, but to avoid sparse data of older age with
reference to cause of death it is considered up to 84 years. Regarding time, we focus
the analysis on the years 1961-2015 in each chapter. Regarding countries, in the
second chapter we consider, from HMD, all the possible countries in relation to
the chosen time window for which data is available without interruption, these 18
countries are described in the following table:
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Code Countries
AUS Australia
AUT Austria
CAN Canada
USA Usa
JAP Japan
BEL Belgium
DNK Denmark
FIN Finland

FRA France
HUN Hungary
IRL Ireland
ITA Italy

NLD The Netherlands
NOR Norway
ESP Spain

SWE Sweden
CHE Switzerland
GBR United Kingdom

Table 1.1. Countries considered from HMD in the second chapter.

[91] applies the Tucker 3 method considering ten European countries, because
they are geographically closer and share similar social-economic status; nevertheless
[28] specifies that the tensor decomposition method does not require similar mortality
experience among different populations, which can be applied to other more different
populations too. So, following this guideline, here to obtain different results respect
to [91], here we apply the method to the resulting country’s components obtained
from the DEDICOM application. In particular, we consider the countries of the first
component resulting from the DEDICOM application of the previous chapter. So,
in the first part of the third chapter the 13 countries are the following:

Code Countries
AUS Australia
CAN Canada
USA USA
JAP Japan
FIN Finalnd

FRATNP France
IRL Ireland
ITA Italy

NLD Netherlands
NOR Norway
ESP Spain

SWE Sweden
CHE Switzerland

Table 1.2. Countries considered from HMD in the first part of the third chapter

In the second part of the third chapter, with reference to the four-way Lee Carter,
we consider the same ten countries of [91] for a better comparison with the three-way
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Lee Carter. So, we consider the following ten countries:

Code Countries
AUT Austria
BEL Belgium
DNK Denmark
FIN Finland

FRATNP France
ITA Italy

NLD Netherlands
ESP Spain

SWE Sweden
GBR_NP United Kingdom

Table 1.3. Countries considered from HMD in the second part of the third chapter

Finally, in the last chapter, where we have reconstructed data from the WHO,
to give coherence to the work and to deepen the demographic relationships between
countries we have consider the same 18 countries of the second chapter. Data are
described more in detail in each chapter, but firstly, we describe these multi-way
data in general.

1.7 Multi-way Data

We have seen that with the increasing availability of temporal data, a researcher
often analyzes information stored in matrices, in which entries are replicated on
different occasions. The occasions can be time-varying or refer to different conditions,
and in these situations, data can be stored in a 3-way array or tensor. Also, we can
consider an additional dimension (the second occasions) and the data are stored
in a 4-way array or (4-way) tensor. More in general, data can be stored in a
N-way array or (N-way) tensor. This multi-way structure represents one of the
possible formalizations of the data, in response to the need to analyze them, taking
into account their exponential increase and the resulting complexity of processing.
These data are called in general multi-way data. These data differ from classical
multivariate analysis, where the data matrix X is characterized by a set of xij values
in relation to J variables detected on I statistical units. In fact, multi-way data is
defined on a multi-dimensional structure or modes, which are defined on various
levels. As anticipated, these additional dimensions can be time-varying or refer to
different condition. So, the values of a generic tensor can be represented as follows
xijkl... with i=1,...,I j=1,...,J , k=1,...,K, l=1,...,L where I,J ,K,L are the number
of levels associated with each mode. For example, we can represent 3-way data in a
structure X=[xijk: i=1,...,I j=1,...,J , k=1,...,K] as in 1.2 where the three modes
are represented respectively by rows, columns and tubes.
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Figure 1.2. Graphical representation of a three-way data tensor

A representation of this type can be complex, for this reason the array can be
represented in a simplified way through a set of matrices. These matrices can be of
three types: horizontal (A), lateral (B) and frontal (C) matrices as represented in
1.3
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Figure 1.3. Three-way tensor divided into horizontal (A), lateral (B) and frontal (C)
matrices

These aspects can be extended to arrays with more than three dimensions, even
if it is not possible to provide an adequate graphical representation. An attempt of
representation is given in chapter 3 with reference to four dimensions. In general,
with reference to N-way tensor it is possible to define subsets of any size (n=1,...,N).
To analyze arrays, a procedure called unfolding is often useful, which consists in the
concatenation of all the matrices relating to a single dimension (horizontal, lateral or
frontal) which are placed side by side to form a single supermatrix. With reference
to a three dimensional array this procedure is represented in Fig. 1.4
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Figure 1.4. Matricization procedure of a three-way tensor starting from the subdivision
into horizontal (A), lateral (B) and frontal (C) matrices

The unfolding procedure can be extended to arrays with more than three dimen-
sions. More details about multi-way data will be defined in the next chapters; to
complete the reference context, in the next subparagraph we propose a brief history
of the development of tensor-based methods.

1.7.1 A brief history of the development of tensor-based methods

Since the 60s, numerous techniques have been developed to process multi-way data.
Many of these began as multidimensional extensions of two-dimensional models such
as principal component analysis, factor analysis, and group analysis. Most of these
models have a predominantly explorative character, since they are often used with
the aim of identifying particular patterns within multidimensional data, although,
as we will see, over time these techniques have been used for different purposes.
These models were born in response to the need to consider the multidimensional
structure in the data analysis, as the analysis techniques used for the two-way data
do not take these aspects into account. More in details, the study of tensor-based
methods originate from the works of Hitchcock [48, 50] and Cattel [21]. The findings
emerged from these works were studied during the following years, and they led to the
development of tensor method such as CANDECOMP/PARAFAC (CP) [18, 42] and
Tucker3 (T3) [105, 104, 59] methods. These two methods represent the most common
tensor-based methods and a recent review of them is in [34]. We have also seen
that the use of these methods has been confined to psychometrics and chemometrics
for many years and only in more recent times, have they been used in statistics,
where the first attempts of using these models concern three dimensions [54], and the
analysis of the mortality data [91, 36, 28]. Moreover, other decomposition methods
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have also been developed over time, such as DEDICOM that can be considered a
special case of Tucker model. The DEDICOM algorithm was introduced for matrix
data by Harshman and co-authors (see [43, 44, 45]). The DEDICOM model has
subsequently been extended to three-way data by [55, 68, 9, 10, 86]. A first approach
to describe more in general these method considering N components, is in [53] , and
then these aspects have been reviewed in [47]. In this work we focus on the Tucker
model (T3 and T4), on the special case of it, the DEDICOM model, and on the
CANDECOMP/PARAFAC model (CP4): all these models are described more in
details in their respective chapters.
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Chapter 2

IDENTIFYING SUBGROUPS

In this chapter, we show how the nonnegative 3-way DEcomposition into DIrectional
COMponents (DEDICOM) is able to extract meaningful relational patterns from
multi population log centered death rate mortality data. The dataset considered
is provided by the Human Mortality Database (HMD) and refers to 3 dimensions:
countries, age groups and years. The 3-dimensional decomposition technique identi-
fies persistent cluster of countries with homogeneous mortality behaviours related
to the evolutionary process of longevity improvements. Our work, by specifically
describing the mesoscale interactions between countries, could help to design appro-
priate actions against longevity risk that may impact on the stability conditions of
life assurance and pensions.

The chapter is structured as follows: Section 2.1 encompasses the identification
and description of the database, the construction of the 3-dimensional similarity
tensor, and the description of the decomposition method. Section 2.2 reports the
findings of the analysis by showing the results of the tensor decomposition. Finally,
Section 2.3 concludes.

2.1 Data Description and Methodology

2.1.1 Data Information and Pre-processing phase

We consider the dataset provided by the Human Mortality Database (HMD)1, which
is an archive of death information for several countries. The application of the
methodology requires to structure the data in three dimensions: country, age and
time. The age dimension is organized in 21 classes from 0 to 99 years, with a step of
5 years, except for the first two classes, which represent respectively the individuals
aged 0, and aged 1-4. Regarding the time dimension, we focus the analysis on
the years from 1961 to 2015 in order to consider the same time window for each
country (see the 18 countries listed in Table 2.1). The analysis is developed for the
total population, considering both genders. Regarding countries, we consider all the
possible countries in relation to the chosen time window for which data is available
without interruption.

1Human Mortality Database. University of California; Berkeley (USA); and Max Planck Institute
for Demographic Research (Germany). Available at www.mortality.org or www.humanmortality.de
(data downloaded on 08/11/21).



16 2. IDENTIFYING SUBGROUPS

Code Countries
AUS Australia
AUT Austria
CAN Canada
USA Usa
JAP Japan
BEL Belgium
DNK Denmark
FIN Finland

FRA France
HUN Hungary
IRL Ireland
ITA Italy

NLD The Netherlands
NOR Norway
ESP Spain

SWE Sweden
CHE Switzerland
GBR United Kingdom

Table 2.1. Countries considered from HMD.

A cleaning process is of fundamental importance before the construction and
investigation of death similarities in the countries listed above. We consider an
initial array with three dimensions (country, age, time). The dimension of the array
is: 18 × 21 × 55, for a total of 20.790 observations. In particular, following [65] that
generalized the Lee-Carter model, we collect (with a different order) the information
related to the log central death rates in the 3-dimensional array Y, such that each
entry contains the specific information of the log central death rate for population i,
at age j at time k, i.e.

yijk = log(mijk). (2.1)

The central death rate for an individual in country i, of age j at time k is computed
as:

mijk = dijk

Lijk
(2.2)

where
dijk = lijk − li(j+1)k (2.3)

is the expected number of deaths for population in country i, between age j and
j + 1 in year k and lijk is the expected number of living individuals at age j in year
k in country i initially made up of l0 individuals. The variable

Lijk ≃ 1
2[lijk + li(j+1)k] (2.4)

is the risk exposure of the total population i, of age j in year k (assumed to be equal
to the population at mid-year).

To investigate the similarity patterns among countries through the application
of the DEDICOM model, we need to create a country × country similarity matrix
X(k) for each year k, starting from the observations contained in the original array
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Y. To accomplish this purpose, we describe each country through the vector y(k)
containing the logarithm of the central death rates for each class, this means that we
consider the rows of each matrix country × age for each single year k. Once we have
constructed the yearly vectors of countries’ log central death rates y(k), we compute
the cosine metric for measuring the distances among each pair of countries. Given
two countries, whose time-k log central death rates for age classes are collected in
vectors yi(k) and yl(k), the time-k cosine distance between country i and country l
is defined as

Cil(k) = 1 − cos (yi(k), yl(k)) , (2.5)

where the cosine (cos) is the angle between the two vectors:

cos (yi(k), yl(k)) = < yi(k), yl(k) >

∥yi(k)∥ ∥yl(k)∥ , (2.6)

with the symbol < ◦ > and ∥ ◦ ∥ indicating the inner product and the Frobenious
norm, respectively. We rely on the cosine distance because our primary aim is to
consider the gap among countries’ mortality rate vectors in terms of orientation
and not by their length. Finally, from the cosine distance we produce the similarity
tensor by collecting the matrices

Xil(k) = max(C(k)) − Cil(k), (2.7)

where max(C(k)) is the maximum value of the time-k cosine distance matrix.
In a nutshell, the stronger the similarity (i.e., the force that connects two countries

mortality characteristics), the shorter the length of the links connecting the countries.
In other words, pairs of countries that are similar receive higher weights since they
are placed near by from each other, while values approaching zero are assigned to
pairs with highly dissimilar characteristics.

2.1.2 DEcomposition into DIrectional COMponents (DEDICOM)

Starting from the similarity matrix X(k) obtained at each year k, we build the
three-way tensor [see 9, 7, 97, 85], X ∈ RN×N×K , where N = 18 represents the
number of countries and K = 55 denotes the number of years. Thus, the tensor is
composed of the 55 slices X(k) ∈ R18×18. The tensor X encompasses both the cross-
sectional and temporal information of the evolving similarities that characterize the
countries. To reveal the hidden structure of such traits and their activity patterns,
lower-dimensional factors need to be identified and extracted from the data. In
other words, in order to retrieve the mesoscale structure of our temporal similarity
tensor, we exploit the DEcomposition into DIrectional COMponents (DEDICOM)
model [see 43, 9, 10]. The formulation of DEDICOM with P components, given the
three-way tensor X, is as follows:

Xk ≈ ADkRDkAT , k = 1, 2, . . . , K, (2.8)

where we use Xk = X(k) to simplify the notation. This linear algebra model maps
the country-to-country structure of the similarities onto a community-level structure
of P latent components and comprises:
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• A: N × P matrix, where each value aip reflects the strength of country i
belonging to component p;

• Dk: P × P diagonal matrix with diagonal elements describing the role of each
component at time k;

• R: P × P matrix, where each value rpq is a measure of the interaction between
component p and q.

The DEDICOM model is very general and contains several models as special
cases. First of all, DEDICOM can be applied to both symmetric and asymmetric
similarities. In the asymmetric case, R is an asymmetric matrix, whereas, in the
symmetric case, R is a symmetric matrix and DEDICOM coincides with the so-called
PARAFAC2 model [41]. When R = I, i.e., no information on the relationships
among the components is provided by the model, the DEDICOM model reduces
to the INDSCAL one [19]. All the previous models analyze three-way data stored
in the tensor X. If K = 1, data are available for only one year and X is nothing
but a standard (two-way) matrix, say X ∈ RN×N . In such a case, the matrices Dk

disappear and the model, called DEDICOM for two-way data, can be formalized as

X = ARAT . (2.9)

So, in this case the idea behind this family of decompositions introduced by
Harshman, is as follows. Suppose that we have I objects and a matrix X ∈ RI×I

that describes the asymmetric relationships between them. For instance, the objects
might be countries and xij represents the value of exports from country i to country
j. Typical factor analysis techniques either do not account for the fact that the
two modes of a matrix may correspond to the same entities or that there may
be directed interactions between them. DEDICOM, on the other hand, attempts
to group the I objects into R latent components (or groups) and describe their
pattern of interactions by computing A ∈ RI×I and R ∈ RR×R such that 2.9.
Each column in A corresponds to a latent component such that air indicates the
participation of object i in group r. The matrix R indicates the interaction between
the different components, e.g., rij represents the exports from group i to group j.
Three-way DEDICOM [43] is a higher-order extension of the DEDICOM model
that incorporates a third mode of the data. Adding a third dimension gives this
decomposition stronger uniqueness properties. The decomposition is illustrated in
2.8. Here A and R are as in 2.9, except that A is not necessarily orthogonal. The
matrices Dk ∈ RR×R are diagonal. Three-way DEDICOM is illustrated in Figure
2.1.
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Figure 2.1. Three-way DEDICOM model

The main advantage of DEDICOM in this context is that it is able to extract
meaningful relational patterns from multi population log centered death rate mortal-
ity data. In 2.2 is represented the relation of the DEDICOM with the Tucker model
(described in 3). Starting from the HMD mortality data representing log central
death rates for population in country i, at age j in time k, yearly country-by-country
cosine similarity matrices Xk are created. Those matrices are embedded into a three-
way tensor of similarities X of dimensions country × country × year. The tensor is
thus decomposed by the DEDICOM model, which is able to provide information
on latent components in the matrix R and to associate individual countries with
component weights stored in matrix A. Moreover, thanks to the relationship of
this decomposition with the Tucker model, the methodology yields also information
on the strength of each component’s activity at time k (matrix Dk). In a nutshell,
the stronger the similarity (i.e., the force that connects two countries mortality
characteristics), the shorter the length of the links connecting the countries. In other
words, pairs of countries that are similar receive higher weights since they are placed
near by from each other, while values approaching zero are assigned to pairs with
highly dissimilar characteristics. Moreover, the DEDICOM model, by taking into
consideration both the cross-sectional and temporal features of country similarities,
allows us to investigate how components respond to events affecting the logarithm
of the central death rates.

Figure 2.2. Graphical representation of the model.
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Computing DEDICOM

[107] explain that there are a number of algorithms for computing the two-way
DEDICOM model, e.g., [37], and for variations such as constrained DEDICOM
[38, 39]. For three-way DEDICOM, see [55] and [10]. Because A, and D, appear
on both the left and right, fitting three-way DEDICOM is a difficult nonlinear
optimization problem with many local minima. [55] presents an alternating least
squares (ALS) algorithm that is efficient on small tensors. Each column of A is
updated with its own least-squares solution while holding the others fixed. Each
subproblem to compute one column of A involves a full eigendecomposition of
a dense I × I matrix, which makes this procedure expensive for large, sparse X.
In a similar alternating fashion, the elements of D are updated one at a time by
minimizing a fourth degree polynomial. The best R for a given A and D is found
from a least-squares solution using the pseudo-inverse of an I2 × R2 matrix, which
can be simplified to the inverse of an R2 × R2 matrix.

[10] have proposed an algorithm called Alternating Simultaneous Approximation,
Least Squares, and Newton (ASALSAN). The approach relies on the same update
for A as in [55] but uses different methods for updating A and D. Instead of
solving for A column-wise, ASALSAN solves for all columns of A simultaneously
using an approximate least-squares solution. Because there are RK elements of D,
which is not likely to be many, Newton’s method is used to find all elements of D
simultaneously. The same paper [10] introduces a nonnegative variant.

DEDICOM applications

[107] explain that most of the applications of DEDICOM in the literature have
focused on two-way (matrix) data, but there are some three-way applications. [87]
analyzed asymmetric measures of yearly trade (import-export) among a set of nations
over a period of 10 years. [68] presented an application of three-way DEDICOM to
skew-symmetric data for paired preference ratings of treatments for chronic back pain,
though they note that they needed to impose some constraints to get meaningful
results. [10] recently applied their ASALSAN method for computing DEDICOM
on email communication graphs over time. In this case, xijk corresponded to the
number of email messages sent from person i to person j in month k.

2.2 Results

We report here a walkthrough of our results: in the first place, we display the results
of the tensor factorization and then the roles of the countries inside the subgroups.

2.2.1 The DEDICOM components

We start our analysis by providing an overview of the model fitting for different
number of components P . In order to choose the number of clusters we have
computed the model fitting for an increasing number of components. Moreover, as
many tensor decomposition, also the DEDICOM model could be affected by the
presence of local minima. To account for this feature, for each P we have run 100
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times the DEDICOM model using different starting points at each run. Figure 2.3
shows the percentage fits for different number of components. Each colored circle
refers to a model run with different starting conditions, while the black line shows
the maximum fit for each component.
In order to discover homogeneous traits at the component level that may reveal
countries’ different mortality patterns, we employ the DEDICOM model with P = 2
components, which explains about 96% of the original data variability. We have
opted for two components to have a balancing between model fit and stability of the
results.

Figure 2.3. Model Fit. The figure reports the percentage fit of the DEDICOM model
while varying the number of components P and also for different starting conditions as
shown by the blue circles. The black line shows the maximum fit for each component.
At P = 2, the DEDICOM results in a fit equal to 96.2%.

Next, we are interested in discovering relevant patterns, at the component level,
that may reveal homogeneous mortality behaviours related to the evolutionary
process of longevity improvements in different countries. Against this background,
we normalize the loading matrix A so that the columns have unit length. In this
way, the elements of such a normalized matrix, denoted by Â, have comparable sizes
and describe membership degrees relating the N countries to the P components.
Moreover, we also normalize the interaction matrix R so that its diagonal elements
are equal to one. Finally, we compensated these two normalizations in the matrices
Dk, k = 1, . . . , K. In formulae, setting

T = diag
{

||a1||−1/2, · · · , ||aP ||−1/2
}

, (2.10)

and
V = diag{r

−1/2
11 , · · · , r

−1/2
P P } (2.11)
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where diag{◦} is the operator which creates a diagonal matrix with the given
argument values along the diagonal and ap (p = 1, . . . , P ) is the p-th column of A,
we have:

Â = AT, (2.12)

R̂ = VRV, (2.13)

D̂k = T−1DkV−1 = V−1DkT−1, k = 1, . . . , K. (2.14)

Once the information on latent components in the data is extracted, the DEDI-
COM model associates each country to more than one of the latent components or
patterns with different weights. In a nutshell, DEDICOM identifies the communities
by grouping countries that have mortality profiles that are similar in ages and
temporal dimensions.

Results are reported in Figure 2.4 and Figure 2.5 where, in the first figure, the
upper left sub-plot displays the normalized component matrix Â, i.e, for each country,
the panel shows the degree of belonging to one of the two identified components. The
lower left panel shows the temporal profiles embedded in the matrix D̂. This matrix
describes the level of synchronization of death similarities within each component,
i.e., a high value of an element of D̂ denotes the importance of a component for a
year, i.e., in such a year, similarities among countries are strongly explained by the
component involved. The second figure refers to the interaction matrix R̂ among
the two components.
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Figure 2.4. Country component membership degree Â and temporal activity patterns
D̂. The upper left sub-plot reports, for each country, the degree of belonging to one of
the two components. The lower left panel shows the level of synchronization of death
similarities within each component.
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Figure 2.5. Latent components’ interaction R̂. The figure refers to the interaction of
patterns among the two components.

The DEDICOM model provides a soft membership distribution of countries inside
components. Specifically, subgroups of countries can be retrieved independently
from each other and countries can belong to more than one community. On the other
hand, we also provide a hard partition scheme, where overlapping is not allowed,
by assigning countries to the component in which they have the highest degree
of membership. Figure 2.6 reports the WordCloud chats of such a hard partition
scheme, where each colored country is assigned to the component in which it has
the highest value of Â. In particular, the right panel refers to component-1, and the
left panel identifies component-2. The sizes of the words correspond to the country
component membership degrees in Â and the colored countries are those having the
highest membership degrees in the given component.
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Figure 2.6. WordCloud chats of the hard partition scheme. The figure reports the hard
partition scheme, where each colored country is assigned to the component in which it
has the highest degree of membership. In particular, the left panel refers to component-1
and the the right panel identifies component-2. The sizes of the words correspond to
the country component membership degrees in Â and the colored countries are those
characterized by the highest membership degrees in the given component.

To better understand the results obtained, firstly, it is interesting to observe the
composition of the dataset. We have considered 14 countries from Europe, and 4
countries from the rest of the world (Japan, USA, Canada, and Australia).

The first subgroup related to component-1 is characterized by countries well-
known for their longevity, such as Italy, France, and Spain as underlined in [77]
as emerging longevous populations, and some extra-EU countries, such as Japan.
Northern countries exhibit remarkable levels of life expectancy at birth as observed
by [22]. Indeed, in our study, Norway, Sweden, Finland (also with the Netherlands)
fall into this component. Furthermore, it should be noted that this component is
also characterized by the presence of two North American countries.

The results of component-2 can be led back to longevity patterns related to
European countries located in the central/east area, mainly represented by Hungary,
where the improvement in social economic conditions had reflection in the healthcare
system [see 100]. This component also reveals similarity with Denmark, which a
priori could be expected to form a cluster with the other Northern countries, well-
known to be leaders in life expectancy. On the other hand, despite the geographical
proximity, [22] highlight the different mortality trend between Denmark and Sweden,
chosen as representative of the group of Northern countries, and explain some
potential reasons such as lifestyle, and specific risk factors (smoking and alcohol
consumption).

Moreover, the DEDICOM model, by taking into consideration both the cross-
sectional and temporal features of country similarities, allows us to investigate how
components respond to events affecting the logarithm of the central death rates.
Indeed, the investigation of the scale matrix D̂, reported in Figure 2.4, reveals how
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the similarities summarized by the components have changed during time, i.e. the
level of synchronization among components’ members. While countries belonging to
component-1 display an increasing level of synchronization up to the mid-nineties,
component-2 has only a marginal level of synchronization. In order to shed light on
the component dynamics, we identify the behavioral characteristics of each subgroup
by examining its features values over time. The features of each subgroup have
been identified as the average of the log central death rates of the countries that
form such a subgroup, after having associated each country to each component
according to the hard partition scheme. Results are reported in Figure 2.7, which
shows the characteristics of the components and how they have been changing over
time. Specifically, in the figure, the average log central death rate of each component
is displayed as a dashed line, while standard errors are shown as colored areas and
identify the variability of component features.

Figure 2.7. Death characteristics of the components over time. The figure shows the
average log central death rate of each component, together with the standard errors and
how they have been changing over time. In these panels, countries have been associated
to each component according to the hard partition scheme.

Figure 2.7, clearly explains the different behavior of the two components, which
shows distinct dynamics, especially for the age classes ranging from 30 to 80 years.
Moreover, the figure reveals some interesting aggregate patterns at age classes.
For instance, for 30 and 35 years one can notice the increasing log mortality rate
associated with component-1 while from 30 to 55 component-2 shows a stable log
mortality rate up to the mid-nineties, which decreases afterwards. Instead, for
older classes, despite the two components display different log mortality rates, their
decreasing trend is similar as suggested by the slope of the curves.
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2.3 Conclusion and discussion
In this chapter we have applied the DEDICOM model to the similarity tensor
computed on the multi population log centered death rate mortality data, starting
from an initial array of three dimensions (country × age × time) obtained from
the Human Mortality Database. The DEDICOM is an algebraic model, which
provides information on latent components in the data that can be regarded as
“properties” or “aspects” of the objects, by also supplying patterns of relationships
among these components. In the DEDICOM model, individual objects can have
substantial weights on more than one of the latent components or pattern, meaning
that DEDICOM identifies types of correspondence patterns that have distinctive
properties, and these are then linked to the individuals that exhibit mixtures of
these patterns in their particular history. We have created yearly distance matrices,
computing the cosine metric for measuring the similarities (distances) among each
pair of countries defined by log central death rates vectors. We have shown the main
advantage of DEDICOM: the model is able to extract meaningful relational patterns
by reporting a walkthrough of our results: in the first place, we have displayed results
of the tensor factorization and then membership of the countries designed to the
components. In a nutshell, the stronger the similarity (i.e., the force that connects
two countries mortality characteristics), the shorter the length of the links connecting
the countries. In other words, pairs of countries that are similar receive higher weights
since they are placed near by from each other, while values approaching zero are
assigned to pairs with highly dissimilar characteristics. Moreover, the DEDICOM
model, by taking into consideration both the cross-sectional and temporal features
of country similarities, allows us to investigate how components respond to events
affecting the logarithm of the central death rates. The 3-dimensional decomposition
identifies persistent subgroups of countries with homogeneous mortality behaviours
related to the evolutionary process of longevity improvements. In particular, we
found two different clusters that reveal some peculiar aspects of the mortality
phenomenon. The first community is mainly represented by longevous populations
mixed with North American countries and Australia. The results of component-2
can be led back to longevity patterns related to European countries located in
the central/east area, mainly represented by Hungary, where the improvement in
social economic conditions had reflection in the healthcare system [see 100]. This
component also reveals similarity with Denmark, which a priori could be expected
to form a cluster with the other Northern countries, well-known to be leaders in life
expectancy. On the other hand, despite the geographical proximity, [22] highlight the
different mortality trend between Denmark and Sweden, chosen as representative of
the group of Northern countries, and explain some potential reasons such as lifestyle,
and specific risk factors (smoking and alcohol consumption).

Our work, by specifically describing the mesoscale interactions between subgroups
and their evolution in time, could help to design appropriate actions against longevity
risk that may impact on the stability conditions of life assurance and pensions.
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Chapter 3

MODELING AND
FORECASTING

In this chapter, firstly in 3.1 we refer to the three-way Lee Carter model [91], that
is based on Tucker 3 decomposition, and that can be considered an extension of
the classic Lee carter model [61]. The proposed approach allows us to simplify
the data structure and to obtain a rank reduced representation. [91] applies the
method considering ten European countries; here, to obtain different results, we
apply the method to one of the resulting country’s component obtained from the
DEDICOM application. Then, in 3.2 following this line of research and focusing on
the forecasting aim, we propose a coherent mortality forecasting using a four-way
CANDECOMP/PARAFAC decomposition. In this context we consider the same ten
European countries considered in [91] to make a better comparison. Our proposal
based on the four-way structure allows managing mortality data aggregated in
multi-dimensional settings, according to common demographic features: age class,
time, country, and gender. We deal with four-dimensional mortality data using two
main approaches proposed in the literature, the first one which works on centered
mortality rates as in [28], and the second one working on compositional data as in
[13]. Here, we provide two steps further on methodological developments in the field
of mortality analysis and forecasting in a high-dimensional space. Firstly, compared
to the current literature, we use an additional dimension, implementing a 4-way
tensor decomposition. Thus, we further extend this framework including the CoDa
analysis in the spirit of [14]. In the first part of the chapter the steps we follow are:
description of the three-way Lee Carter model, description of the decomposition
method (Tucker 3), identification and description of the database, construction of
the 3-dimensional array (age × time × country), application of the decomposition
method, choice of the number of components. In the second part the steps we
follow are: description of the decomposition method (CANDECOMP/PARAFAC 4),
description of the four-way models, identification and description of the database,
construction of a 4-dimensional array (age × time × country × gender), application
of the decomposition method, choice of the number of components and forecasting.
The tensor factorization can synthesize the behavior of the target variables through
a few latent components and highlight the evolution of the temporal patterns. These
patterns are employed to forecast future trajectories of mortality data with the
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Vector-Error Correction model, which accounts for the non-stationarity of the series.
We carry out Monte Carlo simulations to obtain the distributions of the time com-
ponent over the forecasted period 2001-2015, and we evaluate the goodness of the
prediction by computing the Root Mean Square Error and the Mean Absolute Error.

3.1 Mortality modeling: Three-way Lee Carter
The Lee-Carter model, developed in the early 1990s, is one of the earliest stochastic
mortality models in the literature for a single-population and represents an extrap-
olative method based on a multiplicative two-way model which is used with time
series analysis in forecasting mortality. [101] have highlighted the statistical features
of this method as an association model for a two-way data matrix. The model is
based, from both a statistical and an algebraic point of view, on a Singular Value
Decomposition (SVD – [29]). The model used for mortality data is a principal
component approach (PCA detailed in sec. 3.1.1), based on the log-death centered
rates at age i at time j: log(mij). The death centered rates, computed from the
mortality table provided by the HMD, for an individual of age i at time j is denoted
by

mij = dij

Lij
(3.1)

where
dij = lij − li(j+1) (3.2)

is the expected number of deaths of a population between age i and i + 1 in the year
and j and lij is the expected number of living individuals at age i in the year j in a
population initially made up of l0 individuals, and

Lij ≃ 1
2[lij + li(j+1)] (3.3)

is the risk exposure of the total population of age i in year k (assumed to be equal
to the population at mid-year).

Following the notation of [91, 54], but unlike it, considering the age classes on the
rows (i=1,...,I) and the years on the columns (j=1,...,J) as in [28], the Lee-Carter
model is written as

ln(mij) = αi + βi ∗ kj + eij , i = 1, ..., I, j = 1, ..., J (3.4)

where αi is the age-specific log-mortality average that is independent of time, βi is
an age-pattern of mortality change at age i that represents how rapidly or slowly,
mortality at each age varies when the general level of mortality changes, and kj

reflects the trend in the level of mortality in the year j. The eij component represents
the error term, which is assumed to be homoscedastic and normally distributed.
Usually the model is expressed by considering the mean centred log-mortality rates:

m̃ij = ln(mij) − αi = βi ∗ kj + eij , i = 1, ..., I, j = 1, ..., J (3.5)

The values of αi are calculated by averaging the log-mortality rates across the J
years, for each age-class i = 1, ..., I. The values m̃ij can be organized in a matrix X.
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The SVD of the matrix X is:

X = U[I×h]S[h×h]V’[h×J ], h ≤ (I, J) (3.6)

The scalar h is the rank of X, S is a diagonal matrix (h × h) holding the positive
singular values of X. U is a matrix (I × h) and V is a matrix (h × J) that hold
respectively, the left and right singular vectors ui and vj forming orthogonal bases
for the I rows and the J columns of the matrix X. The estimates of kj and βi in
the Lee Carter model are obtained as:

β̂i = ui1; k̂j = λ1v′
1j (3.7)

and these estimates minimize
I∑

i=1

J∑
j=1

[m̃ij − (βi ∗ kj)]2 (3.8)

The last stage in the development of mortality modelling is characterized by
research on multi-populations mortality models; the innovative paper is the Li and
Lee model developed in 2005 [65], which extends the Lee and Carter model for
a group of populations. In recent years, the introduction of further information
and of three dimensions (such as, age, year and countries) has allowed scholars to
use statistical methods that are based on tensor decomposition, developed years
earlier. [91] proposes a three-way extension of the Lee-Carter model by considering
death rates aggregated for time, age-groups and country. The Lee-Carter model
cannot be applied to multi-population mortality data with 3 dimensions, so the
three-way Lee-Carter model can be applied to multi-population mortality modeling
using three-way methods. The three way Lee-Carter is:

m̃ijl = ln(mijl) − αil = βi ∗ kj ∗ γl + eijl, (3.9)

i = 1, ..., I, j = 1, ..., J l = 1, ..., L

where αil, are computed by averaging the log-mortality rates across the J years,
for each age-group i=1, 2,...,I and for each country l=1,...,L, βi and kj have the
same interpretation of the Lee Carter model, while γl (l=1,...,L) represents the
term associated to the generic element of the third criterion, in [91] it represents
the different countries. [91] points out that all of the parameters share information
common to the three ways, that is the βi estimates are influenced both by time
and country effects. To estimate the parameters the authors proposed, as natural
extension of the SVD in the three-way framework, the Tucker3 model (detailed in
sec. 3.1.1).

3.1.1 Methodology

Having introduced the three way Lee Carter, to better understand it, we describe
the decomposition method involved, the Tucker 3, starting from the more general
context of the three-way component analysis techniques. Three-way component
analysis techniques carry out a descriptive analysis of 3-way data that can emerge in
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different contexts, our context is mortality. Three-way data refers to data that can
be arranged in a three-dimensional array, in our example (age × time × country).
The three sets of entities associated with this four-way data set are the dimensions
(or “modes”) of the array. The idea of this method is to efficiently summarize all the
information in the three-way data, also considering the various interactions (two-way
and three-way); in particular, the method summarizes the entities of each mode
through a few components (P,Q and R) and the relation between these components
(Core tensor G). As we have seen, different techniques of three-way component
analysis have been proposed, one of the best known is the Tucker3 (T3) analysis.
We can consider this multi-way method a generalization of Principal Component
Analysis (PCA), which is a technique to explore the relationship among two-way
data. For convenience, PCA is briefly presented.

Principal Component Analysis

PCA is a statistical method that can be applied when the available information can
be collected in a matrix, say X. The generic element of this matrix, xij , expresses
the score of the i-th observation unit (i=1,...,I) with respect to the j-th variable
(j=1,...,J). We can consider X as a two-way tensor in ℜI×J where the two modes
are the observation units (from now on simply called “units”) and the variables.
For example, as seen in the Lee Carter model, the observation units are the age
classes and the variables are the years. PCA with S (≤ min(I, J)) components can
be formulated as

xij =
S∑

s=1
aisbjs + eij , i = 1, ..., I, j = 1, ..., J (3.10)

where ais and bjs are the component score of unit i for component s (i=1,...,I and
s=1,...,S) and the component loading of variable j for component s (j=1,...,J and
s=1,...,S), respectively, S denoting the number of components, and eij is the error
term, the generic element of the matrix E. In matrix form PCA can be rewritten as

X = AB′ + E, (3.11)

where A (I × S) with generic element ais and B (J × S) with generic element bjs

denote the component score and component loading matrices, respectively, and E
(I × J) is the error matrix. PCA finds estimates for A and B by minimizing

||E||2 = ||X − AB′||2, (3.12)

with respect to A and B, where the symbol || · || denotes the Frobenius norm of
matrices. The estimates of A and B are found by computing the SVD of X, thus
highlighting a strong connection between PCA and the Lee-Carter[61] model.

Tucker3

[107] summarizes the different names for the Tucker decomposition as in 3.1.
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Name Proposed by
Three-mode factor analysis (3MFA/Tucker3) Tucker [105]

Three-mode principal component analysis (3MPCA) Kroonenberg and De Leeuw [58]
N-mode principal components analysis Kapteyn et al. [53]

Higher-order SVD (HOSVD) De Lathauwer et al. [26]
Table 3.1. Different names for the Tucker decomposition

As we have seen, PCA is a statistical method to explore the relationship among
two-way data. However, the information is often replicated in different (time)
occasions, in this situation there is an additional mode (labelled occasions), and the
data is stored in a three-way array, a three-way tensor in X in ℜI×J×L with generic
element xijl expressing the score of observation unit i for variable j at occasion l
(l=1,...,L). In our example these time occasions are the different countries. The
Tucker3 model summarizes a three-way tensor as:

xijl =
P∑

p=1

Q∑
q=1

R∑
r=1

aipbjqclrgpqr + eijl, i = 1, ..., I, j = 1, ..., J, l = 1, ..., L.

(3.13)
Differently from PCA, different sets of components are determined for every dimen-
sion. In particular, P (≤ I) components for the units, Q (≤ J) components for the
variables and R (≤ L) components for the occasions are sought. In (3.13), aip and
bjq express the relations between the units and the components for the units and the
variables and the components for the variables. With respect to PCA, the Tucker3
model adds new loadings, denoted by clr (l=1,...,L and r=1,...,R), linking occasions
and components for the occasions. The triple interactions between the components
of all the dimensions are provided by gpqr, the generic element of the core tensor
G of order (P × Q × R). A high value of gpqr in absolute sense suggests a strong
relation among these components. Finally, eijl is the generic error term belonging
to the error term tensor E.

To further compare PCA and Tucker3, it is convenient to express the Tucker3
model in matrix notation. We get:

XA = AGA(C⊗B)′ + EA, (3.14)

where XA is the matrix of order (I × JL), representing the so-called unit mode
matricization of X, i.e., the matrix obtained by juxtaposing the matrices correspond-
ing to the K occasions that are juxtaposed next to each other. The matrices A
B and C of order (I × P ), (J × Q) and (L × R), respectively, are the component
matrices for the units, variables and occasions, respectively. It can be shown that
these matrices can be constrained to be columnwise orthnormal without loss of fit
(see, e.g., [58]). Furthermore, GA of order (P × QR) and EA of order (I × JL)
denote the unit mode matricizations of G and E, respectively. Finally, the symbol
⊗ denotes the Kronecker product of matrices. By comparing (3.11) and (3.14) we
can observe the idea underlying the Tucker3 model. The Tucker3 model can be seen
as a particular PCA of XA where the component loadings are constrained to be
GA(C⊗B)′. Such a particular structure allows for properly exploiting the three-way
structure of the data. In principle, we might apply standard PCA to XA, but in
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this way the component loadings fully ignore that the same variables are observed
in different occasions.

So, the Tucker decomposition is a form of higher-order principal component
analysis. It decomposes a tensor into a core tensor multiplied (or transformed) by a
matrix along each mode. The Tucker decomposition is illustrated in the 3.1

Figure 3.1. Tucker decomposition of a three way array

Most fitting algorithms (discussed in §4.2) assume that the factor matrices are
columnwise orthonormal, but it is not required. In fact, CANDECOM/PARAFAC
(described in 3.2.1 can be viewed as a special case of Tucker where the core tensor is
superdiagonal and P = Q = R.

For completeness we illustrate also the tensor notation for the Tucker3 as in [51]:

X = G ×1 A ×2 B ×2 C =
P∑

p=1

Q∑
q=1

R∑
r=1

gpqr(ap ◦ bq ◦ cr) (3.15)

For further details on the comparison between the notations, see [51].
As expresses in [99] one of the main advantage of the Tucker model is that we can

observe the full core array G that explain the relation between the components.
This will be more clear in the 4 where it help us to identify the main relationship
between the components in a more complex situation with four dimension. Another
advantages of the model emerge in [99] that explains the Tucker3 model possesses
some of the properties of the singular value decomposition; in particular, it allows
for a complete decomposition of the three-way array. It is also possible, given
orthonormal components, to make a complete component-wise partitioning of the
variability. The model has subspace uniqueness. Properties this model lacks are
component uniqueness (any transformation of the components and/or core array
with the inverse transformation of the appropriate other matrices will not affect the
fit) and nesting of solutions.

Estimation in Tucker3 is carried out by following the least squares approach.
Thus, the parameter estimates are found by minimizing the sum of squared errors:

||EA||2 = ||XA − AGA(C⊗B)′||2, (3.16)
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with respect to A, B, C, and GA.
Once the estimates of A, B, C and G are determined, the fit percentage of the

Tucker3 model can be estimated by

[1 − (||EA||2/||XA||2)]100. (3.17)

The closer to 100, the better the fit of the model, and the fit percentage is used to
select the optimal number of components.

[107] summarizes some of the different alghoritms to compute the Tucker decom-
position starting from 1966, when [105] introduced three methods for computing a
Tucker decomposition, but he was somewhat hampered by the computing ability of
the day, stating that calculating the eigendecomposition for a 300×300 matrix “may
exceed computer capacity.” The basic idea is to find those components that best
capture the variation in mode n, independent of the other modes. Tucker presented
it only for the three-way case, but the generalization to N ways is straightforward.
This is sometimes referred to as the “Tucker1” method, though it is not clear whether
this is because a Tucker1 factorization is computed for each mode or it was Tucker’s
first method. Today, this method is better known as the higher-order SVD (HOSVD)
from [26], who showed that the HOSVD is a convincing generalization of the ma-
trix SVD and discussed ways to efficiently compute the singular vectors of X(n).
When Rn < rankn(X) for one or more n, the decomposition is called the truncated
HOSVD. The truncated HOSVD is not optimal, but it is a good starting point
for an iterative alternating least squares (ALS) algorithm. In 1980 [58] developed
an ALS algorithm, called TUCKALS3, for computing a Tucker decomposition for
three-way arrays. [53] later extended TUCKALS3 to N-way arrays for N > 3. [26]
called it the Higher-order Orthogonal Iteration (HOOI). [24] consider methods
for speeding up the HOOI algorithm such as how to do the computations, how
to initialize the method, and how to compute the singular vectors. Improvement
software and algorithms are still being studied today, for example [76]developed a
package in software R that provides a set of tools for fitting the Tucker3 models to
multidimensional arrays by use of classical, robust and also compositional estimating
procedures.

Application of Tucker

[107] summarize some applications of the Tucker method. Several examples of using
the Tucker decomposition in chemical analysis are provided by Henrion [47] as part
of a tutorial on N-way PCA. Examples from psychometrics are provided by Kiers and
Van Mechelen [54] in their overview of three-way component analysis techniques. The
overview is a good introduction to three-way methods, explaining when to use three-
way techniques rather than two-way (based on an ANOVA test), how to preprocess
the data, guidance on choosing the rank of the decomposition and an appropriate
rotation, and methods for presenting the results. De Lathauwer and Vandewalle [26]
consider applications of the Tucker decomposition to signal processing. Vasilescu and
Terzopoulos [71] pioneered the use of Tucker decompositions in computer vision with
TensorFaces. In data mining, [8]] applied the HOSVD to the problem of identifying
handwritten digits.
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Tucker3 in the Three-way Lee-Carter model

So, with reference to the three-way Lee Carter model [91], the Tucker 3 model
factorizes the three-way array X and can be expressed in this generic form:

m̃ijl = ln(mijl) − αil =
P∑

p=1

Q∑
q=1

R∑
r=1

aipbjqclrgpqr + eijl (3.18)

i = 1, ..., I, j = 1, ..., J, l = 1, ..., L

with specific reference to the notation of the Lee Carter model we obtain:

m̃ijl = ln(mijl) − αil =
P∑

p=1

Q∑
q=1

R∑
r=1

βipkjqγlrgpqr + eijl (3.19)

i = 1, ..., I, j = 1, ..., J, l = 1, ..., L

The left-hand side of equation holds the log-mortality rates expressed as deviations
from the average of each age-group i. The terms I, J and L denote the numbers of
elements in each of the three modes, respectively age classes, years, and countries; P ,
Q, R are the numbers of components selected in the approximation. The coefficients
βip, kjq and γlr are the entries of the component matrices for the first, second and
third mode. The gpqr are the elements of the three-way core matrix. By setting p,
q, r equal to 1, we obtain the estimates for the three way Lee Carter model 3.1,
assuming the remaining components as residual terms.

Choice of the numbers of components

To choose the number of components we balanced fit and parsimony. Those criteria
involve subjective decisions based on objective measures, and the decisions should
be explicit. Regarding balancing fitting, we use this measure to compare different
models, but not in an absolute sense. Another important aspect is that if we based
our choice only on fitting, we would probably choose the most complex model.
Therefore, we should consider a compromise between fitting and parsimony. The
balance between these two objectives is based on the purpose of the analysis and
cannot be determined on the basis of other criteria. For this choice, we can choose one
from different solutions based on the same total number of components (P + Q + R)
that are compared and the best of these are selected. Then the selected solutions
are ordered with respect to the total numbers of components. From these different
ordered solutions we can search that corresponding to a considerable fit increase
compared with the best solution with one component less but for which adding more
components gives a relatively small increase. As we will see, we can base our decision
also on the basis of the objective of the analysis, in particular on interpretability
[54]. These aspect will be further analysed in the following chapter 4.

3.1.2 Application

[91] applies the method considering ten European countries, because they are
geographically closer and share similar social-economic status; nevertheless [28]



3.1 Mortality modeling: Three-way Lee Carter 37

specifies that the tensor decomposition method does not require similar mortality
experience among different populations, which can be applied to other more different
populations too. So, following this guideline, here to obtain different results respect
to [91], here we apply the method to the resulting country’s components obtained
from the DEDICOM application and in the second part of the chapter, with reference
to the four-way Lee Carter, we consider the same ten countries of [91] for a better
comparison with the three-way Lee Carter. In particular, we consider the countries of
the first component resulting from the DEDICOM application of the previous chapter.
So, we consider the dataset provided by the Human Mortality Database (HMD) 1,
which is an archive of death information for several countries. The application of the
methodology requires to structure the data in four dimensions: age, time, country,
sex. The age dimension is organized in 21 classes from 0 to 99 years, with a step of
5 years, except for the first two classes, which represent respectively the individuals
aged 0, and aged 1-4. Regarding the time dimension, we focus the analysis on the
years from 1961 to 2015 in order to consider the same time window for each country
(see the thirteen countries listed in Table 3.2). The analysis is developed considering
the total population.

Code Countries
AUS Australia
CAN Canada
USA USA
JAP Japan
FIN Finalnd

FRATNP France
IRL Ireland
ITA Italy

NLD Netherlands
NOR Norway
ESP Spain

SWE Sweden
CHE Switzerland

Table 3.2. Countries considered from HMD

In order to apply the multi way method, we organize the data in an array of
three dimensions (age × time × country). The dimension of the array is: 21 × 55 ×
13 for a total of 15.015 entries and we collect in it the m̃ijl.

Results

The results in this paragraph are obtained through the use of the R packages called
Three-way [35].

Figure 3.2 gives fit values (%) of all solutions plotted against number of free
parameters. Following [91] the possible solution is P=2, Q=2, R=2 with the fit
value of 94.45%; this solution represents a good compromise between goodness-of-fit

1(Human Mortality Database. University of California; Berkeley (USA); and Max Planck Institute
for Demographic Research (Germany). Available at www.mortality.org or www.humanmortality.de
(data downloaded on 08/11/21).
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Figure 3.2. Possible solutions

and parsimony. In fact, the solutions with higher fit values have more additional
components for a limited increase of fit.

Table 3.3 represents the tabular representation of tensor core, where the higher
in absolute value an element of the core, the stronger the interaction among the
components involved. The value 43.55 indicates the higher contribution made by
the first SVD components for the three modes.

Age components Country1 Country2
Year1 Year2 Year1 Year2

Age1 2.28 -1.74 4.47 0.01
Age2 3.22 0.02 -0.01 43.55

Table 3.3. Interaction

The image 3.3 represents βi,p=1,2, the two components for the first dimension,
the classes of age.
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Figure 3.3. Age components

The first component has a peak at 15-20 years and it could describe the youth
mortality linked to road accidents. As in [91] the second component of the class of
age, highlighted in brown, has a regular pattern from class 20 to class 80. Also the
component is affected by the different contributions of the younger age-groups.

The image 3.4 represents kj,q=1,2, the two components for the second dimension,
the years.

Figure 3.4. Year components

The first component increases until 1994 and then start to decrease, instead as
in [91] the second component of the years, highlighted in red, has a linear trend.

The image 3.5 represents γl,r=1,2 for the third dimension, the countries.
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Figure 3.5. Country components

The first component may describe the mortality of Japan respect to the other
countries, in fact Japan is well known for its longevity pattern. The second component
has a regular pattern and we may think that it describes all the thirteen countries
considered from the database (HMD).

Finally, after the application of the method, [91] suggest how the model proposed
in this paper may be used to deal with forecasting; we focus on this problem in the
second part of the chapter, considering another dimension.

3.1.3 Conclusion

In this first part of the chapter we have applied the three way Lee Carter Model,
that extends the Lee Carter model and specifies a three-way model structure which
looks at the mortality data aggregated according to three criteria: age class, time,
country. The model incorporates a further component in the decomposition of the
log-mortality rates, specifically, we refer to the Tucker 3 decomposition method. The
proposed approach allows us to simplify the data structure and to obtain a rank
reduced representation. Through the results derived by the Tucker3 decomposition
we have compared, in a numerical and graphical way, the relationships among all
three modes. For example we have discover that the first component of the age
has a peak at 15-20 years and it could describe the youth mortality linked to road
accidents and the second component has a regular pattern from class 20 to class
80 and it is also affected by the different contributions of the younger age-groups;
or that the first component of the countries may describe the mortality of Japan
respect to the other countries and that the second component of the countries has
a regular pattern and we may think that it describes all the thirteen countries
considered from the database. In this sense, the model is useful for understanding
some aspects of mortality considering the three dimensions under consideration.
Finally, [91] suggest how the model proposed in this paper may be used to deal
with forecasting. To address this problem, in the second part of this chapter, we
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propose a coherent mortality forecasting using a four-way CANDECOMP/PARAFAC
decomposition, hence considering another dimension. The idea comes from the fact
that [28] generalises the model used in [91] using different tensor decompositions by
considering mortality data aggregated for age, year, and country/gender. Relying
on this background, the authors solve the multi-population mortality forecasting
problem based on 3-way data (age, year, and population/gender). They formulate
a mortality model by applying both the CPD method and different forms of the
Tucker method to allow for different ranks in different dimensions. In this second
part, we provide two steps further on methodological developments in the field of
mortality analysis and forecasting in a high-dimensional space. Firstly, compared to
the current literature, we use an additional dimension, implementing a 4-way tensor
decomposition. Thus, we further extend this framework including the CoDa analysis
in the spirit of [14].

3.2 Mortality forecasting using a four-way CANDE-
COMP/PARAFAC decomposition

In this second part of the chapter, we propose a coherent mortality forecasting
using a four-way CANDECOMP/PARAFAC decomposition. Our proposal based
on the four-way structure allows managing mortality data aggregated in multi-
dimensional settings, according to common demographic features: age class, time,
population, and gender. Here, we apply Parafac, instead of Tucker, for simplicity
and also because the gender dimension has only two different modes. Understanding
mortality dynamics in a high-dimensional framework is crucial for all the analyses
involving demographic assessments. The fact that people are living longer causes, for
instance: i) an increase in the time spent in retirement that poses challenges to the
sustainability of pension systems; ii) an increase in the use of medical and assistance
treatments that enhances health care expenditure. This has forced policymakers,
on the one hand, to rethink the design of pension plans to mitigate the burden of
increased longevity and, on the other hand, to make significant efforts in containing
health care costs.
We deal with four-dimensional mortality data using two main approaches proposed in
the literature, the first one which works on centered mortality rates as in [28], and the
second one working on compositional data as in [13]. In this context we consider the
same ten European countries considered in [91] for a better comparison. The steps
we follow are: description of the decomposition method (CANDECOMP/PARAFAC
4), description of the four-way models, identification and description of the database,
construction of a 4-dimensional array (age × time × country × gender), application
of the decomposition method, choice of the number of components and forecasting.
The tensor factorization can synthesize the behavior of the target variables through
a few latent components and highlight the evolution of the temporal patterns.
These patterns are employed to forecast future trajectories of mortality data with
the Vector-Error Correction model, which accounts for the non-stationarity of
the series. We carry out Monte Carlo simulations to obtain the distributions of
the time component over the forecasted period 2001-2015, and we evaluate the
goodness of the prediction by computing the Root Mean Square Error and the
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Mean Absolute Error.The steady reduction in death rates at all ages represents
an enormous achievement that is the result of progress in almost all sectors of
modern society; this fueled the improvement of statistical-mathematical methods
devoted to mortality modeling and forecasting. To this aim, the prevalent framework
(for a complete discussion see [16]) is the extrapolative approach, which found
regularities in historical death rates during the estimation phase, and projects them
forward using econometric models in the forecasting step. This approach includes
the stochastic models such as the Lee-Carter [61] described in 3.1 where we have
seen that the method suggests using principal component analysis to describe and
forecast mortality trends. Following the approach based on the matrix decomposition,
[82] introduced the Compositional Data Analysis (CoDa), the method by [2], into
the Lee-Carter model. The compositional framework occurs whenever we need to
partition a whole measurement into percentage contributions from its components,
thus with the unit-sum constraint, which represents an important advantage in
demographic context, ensuring coherence of the estimated outcome. This coherence
might be related to causes, different populations, or gender. Indeed, longevity
changes are often projected separately, decreasing the projection reliability between
groups in the long run. In this framework, [14] provide the first attempt to combine
the multi-way analysis considering the compositional nature of data in a unified
framework. Indeed, the authors propose a methodology based on simultaneously
modeling and forecasting extending the three-way technique to a CoDa framework
for multiple populations. To test this approach, they carried out a Tucker3 analysis
on deaths counts of Canadian provinces and territories treated as compositions.
More recently, [28] formulate a mortality model by applying both the CPD method
and different forms of the Tucker method to allow for different ranks in different
dimensions. The Authors underline that tensor decomposition allows researchers to
obtain combined estimates for the three modes (age, time and different populations)
and see relationships among them. In this second part, we provide two steps further
on methodological developments in the field of mortality analysis and forecasting
in a high-dimensional space. Firstly, compared to the current literature, we use an
additional dimension, implementing a 4-way tensor decomposition. Thus, we further
extend this framework including the CoDa analysis in the spirit of [14]. To test
this approach, the CANDECOMP/PARAFAC analysis will be carried out on both
mortality rates and death counts of the European countries included in the HMD.

3.2.1 Methodology

We have seen that multi-way methods can be considered a generalization of the
PCA for exploring the relationship among multi-way data. In this paper, we use the
Canonical Polyadic Decomposition (CANDECOMP) or Parallel Factors (PARAFAC)
model. The CANDECOMP model was proposed by [18], while the PARAFAC model
by [42]. As pointed out by [34], although CANDECOMP/PARAFAC is probably
the most widely used name, some authors, such as [28], refer to it as the Canonical
Polyadic Decomposition (CPD) to emphasize the preceedings papers of [48] and
[49]. To better understand this, [107] summarizes the different names for the CP
decomposition as in 3.4.
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Name Proposed by
Polyadic Form of a Tensor Hitchcock [48]

PARAFAC (Parallel Factors) Harshman [42]
CANDECOMP or CAND (Canonical decomposition) Carroll and Chang [18]

CP (CANDECOMP/PARAFAC) Kiers [56]
Table 3.4. Different names for the CP decomposition

Decomposition of three-way data using CANDECOMP/PARAFAC (CP).

We have seen that when dealing with three-dimensional data, matrix X becomes
a tensor X, whose generic element is denoted by xijl. X is a three-way tensor in
ℜI×J×L, where the three ways are the sets of indexes i=1,...,I, j=1,...,J and l=1,...,L.
CP decomposes a tensor into a sum of component rank-one tensors. Elementwise,
this can be illustrated in the 3.6

Figure 3.6. CP decomposition of a three way array

So, tensor X can be decomposed using the CP model, which adds new scores
(denoted by cls (l = 1, . . . , L, s = 1, . . . , S), linking occasions and components, to
Eq. 3.10. In scalar form, the CP model can be formulated as:

xijl =
S∑

s=1
aisbjscls + eijl, i = 1, ..., I, j = 1, ..., J l = 1, ..., L, (3.20)

where eijl is the generic error term belonging to the error term tensor E. The CP
model can also be expressed in tensor formulation, but it is more common to consider
the matrix formulation. We get:

XA = A(C ⊙ B)′ + EA (3.21)

where XA, and EA represent the unit mode matricizations of X, and E, respectively
(see, e.g., [34]). A (I × S), B (J × S), and C (I × S) are the component matrices
for three modes with generic elements ais, bjs and cls, respectively, and ⊙ denotes
the so-called Khatri-Rao product.

The three-way model is sometimes written in terms of the frontal slices of X (see
figures 1.3 and 1.4).

Xk = AD(k)B′ + Ek (3.22)
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where D(k) = diag(ck:) for k = 1, . . . , K. Analogous equations can be written for
the horizontal and lateral slices. In general, though, slice-wise expressions do not
easily extend beyond three dimensions.

For completeness we illustrate also the tensor notation for the CP3 as in [51]:

X = I ×1 A ×2 B ×2 C =
S∑

s=1
(as ◦ bs ◦ cs) (3.23)

where ◦ is the outer product. For further details on the comparison between the
notations, see [51].

Decomposition of four-way data using CANDECOMP/PARAFAC.

When dealing with four-dimensional data, the available information can be collected
in the four-way tensor X in ℜI×J×L×N , whose generic element is denoted by xijln.
The sets of indexes are in this case i=1,...,I, j=1,...,J , l=1,...,L and n=1,...,N . In
scalar notation, the four-way CP can be formulated as follows:

xijln =
S∑

s=1
aisbjsclsdns+eijln, i = 1, ..., I, j = 1, ..., J l = 1, ..., L n = 1, ..., N,

(3.24)
where eijln is the generic error term, and ais, bjs, cls, and dns are the generic elements
of the four underlying component matrices A, B, C and D, respectively, where D
refers to the additional, fourth mode. Similarly to the three-way model, the CP
model expresses the four-way array as the sum of S rank-1 four-way arrays. It can
be shown that the rank of X corresponds to the minimum number of rank-1 four-way
arrays needed to perfectly decompose X. In matrix formulation, we get:

XA = A(D ⊙ C ⊙ B)′ + EA (3.25)

Estimation is carried out in the least-square sense by minimizing:

I∑
i=1

J∑
j=1

L∑
l=1

N∑
n=1

e2
ijln =

I∑
i=1

J∑
j=1

L∑
l=1

N∑
n=1

(xijln −
S∑

s=1
aisbjsclsdns)2 (3.26)

with respect to A, B, C, and D. The previous expression can also be used to evaluate
the fit percentage of the CP solution:[

1 −
∑I

i=1
∑J

j=1
∑L

l=1
∑N

n=1 e2
ijln∑I

i=1
∑J

j=1
∑L

l=1
∑N

n=1 x2
ijln

]
100. (3.27)

The closer to 100, the better the fit of the CP model. As for PCA, the fit percentage
in Eq. 3.27 helps select the optimal number of components.

Advantage of the model emerge in [99] that also explains some difference with the
Tucker model. [99] explains the the nature of the model is such that the components
do not need to be constrained to orthonormality in order to find a solution, and
the components are correlated in most applications. A further characteristic of the
model is that, like the Tucker3 model, it is symmetric in all modes and that, unlike
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the Tucker3 model, the numbers of components in all modes are necessarily the
same. The simple superdiagonal core array facilitates the interpretation of the model
compared to the Tucker models, but on the other hand the correlated components in
the modes may complicate the interpretation. Moreover the model possesses some
of the properties of the singular value decomposition, but not all. In particular,
each component of a mode is uniquely related to only one component in each of the
other modes. A very special characteristic of the Parafac model is its component
uniqueness: any transformation of the components will affect the fit of the model
to the data (called the “intrinsic axis property” by Harshman). More technically,
the model is identified, generally even overidentified due to the restrictions, so that
it is possible to test whether the model fits or not. This feature, together with the
relative simplicity of the model, makes it extremely attractive, certainly from a
theoretical point of view.

[107] illustrated tha the first issue that arises in computing a CP decomposition is
how to chose the number of rank-one components. Most procedures fit multiple CP
decompositions with different numbers of components until one is “good”. If the data
is noise-free data, then the procedure can compute the CP model for S = 1, 2, 3, . .
. and stop at the first value that gives a fit of 100 percentage. Assuming the number
of components is fixed, there are many algorithms to compute a CP decomposition.
We consider the alternating least squares (ALS) method proposed in the original
papers by Carroll and Chang [18] and Harshman [42]. For convenience, we only
illustrate the idea behind the method in the third-order case. The alternating least
squares approach fixes B and C to solve for A, then fixes A and C to solve for B,
then fixes A and B to solve for C, and continues to repeat the entire procedure
until some convergence criterion is satisfied. Having fixed all but one matrix, the
problem reduces to a linear least squares problem. [107] illustrate the full procedure
for a N -way tensor.

Application of CP

[107] summarize some applications of the CP method starting from the first applica-
tion. We have seen that the first application where in the filed of psychometrics in
1970. [18] introduced CANDECOMP in the context of analyzing multiple similarity
or dissimilarity matrices from a variety of subjects. The idea was that simply
averaging the data for all the subjects annihilated different points of view on the
data. They applied the method to one data set on auditory tones from Bell Labs
and to another data set of comparisons of countries. [42] introduced PARAFAC
because it eliminated the ambiguity associated with two-dimensional PCA and thus
has better uniqueness properties. Other authors have used CP decompositions in
neuroscience. For example [30] apply CP to a time-varying EEG spectrum arranged
as a three-dimensional array with modes corresponding to time, frequency, and
channel.

The first application of tensors in data mining was by [1] who applied different
tensor decompositions, including CP, to the problem of discussion detanglement in
online chatrooms. In text analysis, [11] used CP for automatic conversation detection
in email over time using a term-byauthor-by-time array. The method is still applied
today, both to different fields and as a starting point for studying new algorithms
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and new estimation procedures, for example [70] developed a package in software R
that provides a set of tools for fitting the CP3 models to multidimensional arrays
by use of classical, robust and also compositional estimating procedures; and [93]
implement a 4th-order extension of the effcient trilinear procedure INT-2 to tackle
estimating setbacks and test it in a simulation study.

3.2.2 Mortality four-way decomposition

Following the methodology previously described, we now illustrate the four-way
decomposition of mortality data arranged in a four-way array. Our analysis concerns
both the decomposition of log-centered mortality rates (log-CMR) and compositional
data (CoDa) obtained as the clr transformation of the deaths counts as described in
the following paragraphs.

Decomposition of four-way data using CANDECOMP/PARAFAC.

Let us denote as mx,t,p,g the centered mortality rate for age x, time t, population p,
and gender g. First, our objective is to decompose the following tensor, representing
the four-way log centered mortality rates:

mx,t,p,g = log (mx,t,p,g) − αx,p,g (3.28)

where αx,p,g is the average value of log mx,t,p,g over time t.
Applying the model expressed in Eq. 3.24, we obtain the four-way CP of the matrix
of log centered mortality rates, where the generic element mx,t,p,g can be represented
as follows:

mx,t,p,g =
S∑

s=1
axsbtscpsdgs + extpg (3.29)

Note the sets of indexes are in this case x, t, p and g instead of i, j, l and n in Eq.
3.24.

Logic behind Compositional data (CoDa)

We have already seen that the compositional framework occurs whenever we need to
partition a whole measurement into percentage contributions from its components,
thus with the unit-sum constraint, which represents an important advantage in
demographic context, ensuring coherence of the estimated outcome. In the intro-
duction of [94] is well explained the logic behind the CoDa. Here, we summarize
the main aspects. In the literature CoDa are defined as non-negative vectors with a
biased covariance structure [3, 2]. The compositional parts of such vectors describe
the proportions of a whole; so, they are bounded by the total magnitude of the
phenomenon they express. This bias from a statistical point, can only be overcome
if the magnitude is set aside by focusing on ratios among parts rather than absolute
scores. Therefore these vectors are said to carry relative information. Thus a classical
analysis of compositions is relevant only in terms of magnitude differences among
vectors; however, it is distorted with respect to the variability patterns among parts.
In geometrical terms, CoDa are bounded in a subspace of the real space, called
simplex, with its own rules and operations [4, 5]. These methods follow either a
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staying-in-the-simplex approach, which deals with compositions directly into their
sample space, or a log-ratio coordinates approach, preferred due to simplicity. In this
case, CoDa are projected onto real space by transforming them into log-ratios among
compositional parts through a simple change of basis. Different transformations
in log-ratio coordinates have been proposed in the literature to achieve this goal
[3, 2, 31]. In recent years, the preferred way to proceed has been to express CoDa
with respect to an orthonormal basis. This method ensures defined properties and
can simplify interpretation if a meaningful basis is identified. One way to build
an orthonormal basis is to find balances with a sequential binary partition (SBP)
[32]. From a J -part composition, this procedure yields J −1 binary sets of non-
intersecting mutually exclusive sub-compositions. A balance is then associated with
each partition of two contrasting sub-compositions, together with the corresponding
balancing element for the new orthonormal basis. This arrangement of parts also
determines a complete partition of the total variance. The new coordinate system
obtained in this fashion is easily interpretable only if the contrasts emerging from the
SBP can be assigned a relevant meaning with respect to the phenomenon at hand.
Manual selection of contrasts with expert knowledge is the best option, but seldom
available outside of natural sciences. An exploratory approach is thus necessary.
Principal balance analysis (PBA) is a sequential procedure identifying sets of J
−1 principal balances (PB) that successively maximizes the explained variance in
the data. Most studies on tridimensional data still use different types of log-ratio
coordinates than orthonormal ones to deal with CoDA. Specifically, the centered
log-ratio coordinate system is the preferred method due to its simplicity (for example
in [95]). Also here, we consider this transformation.

Four-way decomposition of compositional data (CoDa)

When considering multi-population mortality data, one should bear in mind the
dependence among mortality levels of the single populations for simultaneously
modeling and forecasting them. Compositional data (CoDa), which are vectors of
relative information constrained to sum a constant, enable to achieve a coherent
mortality forecasting of multiple populations. Aiming to reach coherent forecasting,
we introduce the CoDa transformation of mortality data. As we have explained in
the previous paragraph, CoDa literature offers different transformations, such as
alr, ilr or plr [2]. Here, we consider the most common approach used in mortality
analysis (see, e.g., [82] and [13]), the centered log-ratio coordinates clr, which is
more easily interpretable than the other existing transformations.
Defining dx,t,p,g as the deaths for age x, time t, population p, and gender g, the clr
transformation is the logarithm of each observation dx,t,p,g divided by its geometric
mean gx,t,p,g:

clr(dx,t,p,g) = log
(

dx,t,p,g

gx,t,p,g

)
(3.30)

We aim at decomposing the centered tensor of dx,t,p,g expressed in clr coordinates,
i.e.:

clr(dx,t,p,g ⊖ α̃x,p,g) (3.31)
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where α̃x,p,g is the age-specific geometric mean of dx,t,p,g over time t, and the operator
⊖ measures the distance between dx,t,p,g and α̃x,p,g in compositional data similarly
to subtraction in some data on the real axis [57].
Applying the model in Eq. 3.24, we obtain the four-way CP of the matrix of CoDa,
where the generic element clr(dx,t,p,g ⊖ α̃x,p,g) can be expressed as follows:

clr(dx,t,p,g ⊖ α̃x,p,g) =
S∑

s=1
axsbtscpsdgs + extpg (3.32)

Note that the sets of indexes are as for the decomposition of log centered rates x, t,
p and g instead of i, j, l and n in Eq. 3.24.

3.2.3 Application

Dataset description and model fit

The study focuses on both male and female mortality of 10 Western European
countries, listed in Table 3.5. The data is provided by the Human Mortality
Database (HMD)2, which is an archive of death information for several countries.
The application of the methodology requires to structure the data in four dimensions:
age, time, population, sex. The age dimension is organized in 21 classes from 0 to
99 years, with a step of 5 years, except for the first two classes, which represent
respectively the individuals aged 0, and aged 1-4. Regarding the time, we focus
the analysis on the years 1961-2015 to consider the same time window for each
population.

Code Countries
AUT Austria
BEL Belgium
DNK Denmark
FIN Finland

FRATNP France
ITA Italy

NLD Netherlands
ESP Spain

SWE Sweden
GBR_NP United Kingdom

Table 3.5. List of countries (and their codes) considered in the study.

In order to apply the multi way method, we organize the data in an array of four
dimensions (age × time × population × sex). The dimension of the array is: 18 ×
55 × 10 × 2. We apply the four-way CP model and to choose the best solutions, we
use up to eight components (S = 1, 2, ..., 8) and compute the associated fit values.

In Fig. 3.7, we report the fit values by the number of components S. We choose
the solution S=2 with the fit value (see Eq. 3.27) of 92.78% for the log-centered
mortality rates and 91.94% for CoDa.

2Human Mortality Database. University of California; Berkeley (USA); and Max Planck Institute
for Demographic Research (Germany). Available at www.mortality.org or www.humanmortality.de
(data downloaded on 08/11/21).
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Figure 3.7. Possibile PARAFAC solutions and corresponding fit values.

Demographic significance

We show the scores of the two components for each of the four data dimensions. Fig.
3.8 depicts the values of the first component for the first three dimensions: age class,
year and population.

While Lee-Carter parameters are easy to interpret, thanks to their direct reflection
on death rates on a log scale, its CoDa counterpart may be difficult to use. Therefore,
as a service to readers, it is worth creating a bridge between the two frameworks,
proposing the description of the demographic significance of both models’ parameters.
The difference is in the process to be modeled. Indeed, the idea behind CoDa relies
on the life-saving process, in which the life table deaths shift from one age group to
another over time. On the contrary, in processes based on log-CMR, the outputs
are decreasing in a log-linear way over time. According to [57]; [13] and [82], the
main consequence of the different processes is found in the interpretation of the
age-specific parameter. In the CoDa framework, the age pattern shows how deaths
are transferred from one age group to another in relative terms, in practice from
younger ages to older ages. These deaths are not redistributed randomly but towards
the ages and other dimensions where they are most likely to occur according to the
parameter estimates in the model. Finally, the other parameters, the α and the ones
related to time, country, and gender, have a common interpretation for mortality
rates and CoDa methods, with the only difference that α-CoDa is the age-specific
geometric mean of the deaths. Figure 3.8 provides the log-CMR (left panels) and
CoDa (right panels) model parameters. The time pattern can be interpreted as an
index of the general level of mortality over time, which shows a linear behavior for
both models (Fig. 3.8, panels (c) and (d)), thus facilitating the forecasting phase.
The population-specific indexes can be interpreted, as the speed of mortality changes
that each country is experiencing. The greater the magnitude, the faster the decline
in mortality. For instance, in both models, Italy has experienced a more rapid
mortality deceleration than the other European countries in the study period. This
can be the result of improvements in old-age survival along with the fall in infant
mortality, after World War II.

Looking at figure 3.8, panels (e), (f), we can distinguish different countries’
groups with respect to longevity levels, according to the adopted model. Classifying
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countries by looking at their magnitude levels, we can easily interpret three groups,
namely: 1) slow-rate countries: countries that experienced improvements in longevity
with a smaller pace; 2) medium-rate: populations that show a faster decline in
mortality compared to the slow-rate group; and 3) fast-rate: those countries that
show remarkable improvements.

Based on the estimation provided by log-CMR, we can outline the following
groups: 1) slow-rate: GBR, NLD, SWE, DNK. 2) medium-rate: BEL, FIN, FRA.
3) fast-rate: AUT, ESP, ITA. Using CoDa, we identify the following groups: 1)
slow-rate: NLD, DNK, SWE, GBR. 2) medium-rate: BEL, FRA. 3) fast-rate: FIN,
AUT, ESP, ITA.
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Figure 3.8. First component of age: panels (a) and (b); first component of year: panels (c)
and (d); first component of population: panels (e) and (f). Log-centered mortality rates
(left panels); CoDa (right panels).
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Although the first component accounted for most of the phenomenon, the second
component can be useful to capture residual effects, shedding light on specific
longevity dynamics. In Fig. 3.9, it is worth highlighting a great mortality stagnation
between the ages 15-30 and 70-75 on log-CMR for Denmark and Spain. Similarly,
on CoDa, we observe this effect mainly in Spain, and, with a smaller magnitude, in
Denmark and Italy. For both models (log-CMR and CoDa), the temporal dynamics
described by the second component show a reverting trend in the year 1995. Indeed,
in 1961-1995, the second component shows an opposite trend compared with the
first one, while in the subsequent period 1996-2015, it shows a decreasing trend,
coherently with the first component. In fact, despite the geographical proximity,
[22] highlight the different mortality trend between Denmark and Sweden, chosen
as representative of the group of Northern countries, and explain some potential
reasons such as lifestyle, and specific risk factors (smoking and alcohol consumption).
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Figure 3.9. Second component of age: panels (a) and (b); second component of year:
panels (c) and (d); second component of population: panels (e) and (f). Log-centered
mortality rates (left panels); CoDa (right panels).

Finally, concerning sex, the first component scores are reported in Table 3.6.

We can observe that for the first component the scores are very similar to each
other, especially for the log-centered mortality rates (respectively 0.40 and 0.38 with
a relative difference of 0.02 and for CoDa of 0.06).
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Sex
Log-centered
mortality
rates

CoDa

Male 0.40 0.45
Female 0.38 0.39

Table 3.6. First component of sex.

The second component scores are reported in Table 3.7 we can observe that for
the first component the scores are higher for the Male case.

Sex
Log-centered
mortality
rates

CoDa

Male 0.11 0.14
Female 0.05 0.04

Table 3.7. Second component of sex.

Forecasting

In this section, we focus on the temporal component, represented by profile matrix

B, whose generic element is bts with s=1,2. In particular we denote bt =
[
bt1
bt2

]
. We

consider mortality data from 1961 to 2000 and develop out-of-sample forecasts for
the coming 15 years, i.e. from 2001 to 2015. We propose to exploit Vector-Error
Correction (VEC) models to produce consistent forecast of B since the methodology
is able to address non-stationarity in multivariate time series resulting from co-
movements of multiple response series. Indeed both temporal patterns related
to components s=1,2, i.e.m b·s, display a unit-root according to the Augmented
Dickey-Fuller test.

The estimation of the VEC model proceeds in two steps. The first one is often
referred to as "Johansen step" and it consists of estimating the cointegrating relations
r, i.e. the number of independent linear combinations for which B is stationary.
These combinations can be interpreted as the number of long-run equilibrium
relations in B. In other words, although the component series of the profile matrix
B are individually non-stationary, various linear combinations of them are stationary.
The second step is often referred to as "VARX step", and concerns the estimation of
the VAR model in differences using the cointegrating relations of the first step as
predictors. The detailed procedure can be summarized as follows:

1. 1.1 Determine the lag length P of the model;
1.2 determine the cointegrating rank r;
1.3 determine a model of cointegration that best captures the deterministic
terms of the data;

2. 2.1 Estimate the unrestricted VARX model to serve as a baseline model;
2.2 determine and impose suitable constraints on the parameters of the VARX
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model, including the constant, regression coefficients, and autoregressive coeffi-
cients.

Because the data clearly exhibit time trends, we examine the possibility that the
data could be described by either of two Johansen parametric forms that incorporate
linear time trends.
The more general of the two forms is the Johansen H∗ model, in which a component
of the overall constant appears both inside (χ0) and outside (χ1) the cointegrating
relations, while the time trend (ι0) is restricted to the cointegrating relations:

∆bt = Θ(Υ′bt−1+χ0+ι0t)+χ1+
p−1∑
i=1

Γi∆bt−i+εt = (Θχ0+χ1)+Θ(Υ′bt−1+ι0t)+
p−1∑
i=1

Γi∆bt−i+εt.

(3.33)
Because a component of the constant appears inside and outside the cointegrating
relations, the overall constant (χ = Θχ0 + χ1) is unrestricted and the H∗ model
becomes:

∆bt = χ + Θ(Υ′bt−1 + ι0t) +
p−1∑
i=1

Γi∆bt−i + εt. (3.34)

It is important to observe that the VEC model is expressed in differences ∆bt, and
so the unrestricted constant (χ) represents linear trends in the corresponding levels
bts. The second model is the Johansen H1 model, in which the model constant is
also unrestricted, but the cointegrating relations contain no time trend:

∆bt = Θ(Υ′bt−1+χ0)+χ1+
p−1∑
i=1

Γi∆bt−i+εt = (Θχ0+χ1)+ΘΥ′bt−1+
p−1∑
i=1

Γi∆bt−i+εt.

(3.35)
The H1 model emphasizes the unrestricted nature of the constant3:

∆bt = χ + ΘΥ′bt−1 +
p−1∑
i=1

Γi∆bt−i + εt. (3.36)

To determine the cointegrating rank, we use the Johansen’s trace test. It appears
that, if r = 1, cointegrating relations are reasonable. Using r = 1 as the cointegrating
rank, we determine which of the two models better describes the data by using
a likelihood-ratio test, where the H∗ model is the unrestricted model and the H1
model is the restricted model with r restrictions. In summary, the hypothesis test
results suggest that the cointegrating rank is 1 and the model has the H1 Johansen
parametric form. The estimation of the cointegrating relations is complete.

Now, we express the VEC(1) model as the VARX(1) model in differences in
which the cointegrating relations are predictors, Xt = Υ′bt−1, and the adjustment
matrix (Θ) is the corresponding regression coefficient:

∆bt = χ + Θ(Υ′bt−1) + Γ1∆bt−1 + εt = χ + Γ1∆bt−1 + ΘXt + εt. (3.37)
3Observe that the H1 model is a restricted parameterization of the H∗ model in that the H1

model imposes an additional r restrictions on the parameters of an otherwise unrestricted H∗ model.
Specifically, the H1 model excludes time trends in the cointegrating relations by restricting ι0 = 0.
This situation that can arise when the cointegrating relations drift along a common linear trend
and the trend slope is the same for series with a linear trend.
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To determine constraints on the parameters of the VARX model, it is important
to understand that the Johansen cointegration parameters (Υ) estimated in the
first step converge at a rate proportional to the sample size T . Therefore, using the
cointegrating relations obtained in the first step as predictors in the second step
does not affect the distribution of the second step VARX parameters. In contrast,
the VARX parameters of the second step are asymptotically normally distributed
and converge at the usual rate of

√
T , and so their t-statistics can be interpreted in

the usual way.
After fitting the restricted H1 model, we develop out-of-sample forecasts. To

test the forecasts’ accuracy, we iteratively compute out-of-sample forecasts. Firstly,
we estimate the VEC model over the initial sample period. Then, we forecast the
model one year into the future and re-estimate the model by adding the data of the
next year to the sample, thereby increasing the sample size available for estimation.
We repeat the latter two steps, accumulating a time series of forecasts until the end
of the sample.

Results

Fig. 3.10 represents the result of the VEC model with a prediction interval of
10%-90% calculated on the simulated values for the first component score of the
years. The left panel refers to the log-centered mortality rates, while the right panel
to CoDa.

Figure 3.10. Forecast of the year first component scores. Left panel: log-centered mortality
rates; right panel: CoDa.

Fig. 3.11 represents the the corresponding plot for the second component of the
years.
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Figure 3.11. Forecast of the second component scores of the years. Left panel: log-centered
mortality rates; right panel: CoDa.

We also carried out a Monte Carlo simulation to obtain the distributions of the
year component over the forecasted period 2001-2015. In particular, for each one-
step-ahead forecast, we simulated 1000 runs and then performed a kernel smoothing
with 50 points. Fig. 3.12 illustrates the distributions of the forecast value of the
first component of the years over the period 2001-2015 for log-centered mortality
rates (left panel) and CoDa (right panel). Fig. 3.13) is the corresponding plot for
the second component of the years. Figures 3.10-3.13 highlight the ability of the
model to correctly forecast the decreasing patterns of the first component of both
the log-centered mortality rates and the CoDa. Moreover, from Fig. 3.13, which
displays kernel distributions of the Monte Carlo simulations, clearly emerges the
homogeneity of the forecast through different time periods suggesting the stability
of the data-generating-process.
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Figure 3.12. Montecarlo distributions of the first component scores for the years. Left
panel: log-centered mortality rates; right panel: CoDa.

Figure 3.13. Montecarlo distributions of the second component scores pf the years. Left
panel: log-centered mortality rates; right panel: CoDa.

Error measures

To evaluate the goodness of the prediction, we compute the Root Mean Square Error
(RMSE) and the Mean Absolute Error (MAE), that are respectively defined as:

RMSE =

√√√√ 1
IJLN

I∑
i=1

J∑
j=1

L∑
l=1

N∑
n=1

(xijln − x̂ijln)2, (3.38)
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MAE = 1
IJLN

I∑
i=1

J∑
j=1

L∑
l=1

N∑
n=1

|xijln − x̂ijln|. (3.39)

To calculate these error measures, we reconstruct the array starting from the
component scores obtained from the tensor decomposition and taking into account
the predicted values on the temporal components. The resulting values are reported
in Table 3.8.

Model RMSE MAE
Log-centered mortality rates 0.0087 0.0033
CoDa 0.0116 0.0044

Table 3.8. Overall error measures.

We also calculate the values of RMSE and MAE by gender and countries (see
Tables 3.9 and 3.10 for the log-centered mortality rates and the CoDa, respectively).
In the case of log-CMR, Spain, Denmark, and Italy show the highest errors for both
genders, while for CoDa, we find Spain, Italy, and Finland.

Countries Male Female
RMSE MAE RMSE MAE

Austria 0.0077 0.0031 0.0498 0.0384
Belgium 0.0090 0.0036 0.0512 0.0393
Denmark 0.0129 0.0051 0.0835 0.0629
Finland 0.0081 0.0032 0.0369 0.0283
France 0.0093 0.0037 0.0524 0.0403
Italy 0.0112 0.0045 0.0633 0.0486
The Netherlands 0.0078 0.0031 0.0438 0.0337
Spain 0.0133 0.0053 0.0827 0.0629
Sweden 0.0070 0.0027 0.0307 0.0234
United Kingdom 0.0077 0.0031 0.0419 0.0322
Total 0.0098 0.0038 0.0563 0.0410

Table 3.9. Error measures for log-centered mortality rates.

Countries Male Female
RMSE MAE RMSE MAE

Austria 0.0150 0.0061 0.0778 0.0606
Belgium 0.0157 0.0062 0.0819 0.0635
Denmark 0.0150 0.0058 0.0788 0.0608
Finland 0.0165 0.0066 0.0858 0.0666
France 0.0139 0.0056 0.0720 0.0561
Italy 0.0167 0.0067 0.0866 0.0674
The Netherlands 0.0096 0.0040 0.0498 0.0388
Spain 0.0183 0.0073 0.0960 0.0743
Sweden 0.0091 0.0038 0.0475 0.0365
United Kingdom 0.0147 0.0058 0.0771 0.0597
Total 0.0147 0.0058 0.0767 0.0584

Table 3.10. Error measures for CoDa.
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3.2.4 Conclusions

To design appropriate pension or insurance plans, an unrealistic prediction/estimation
of changes in death rates could result in inadequate funding of pension obligations. In
this framework, understanding mortality dynamics in a high-dimensional framework
is crucial for all the analyses involving demographic assessments. To this aim, we
have proposed a coherent mortality forecasting methodology, which leverages the
four-way CANDECOMP/PARAFAC and Vector-Error Correction models. We have
examined how age groups, years, countries, and gender impact on target variables,
namely log-centered mortality rates and compositional transformation of mortality
data from the Human Mortality Database.

The need for a four-way analysis is justified by the fact that the obtained results
properly take into account all the double, triple and quadruple interactions among
the four dimensions. Certainly, four-way data sets might be analysed by three-way, or
even two-way, methods. This can be done by aggregating over one or two dimensions
or performing separate three- or two-way analyses. Nevertheless, results would
be incomplete at best, as such alternative strategies do not exploit the relevant
information in the data because some of the interactions are arbitrarily skipped.
For instance, if one is tempted by considering two separate three-way analyses
distinguished by gender, all the interactions involving gender do not play an active
role in detecting the underlying structure of the data. In our studies, we decided to
consider S = 2 components because they offered an interesting description of the
phenomenon of longevity. In fact, Component 1 allowed us to discover its common
features. In addition, a deeper insight was offered by Component 2 highlighting
some specific peculiarities in longevity changes.

The (four-way) CP model is usually considered an exploratory tool without
probabilistic assumptions. Nevertheless, it is interesting to get an insight into
uncertainties associated with the obtained components. In the paper, this was
done by assessing stability through a split-half analysis. We discovered that the
underlying structures for both log-CMR and CoDa were very stable and, therefore,
the estimated component matrices appeared to be reasonably good and affected by a
low level of uncertainty. The inspection of such matrices, in particular the scores of
Component 2, allowed us to reveal some differences among countries. For instance,
we found that Spain and, to a lesser extent, Denmark present peculiar mortality
rates with respect to the other countries, in particular, those from Northern Europe,
especially for young people in the years around 1995.

The two-component CP model enables us to synthesize the behavior of the target
variables and highlight the evolution of the temporal patterns, which have been
employed to forecast future trajectories of mortality data for the years 2001-2015
by using the Vector-Error Correction model. The associated uncertainty has been
evaluated by Monte Carlo simulations.

The results we found are satisfactory, helping to rethink the design of pension
plans to mitigate the burden of increased longevity and make significant efforts in
containing health care costs.
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Chapter 4

EXPLORING THE CAUSES
OF DEATH

In this chapter, we apply a tensor-based method to mortality by cause of death,
hence considering four dimensions. Again we analyze a 4-way array, but we use
the Tucker 4 method. In this context we apply the more general Tucker4 method,
which contains Candecomp/Parafac as a special case. The dataset here considered
is provided by the World Health Organization and refers to N = 4 dimensions:
causes of death, age groups, years, and countries. Such a four-way dataset is
investigated by the Tucker4 model, the four-way extension of Tucker3. We carry out
the analysis by distinguishing the results by sex, first considering the males and then
the females. The steps we follow are: description of the methodology, identification
and description of the database, construction of the four-dimensional array (causes
of death, age, time, and country), application of the tensor decomposition method,
choice of the number of underlying components and interpretation. This four-way
component analysis is useful for the exploratory analysis of four-way mortality data
and it reveals some peculiar aspects of the mortality phenomenon. More in general,
by the current applications, our aim is to stimulate the use of tensor decomposition
methods whenever four-way data are available. Regardless of the specific domain of
research, any four-way analysis is composed of different steps involving choices to be
made. These will be carefully described and motivated providing a guidance for the
practical application of N -way methods.

4.1 Methodology

In this chapter we apply the same methodology (Tucker) of the previous paragraph
3.2.1 but we consider four dimensions. Here, we refer again to a a four-dimensional
array X, in this case “Causes of death × Age × Time × Countries”.

Hence, the Tucker4 model can be formulated as

xijln =
P∑

p=1

Q∑
q=1

R∑
r=1

S∑
s=1

aipbjqclrdnsgpqrs + eijln, (4.1)

i = 1, ..., I, j = 1, ..., J, l = 1, ..., L, n = 1, ..., N
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where there are the new loadings dns linking the conditions and components for
the conditions and eijln denotes the generic error term pertaining to the four-way
array E. Therefore, the Tucker4 model summarizes every dimension by a limited
number of dimension-specific components. In particular, P , Q, R and S (≤ N)
denote the number of such components for the units, the variables, the occasions
and the conditions, respectively. As a natural extension of Tucker3, the interactions
between these components are given by the core G, which is now a four-way array of
order (P × Q × R × S), with generic element gpqrs. Obviously, its elements express
the quadruple interaction among component p of the unit mode, component q of
the variable mode, component r of the first occasion mode and component s of
the second occasion mode and high values of gpqrs in absolute sense suggest strong
relations among the quadruple of components involved. In matrix notation, the
Tucker4 model can be formalized as:

XA = AGA(D⊗C⊗B)′ + EA (4.2)

where XA is now a matrix of order (I × JLN) and represents the unit mode
matricization of the four-way array X. In this case, XA is obtained by juxtaposing
next to each other the previously-defined matricizations of the three-way arrays
pertaining to all the conditions. A, B, C and D are the component matrices for the
four modes and GA of order (P × QRS) is the unit mode matricization of the core
tensor G. Finally, EA is the unit mode matricization of E. With similar reasoning as
for Tucker3, the Tucker4 captures the four-way structure of the data by constraining
the loadings to take the form GA(D⊗C⊗B)′.

Estimation is done following the least squares approach. In fact, we look for A
B, C, D and GA such that the sum of squared errors

||EA||2 = ||XA − AGA(D⊗C⊗B)′||2 (4.3)

is minimized. To this purpose, an alternating least squares algorithm can be
implemented, which in turn minimizes the loss function with respect to one of
the parameter matrices upon convergence. More than one (random) start of the
algorithm is usually recommended in order to limit the risk of local optima.

The fit of the model can be evaluated according to (3.17), provided that the unit
mode matricizations of the four-way arrays E and X are used.

The Tucker4 solution is not unique. Equally well fitting solutions can be found
by postmultiplying the component matrices A, B, C and D by non-singular square
rotation matrices and compensating such rotations in the core. For instance, A can
be rotated by using the rotation matrix T of order (P × P ) so as to obtain the
rotated matrix AR = AT. The rotation must be compensated into the core leading
to GAR = T−1GA. The model fit is not affected because ARGAR(D⊗C⊗B)′ =
ATT−1GA(D⊗C⊗B)′ = AGA(D⊗C⊗B)′. To exploit this rotational freedom, the
solution can be rotated to a simple form. In this paper, we achieve simplicity by
varimax ([52]) rotating A, B, C and D.

In this chapter, we observe also that multiway models, such as Tucker4, can
require some preprocessing of the data. In particular, prior to fitting the model
to the data, these can be centered and/or normalized. By centering, the aim is to
remove offset terms.
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By normalizing, unwanted differences in scale are removed. Differently from
the standard two-way case, where the preprocessing step is performed by centering
and/or normalizing every variable, in the multiway context it is not obvious how to
proceed. In fact, centering and/or scaling can be done with respect to a dimension
or even a combination of dimensions. For instance, one might center the data across
the occasion mode (single dimension) as

x̃ijkl = xijkl − x̄ij·l, (4.4)

where x̄ij·l =
∑K

k=1 xijkl

K , or across the occasion and condition modes (combination
of dimensions) as

x̃ijkl = xijkl − x̄ij··. (4.5)

Similarly, scaling can be done with respect to a single dimension or a combination of
dimensions. Suppose to scale the data within the unit mode. In this case, we have

x̃ijkl = xijkl

νi
, (4.6)

where νi is the normalizing factor computed within the units. A common choice is
based on the square root of the sum of squares:

νi =

√√√√ J∑
j=1

K∑
k=1

L∑
l=1

x2
ijkl. (4.7)

In the three-way case, refer to [56] for more details.
Furthermore, we have seen that to choose the number of components we balance

fit and parsimony and that we can base our decision also on the basis of the objective
of the analysis, in particular on interpretability [54]. With the aim to explore our
data, here, we choose a solution also to be able to interpret and report the results.
First, we interpret the components pertaining to each dimension, i.e., the component
matrices A, B, C and D; next, the core array G summarizing the main interactions in
the data. For each component matrix, every component is interpreted by inspecting
the values of every column separately. In this sense, interpretation differs from classic
PCA where component loadings can be related to correlations between variables
and components. To intepret the core, one should bear in mind that its values
describe the full four-way data, reduced to the summarizing descriptions given by the
components for the four modes. Thus, the core array summarizes the information in
the original four-way array and contains main effects and two-, three-, and four-way
interactions present in the original array [54]. The core elements can be compared
with each other. Roughly speaking, high core elements in absolute sense denote
strong associations between the components for the four modes.

When the chosen solution is not well interpretable, a new solution with a different
number of components P + Q + R + S is investigated.

Finally, in this chapter is clear one of the main advantage of the Tucker model
as expresses in [99], we can observe the full core array G that explain the relation
between the components. It helps us to identify the main relationship between the
components in this more complex situation with four dimensions.
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4.2 Application

We analyse a dataset provided by the World Health Organization (WHO) mortality
database, which is an archive of causes of death information for several countries. The
longest time series starts in 1950, however, for many countries, the information starts
from 1959. The application of the methodology requires the data for each dimension:
causes of death, age, time, country. We consider the following I = 8 causes of
death: Infectious diseases, Smoking-related cancer, Non-Smoking-related cancer,
Diabetes, Cardiovascular diseases (hereinafter CVD), Respiratory diseases, External
causes of death, Other causes of death. It is worth noting that the classification
of causes of death has greatly changed since 1959, passing from ICD 7th to ICD
10th revision. Age is organized in classes as follows: age groups 0, 1-4, 5-9, 10-14,
15-19, . . ., 80-84 (J = 18). Only the countries for which data is available in this
time frame are included in the analysis (see the L = 18 countries listed in Table 4.4)
and because of this, regarding time, we focus the analysis on the years 1961-2015
(hence, K = 55) to consider the same time window for each country. The analysis
is developed distinguishing the results by sex, first considering the males and then
the females. Therefore, with respect to the previous papers [91, 36, 28, 66], we
introduce a new dimension, passing from the Tucker3 model to the Tucker4 one
that, as far as we saw, was never used for the analysis of mortality data. Regarding
countries, in this last chapter, where we have reconstructed data from the WHO, to
give coherence to the work and to deepen the demographic relationships between
countries we have consider the same 18 countries of the second chapter.

In order to carry out the four-way analysis, we organize the data in an array of
four dimensions (causes of death × age classes × times × countries). The dimension
of the array is: 8 × 18 × 55 × 18, for a total of 142,560 entries. In particular, the
generic element of the array is the death rate for cause of death i, at age class j in
year k, in country l: dijkl.

The death rate1 for an individual for cause of death i, at age class j in year k,
in country l is dijkl = Dijkl

Ejkl
, where Dijkl is the number of deaths for cause of death

i, at age class j during year k, in country l and Ejkl is the risk exposure of the
population of age j in year k, in country l.

It is noteworthy that it is not possible to obtain causes-specific Exposures, thus
the causes-specific mortality rates are computed by using the Number of Deaths
specific for each cause, and the Exposures, that are aggregated on the overall
mortality.

4.2.1 Male results

To get more reliable results, before fitting the model to the data, we decide to scale
them in such a way that the data related to each country and each age class plays

1In Actuarial Science, Demography, Epidemiology, and Biostatistics as well, it is common to deal
with the so-called Hazard function (or Force of Mortality), which is, in its continuous formulation,
the instantaneous rate of death at age j, conditioned upon surviving to that age, (in a given year
k). In practice, researchers work on its discrete counterpart, expressed by the mortality rate as the
ratio of the Number of Death/Population (or Exposure to risks). Often, this rate, and thus both
Deaths and Exposures, are specific for age and years. Nevertheless, they might also be specified for
age classes (j), years (k), and country (l).
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the same role in the analysis. In particular, with reference to the age classes, such
a scaling avoids that the underlying components strongly depend on the older age
classes, obviously characterised by the highest death rates. In this way, as we shall
see, we are able to extract relevant components involving patterns related to children
and even infants that, otherwise, would have been overlooked by the model. To this
purpose, the observed death rates are divided by

νjl =

√√√√ I∑
i=1

K∑
k=1

d2
ijkl. (4.8)

Moreover, we decided not to center the data because a meaningful zero point already
exists. In fact, dijkl = 0 means absence of death due to cause i at age j, in year k,
in country l.

To choose among the multitude of possible Tucker4 solutions, we run the Tucker4
method by varying P , Q, R and S from 2 to 8 (= min(I, J, K, L)) and compute the
associated fit value. In this way, we consider all the Tucker4 solutions with a total
number of components P+Q+R+S ranging from 8 to 32. In Table 4.1 we listed
the best solutions for each total number of components and the corresponding fit
expressed as a percentage.

P Q R S P + Q + R + S Fit value (%)
2 2 2 2 8 83.66%
2 3 2 2 9 85.79%
3 3 2 2 10 88.44%
3 4 2 2 11 90.47%
4 4 2 2 12 91.36%
5 4 2 2 13 92.07%
5 5 2 2 14 92.77%
5 4 3 3 15 93.43%
5 5 3 3 16 94.16%
5 5 3 4 17 94.54%
5 5 3 5 18 94.87%
5 5 4 5 19 95.23%
5 6 4 5 20 95.60%
5 6 4 6 21 95.94%
5 6 5 6 22 96.29%
6 6 5 6 23 96.60%
6 6 5 7 24 96.88%
6 7 5 7 25 97.14%
6 7 5 8 26 97.35%
6 8 5 8 27 97.54%
6 8 6 8 28 97.67%
7 8 6 8 29 97.76%
7 8 7 8 30 97.83%
7 8 8 8 31 97.87%
8 8 8 8 32 97.98%

Table 4.1. Best retained solutions in terms of fit values varying P +Q+R+S from 8 to 32 .
% with number of components and fit values (male analysis)

By inspecting Table 4.1, we conclude that the solution corresponding to the
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best compromise between fit and parsimony is the one with P = 3, Q = 4, R = 2,
S = 2 with the fit value equal to 90.5%. This choice is also corroborated by the next
interesting interpretation of the underlying components. As already noted, all the
component matrices are varimax-rotated, compensating such rotations into the core.

In Table 4.2, we report the component scores for the causes of death mortality
(component matrix A). Component 1 for the causes of death, labeled "External",
mainly depends on external causes (0.98), frequently related to young mortality,
road accidents, and violence. In other words, it identifies a behavior of mortality
characterised by external diseases leading to a higher incidence of mortality with
respect to the other causes of death. The meaning will be clearer when we will study
the core elements expressing the interactions between the components of the four
modes. Component 2, labeled "CVD+Cancer", is strongly associated with CVD and
Cancer (even if, to a lesser extent, with Non-smoking-related cancer). Component,
"Other", is strongly related to other diseases (0.97).

Cause of death External CVD+Cancer Other
Infectious 0.08 0.04 0.13

Smoking-related cancer -0.03 0.41 0.08
Non-smoking-related cancer 0.13 0.15 0.12

Diabetes 0.00 0.03 0.01
CVD 0.05 0.89 -0.11

Respiratory 0.00 0.10 0.02
External 0.98 -0.06 0.05

Other -0.07 0.04 0.97
Table 4.2. Component matrix for the causes of death (bold values indicate scores greater

than 0.25). Male analysis.

Table 4.3 shows the component scores for the age classes (component matrix
B). Component 1 for the age classes, labeled "Adults+Old", reflects the adult and
old mortality, showing the typical regularity well described by the linear Gompertz
law of mortality. We can relate Component 2, labeled "Young+Early Adults", to
the behavior of mortality of the young and the early adults. In particular, this
component captures the excess of mortality for age classes from 15-20 to 40-44.
Component 3, "Infants", depicts the infant mortality. Finally, Component 4, labeled
"Children+Young" reflects the behaviors of mortality of children and young. It is
positively associated with age classes 1-4, 5-9, 10-14 and 15-19.



4.2 Application 67

Age class Adults+Old Young+Early Adults Infants Children+Young
0 -0.05 0.01 0.95 0.04

1-4 0.01 -0.06 0.14 0.54
5-9 0.03 -0.07 -0.06 0.62

10-14 0.01 -0.06 -0.03 0.48
15-19 -0.05 0.29 -0.15 0.25
20-24 -0.07 0.39 -0.13 0.11
25-29 -0.07 0.46 -0.05 0.00
30-34 -0.03 0.48 0.03 -0.05
35-39 0.05 0.42 0.08 -0.06
40-44 0.16 0.30 0.11 -0.04
45-49 0.26 0.18 0.10 -0.02
50-54 0.31 0.07 0.06 0.00
55-59 0.34 0.01 0.02 0.02
60-64 0.36 -0.03 -0.02 0.02
65-69 0.37 -0.04 -0.04 0.02
70-74 0.38 -0.04 -0.05 0.01
75-79 0.37 -0.03 -0.02 -0.01
80-84 0.35 -0.01 0.03 -0.04

Table 4.3. Component matrix for the age classes (bold values indicate scores greater than
0.25). Male analysis.

The components for the years (component matrix C), displayed in Figure 4.1,
offer an interesting interpretation in the light of longevity literature. We can see
two different components: Component 1 (in blue), labeled "Late", represents the
mortality dynamics after the "converging period" in the 1980s. Component 2 (in
red), labeled "Early", shows higher values before 1980. Indeed, the recent historical
worldwide longevity dynamics highlight the first decrease of mortality after the 50s,
albeit, with high heterogeneity levels, that flattened in the decades around 75s-85s,
which might be described as the global convergence ([80], [81], [78]). Subsequently,
another improvement emerges quite globally around the world.
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Figure 4.1. Component matrix for the years (male analysis)
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The components for the countries (component matrix D) are given in Table
4.4. Component 1 for the countries, labeled "High Welfare", is mainly associated
with Japan, but also with other European countries characterized by geographical
proximity (France, Austria, Switzerland, and Italy) and with two North European
countries (Sweden and Finland) that have recently shown relevant improvements in
life expectancy leading the global records as the case of Sweden [80]. In general, the
component mainly identifies countries well-known for their longevity and character-
ized by a high/medium welfare status. This component underlines how, as countries
wealth grows, the raising rate of return on human capital causes a demographic
transition [103]. This highlights the relation between economic and health status as
suggested by Smith [96]. Component 2, labeled "Anglophone", is mainly composed
by countries usually considered similar in culture and values: Ireland, UK, USA and
Australia, which share the anglophone culture.

Country High Welfare Anglophone
AUS 0.06 0.32
AUT 0.31 -0.01
CAN 0.22 -0.11
USA 0.02 0.36
JAP 0.46 -0.22
BEL 0.14 0.22
DNK 0.22 0.11
FIN 0.27 0.03

FRATNP 0.32 -0.03
HUN 0.24 0.07
IRL -0.18 0.62
ITA 0.25 0.05

NLD 0.23 0.09
NOR 0.12 0.24
ESP 0.16 0.16

SWE 0.26 0.05
CHE 0.29 0.01

GBR_NP 0.00 0.40
Table 4.4. Component matrix for the countries (bold values indicate scores greater than

0.25). Male analysis.

The previous component matrices provide a good description of the cause-of-
death mortality scenario. Nevertheless, a piece of more detailed information could
be achieved by interpreting the core tensor G, which provides the interaction term.
Table 4.5 reports the tabular representation of the core where, once again, we
highlight that the higher in absolute value an element of the core, the stronger the
interaction among the quadruple of components involved.
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Period: Late

CoD components Countries: High Welfare Countries: Anglophone
Ad+Old Y+E.Ad Infants Child+Y Ad+Old Y+E.Ad Infants Child+Y

External 1.44 5.08 -0.11 1.84 0.76 4.46 -0.22 1.85
CVD+Cancer 6.40 1.24 0.46 0.11 4.88 0.99 0.37 0.08
Other 2.13 1.96 2.68 1.32 1.16 1.58 2.18 1.29

Period: Early

CoD components Countries: High Welfare Countries: Anglophone
Ad+Old Y+E.Ad Infants Child+Y Ad+Old Y+E.Ad Infants Child+Y

External 1.15 5.02 0.13 5.25 0.70 2.78 0.00 3.66
CVD+Cancer 5.77 1.35 0.44 0.26 4.98 1.15 0.39 0.18
Other 0.26 0.83 0.79 1.73 0.00 0.41 0.56 1.26
Table 4.5. Core tensor (bold values indicate scores greater than 2.5). Male analysis.

The highest core element (g2111 = 6.40) refers to the interaction term between
CVD and cancer (Component 2 for the causes of death) that occurred at adult and
old ages (Component 1 for the age classes) in the late period (Component 1 for
the years) for the high welfare countries considered by HMD (Component 1 for the
countries). It means that during this period, for adults and elderly people, CVD
and cancer lead to particularly high mortality in the countries considered. This is
explained by the recent trends regarding longevity we are experiencing, especially in
the high welfare countries. The interaction between Component 2 for the causes of
death and Component 1 for the age classes is however uniformly high for all country
and year components (g2121 = 5.77, g2122 = 4.98, g2112 = 4.88), thus highlighting its
relevance in the analysis of mortality patterns. In the late period, for the high welfare
countries, another high core element refers to the interaction linking to external
causes of death and young and early adults mortality (g1211 = 5.08); it means that
during the phase of convergence of longevity, in all the countries considered, young
and adult individuals experienced high mortality for external causes. Once again,
high interactions are also observed for different countries and/or years, as witnessed
by core elements g1221 = 5.02, g1212 = 4.46, and, to a lesser extent, g1222 = 2.78.
Moreover, in the early period there is a prevalence of deaths caused by external
causes for children and young in the high welfare countries (g1421 = 5.25). Such a
finding is also observed for the anglophone countries, even if the corresponding core
element is lower (g1422 = 3.66), hence the interaction is weaker. Finally, in the high
welfare countries, we can note the pretty high interaction between infants and other
causes of death in the late period (g3311 = 2.68).

4.2.2 Female results

To get more reliable results, before fitting the model to the data, these are prepro-
cessed. Similarly to the male analysis, we scale the data in such a way that the
information pertaining to the countries and the age classes plays the same role.

In Table 4.6 we listed the best solution for the total number of components
P +Q+R+S with the corresponding goodness of fit index, expressed as a percentage.
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P Q R S P + Q + R + S Fit value (%)
2 2 2 2 8 80.07%
3 2 2 2 9 81.89%
3 3 2 2 10 84.68%
4 3 2 2 11 86.15%
4 4 2 2 12 88.85%
4 5 2 2 13 90.20%
5 5 2 2 14 91.48%
5 5 3 2 15 92.29%
5 5 3 3 16 92.93%
5 5 4 3 17 93.43%
5 5 4 4 18 93.93%
5 5 4 5 19 94.34%
5 6 4 5 20 94.74%
6 6 4 5 21 95.01%
6 6 4 6 22 95.40%
6 7 4 6 23 95.69%
6 6 5 7 24 95.98%
6 7 5 7 25 96.29%
6 7 5 8 26 96.57%
6 8 5 8 27 96.74%
6 8 6 8 28 96.87%
6 8 7 8 29 96.95%
6 8 7 8 30 97.02%
7 8 8 8 31 97.06%
8 8 8 8 32 97.42%

Table 4.6. Best retained solutions in terms of fit values varying P +Q+R+S from 8 to 32 .
% with number of components and fit values (female analysis)

We select the solution with P =4, Q=4, R=2, S=2 that provides a fit value equal
to 88.85%. Therefore, in comparison with the male analysis, we consider one more
component for the causes of death. To motivate this choice, in Table 4.7, we give
the component scores for the causes of death (matrix A). We can see that, to a
certain extent, the interpretation of the extracted components resembles the one of
the male analysis. Component 1, labeled "CVD vs Other", mainly depends on CVD.
Similarly to the male analysis, Component 2 is mainly associated with external
diseases, while Component 3 is positively related to other causes of death. Finally,
Component 4 is associated to non-smoking- and smoking-related cancer (0.84 and
0.52, respectively), portraying the higher incidence of cancer diseases among the
populations. Such a component allows us to distinguish cancer diseases from the
other causes, therefore legitimating the choice of having one more component for
such a dimension compared to the male analysis.
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Cause of death CVD vs Other External Other Cancer
Infectious 0.09 0.16 0.18 -0.13

Smoking-related cancer 0.12 -0.12 0.00 0.52
Non-smoking-related cancer 0.06 0.10 0.01 0.84

Diabetes 0.05 0.00 0.00 0.02
CVD 0.98 -0.01 0.02 -0.10

Respiratory 0.05 0.00 0.04 0.03
External 0.00 0.97 -0.01 0.00

Other -0.35 -0.02 0.98 0.02
Table 4.7. Component matrix for the causes of death (bold values indicate scores greater

than 0.25). Female analysis.

Table 4.8 reports the component score matrix for the age classes (matrix B).
Component 1 reflects the adult mortality (age classes from 35-49 to 60-64). Com-
ponent 2 is positively associated with all the classes from 1-4 to 30-35, capturing
high mortality of children and young individuals. Finally, Component 3 reflects the
mortality behavior of old people (age classes from 65-69 to 80-84) and Component 4
depicts the infant mortality (age classes 0 and 1-4).

Age Adults Child+Young Old Infants
0 0.02 -0.12 0.00 0.91

1-4 -0.06 0.29 0.01 0.31
5-9 0.02 0.34 -0.05 0.16

10-14 0.04 0.34 -0.04 0.15
15-19 -0.08 0.47 0.01 -0.09
20-24 -0.06 0.45 0.03 -0.08
25-29 0.03 0.37 0.03 -0.04
30-34 0.17 0.27 0.00 -0.01
35-39 0.32 0.16 -0.04 0.00
40-44 0.41 0.06 -0.05 0.00
45-49 0.45 0.00 -0.04 0.00
50-54 0.44 -0.04 0.00 0.00
55-59 0.39 -0.06 0.08 -0.01
60-64 0.29 -0.05 0.21 -0.02
65-69 0.16 -0.03 0.34 -0.03
70-74 0.04 0.00 0.45 -0.03
75-79 -0.06 0.02 0.53 0.01
80-84 -0.14 0.03 0.58 0.07

Table 4.8. Component matrix for the age classes (bold values indicate scores greater than
0.25). Female analysis.

Figure 4.2, displaying the component matrix for the years (C), confirms the
interesting interpretation previously found in the male analysis with Component 1
(in red), labeled "Early", and Component 2 (in blue), labeled "Late". Note that, in
the two analyses, the interpretation of the components remains the same, but the
labels of the components are switched.
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Figure 4.2. Component matrix for the years. Female analysis.

Table 4.9 shows the component matrix for the countries (D). As for the male
analysis, Component 1 is associated to high welfare countries (France, Switzerland,
and Sweden emerges as in the corresponding component in the male analysis),
but some differences are visible. Component 2, labeled "Other", includes the two
largest countries of Southern Europe, Italy and Spain, but also United Kingdom,
Ireland and Hungary. Italy and Spain are usually considered similar in culture,
values, and economic patterns; for example, both are Catholic and Latin countries,
they are latecomers to European industrialization, and are medium- to large-sized
countries with significant regional differences. The paper in [33] explains the common
demographic and economic factors between Italy and Spain. What is more, Ireland
is often compared to Spain and Italy for its pattern of mortality, for example in
terms of life expectancy [90].
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Countries High Welfare Other
AUS 0.20 0.14
AUT 0.20 0.13
CAN 0.33 -0.04
USA 0.18 0.15
JAP 0.08 0.24
BEL 0.27 0.04
DNK 0.40 -0.13
FIN 0.22 0.10

FRATNP 0.34 -0.05
HUN -0.08 0.48
IRL 0.01 0.37
ITA 0.02 0.35

NLD 0.23 0.10
NOR 0.24 0.07
ESP -0.06 0.45

SWE 0.34 -0.05
CHE 0.38 -0.10

GBR_NP 0.06 0.32
Table 4.9. Component matrix for the countries (bold values indicate scores greater than

0.25). Female analysis.

Further information can be revealed by the core tensor Ḡ reported in Table 4.10.

Period: Early

CoD components Countries: High Welfare Countries: Other
Ad Child+Y Old Inf Ad Child+Y Old Inf

CVD vs Other 3.43 0.97 4.86 0.15 3.46 1.49 3.75 0.22
External 1.45 5.79 0.17 1.44 0.76 3.69 0.09 0.94
Other 0.83 1.52 0.37 1.11 0.79 1.79 0.28 1.37
Cancer 3.29 1.66 0.66 0.23 2.17 1.25 0.24 0.01

Period: Late

CoD components Countries: High Welfare Countries: Other
Ad Child+Y Old Inf Ad Child+Y Old Inf

CVD vs Other 2.31 0.74 3.90 0.05 2.22 0.81 3.39 0.03
External 1.94 4.30 0.23 0.20 1.07 3.14 0.18 0.09
Other 2.18 1.96 1.64 3.03 1.66 1.95 1.11 2.00
Cancer 4.38 1.20 1.80 0.13 3.14 1.15 1.09 0.09

Table 4.10. Core tensor (bold values indicate scores greater than 2.5). Female analysis.

The highest core element (g2211 = 5.79) refers to the interaction term between
external causes of death that occur for children and at young ages in the early
period for the high welfare countries. It means that during this period, for these
age classes, the external causes of death lead to high mortality in such countries.
In the early period, for the same group of countries the element linked to CVD vs
Other (g1311 = 4.86) reveals that during the early phase, for old people, there is a
higher incidence of deaths by CVD compared to Other causes of death. Finally, we
can observe, for adults, high levels of mortality caused by CVD compared to Other
(g1111 = 3.43), and Cancer (g4111 = 3.29).

In the late period, still focusing our attention on the high welfare countries,
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high mortality for adults due to cancer emerges (g4121 = 4.38). As for the early
period and for the elderly, we can see high mortality due to CVD compared to Other
(g1321 = 3.90). The core element g3421 = 3.03 allows us to discover the strong level of
mortality due to Other causes of death. Finally, g2221 = 4.30 refers to the interaction
between external causes of deaths that occur to children and young individuals in
the late period for the high welfare countries.

With respect to the core elements involving Other countries (Component 2 for
the countries), in the early period, high mortality due to external causes for children
and young people (g2212 = 3.69) is registered. We also observe high mortality for
CVD vs Other in adults and the elderly (g1112 = 3.46, g1312 = 3.75). Note that
such results are consistent with the male analysis. Furthermore, in the late period,
CVD vs Other is relevant for old people g1322 = 3.39). Finally, we can discover high
mortality due to Cancer and External causes for, respectively, adults and children
and young individuals (respectively, g4122 = 3.14, g2222 = 3.14).

4.3 Conclusions

Modeling mortality represents a crucial issue in various fields: public health, pension
schemes and financial planning are prime examples. In recent years, researchers were
prioritizing the investigation of the overall longevity. Nevertheless, more specific
mortality data might provide a piece of crucial information for designing national
decision planning. Our approach represents an advance in longevity modeling,
showing a more informative view of mortality levels specific for causes of death, in
a multi-population framework. Leveraging the Tucker4 method, our contribution
to the literature consists of a multi-population and causes of death analysis in a
unified framework. Indeed, different populations with similar socioeconomic statuses
share similar mortality trends to some extent. Such common information could be
extracted and exploited in a multi-population framework to help model mortality
of individual populations. The dataset we have considered has been provided by
the World Health Organization, arranged into a four-way array structure composed
by causes of death, age, years, and countries. For both genders separately, we have
shown how the Tucker4 model is able to extract meaningful demographic insights.
In fact, the aim of this model is to efficiently summarize all the information in the
four-way data, also considering the various interactions (two-, three-, and four-way).
In particular, it helps us understand how the rises in survival, witnessed in many
high-income and developed countries, during the twentieth century, were determined
especially by the reduction in a few specific major causes of death groups, which led
to the longevity improvements.

In this chapter is clear one of the main advantage of the Tucker model as expresses
in [99], we can observe the full core array G that explain the relation between
the components. This helped us to identify the main relationship between the
components in this more complex situation with four dimensions.

A final consideration is related to possible limitations in the data. For the HMD,
with reference to the fact that in the selected time window a limited number of
countries were selected, probably through a broadening of the data base the models
could provide further significant demographic relationships. With reference to the
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causes of death, the main limitation is linked to the need to manually reconstruct
the data, also considering the different classifications of the causes of death that have
occurred over time. This is linked to one of the actuarial themes that is recurrent
today: the quality of the data. Only through a joint economic-political effort can
we converge towards a global interest in collecting demographic data for actuarial,
demographic and pension analysis purposes.

Possible further steps in the future researches, may concern the use of different
convergence algorithms for the identification of solutions, the introduction and
development of further analyzes to support the choice of solutions, the use of different
models to compare the results, the introduction of further significant dimensions of
analysis and finally the possibility of changing the field of application. For example,
in non-life insurance to calculate the claims reserve, identifying a data structure that
can be constructed in a multidimensional array, exploiting tensor decomposition
methods to obtain further information useful to insurance companies.
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