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A B S T R A C T

The exploration of primordial Gravitational Waves (GWs) stands as a pivotal
force in modern Cosmology, providing a unique window into the mecha-
nisms at the birth of the Universe. Particularly, in the early moments of the
cosmos, we hypothesize an extreme accelerated expansion, known as infla-
tion. One of its main predictions is a primordial background of GWs, which
have propagated almost undisturbed to our present time. Due to their nature,
these GWs retain information about their production mechanism, enabling us
to investigate inflation by observing them or their indirect imprints on var-
ious aspects of the Universe, as the Cosmic Microwave Background (CMB)
polarization. In this Thesis, we leverage GWs and their relics to address two
key questions: Does the standard cosmological model sufficiently explain
our observations? What is known about these primordial GWs with current
data?

Before delving into these questions, Part I describes a Universe devoid of
GWs, characterized by an inflationary period with only scalar perturbations.
The hot Big-Bang model and its thermal history are explained through the
concept of thermal decoupling (see Chap. 2). After addressing some incon-
sistencies in this model in Chap. 3, we turn our attention to the inflationary
model in Chap. 4 as a solution to these issues. In this context, we explore
two key components: the physics of scalar perturbations and the CMB, which
serves as a cornerstone in contemporary Cosmology.

This initial part lays the groundwork for highlighting the imprints of GWs

in Part II, where tensor perturbations are introduced into the inflationary
paradigm. In Chap. 5, we explore predictions for single-field slow-roll infla-
tion and beyond. Additionally, we present a comprehensive computation of
the Boltzmann equations for GWs, yielding key observable quantities related
to the Cosmological Gravitational Wave Background (CGWB) (see Chap. 6).
For example, the observation of CMB B-mode polarization offers invaluable
information on inflation, as it is directly linked to the presence of primordial
GWs.

At this juncture of the manuscript, we possess a holistic view of the Uni-
verse with both scalar and tensor perturbations, enabling us to address the
first question mentioned earlier. In Part III, we challenge aspects such as
the cosmological principle, which advocates the homogeneity and isotropy
of the Universe. The CMB reveals signatures of a departure from statistical
isotropy, manifested in the form of the hemispherical power asymmetry (see
Chap. 7). This feature suggests a preferred direction in the sky, prompting
an investigation of the role of GWs in understanding its physical origin in
Chap. 8 and Chap. 9. Another intriguing aspect of the CMB is the lack-of-
correlation anomaly observed in its two-point angular correlation. It seems
that this correlation is almost null on scales larger than 60◦, in contrast to
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what we would expect from our current understanding. Chap. 10 discusses
the possibility of detecting a similar characteristic in the CGWB.

In Part IV, the focus shifts to data analysis in pursuit of answering the sec-
ond question. Bayesian and frequentist statistics are introduced in Chap. 11

and Chap. 12, emphasizing two well-known techniques in Cosmology: Markov-
Chain Monte-Carlo (MCMC) and Profile Likelihood (PL). Subsequently, Chap. 13

delves into the Bayesian perspective on the tensor sector of parameter space,
considering different prior choices and assumptions. This analysis highlights
the strengths and weaknesses of MCMC, prompting a frequentist test on the
same datasets in Chap. 14 using the PL. By the end of these chapters, the
current status of the search for primordial GWs from the perspectives of CMB

and GW interferometers’ observations becomes clear.
Although these chapters may not fully answer our driving questions due

to their broad and ambitious nature, they underscore my contribution to the
field. The original results obtained during this Philosophiae Doctor (PhD)
degree include theoretical predictions for the CGWB, accounting for CMB

anomalies, statistical tools for simulating and estimating the significance of
the lack-of-correlation, novel forecasts on the CGWB, and a comprehensive
and statistically sound analysis of CMB B-mode data using both Bayesian
and frequentist tools, alongside direct GW observations.

Not covered in this Thesis is the research within the Lite (Light) satellite
for the studies of B-mode polarization and Inflation from cosmic background
Radiation Detection (LiteBIRD) collaboration. LiteBIRD represents a significant
future venture for exploring CMB B-mode polarization, providing a unique
opportunity to inspect its largest scales, being a space-based mission. As
an active member of different working groups, my contributions encompass
forecasts on LiteBIRD’s capability to distinguish different inflationary models,
forecasts on the science achievable through cross-correlating LiteBIRD with
galaxy surveys, validation tests on simulations, likelihood analysis, and pa-
rameter estimation in various contexts.
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Part I

A “ S C A L A R ” U N I V E R S E

In this part of the Thesis, we will explore essential aspects of
modern Cosmology. Specifically, we will present the hot Big-Bang
model along with its limitations, which led to the introduction of
an inflationary phase in the Universe, a concept we will also elu-
cidate. Throughout this exploration, we will consider a “scalar”
Universe, devoid of Gravitational Waves (GWs), and shed light
on the intricacies of primordial quantum fluctuations during the
early stages of the Universe. This approach enables us to scru-
tinize the observable quantities measured today, providing in-
sights into the physics underlying the birth of our Universe.





1
B A S I C S O F C O S M O L O G Y

In this chapter, we will cover fundamental concepts that are crucial for a better
grasp of the subsequent discussions. The focal points include the Einstein field

equations and the Friedmann-Lemâitre-Robertson-Walker (FLRW) metric.
The primary references for this chapter are [1–4], serving as valuable starting points
for a more in-depth exploration of these topics.

1.1 einstein’s equations and flrw metric

The famous Einstein’s equations read [1]

Gµν ≡ Rµν −
1
2

Rgµν = 8πGTµν (1)

where: Rλ
σµν ≡ ∂µΓλ

σν − ∂νΓλ
σµ + Γλ

µρΓρ
νσ − Γλ

νρΓρ
µσ is the Riemann ten-

sor;

Rµν = Ricci tensor, defined as the contraction of the first and
third indexes of the Riemann one;

R = is the Ricci scalar, defined as the full contraption of the
Ricci tensor;

Γµ
νλ ≡ 1

2 gµρ
(

∂gρν

∂xλ +
∂gρλ

∂xν − ∂gνλ
∂xρ

)
are the Christoffel symbols;

gµν = metric tensor;

G = gravitational constant;

Tµν = stress-energy tensor.

Eq. 1 can be derived from the variation w. r. t. the metric of the total action
STOT = SHE + Sm [5, 6], where

SHE ≡
∫

d4x
√
−g

R
16πG

(2)

is the Hilbert-Einstein action that accounts for gravity, in which g is the
determinant of the metric tensor, while

Sm =
∫

d4x
√
−gLm (3)

is the action associated to all the other particles (scalar fields, fermions,
gauge bosons, . . . ), where Lm indicates their Lagrangian density. In partic-
ular, from the variation δSHE

δgµν one derives the geometric Left Hand Side (LHS)

3
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of Eq. 1 while the stress-energy tensor Tµν on the Right Hand Side (RHS) is
defined as [6]

Tµν ≡ −
2√−g

δSm

δgµν . (4)

This tensor can be computed in two ways:

• if one focuses on the global properties of the Universe and treats its
content as a perfect fluid, this leads to the very well-known form (true
for a generic reference frame) [1]

Tµν = uµuν(ρ + P) + Pgµν , 2 (5)

where: ρ = energy density;

P = isotropic pressure;

uµ = 4-velocity of the fluid in its reference frame.

• One can also study this tensor accounting for every field contribution
to the action. Of course, this road requires a very detailed theory on
the content of the Universe.

There are two other important relations that must be taken into account ev-
ery time that Einstein’s equations enter the game; these are the Bianchi iden-
tity ∇µGµν = 0 and the continuity equation ∇µTµν = 0 (∇ here indicates
the covariant derivative), which indeed are consequences of one another,
given the Einstein equations. Eq. 1 can be used to find a metric that satisfies
some symmetries. Indeed, looking for a metric that describes an expanding
Universe with curvature κ while being symmetric under rotation and spatial
translation (isotropic and homogeneous)3, we find the FLRW metric [2]

ds2 = −c2dt2 + a2(t)
[

dr2

1− κr2 + r2dΩ2
]

, (6)

where: t = cosmic time, whereas the time coordinate of an observer co-
moving with the cosmic fluid;

r = radial coordinate;

a(t) = scale factor, which spans the expansion of the Universe;

dΩ2 = dθ2 + sin2θdϕ2 is the infinitesimal solid angle;

κ = curvature, which can be either positive (closed Universe),
null (flat Universe), or negative (open Universe)4.

2 Actually a fluid can be characterized also by some form of anisotropies, as viscosity or ther-
mal conductivity; these effects can be taken into account adding to the previous Tµν an ap-
propriate tensor Πµν (see for example the discussion in Sec. 5.2). Since here we only want to
briefly summarize some fundamental tools and concepts, from now on we will use a perfect
fluid, unless otherwise stated.

3 We do not ask for the time translation invariance because we want a Universe able to change
throughout time.
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Figure 1: Different
geometries encoded
in the FLRW metric.
Figure taken from
[http://wmap.gsfc.
nasa.gov/media/
990006/990006_

2048.jpg].

Usually, one parametrizes κ as

κ =


−1 open

0 flat

+1 close

. (7)

It is important to underline that the set (r, θ, ϕ) is made of comoving coor-
dinates, i. e. they do not depend on the evolution and remain constant, so
that, once they are multiplied by the scale factor, the physical coordinates
are recovered5. From the symmetry properties of Eq. 6, it can be found the
very easy form for the stress-energy tensor [3]

Tµν = diag[ρ(t), P(t), P(t), P(t)], (9)

where ρ(t) and P(t) are respectively the energy density and the isotropic
pressure of the fluid, which do not depend on #x because of isotropy and
homogeneity 6. We emphasize that this description of the topology of the
Universe is just the most simple description of a universe where the cos-

4 One can show that these three cases represent respectively the geometry of a sphere, a plane
and an hyperboloid. It is intuitive that in all these cases, the “landscape” around a specific
point is completely isotropic and remains the same while changing the considered point,
hence they indeed are isotropic and homogeneous.

5 Considering the comoving coordinates, one can show that the coordinate separation between
two points remain constant in time. Then the spatial splices of the metric in parentheses are
rescaled by the scale factor, so that for any distance λ, it holds

λphysical(t) = a(t) · λcomoving . (8)

6 In this Thesis, 3-vectors will be indicated with a #, whereas the same quantity without this
symbol will indicate its modulus.

http://wmap.gsfc.nasa.gov/media/990006/990006_2048.jpg
http://wmap.gsfc.nasa.gov/media/990006/990006_2048.jpg
http://wmap.gsfc.nasa.gov/media/990006/990006_2048.jpg
http://wmap.gsfc.nasa.gov/media/990006/990006_2048.jpg
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mological principle7 is valid and is characterized by a curvature parameter.
However, one could consider less trivial topologies, which would carry siz-
able differences to the characteristics of the Universe. Suppose, for example,
that we consider a flat Universe with some periodic boundary conditions;
this means that the Universe would have the topology of a 3D torus, which
means that if the torus is not too large, we should be able to observe the
same galaxy in multiple directions in the sky [7]. Another typical feature of
these models are the so-called circles-in-the-sky, which should appear in our
Cosmic Microwave Background (CMB) sky (see Chap. 2 and Chap. 4 for a de-
scription of the CMB) [8, 9]. For more details on this topic, see, for example,
[10–12].

Furthermore, one could even consider some models where the cosmologi-
cal principle is not valid. For example, spacetimes that are homogeneous but
non-isotropic are called Bianchi models. These are classified into a total of 11
classes: 9 characterized by a single Lie algebra and 2 by a continuous family
of Lie algebras in the real 3-dimensional space [13, 14]. The associated Lie
group will then constitute the symmetry group on the manifold. E. g. the
Bianchi I universe has different scale factors in the three spatial directions,
meaning that they expand independently:

ds2 = −dt2 + a2dx2 + b2dy2 + c2dz2 . (10)

On the other hand, one could consider strongly inhomogeneous space-times
as Szekeres spacetime and Lemaitre-Tolman-Boldi spacetime [15].

Despite this, in this Thesis we will work in the assumptions of FLRW.

1.2 friedmann equations

The dynamics of the expanding Universe can be explicitly seen by unfolding
Einstein’s equations.

Rµν −
1
2

gµνR + Λgµν = 8πGTµν , (11)

where, w. r. t. Eq. 1, we have added, for the sake of completeness Λ, the
cosmological constant. Initially introduced by Einstein to obtain a static Uni-
verse (supposedly Einstein’s “biggest blunder” [16]), this quantity is now
at the center of modern Cosmology as it explains phenomenologically the
accelerated expansion we observe around us.

We have already seen what the main actors are appearing in Eq. 11 while
discussing Eq. 1, thus, one can find the Friedmann equations by explicitly

7 On sufficiently large scales, all observers see the same Universe around them. This implies
isotropy and homogeneity.
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writing the 00 and ij components of the Einstein equations and by exploiting
the conservation laws ∇µTµν = 0. Hence, one can find

H2 +
κ

a2 =
8πG

3
ρ +

Λ
3

, (12)

ä
a
= −4πG

3
(ρ + 3P) +

Λ
3

, (13)

ρ̇ + 3H(ρ + P) = 0 , (14)

where: · = derivative w. r. t. cosmic time t;
H ≡ ȧ

a is the Hubble rate.

These equations are in fact dependent on each other through the Bianchi
identities, so that only two of them are independent [1]. Once again, we
emphasize that the simplicity of these equations is given by the cosmological
principle. For example, if we consider a non-isotropic Universe, we would
obtain more complex equations with extra parameters. E. g. considering a
Bianchi I Universe [14, 17] one would obtain the results of Emir Gümrükçüo,
Contaldi, and Peloso [18].

To close the system, one needs an additional relation linking P(t) and
ρ(t), named the equation of state P(ρ). The simplest choice is

P = ωρ with ω = constant , (15)

where ω depend on the energy content considered

ω =


0 dust or pressureless matter
1
3 radiation

−1 Λ

. (16)

Solving this system of equations, one finds the explicit expression of the
scale factor a(t), which in FLRW has the usual solution with a singularity
back in time

a(t) = a∗

(
t
t∗

) 2
3(ω+1)

, (17)
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where ∗ indicates a reference scale8.
For what regards ρ:

ρ = ρ∗

(
a
a∗

)−3(1+ω)

⇒ ρ ∝


a−3 ω = 0

a−4 ω = 1
3

constant ω = −1

. (18)

These dependency can be intuitively derived if one thinks at how energy gets
diluted with the expansion of the Universe: in the case of pressureless matter
(e.g. a bunch of protons), the energy density will scale as volume−1, so a−3,
since the number of particles in that volume will not change; for radiation,
the energy gets an extra a−1 factor because the wave length of radiation will
also be diluted by expansion; finally Λ is by definition a constant, so even if
the Universe expands, its value will not change.

All these relations and definitions can be written in function of conformal
time η exploiting the transformation dt = a(η)dη in order to obtain a metric
in which a(η) factorizes in front of all terms9.

1.3 cosmological horizon

What is the maximum distance from which we have received a light signal
during the whole life of the Universe t? This quantity is called the cosmo-
logical horizon and represents the radius of the region of causal connection
centered on us

dH(t) ≡ a(t)
∫ t

0

cdt′

a(t′)
. (19)

It is related to its comoving counterpart

l ≡
∫ t

0

cdt′

a(t′)
, (20)

called comoving distance10. This horizon is similar to the event horizon of
a Black Hole (BH), but it is a past horizon, instead of a future one. Also, if

8 From this relation one can appreciate the fact that only ratios of scale factors are physical,
assuming a spatially flat Universe. In fact, the coordinate can always be rescaled by a constant
without any physical consequence.
In the case of κ ̸= 0 the normalization of a(t) becomes physical, since in the Friedmann
equations, specifically in Eq. 12, the term ∝ κ cannot be rescaled freely.

9 For any generic function of cosmic time f (t) hold

ḟ (t) =
f ′(η)
a(η)

, f̈ (t) =
f ′′(η)
a2(η)

−H f ′(η)
a2(η)

,

where the prime refers to the derivative w. r. t. conformal time. The Hubble rate in cosmic
time H is then named H ≡ a′

a in conformal one.
10 This quantity also represents the physical interpretation of conformal time, given that dη =

dt/a.
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dH(t) exists and its finite, it is called particle horizon. In particular in a FLRW

Universe, dH(t) is finite if ω > −1/3, in fact [19]

dH(t) =
3(1 + ω)ct

1 + 3ω
≃ ct ≃ 1

H(t)
, (21)

and

dH(t) =


3ct ω = 0

2ct ω = 1/3

∞ ω = −1/3

. (22)

Furthermore, exploiting the Friedman equations, one can find that dH(t) is
finite iff ä(t) < 0, so iff the acceleration of the Universe is negative.

1.4 hubble radius

The Hubble radius is defined as [3]

RC(t) ≡
c

H(t)
= cτH , (23)

where τH is Hubble time defined as the inverse of the Hubble rate H(t),
representing the characteristic time of expansion11.

Making explicit the expression of H, we can find the relation between RC
and dH

RC(t) =
3
2
(1 + ω)ct =

1 + 3ω

2
dH(t) , (24)

which in standard FLRW means RC(t) ∼ dH(t). However, they have a signif-
icant physical difference: if dH accounts for the causal connection over the
whole history of the Universe, RC only accounts for the connection over one
Hubble time.
Also RC has its comoving counterpart called comoving Hubble radius rH ,
defined as

rH(t) ≡
RC(t)
a(t)

=
1

ȧ(t)
, (25)

which is related to the comoving particle horizon through

dH(t)
a(t)

=
∫ t

0

cdt′

a(t′)
=
∫ a

0

cda′

a′ ȧ′
=
∫ a

0

cda′

a′
rH(t) . (26)

11 One can show that for every τH passing by, the scale factor doubles.





2
H O T B I G - B A N G M O D E L

The Hot Big-Bang model stems from a straightforward concept: by observing the
current expansion of the Universe, we can infer that, when running the cos-

mic clock backward, the Universe was once smaller and denser (i.e., hotter). This
apparently simple idea unfolds into various predictions and implications for our un-
derstanding of the cosmos.
In conjunction with Einstein’s equations, the Boltzmann equations play a pivotal
role in characterizing the evolution of such a Universe.
In the subsequent sections, we will dive into these equations, introducing fundamen-
tal concepts such as thermal equilibrium (or departure from equilibrium) of different
particle species. These concepts are instrumental in depicting the thermal history of
the Universe.
As in the preceding chapter, refer to [1–4], and the references therein for more com-
prehensive details.

2.1 thermalization

Before we discuss the characteristics of the Big-Bang model, we introduce
the key concept of thermalization. Indeed, we know that the Universe to-
day is expanding, and thus we can imagine that going back in time all the
elements present today were closer w. r. t. now. Give enough time, and we
can also think of a very hot and very dense primordial soup containing only
elementary particles. At this point, we may ask ourselves: are these particle
species in thermal equilibrium or not?

A very general (and pretty rough) rule to check whether a given species i
is decoupled from the thermal bath is to compare the interaction rate Γi and
the expansion rate H: if Γi ≫ H i-particles are coupled with the plasma,
meaning that, at a given time t, the species i interacts more frequently with
the-rest-of-the-world w. r. t. how the universe is expanding, in some sense
separating apart the actors of the interaction12, otherwise it is decoupled.

The interaction rate is strictly related to the total cross section σ through
the relation Γ = n⟨σv⟩, where n is the number density of the target particles
and v is a properly averaged relative velocity.

12 In this context the coupling implies that the i-particles can maintain, or establish, a thermo-
dynamic equilibrium with the plasma. In fact, we now that T ∝ a−1 and so

Ṫ
T

= −H ,

thus if the particles are in equilibrium, they have to be able to follow the change in tempera-
ture of the plasma through interactions.

11
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Focusing on 2 ↔ 2 scatterings of relativistic particles (v ∼1), we can
recognize two main cases:

a. for processes mediated by massless gauge boson (e. g. by the photon
γ), on can find that the cross-section goes as

σ ≃ α2

T2 (27)

where α = g2

4π is the fine structure constant for that particular theory
and g is the gauge coupling strength. Assuming to deal with relativis-
tic particles we can also write Γ ≃ T3σ, thus we can deduce that
particles whose interactions are mediated by a massless boson are de-
coupled when

Γ≪ H

T3 α2

T2 ≪
T2

MP

T ≫ α2MP .

(28)

b. For processes mediated by massive bosons (e.g W±, Z boson in weak
interaction), we can write instead

σ ≃ G2
xT2 =

α2

M4
x

T2 , (29)

where Mx is the mass of the particle involved. Repeating the same
argument as before, we find that the decoupling condition is

T ≪ G−2/3
x M−1/3

P . (30)

At the end of the day, these prescriptions give us a simple way of under-
standing what happens when Γ and H are very different from each other
(Γ≪ H or Γ≫ H), but how does i behave at decoupling?

2.2 boltzmann equations

Boltzmann equations represent a fundamental tool in studying the evolution
of the number density of a given species i, particularly in the case of the
transition from thermal equilibrium to decoupling, i. e. Γi ≃ H.

The general and compact form is as follows:

L [ f (xµ, pµ)] = C [ f (xµ, pµ)] , (31)

where:
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• L is the Liouville operator providing the evolution of the distribution
function. In fact, in General Relativity (GR), it can be written as

L ≡ d
dλ

= pα ∂

∂xα
− Γα

βγ pβ pγ ∂

∂pα
, (32)

where Γα
βγ are the Christoffel symbols associated with the metric con-

sidered.

• C is the collision operator that accounts for any scattering. For a generic
process involving a particle σ that interacts with other α = a, b, . . .
particles to produce β = 1, 2, . . . particles, it can be written as [4]

C [ fσ] =−
∫

∏
α=a,b,...

∏
β=1,2,...

dΠαdΠβ(2π)4

× δ(4) (pσ + pa + pb + . . .− p1 − p2 − . . .)

×
[
|M|σ+a+b+...→1+2+... fσ fa fb . . . (1± f1) (1± f2) . . .

− |M|21+2+...→σ+a+b+... f1 f2 . . . (1± fσ) (1± f1) (1± f2) . . .
]

,

(33)

where: dΠα ≡ gα
d3 pα

(2π)32Eα
;

gα = intrinsic degrees of freedom of the species;

Eα = energy of the species;

δ(4) → assures the conservation of momentum through the
process;

|M| = amplitudes of the processes involved;

fα = distribution functions;

(1± fα)→ accounts for the nature of the particles, either bosonic
(+) or fermionic (−).

In the fully relativistic case, f depends on the full 4-vectors xa and pa,
leading to a Liouville operator of the form

L [ f (xa, pa)] =
dxa

dλ

∂ f
∂xa +

dpa

dλ

∂ f
∂pa =

dxa

dλ

∂ f
∂xa − Γa

bc pb pc ∂ f
∂pa =

=

(
pa ∂

∂xa − Γa
bc pb pc ∂

∂pa

)
f ,

(34)

where the indexes a, b, c run from 0 to 3, λ is the affine parameter which
parametrizes the trajectory of a given particle and pa = dxa

dλ is its the 4-
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momentum such that gab pa pb = p2 = −m2 13. Moreover, in the second
equality, we used the geodesics equation

dpa

dλ
+ Γa

bc pb pc = 0 , (35)

where Γa
bc is the Christoffel symbol (or affine connection), which reads

Γa
bc =

1
2

gad
(

∂gdb
∂xc +

∂gdc

∂xb −
∂gbc

∂xd

)
14 . (36)

From now on, obviously, we will focus on the relativistic expression for L ,
implementing a FLRW metric. In this context, the dependence of the distri-
bution function f on xa and pa greatly simplifies, taking advantage of the
homogeneity and isotropy of the system. It turns out to depend only on the
time t and the modulus of the 4-momentum p, or alternatively on the whole
energy. This clearly makes the expression for the Liouville operator easier:
indeed a lot of derivatives vanish, and the surviving Christoffel symbols are
only a few:

Γ0
ij = aȧδij ; Γi

0j = Γi
j0 = δi

j
ȧ
a

. (37)

This leads to the following expression for L

L [ f (t, p)] = E
∂ f
∂t
− Γ0

ij pi pj
∂ f
∂E

= E
∂ f
∂t
− Hδij pi pja2 ∂ f

∂E

= E
∂ f
∂t
− Hp2 ∂ f

∂E

(38)

and to this temporary form of the Boltzmann equation

E
∂ f
∂t
− Hp2 ∂ f

∂E
= C [ f (t, p)] . (39)

Note that p is the proper momentum, i. e. such that it is the contraction of
the physical momentum p ∝ 1/a and E =

√
p2 + m2, while pi and pj are

the components of the comoving one.
However, we can manipulate this relation in order to recast the LHS in a

more convenient form. Multiplying both sides for the factor g
(2π)3 , dividing

for the energy E and integrating in d3p, Eq. 39 becomes

g
(2π)3

∫
d3p

∂ f
∂t
− g

(2π)3

∫
d3pH

p2

E
∂ f
∂E

=
g

(2π)3

∫ d3p
E

C [ f (t, p)] . (40)

13 If C [ f ] = 0, one obtains the Liouville theorem saying that the distribution function in phase-
space is conserved.
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This operations start to seem useful once we realize that the two terms in the
LHS recall something similar to the definition of the number density: indeed
the first piece can be immediately rewritten as

∂

∂t
g

(2π)3

∫
d3p f (t, p) = ṅ(t) , (41)

while the second one requires a little bit of work. Indeed, using E2 = m2 +
p2 ⇒ EdE = pdp⇒ dE = p

E dp it becomes

g
(2π)3

∫
d3pH

p2

E
∂ f
∂E

=
g

(2π)3 H
∫

dp
p4

E
∂ f
∂E

∫
dΩ =

=
g

(2π)3 H
∫

dpp3 ∂ f
∂p

∫
dΩ

=
g

(2π)3 H
([

p3 f
]∞

0
− 3

∫
dpp2 f

) ∫
dΩ .

(42)

The term in the square brackets is null since it vanishes in p = 0, but also
for p→ ∞ due to the properties of the distribution function (it tends to zero
quite rapidly, so that the term goes to zero before p becomes too big). This
leaves the expression

−3H
g

(2π)3

∫
dpp2 f

∫
dΩ, (43)

which is nothing else that −3Hn(t). Now the Boltzmann equations read

˙n(t) + 3Hn(t) =
g

(2π)3

∫ d3p
E

C [ f (t, p)] (44)

and we immediately realize that if C = 0, i. e. the particle do not interact
in any way, than the RHS vanishes and this equation tell us that the number
density depletes as n(t) ∝ a−3(t) only due to the expansion of the universe,
as we expect. As aforementioned, this is nothing else that the Liouville theo-
rem.

Now, let us implement the collisions and try to see how Eq. 44 changes; for
simplicity we will focus on scattering processes of the kind 1 + 2 ↔ 3 + 4,
i. e. that involve four different particle species, and suppose that we want
to control how the number density of the species 1 evolves in time15. The
previous equation now becomes

ṅ1 + 3Hn1 =
g1

(2π)3

∫ d3p1

E1
C [ f1] (45)

15 This is a particular case, but it is easily generalizable to any kind of process, including decays.
This will be done in the next section, where we will analyze how the number density of
a particle X changes taking into account its decays and scatterings with other Degree Of
Freedom (DOF)
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where the RHS’s explicit expression is

∫
dΠ1dΠ2dΠ3dΠ4(2π)4δ(p1 + p2 − p3 − p4)×

×
[
|M3+4→1+2|2 f3 f4(1± f1)(1± f2)− |M1+2→3+4|2 f1 f2(1± f3)(1± f4)

]
.

(46)

Here dΠi is the phase-space factor for the particle species i ∈ [1, 4] and the
two amplitudes M3+4→1+2 and M1+2→3+4, respectively, for processes that
create and destroy species 1 (which explains the two signs + and −), are in
principle different.

The terms of the kind 1± fi, instead, are the Bose enhancement factor (+)
and the Pauli blocking term (−); they simply describe the tendency of the
production of species i to be favored if it is a boson or to be “slowed down”
if it is a fermion. Naively, we can think of the latter effect as a consequence
of the Pauli exclusion principle: since we cannot have two fermions with
the same quantum numbers in a system, as long as they are produced, they
must gain higher and higher energies, making their production more and
more difficult. This is no more valid in the case of a boson; indeed, there is
an enhancement instead of a suppression.

The RHS of Eq. 46 is quite complicated to solve being an integral-differential
equation, so we will now make some simplifications:

• the two amplitudes squared |M3+4→1+2|2 and |M1+2→3+4|2 will be
taken as equal, i. e. we suppose time invariance;

• we suppose that all the particles are in kinetic equilibrium due to the
efficiency of the scattering processes. This allows us to use the Bose-
Einstein and Fermi-Dirac distributions.

f FD
BE

=
1

e
E−µ

T ± 1
. (47)

n is related to µ(t, #x ) through an integral and, in the case of chemical
equilibrium, µ regulates the fluxes of particles during the interactions,
being the chemical potential;

• when we assume both kinetic and chemical equilibria, it results in hav-
ing local thermodynamic equilibrium in which we can assume µi =
016;

16 Heuristically speaking, since the chemical potential represents the energy required to add
a particle i to a population of such particles, one can argue that to be in thermodynamic
equilibrium means that from a generic interaction between j, j̄ one can easily produce i
particles (e. g. if T ≫ mi, 2γ→ i+ ī will occur efficiently). For this reason even if the chemical
potentials are not null, they surely are negligible.
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• we will neglect both the Bose enhancement factor and the Pauli blocking
term supposing that E− µ > T. Indeed, in this limit, the distribution
function becomes

f ≃ e
µ
T e−

E
T = e

µ
T feq (48)

and we completely lose the dependence on the nature of the particle
(fermionic or bosonic).

At this point, Eq. 46 simplifies a lot and becomes 17

∫
dΠ1dΠ2dΠ3dΠ4(2π)4δ(p1 + p2− p3− p4)( f3 f4− f1 f2)|M|2 . (49)

Now let us focus on the term ( f3 f4 − f1 f2); exploiting the second assump-
tion and the condition of energy conservation E1 + E2 = E3 + E4, it can be
written also as

e−
E1+E2

T

(
e

µ3
T e

µ4
T − e

µ1
T e

µ2
T

)
, (50)

which is nothing else that

e−
E1+E2

T

(
n3(t)n4(t)

neq
3 (t)neq

4 (t)
− n1(t)n2(t)

neq
1 (t)neq

2 (t)

)
. (51)

This cannot be so obvious, so let us see why Eq. 50 and Eq. 51 are the same.
It follows from the definition of number density:

n(t) =
g

(2π)3

∫
d3p f = e

µ
T

g
(2π)3

∫
d3p feq = e

µ
T neq(t) , (52)

where the explicit expressions for the number density at the equilibrium are

neq(t) =

g
(mT

2π

)3/2
e−

m
T m≫ T

g
π2 T3 m≪ T

. (53)

17 In order to make a realistic theoretical prediction, one should proceed more carefully without
making such a huge amount of assumptions: all the effects must be taken into account and
the Boltzmann equations become solvable only numerically. However, for our purposes, this
is not necessary because making these approximations permits us to proceed analytically
while understanding the underlying physics.
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Finally, putting together Eq. 45, Eq. 46, Eq. 49 and Eq. 51, we find the general
form

ṅ1(t) + 3Hn1(t) =
∫

dΠ1dΠ2dΠ3dΠ4(2π)4δ(p1 + p2 − p3 − p4)×

× |M|2
(

n3(t)n4(t)
neq

3 (t)neq
4 (t)

− n1(t)n2(t)
neq

1 (t)neq
2 (t)

)
e−

E1+E2
T

(54)

which, once recognized that almost all the RHS correspond to the formal
definition of thermally averaged cross section, can be finally put in the handy
form

ṅ1(t) + 3Hn1(t) = neq
1 neq

2 ⟨σv⟩
[

n3(t)n4(t)
neq

3 (t)neq
4 (t)

− n1(t)n2(t)
neq

1 (t)neq
2 (t)

]
, (55)

with

⟨σv⟩ = 1
neq

1 neq
2

∫
dΠ1dΠ2dΠ3dΠ4(2π)4δ(p1 + p2− p3− p4)|M|2e−

E1+E2
T .

(56)

These two equations represent the evolution of the particle number den-
sity as a function of the expansion of the Universe and its temperature, which
determine the coupling of the particle studied.

With this representation, we can meticulously track the evolution of any
given particle. For instance, a particle denoted as ψ might have been in ther-
mal equilibrium with the primordial plasma during the Universe’s hot phase,
subsequently decoupled at a specific time, and continued evolving up to the
present day. Naturally, variations arise depending on the specific particle in
question and its interactions. If one were to repeat this process for each par-
ticle, it would yield a system of coupled differential equations dictating the
evolution of the particle content of the Universe.

2.3 thermal history of the universe

As the Universe undergoes expansion, the temperature of the thermal bath
decreases, initiating various phenomena. In the hot Big-Bang model, we can
trace this decline in temperature to outline the thermal history of the Uni-
verse, capturing key events along the way.

singularity : Following the contraction of the Universe back in time to
its extreme consequences, in the hot Big-Bang model everything stems
from a singularity with infinite density and temperature. This repre-
sents our starting point; however, we cannot describe it with current
knowledge. Apart from the inherent “unnatural” infinities that this sin-
gularity implies, we would need at least a theory of quantum gravity.
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This remains the case if we consider any event happening from this
point up to Planck time, i. e. the smallest unit of time we can think of,
when the Universe had a temperature of about 1019 GeV.

electro-weak phase transition : When the Universe cooled to 150
GeV, the Higgs mechanism gives mass to fermions, while the Electro-
Weak (EW) force separates into the Electro-Magnetic (EM) and the weak
ones triggering a Phase Transition (PT).

quantum chromo-dynamics phase transition : Quarks and gluons
cannot remain separated anymore on-setting the Quantum Chromo-
Dynamics (QCD) PT when the temperature drops below 150 MeV. As a
consequence, hadrons are formed. Despite what one may expect, more
matter is produced w. r. t. to antimatter. Baryogenesis, the mechanism
behind this asymmetry, is still unknown.

neutrinos decoupling : Neutrinos decouple from thermal equilibrium
while being relativistic at T = 1 MeV. As a consequence, they evolve
quite independently from the rest of the thermal bath and generate
a Cosmic Neutrinos Background (CNB), which has not been observed
yet.

big bang nucleosynthesis : Light elements (up to lithium) are formed
at Big Bang Nucleosynthesis (BBN) when T ∼ 100 keV. This represents
one of the main predictions (and successes) of the tot Big-Bang model.
In fact, there is a very good agreement between its predictions and the
measured abundance of these light elements [20].

recombination : Photons are decoupled as a consequence of the forma-
tion of neutral hydrogen. Photons start to free-stream to us, generating
the CMB (see Sec. 4.5 for more details). This is another fundamental
prediction of the hot Big-Bang model proven by observation [21–23].
At this time, the Universe has a temperature of ∼ 0.3 eV. Before this
moment, the Universe was opaque to light; thus, this represents the
last moment in time that we can directly inspect with photons.

dark ages : After recombination, the Universe is mainly populated by clouds
of hydrogen, which are essentially the only source of light. This epoch
is still relatively unexplored and represents one of the future challenges
of cosmology, exploiting the 21 cm emission line of hydrogen [24].

reionization : Structures start to form, giving birth to the first stars and
galaxies. Thus, more and more gas is reionized. This means that CMB

photons can interact again with matter. Furthermore, the presence of
matter distributions modifies the geodesics of photons, bending their
trajectories. The epoch of large-scale structures is very prolific of in-
formation on our Universe: e. g. the presence of Cold Dark Matter
(CDM) and its features, the full nonlinear regime of its evolution, all
the physics of galaxy clustering, and many other physical phenomena
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that go down from cosmological scales to the physics of our solar sys-
tem (for example, [25–28]).



3
S H O RT C O M I N G S O F H O T B I G - B A N G M O D E L

Even though in Chap. 2 we saw that the hot Big-Bang Model has successfully
described a broad range of phenomena characterizing our Universe, it is flawed

by the existence of the so-called “shortcomings”. They are not intrinsic problems of
the model, but still, they are inconsistencies in the form of strangely precise require-
ments on the initial conditions, in order to obtain what we observe today.
In this chapter, we will present these issues and we will introduce their solution by
adding an extra ingredient to our recipe of the Universe: a period of accelerated ex-
pansion in early times, “inflation”, which will be treated in more detail in Chap. 4.
The aspects we are going to treat in this chapter can be explored in more detail in
many different references, such as [1–4].

3.1 horizon problem

The first inconsistency we discuss is known as the horizon problem. To fully
understand it, let us first observe that in a FLRW Universe the comoving
Hubble radius is always growing; indeed, recalling that in FLRW

rH =
1

ȧ(t)
, (57)

it is easy to see that its time derivative

˙rH = − ä(t)
ȧ(t)2 (58)

is positive when we consider radiation, or pressureless matter, whereas be-
comes negative when considering for example the cosmological constant
(see Chap. 1). In other words, for the equation of states for the cosmic fluid
with ω > −1/3, the comoving Hubble radius always increases.

This means that sooner or later all scales λ will enter in the horizon and
the region of causal connection around the observer will become larger and
larger. This is illustrated in Fig. 2. At first sight one does not notice any prob-
lem: as time flows the Hubble radius grows and larger scales can cross it,
starting to communicate with the rest of the causal connected region. How-
ever, the problem comes from an “experimental” point of view, looking at
CMB. Indeed, we know that a crucial prediction of the hot Big-Bang model
is a left-over thermal radiation generated when radiation and matter are
decoupled (see Sec. 2.3).

The CMB radiation is found to be nearly isotropic, having the same temper-
ature in every direction in the sky and showing a nearly perfect black-body

21
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Figure 2: Comoving
Hubble radius evo-
lution in a Big-Bang
model.

distribution peaked in the microwave region. Actually, this is not completely
true; we will briefly explore the CMB anisotropies in Sec. 4.5, but for the
purpose of this section, it suffices to state that we can observe regions that
share the same statistical properties (in particular the same temperature T
up to very tiny fluctuations) without having ever been in causal connection.
In fact, they are separated by distances that are much larger than the largest
distance traveled by light in all the history of the Universe. This is a clear
inconsistency with our theoretical expectations.

In the hot Big-Bang framework, one has to assume that the initial condition
of the Universe was extremely isotropic and homogeneous to consistently
explain what we observe18. However, even doing so hides some further dif-
ficulties as one would have to deal with the fact that small anisotropies are
indeed present on the CMB. In the hot Big-Bang model, it is not trivial at all
to obtain these small anisotropies (see Sec. 4.5).

3.2 flatness problem

Another issue is related to the importance of the curvature term, which leads
to the so-called Flatness problem. The easiest way to see it is to analyze the
first Friedmann equation

H2 =
8
3

πGρ− κ

a2 . (59)

In the standard FLRW Universe, during the radiation- and matter-domination
epochs, the energy density scales, respectively, as a−4 and a−3. Now, the
probability of having κ = 0 is almost null: indeed κ could take, in principle,
whatever finite value so that the probability that it is exactly 0 is infinitesi-
mally small. We immediately realize that as long as κ ̸= 0, there will be a
moment such that the curvature term κ/a2 overcomes the other ones, since
it decreases slower than ρ with the expansion of the Universe.

18 This explanation is not satisfactory for us, firstly because is essentially a zero-measure con-
dition, which have basically zero probability to have occurred. Also, as physicists we would
like to have an actual explanation, or a mechanism, of how things ended up this way from
the most general set of initial conditions.
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Figure 3: Density
parameter behavior
in a hot Big-bang
model context.

Also, introducing the density parameter Ω(t) ≡ ρ(t)/ρc(t), where ρc(t) ≡
3H2(t)M2

P is the total energy density for a flat Universe, this contribution
given by curvature is fated to increase more and more as time goes by; Fig. 3

summarizes visually these concepts and shows that, independently of the
value of the curvature, at very early times Ω is approximately 1. Indeed,
going back with time translates into a decrease of the scale factor, which
implies that the curvature term becomes negligible so that (as happens in
κ = 0 case) the density parameter becomes 1.

As time flows, we can write [1]

Ω(t)− 1 =
κ

a2(t)H2(t)
= κr2

H(t) ≡ Ωκ(t) (60)

and, besides of the sign κ, the total parameter density Ω departs from the
initial value.

Here comes the problem: today, thanks to our cosmological observations,
we know that Ωκ = −0.012± 0.010 [29], which is very compatible with
zero; however, since we know that κ is different from zero19, how is it possi-
ble that today the energy contribution of the curvature term is so small?

A possible answer is that the initial value of Ω was so close to 1 that
even today not enough time has passed to see its effects. However, if we
want to remain in the standard hot Big-Bang model, accepting the previous
explanation would result in the so-called fine-tuning problem.

Indeed, one can show that in order to account for the nowadays obser-
vations, the difference between the density parameter and 1, at the Planck
epoch tP which corresponds to a temperature TP ≈ 1019GeV, has to be[

Ω−1(tP)− 1
]
≃
(

Ω−1
0 − 1

)( T0

TP

)2

103 ≈ 10−60. (61)

The problem is clear: if we want to explain the smallness of Ωκ today we
have to fine tune (i. e. put by hand with an high precision) the initial value

19 We can say to know this because the probability of it being exactly zero is itself null.
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of Ω to 1 up the 60
th decimal place. This seems to be quite unnatural, in

particular if we consider that such a tiny interval of acceptable initial values
substantially has a “null measure” w. r. t. the whole possible ones20.

3.3 unwanted relics

Another problem related to the hot Big-Bang model is the presence of “un-
wanted relics” [4] produced in the early Universe as a consequence of the
spontaneous symmetry breaking of some Grand Unified Theory (GUT) at
TGUT ∼ 1014÷1016 GeV. An example is domain walls, i. e. topological objects
(non-perturbative solutions), which can arise after spontaneous symmetry
breaking in a given theory. Generally speaking, these relics are massive and
very stable, since they are characterized by a small annihilation cross section;
in fact, it is this last property that makes them unwanted, because their den-
sity parameter has the form Ωx ∼ 1/σx ∼ 1014 ≫ 1. In this context, this
problem is unavoidable, becoming a very serious flaw of the theory.

3.4 inflation as a solution to these shortcomings

A solution that solves the aforementioned problems as a natural consequence
of its very characteristics is a phase of accelerated expansion in the early
times, called inflation.

3.4.1 Horizon Problem Solution

Inflation has the net effect of pushing to −∞ the initial singularity [4]. This
allows photons to be at some point in causal connection with all the others.

From the point of view of the Hubble radius, inflation caused it to de-
crease, forcing the scales to leave the horizon. Then, once this period ended
and rH started to grow again, all scales λ started to reenter the horizon.
This time, they would have been causally connected with the rest when they
were inside the horizon for the first time. Then, if we suppose that the largest
scale that we can probe experimentally today, i. e. the CMB one, was within
the horizon when inflation took place, there are no problems with causality
anymore.

At this point, one could argue: how much did the Universe have to expand
to solve the problem?

Introducing the useful quantity

N ≡
∫ t f

ti

H(t)dt = ln
( a f

ai

)
, (62)

20 We stress again that this last sentences are not properly “true”. Indeed, from a pragmatic
point of view, one could argue that the Universe had that exact initial condition and then
evolved following the Big-Bang model until now, stopping there to question himself/herself.
However, physicists do not usually like such an explanation, finding it unsatisfactory. We
then want to find some mechanism that pushes the Universe to such a conclusion, without
imposing any particular initial condition.
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Figure 4: In this
plot the expansion
of the Universe
occurring nowadays
is neglected for the
sake of simplicity.
In any way it would
only mean that
the value of Ω(t)
is getting pushed
toward 1 even more,
as happened during
inflation.

which is called number of e-folds21, and applying an exponential on both sides,
Eq. 62 reads also as

a f

ai
= eN. (63)

We can see that N immediately tell us how much bigger was the Universe
at the end of inflation w. r. t. its beginning.

One can show that solving the horizon problem results in asking for at
least N ≈ 60÷70 [1], which approximately corresponds to an expansion of
a factor 1026, from the atomic scales to the size of the solar system.

3.4.2 Flatness Problem Solution

The solution can be argued taking Eq. 60 and observing that, if we consider
inflation, making the Universe expand exponentially makes Ωκ reach a value
so small that even today it is still negligible. This means that even if at the
beginning of this epoch the value of the total parameter density was very
different from 1, as a consequence of the tremendous expansion, at the end
of this phase it was pushed incredibly close to it. This solution would explain,
then, the reason why even if the value of the curvature is different from zero,
nowadays the measurements are consistent with a flat Universe, without
imposing any initial condition. The condition rH(ti) ≥ rH(t0) that was
needed to solve the horizon problem now translates into

Ω−1(ti)− 1
Ω−1(t0)− 1

≥ 1 (64)

and one can show that it solves also this problem with a required number of
e-folds of again 60÷70 [1].

21 Here with the subscripts “i” and “f” we are referring, respectively, to the start and the end of
inflation.



26 shortcomings of hot big-bang model

Intuitively speaking this solution can be visualized if one thinks of an
inflating balloon: if it is very small, an ant onto its surface could see the cur-
vature; however, inflating the balloon to the size of the Earth, the curvature
would get severely diluted and our ant would think to live on a flat Earth.

3.4.3 Unwanted Relics Solution

Inflation naturally solves the problem of unwanted relics. In fact, an inflation-
ary scenario would lead to an expansion epoch, with a(t) ∝ eHt, strongly
suppressing the number density of these relics, being nx ∝ a−3Ht. In this
way one ends up having ≈ 1 of these objects in all the observable Universe,
without concerns of its contribution to the overall energy density [4].

3.5 the dark sector

Even though we just showed that an accelerated period at very early times
can solve the shortcomings of the hot Big-Bang model, there are of course
many remaining issues that are still open questions in modern Cosmology.

We already commented in Sec. 2.3 that, for example, the nature of the
matter-antimatter asymmetry is still unknown. However, we cannot proceed
in this Thesis without mentioning one of the biggest mysteries in our current
understanding of the Universe, its dark sector. Indeed, to obtain a compelling
picture of the cosmos, we require the existence of both some kind of CDM

and of some form of dark energy. The former actually accounts for ∼ 25%
of the total energy budget of the Universe today, whereas ordinary baryonic
matter covers just 5%. We have independent proofs of the existence of a CDM

component essentially from any period of the history of the Universe we can
inspect, from CMB all the way to the very local Universe.

Therefore, where is the missing ∼ 70% of the energy budget today? That
is actually stored in dark energy. This evanescent entity permeates the Uni-
verse, while providing a negative pressure that makes it expand, which ex-
plains our local observations. The simplest way to describe it is actually what
we showed in Eq. 11: a cosmological constant. These two dark elements are
actually what give the name to the standard model of Cosmology, i. e. the Λ
Cold Dark Matter (ΛCDM) model.
Despite this, and the best efforts of the scientific community, the nature of
both of these elements is obscure to us, and a period of accelerated expan-
sion itself provides no explanation.
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I N F L AT I O N

In Chap. 3 we introduced inflation as a solution to the shortcomings of the hot
Big-Bang model. Now, we will discuss in more detail the standard inflationary

model of the Universe. Specifically, we will consider the most simple example of a
single-field model with a real scalar inflaton. Indeed, we have seen in Chap. 1, that
in order to have accelerated expansion it is required to have

ä > 0 ⇐⇒ P < −1
3

ρ , (65)

which are attained by a simple simple scalar field under specific conditions.
Furthermore, after having developed some intuition on how primordial perturbations
can be translated into temperature perturbations, we will conclude this chapter by
taking a closer look at the CMB, introduced in Chap. 2.
Similarly to Chap. 3, the information contained in this chapter can be found in many
references, such as [1–4].

4.1 why a scalar field?

Once again, we can write the Einstein’s equations as

Rµν −
1
2

gµνR + Λgµν = 8πGTµν . (66)

Here, the cosmological constant Λ accounting for dark energy is associated
to a stress-energy tensor, which can be written as [4]

TΛ
µν ≡ (PΛ + ρΛ)uµuν + PΛgµν = PΛgµν , (67)

where we define PΛ = −ρΛ = − Λ
8πG (ωΛ = −1). From Eq. 12, it is

possible to see that in a Universe where Λ dominates, the scale factor will
be a(t) ∝ eHt, meaning that it expands exponentially. This is very similar to
what we want to achieve with our scalar field, however, since Λ is a constant,
the expansion would never end.

Thus, we can then generate an effective Λ by assuming that the Universe
has a scalar field φ in its ground state. In fact, φ would have the lagrangian
density equal to [1]

L =
1
2

gµν∂µ φ ∂ν φ−V(φ), (68)

27
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where V(φ) is the potential and to which we can associate a stress-energy
tensor [1]

Tφ
µν = ∂µ φ ∂ν φ + gµνL . (69)

In the ground state, ⟨φ⟩ is constant, meaning that it is constant both in time
and space; thus, we end up with having a stress-energy tensor, contributing
to the total energy of the vacuum state, of the form

Tµν = −V(⟨φ⟩)gµν , (70)

where we have neglected the kinetic term being in the vacuum state.
Even if this simple trick to generate such an effective vacuum energy

seems to work, as mentioned, this calculation hides a flaw: inflation must
end at some point. There must be some dynamics regulating such a process,
so the simplest acceptable system will give 22

φ( #x , t) → ⟨0|φ|0⟩ = f (t) ̸= constant . (71)

Still, the previous example with ⟨φ⟩ = constant already suggests the solu-
tion: requiring that the potential V(φ) is sufficiently constant.

In Chap. 1, we mentioned that more complex models of the Universe
abandon isotropy and homogeneity (cosmological principle). Is it possible
to achieve inflation in those scenarios? The answer is yes and actually it can
be shown that the examples we mention in Sec. 1.1 admit FLRW as an asymp-
totic state after inflation.

In a model with a real scalar field, the full action is

STOT =SHE + Sφ + Sm =

=
1

16πG

∫
d4x
√
−g
(

R +Lφ[φ, ∂µ φ] +Lfields
)

,
(72)

where SHE is the Hilbert-Einstein action, Sφ is the action of the inflaton and
Sm is the action of the “rest-of-the-world” (i. e. fermions, gauge fields, other
scalars, etc). In the following, we will neglect Sm because, in general, it is
subdominant at early times, since, by definition, the inflaton φ dominates
the energy density.

The generic Lagrangian of a real scalar field has the form shown by Eq. 68,
where the potential can have different forms depending on the model and
is usually assumed to be minimally coupled (for the sake of simplicity); for
example, a simple quadratic potential is V(φ) = 1

2 m2
φ φ2, where mφ is the

mass of the particle associated to φ.

22 Giving away simplicity one can consider a wide variety of cases, which however must respect
the underlying symmetries of the considered system. What if, for example, we consider the
case of a vector gauge field Aµ? This is not a viable choice in the standard scenario, since
taking a ⟨0| Aµ |0⟩ ̸= 0 violates rotational invariance (isotropy), resulting in observational
consequences. Other choices can be a spinor field ψ, but ⟨0|ψ |0⟩ ̸= 0 gives the same problem.
A way to solve it is to consider scalar condensates ⟨0|ψ̄ψ|0⟩, from which to build the model.
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4.2 evolution of φ

To characterize the evolution of a scalar field in an expanding Universe, we
can associate to φ its stress-energy momentum Tµν, thus reminding Eq. 4 we
can write

Tµν ≡
−2√−g

δS
δgµν =

−2√−g

[
−∂(
√−gL )

∂gµν + ∂α
∂(
√−gL )

∂∂αgµν + . . .
]

, (73)

where higher order derivatives terms can arise in case L depends on higher
derivatives of the metric. Plugging Eq. 68, one obtains

Tφ
µν =− 2

∂Lφ

∂gµν + gµνLφ

= ∂µ φ ∂ν φ + gµν

[
−1

2
gαβ φ;α φ;β −V(φ)

]
.

(74)

Then, we can express φ as the sum of the classical background value and
the field fluctuations as

φ ≡ φ( #x , t) = ⟨0| φ( #x , t) |0⟩+ δφ( #x , t)
= φ0(t) + δφ( #x , t)

(75)

This approach is useful in order to do perturbation theory, thus if

⟨δφ2( #x , t)⟩ ≪ φ2
0(t) (76)

we can perform expansions in orders of the fluctuations.
Furthermore, the fact that ⟨δφ⟩ = 0 means that Eq. 76 is in fact the vari-

ance of the fluctuation of φ.

4.2.1 Classical Dynamics

The background value φ0(t) is an homogeneous and isotropic scalar field in
FLRW, so we can associate an stress-energy tensor such as [1]

T0
0 =−

[
1
2

φ̇2
0(t) + V(φ0)

]
= −ρφ(t) ,

Ti
j =

[
1
2

φ̇2
0(t)−V(φ0)

]
δi
j = δi

jPφ(t) ,
(77)

where ρφ(t) is the energy density and Pφ(t) the isotropic pressure23. The
fact that Tµν is diagonal and the spatial part is the same in every direction
is a consequence of isotropy and homogeneity, resulting in a tensor typical
of perfect fluids.

23 In the following we will refer to background field with φ and fluctuations with δφ, without
writing every time φ0.
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Recalling that for inflation, a negative isotropic pressure is required Pφ <

0, we can see that taking V(φ) ≫ 1
2 φ̇2 brings to Pφ ≈ −V(φ) ≈ −ρφ,

which gives rise to a quasi-de Sitter phase.
This can be achieved simply by considering a sufficiently flat potential.

Suppose that initially we have the unsuitable condition (for inflation) 1
2 φ̇2 ≫

V(φ); therefore, from Eq. 77 ωφ =
Pφ

ρφ
= 1 and knowing the scaling of the

energy density with the scale factor, we obtain ρφ ∼ ρKIN ∝ a−3(1+ωφ) =

a−6. Due to this strong dependency and a sufficiently flat potential configu-
ration, the latter will come to dominate, washing completely away the kinetic
energy. This is called the slow roll regime, during which inflation is realized:
the constant V(φ) provides an accelerated expansion driven by the vacuum
energy density of φ, which mimics an effective Λ.

Most importantly, this solution is an attractor because, whatever are the
initial conditions of kinetic energy and potential, at some point this regime
will make the potential to act as a cosmological constant, allowing also some
dynamics to it, enabling to exit inflation. This attractive behavior is crucial
to avoid fine-tuning issues and other artifacts.

4.2.2 Equation of Motion

The Equation Of Motion (EOM) for the scalar field φ comes from the varia-
tional principle24 [2]

δS
δφ

= 0→ □φ =
∂V
∂φ

, (78)

where the D’Alambertian operator □ in a curved spacetime gives

φ;µ
;µ =

1√−g
(gµν

√
−g φ;µ);ν . (79)

In a spatially flat (κ = 0) FLRW spacetime
√−g = a3(t), therefore

□φ = −φ̈− 3H φ̇ +
∇2φ

a2 . (80)

The resulting equation is the Klein-Gordon (K-G) equation for a quantum
scalar field in FLRW 25

φ̈ + 3H φ̇− ∇
2φ

a2 = −∂V
∂φ

. (81)

24 The plus sign in front of the derivative of the potential come from the metric signature
(−,+,+,+).

25 Having considered κ ̸= 0 would have only changed the explicit expression of ∇2, but the
equation would have appeared in the same form.
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Through 3H φ̇, the field “feels” a friction due to the expansion of the Uni-
verse, which will play a crucial role in the following paragraphs.

Focusing on the background field φ0(t) ≡ φ(t) as in Eq. 75, we can study
the background dynamicsφ̈ + 3H φ̇ = − ∂V

∂φ

H2 = 8πG
3

(
1
2 φ̇2 + V(φ)

)
= 8πG

3 ρφ

26. (82)

Let us now introduce two conditions required to realize inflation for a suffi-
ciently long amount of time while solving the Big-Bang shortcomings.

We have already presented the first slow-roll condition

V(φ)≫ φ̇2 , (84)

which brings the potential to dominate over the kinetic energy during infla-
tion. This is realized if the potential is sufficiently flat w. r. t. φ. Furthermore,
we expect that its derivatives w. r. t. φ also depend weakly on φ27.

Then, we can introduce a second slow-roll condition

φ̈≪ 3H φ̇ , (85)

which brings to

φ̇ ∼ − V′

3H
. (86)

This means that Eq. 82 are expressed as functions of a(t) and φ(t) once the
model, i. e. the potential V(φ), is specified.

4.2.3 Slow-roll Parameters

Now, we need a way to quantify the dynamics of the slow-roll regime in or-
der to give predictions of specific models and compare it with observations.
In particular, we will use the so-called slow-roll parameters ε and η.

Firstly, from an intuitive point of view, one can check how much H changes
during inflation in order to define ε. In fact, in the cosmological constant case

26 In full generality we would have to account also for other contributions to the Hubble rate
as

H2 =
8πG

3
(
ρφ + ρr + ρm

)
− k

a2 , (83)

however ρm ∝ a−3, ρr ∝ a−4, ρk ∝ a−2 and ρφ ≃ V(φ) ≃ constant, so the latter will come
to dominate resulting in a ≃ eHt. This strong dependence of the other energy densities will
wash them away very proficiently, so we can safely neglect them.

27 Here, we will indicate the derivative w. r. t. φ as ′ ≡ ∂
∂φ . Be aware of the ambiguity with the

derivative in conformal time, which, however, can be easily solved by looking at the context.
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H is a constant, so we can expect that adding some dynamics to the system
would make H change. Thus, we define [1]

ε ≡ − Ḣ
H2 . (87)

Using the Friedmann equations and the attractor solution, one can show that
the first slow-roll parameter can be expressed as

ε ≃ 3
2

φ̇2

V(φ)
≃ 1

16πG

(
V′

V

)2

. (88)

Therefore, we can interpret ε as the ratio between the kinetic energy and the
potential. Hence, assuming V(φ)≫ φ̇2, one obtains

ε≪ 1 . (89)

Furthermore, if ε ≪ 1, V′ is small and the potential is flat. In this sense ε
quantifies the flatness of the potential.

Exploiting now the second slow-roll condition φ̈ ≪ 3H φ̇, we can define
the second slow-roll parameter as [1]

η ≡ − φ̈

H φ̇
≪ 1 . (90)

Again, one can show that

η ≃ V′′

3H2 −
Ḣ
H2

V′

3H φ̇
≃ ηV − ε , (91)

where V′
3H φ̇ ≃ −1 and ηV ≡ V′′

3H2 ≃ 1
8πG

V′′
V since during slow-roll H2 is

dominated by the potential. Thus, again having ηV ≪ 1, means having a
flat potential 28.

Indeed, ε alone can be sufficient to realize inflation when ε < 1, however,
having also ηV ≪ 1 will ensure that inflation lasts long enough.

ε and ηV are merely the first two parameters of a whole hierarchy of
higher-order ones, but in the simplest case of inflation, one considers only
these two. Also, at first order, they can be considered as constants.

It is also interesting to note that in the simple case of a single-field scalar
inflation ε is always positive, given that Ḣ < 0.

28 Note that there is an ambiguity between the symbol used for conformal time and the slow-
roll parameter, i. e. η. From now on, we will refer to the second slow-roll parameter as ηV
just introduced. In fact, this quantity is directly related to the potential of the inflaton. This
will break the degeneracy between these two quantities.
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4.3 quantum fluctuations of the inflaton field

How is it possible to generate cosmological perturbations δρ
ρ on large cosmo-

logical scales, λ≫ H−1, from the fluctuations δφ of the inflaton field?
Let us start from the EOM for the inflaton

φ̈ + 3H φ̇− ∇
2φ

a2 = −∂V
∂φ

. (92)

Looking for the background evolution one obtains Eq. 75; however including
the perturbations and focusing on the linear level, one obtains the following
relations [2] ¨δφ + 3H ˙δφ− ∇

2δφ
a2 = −V′′δφ

(φ̇0)
·· + 3H(φ̇0)

· = −V′′ φ̇0

. (93)

Indeed on large-scales where λphys ≫ H−1 ⇐⇒ k ≪ aH, φ̇0 and δφ
evolve following the same identical equation. Looking at the Wronskian, one
can in fact notice that they are related; specifically [1]

δφ( #x , t) = −δt( #x )φ̇0(t) . (94)

In other words, the perturbation can be thought as a slight time shift of the
evolution of φ0. Quantitatively, the scalar field is related to its background
evolution as [1]

φ( #x , t) = φ0(t− δt( #x )) . (95)

Thus, on large scales φ will assume the same value φ0 everywhere, mak-
ing every point in the Universe experience the same history, but at slightly
different times.

4.3.1 Approximated Solutions

Eq. 93 can be solved easily in Fourier space, where

δφ( #x , t) =
1

(2π)3

∫
d3kei

#

k · #x δφ(k, t) , (96)

with δφ(k, t) = δφ∗(k, t), since δφ( #x , t) is real29, and where different
modes as δφ(k, t) and δφ(k′, t) evolve independently (only at linear level).

29 We use 3d Fourier transform because it is not invariant under time translation, and we use
plane waves to transform because spatially flat FLRW is assumed, for κ ̸= 0 we have to use
solutions of Helmholtz equation: ∇2Qk + k2Qk = 0.
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The EOM reads, for a given Fourier component,

δφ̈k + 3H ˙δφk +
k2δφk

a2 = −V′′δφk . (97)

We must now quantize the field, considering a field rescaled as δφ ≡ δφ̂
a(t) ,

hence [2]

δφ̂(η, #x ) =
1

(2π)3

∫
d3k

[
uk(η)âke−i

#

k · #x + u∗k(η)â†
kei

#

k · #x
]

, (98)

where â, â† are the annihilation and creation operators, ak |0⟩ = 0 ∀ k and η
is the conformal time. Here |0⟩ is the free vacuum state, because linearizing
we are not considering any interaction, except for the quadratic term that
gives mass to the field.

The normalization condition for uk(η) is 30 u∗k(η)u
′
k(η)− uk(η)u∗

′
k (η) =

−i, which ensures the canonical quantization conditions for â, â† operators
[2]:

[âk, âk′ ] = 0 ;
[

âk, â†
k′

]
= ℏ δ3(k− k

′
) . (99)

In a flat spacetime

uk(η) =
e−iωkη

√
2ωk

with ωk =
√

k2 + m2 , (100)

but in a curved spacetime uk is not necessarily a plane wave; there is indeed
an ambiguity in the definition of the vacuum state. At early times and small
scales k ≫ aH, we have ωk ∼ k and we require to be able to reproduce a
flat space-time metric, due to the equivalence principle; thus we can assume

uk(η) ≈
e−ikη

√
2k

. (101)

These requirements are called the Bunch-Davis vacuum choice. Let us obtain
the K-G equation in Fourier space starting by Eq. 92. Passing to conformal
time, it is recast to

φ′′ + 2
a′

a
φ′ −∇2φ = −a2 ∂V

∂φ
, (102)

thus looking at the perturbation one obtains

δφ′′ + 2
a′

a
δφ′ −∇2δφ = −a2 ∂2V

∂φ2 δφ . (103)

30 Here we use ′ = ∂
∂η .
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Figure 5: Summary
representation of
the relation between
the comoving Hub-
ble radius and a
generic comoving
scale λ. During
the accelerated
expansion the
comoving Hubble
horizon decreases
in time, while it
grows during the ra-
diation and matter
dominated epochs,
making the scale λ
exit and re-enter the
horizon [30].

Applying then δφ = δφ̂
a(η) , we get

δφ̂′′ − a′′

a
δφ̂−∇2δφ̂ = −a2 ∂2V

∂φ2 δφ̂ . (104)

At this point, going to Fourier space and using |δφ̂k| = |uk|, we can finally
write [2]

u
′′
k(η) +

[
k2 − a

′′

a
+

∂2V
∂φ2 a2

]
uk(η) = 0 . (105)

This equation describes an harmonic oscillator with a frequency changing in
time, due to the expansion of the Universe.

Considering a massless scalar field, m2
φ = V′′(φ) = 0 in pure de Sitter

(H = constant), the equation is

u
′′
k(η) +

[
k2 − a

′′

a

]
uk(η) = 0 . (106)

Before studying more in depth the solutions to this equation, let us firstly
clarify the role of conformal time. We know that it is related to cosmic time
through adη = dt, so in this case we can write

dη ∝
dt
eHt −→ η ∝ − 1

H
e−Ht = − 1

aH
< 0 , (107)

hence during inflation η belongs to ]−∞ , 0[. So, we can relate this to

a′′

a
=

2
η2 = 2a2H2 =

2
r2

H
. (108)

Let us now solve the EOM of uk in two different regimes:
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sub-horizon : we have λphys ≪ H−1 ←→ k ≫ aH → a′′
a , thus the EOM

reduces to

u
′′
k + k2uk = 0 −→ uk(η) =

1√
2k

e−ikη , (109)

whereas an oscillating solution. For what regard the field

δφk =
uk
a

=
1
a

1√
2k

e−ikη , (110)

from which we can observe that it has a decreasing amplitude |δφ| =
1

a
√

2k
, which depends on the inverse of a, so during inflation it de-

creases extremely fast.

super-horizon : we have λphys ≫ H−1 ←→ k ≪ aH → a′′
a , thus the

EOM reduces to

u
′′
k −

a
′′

a
uk = 0 . (111)

This kind of equations are solved by [2]

uk(η) = B(k)a(η) + A(k)a−2(η) , (112)

where A, B are integration constants in η which depend on k. In terms
of field we get

δφk = B(k) + A(k)a−3(η) ≃ B(k) = constant , (113)

where we have neglected the decaying term that is washed away by
inflation. Such a frozen solution makes sense intuitively if one argues
that microphysics cannot play any role in such large-scale phenomena.

We can find the amplitude in this regime making a matching between
the two regimes at horizon crossing, since from that moment on it will
become constant. At horizon crossing k = aH, thus

u
sup

k = |B(k)|a =
1√
2k

∣∣
k=aH = u

sub

k , (114)

therefore

|δφk| = |B(k)| =
1

a
√

2k

∣∣
k=aH =

H√
2k3

. (115)

In general averaging on sub-horizon scales one gets ⟨δφ⟩t = 0 if t is a macro-
scopic time interval. However, we are considering an expanding background
in which λphys ∝ a ∝ eHt. This means that the fluctuations do not remain
in the vacuum state, but the fluctuations become frozen and ⟨δφ⟩ ̸= 0. In
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other words, we are generating classical perturbations of φ, so in some sense
we have realized a state characterized by a net number of particles.

Finally, one can show that the exact solution of massless scalar field in
pure de-Sitter is [3]

uk(η) =
eikη

√
2k

(
1− i

kη

)
∀ k and ∀η , (116)

which gives the aforementioned solutions in the two asymptots.

4.3.2 Exact Solutions in Quasi de-Sitter Spacetime

Let us now consider a massless scalar field in quasi de-Sitter, reminding that
the slow-roll parameter is ε ≡ − Ḣ

H2 ≪ 1. By definition of conformal time,
as we have done before, we can write [2]

η ≃ − 1
aH(1− ε)

,
a
′′

a
=

2
η2

[
1 +

3
2

ε

]
, (117)

at lowest order in ε. The EOM can be rewritten in terms of the slow-roll
parameter as

u
′′
k(η) +

[
k2 −

ν2 − 1
4

η2

]
uk(η) = 0, (118)

where ν = 9
4 + 3ε. In this form, it is equivalent to the Bessel equation [31]

z2y
′′
(z) + zy

′
(z) + (z2 − ν2)y(z) = 0 , (119)

whose solutions are known to be of the form [2]

uk(η) =
√
−η
[
c1(k)H(1)

ν (−kη) + c2(k)H(2)
ν (−kη)

]
31, (120)

• On sub-horizon scales we require uk(η) ∼ e−ikη
√

2k
for
(

k
aH

)
→ ∞, so

introducing x = −kη and given that

H(1)
ν (x) ≃

√
2

πx
ei(x−π

2 ν−π
4 ) x≫1−−→ eix

√
x

√
2
π

, (121)

31 H(i)
ν (−kη) are the Hankel functions of ith species and order ν [31]. Also, it holds H(2)

ν (−kη) =

H(1)∗
ν (−kη). Instead, the ci are integration constants.
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we must impose c2(k) = 0 and c1(k) =
√

π
2 exp

{
i
(

ν + 1
2

)
π
2

}
, result-

ing in [2]

uk(η) =
√
−η

√
π

2
exp

{
i
(

ν +
1
2

)
π

2

}
e−ikη√
−kη

. (122)

• On super-horizon scales (k≪ aH), we have instead

H(1)
ν (x) ≃

√
2
π

e−
π
2 2ν− 3

2

(
Γ(ν)
Γ(3

2)

)
x−ν x≪1−−→ x−ν 32, (123)

where ν2 = 9
4 + 3ε→ ν ≃ 3

2 + ε, therefore ν− 3
2 = ε. Thus [2]

uk(η) ≃
1√
2k

ei(ν− 1
2 )

π
2 2ν− 3

2

(
Γ(ν)
Γ(3

2)

)
(−kη)

1
2−ν . (125)

The solution for the perturbation is, using 1
a ∝ −η at lowest order in

the slow roll parameters

|δφk| =
|uk|

a
= 2ν− 3

2

(
Γ(ν)
Γ(3

2)

)
H√
2k3

(
k

aH

) 3
2−ν

, (126)

which can be approximated by

|δφk| ≃
H√
2k3

(
k

aH

) 3
2−ν

, (127)

where one can notice that the de-Sitter solution is recovered with ε =
0 ⇐⇒ ν = 3

2 .

Being quasi de-Sitter switches on a scale dependency on k−ε, which is
a unique prediction of inflationary models

The form of this solution is maintained even if we consider more general
frameworks. In particular in the most general case, one considers a mas-
sive inflaton and substitutes to the perturbations δφ the so-called Sasaki-
Mukhanov variable [1]

Qφ ≡ δφ +
φ̇

H
ϕ̂ , (128)

32 Here, Γ(x) is the Euler-Gamma function [31], defined as

Γ(z) ≡
∫ ∞

0
xz−1e−x dx for Re (z) > 0 . (124)
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where ϕ̂ is related to the scalar perturbations of the spatial part of the metric
δgij ,

gij = a2(η)
[
(1− 2ϕ)δij + χij

]
. (129)

One can show that even in this case the following holds [2]

Q̂′′φ(η) +

[
k2 −

ν2 − 1
4

η2

]
Q̂φ(η) = 0 , (130)

with ν2 = 9
4 + 9ε− 3ηV , thus at first order 3

2 − ν ≃ ηV − 3ε. The amplitude
will be

|Qφ| ≃
H√
2k3

(
k

aH

) 3
2−ν

, (131)

which is the most general solution we can consider.

4.3.3 Correlation Functions and Power Spectrum

Quantum fluctuations are not deterministic, but can be characterized by the
statistics of the quantum random field δφ( #x , t) that describes the amplitude
of these fluctuations at each point of spacetime (i. e. the variance of φ). These
fluctuations are correlated at different points; hence, even if the ensemble
average is zero by definition (it is, in fact, the vacuum expectation value),
one can compute the two-point correlation function

ξ ≡ ⟨δ( #x + #r , t) δ( #x , t)⟩ , (132)

which in a homogeneous and isotropic Universe is a function of | #r | 33. If we
take the two-point correlation function of the Fourier transform of a generic
stochastic field

δ( #x , t) =
1

(2π)3

∫
d3kei

#

k · #x δk(t) , (133)

the result is

⟨δ( #

k , t) δ(
#

k ′, t)⟩ = (2π)3P(k)δ3(
#

k +
#

k ′) 34 , (134)

where P is the power spectrum, that depends only on the modulus of
#

k due
to isotropy, while homogeneity causes the presence of the delta function.

33 It is very similar to a propagator, but it regards only the spatial part.
34 An equivalent definition of power spectrum is

⟨δ( #

k , t) δ∗(
#

k ′ , t)⟩ = (2π)3P(| #k |)δ3(
#

k − #

k ′) (135)

since δ( #x , t) is real we have δ∗(
#

k , t) = δ(− #

k , t).
In addition, the notation in Fourier space reads δ(

#

k , t) = δ#

k (t).
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Furthermore, the power spectrum P is the Fourier transform of ξ, namely
using Eq. 134

ξ( #r ) =
1

(2π)3

∫
d3k′ei

#

k ′ #r P(k1) . (136)

The variance results

⟨δ2( #x , t)⟩ = ξ(0) =
1

2π2

∫ ∞

0

dk
k

k3P(k) =
∫ ∞

0

dk
k

∆(k) , (137)

where we defined the adimensional power spectrum as ∆(k) ≡ k3

2π2 P(k), which
is the contribution to the variance per logarithmic integral. It is used mostly
in Cosmology, more than P(k), for inflationary physics35.

For inflaton field quantum fluctuations |δφk| = |uk|
a [2],

⟨δφ #

k 1
, δφ∗#

k 2
⟩ = (2π)3|δφ #

k 1
|2δ3(

#

k 1 −
#

k 2) , (138)

therefore [1]

P(k) = |δφk|2 =
|uk|2

a2 → ∆(k) =
k3

2π2
|uk|2

a2 . (139)

On super horizon scales, δφk =
H√
2k3

(
k

aH

) 3
2−ν

Pφ(k) =
H2

2k3

(
k

aH

)3−2ν

∆φ(k) =
(

H
2π

)2( k
aH

)3−2ν

, (140)

where in the most general case 3− 2ν = 2ηV − 6ε [4]. We can then define
the spectral index n(k) as [1]

n(k)− 1 ≡ d ln ∆(k)
d ln k

, (141)

which describes the shape of the power spectrum.

1. n = 1↔ Harrison-Zel’dovich (H-Z) spectrum: it means that the ampli-
tude of δφ does not depend on the cosmological scale.

2. n = constant↔ ∆(k) can be written w. r. t. a “pivot scale” k0 as

∆(k) = ∆(k0)

(
k
k0

)n−1

. (142)

35 Note that here we are reporting the historical nomenclature of these quantities, but often
in Cosmology the adimensional power spectrum is indicated with Pi(k) where i = s, t to
indicate the spectrum of scalar or tensor perturbation, respectively. Indeed, a general rule of
thumb is to assume that one always refers to the adimensional version of the spectrum. Even
in this work, we will shift to this nomenclature in the following chapters, for example, in
Chap. 5.
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n and ∆(k0) are indeed the two main observables one can constrain observ-
ing the CMB.

4.3.4 Super-horizon Perturbations

Firstly, let us introduce a couple of definitions. ζ is called curvature perturba-
tion on uniform energy density hypersurfaces:

i) ζ is a gauge invariant quantity defined as36 [1]

ζ ≡ −ϕ̂− H
δρ

ρ̇
, (143)

where δρ is the scalar perturbation of the energy density.

In the ϕ̂ = 0 gauge, therefore, we have

ζ = −H
δρ

ρ̇
. (144)

ii) This is a very general definition, since in the case of inflation the den-
sity is the density of the scalar field, but it also applies during all the
evolution of the Universe:

ζ →
δρφ

ρ̇φ
,

δρm

ρ̇m
,

δργ

ρ̇γ
,

δρΛ

ρ̇Λ
. (145)

iii) On super horizon scales it is constant in time (adiabaticity in single-
field models of inflation)

ζ

∣∣∣∣
t(1)H (k)

= ζ

∣∣∣∣
t(2)H (k)

. (146)

These properties give us the ability to compare the amplitude of primor-
dial inflaton perturbations with known quantities, such as CMB temperature
fluctuations.

Let us now suppose to look at two different scales λ, λ′, where the latter
re-enters during matter-dominated epoch and the former during radiation

domination. Let us then call t(1)H (k) the time at which λ crosses out the

horizon and t(2)H (k) the time in which it re-enters. The same applies to λ′ →
k′. Thanks to Eq. 146, we can compare density perturbation at the time of
inflation with respect to radiation epoch

36 ϕ̂ is related to the spatial perturbations of the metric δgµν.
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Figure 6:
Comparison be-
tween different
epochs using ζ
conservation

ζ

∣∣∣∣
t(1)H (k)

= ζ

∣∣∣∣
t(2)H (k)

−H
δφ

φ̇

∣∣∣∣
t(1)H (k)

=
1
4

δργ

ργ

∣∣∣∣
t(2)H (k)

,
(147)

since during radiation domination the density is given by ρ = ργ ∝ T4 →
δρ
ρ̇ = 4 δT

T and ρ̇γ ≃ −4Hργ. In other words, there is a direct link between
temperature fluctuation and primordial inflaton fluctuations

ζφ ≃
δT
T
≃ 10−5. (148)

This seemingly naive argument actually solves one of the issues of the hot
Big-Bang model: even though we mentioned in Chap. 3 that this model pre-
dicts the existence of CMB, it is very difficult to equip it with tiny anisotropies
that we observe today. Instead, inflation naturally explains them as a direct
consequence of the quantum fluctuations of the field that drive it, which got
enhanced to microscopical scales and left their imprint on the temperature
of CMB photons.

4.4 primordial density perturbation

We have just seen that the adimensional power spectrum for primordial en-
ergy perturbations is related to the inflaton power spectrum (see Eq. 147),
thus

∆ δρ
ρ
(k) =

H2

φ̇2 ∆δφ(k)
∣∣
t(1)H (k)

=

(
H2

2πφ̇

)2( k
aH

)3−2ν

=

=

(
H2

2πφ̇

)2
∣∣∣∣∣
t(1)H (k)

.
(149)
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Figure 7: Spectral
index classification.
In a more general
context, the dis-
tinction between
blue/red-tilted
and scale-invariant
spectra is made
w. r. t. 0, where,
respectively n > 0,
n < 0 and n = 0.
In this case, we use
1 as the watershed
because we refer
to the particular
notation used for
the spectrum in
Eq. 149.

We can now compute the scalar spectral index of primordial density per-
turbations, which is one of the most important prediction of inflationary
models, defined as [1]

ns − 1 ≡
d ln ∆ δρ

ρ
(k)

d ln k
= 3− 2ν = 2ηV − 6ε . (150)

Inflationary models predict a power spectrum of density perturbations to
have a spectral index which deviates from one by O(ε, ηV). Indeed, we
have found a power spectrum very different from H-Z. At 68% Confidence
Level (CL) we have [29]

ns = 0.9681± 0.0039 . (151)

Indeed, the measured value is incompatible with ns = 1 at ∼ 8σ, which is
a very robust statement.

To conclude, a classification of power spectra is given in terms of its spec-
tral index (see Fig. 7). This will be useful in Chap. 5 and Chap. 13.

4.5 more details on the cosmic microwave background

Now that we have gained some intuition on how the primordial fluctuations
of the inflaton can be translated into temperature fluctuations, we can go
into some more details about the CMB, introduced back in Chap. 2.

The CMB represents literally the most ancient point in time that we are able
to explore via EM radiation, coming from the moment when the Universe
was only 380 thousands of years old.

Before then, photons and electrons scattered efficiently and, thus, were in
thermal equilibrium (see Chap. 2). This fact ensures that photons coming
from that epoch should have a black-body spectrum. Indeed, this is true
and has been the subject of many observations over the years. For exam-
ple, COsmic Background Explorer (COBE) [32, 33] showed that the CMB is
actually the most perfect blackbody we know (see Fig. 8). As mentioned in
Chap. 2, the phenomenon that triggers the free-streaming behavior of pho-
tons is called “recombination” [3, 4].



44 inflation

Figure 8: Monopole
spectrum of CMB.
The error bars of
data are so small
that it is impossible
to distinguish them
from the underly-
ing theoretical pre-
diction for a black-
body spectrum. Fig-
ure extracted from
[22].

As the Universe expanded, the temperature of the plasma kept dropping,
thus one can expect that, once it reached energies of the order of the atomic
bounds (13.6 eV for the hydrogen), electrons and protons would start to com-
bine in the more energetic-convenient hydrogen. Indeed, this is broadly what
happened at recombination, with the caveat of the energy scale: it is neces-
sary to wait until the plasma reached ≈ 1 eV to have the actual recombi-
nation, since the photons in the tails of the Gaussian distribution were still
energetic enough to ionize hydrogen at higher energies [3].

However, the outcome is the same: after a transient, the Universe became
full of neutral hydrogen atoms. From then on, photons traveled almost undis-
turbed to us.

In spite of this, CMB is far more interesting than a completely smooth pic-
ture of the Universe, since it is characterized by small anisotropies. Indeed,
every phenomenon that interacts with photons traveling to us leaves some
relic on their distribution.

4.5.1 CMB Anisotropies

In Chap. 2, we have mentioned that a way to describe CMB photons is follow-
ing a Boltzmann approach to track their distribution throughout the history
of the Universe. In Chap. 6, we show the detailed computation of the Boltz-
mann equations for GWs, so here we only show some passages. These two
species share a very similar computation, especially in a collision-less sce-
nario.
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Considering only scalar perturbations of the metric, one can write [3]

∂ f
∂t

+
p̂i

a
∂ f
∂xi − p

∂ f
∂p

[
H +

∂Ψ
∂t

+
p̂i

a
∂Φ
∂xi

]
= 0 . (152)

The first two terms accounts for free-streaming, leading to the continuity and
Euler equations [3]. The third one tells us that photons lose energy while the
Universe keeps expanding, whereas the last two keep track of the effects
caused by the scalar perturbations of the metric.

In the case of photons, we know that the distribution function takes the
form of a Bose-Einstein distribution, perturbed by the presence of inhomo-
geneities [3]:

f ( #x , p, p̂, t) ≡
[

exp
{

p
T(t)(1 + Θ( #x , p̂, t))

}
− 1
]−1

, (153)

which can be written as [3]

f = f̄ − p
∂ f̄
∂p

Θ

≃ 1
ep/T − 1

+

[
∂

∂T

(
1

ep/T − 1

)]
TΘ .

(154)

Here, the factor −p ∂ f̄
∂p Θ represents a parametrization of the first order per-

turbation of the distribution function f , which allows to simplify the Boltz-
mann equation [3]. Note that here Θ = Θ( #x , p̂, t) does not depend on p.
This is a consequence of the photons being thermalized before recombina-
tion.

We have just sketched the beginning of the CMB photon treatment via
the Boltzmann approach (for more details, see [3]). For the purpose of this
section, it is sufficient to know that from this simple description one can con-
sider a number of different interactions between photons and other particle
species, which would appear in the RHS of Eq. 154, would affect the distribu-
tion function in many different ways and would lead to a complex solution
of Θ( #x , p̂, t).

At the end of the day, assuming that one properly recovers such a solution,
it is convenient to decompose it in Spherical Harmonics (SHs), given that we
want to describe a quantity in the celestial sphere.

The decomposition amounts of doing

Θ(n̂) = ∑
ℓ

ℓ

∑
m=−ℓ

ΘℓmYℓm(n̂) inverted by Θℓm =
∫

d2nΘ(n̂)Y∗ℓm(n̂) ,

(155)

where: Yℓm(θ, φ) = are the SHs;

Θℓm = coefficients of the SH decomposition.
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For completion, we remind the reader a few definitions behind SH: firstly

Ym
ℓ (θ, φ) ≡

√
(2ℓ+ 1)

4π

(ℓ−m)!
(ℓ+ m)!

Pm
ℓ (cos θ) eimφ , (156)

where Pm
ℓ (cos θ) are the associate Legendre polynomials defined as a func-

tion of the Legendre polynomials as

Pm
ℓ (x) ≡ (−1)m(1− x2)m/2 dm

dxm (Pℓ(x)) , (157)

with the Rodriguez’s formula expression of the Legendre polynomials yield-
ing

Pn(x) ≡ 1
2nn!

dn

dxn (x2 − 1)n . (158)

Now, in the standard case of Gaussian fluctuations in a statistically isotropic
Universe, the aℓm coefficients encode completely the statistical properties of
Θ.

At this point, one can define the angular power spectrum Cℓ as[3]

⟨aℓma∗ℓ′m′⟩ = δℓℓ′δmm′Cℓ . (159)

This is one of the main quantities that we want to measure today when an-
alyzing CMB data. Indeed, it encodes all the processes that affected photons
from Last Scattering Surface (LSS) to us today.

4.5.2 Some Examples of Anisotropies

Without entering into the details, which are beyond the goals of this Thesis,
let us mention from a phenomenological and observational point of view
what these anisotropies can look like.

• As mentioned above, before decoupling, photons and electrons were
able to interact efficiently through Compton/Thompson scattering. This
would also generate a competing pressure, provided by photons, to the
gravitational attraction of matter.

In other words, the gravitational infall compresses the fluid until the
resistance of photon pressure reverses the motion [34], in such a way
that acoustic waves were generated. These left visible relics on the CMB

spectrum, named Barionic Acoustic Oscillations (BAOs) [35, 36].

• Studying in detail the CMB Boltzmann equations in the presence of
scalar perturbations Φ, one can find that as the photons climb out of
the potential wells at LSS (so after decoupling), gravity redshifts the
temperature from δT

T to δT
T + Φ. Therefore, the effective perturbation

at LSS will thus result in a similar result to [ δT
T +Φ](ηcmb). The particu-
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lar combination of intrinsic temperature fluctuations and gravitational
redshift is called the ordinary Sachs-Wolfe (SW) effect [34, 37].

In fact, intuitively speaking, Φ represents a perturbation of the gravi-
tational potential in the form of potential wells. These potential wells
“attract” mainly matter, which tends to gather in them; however, the
highly efficient coupling between matter and photons makes the latter
in the same way “fall” in these wells. Subsequently, when the decou-
pling happens, photons start to free-stream and their frequency acquire
a redshift equal to Φ while climbing back the potential well towards
us [34].

Effects as the SW effect are called “primary” anisotropies, since they hap-
pened at the LSS, whereas subsequent effects are called “secondary” anisotropies
and affect CMB photons along their journey to us 37.

Let us now cite some examples of secondary anisotropies:

• if the gravitational potentials vary with time, the photon will experi-
ence differential redshifts due to the gradient of Φ, which no longer
yield equal and opposite contributions as the photons enter and exit
the potential well, and time dilation effect relate to Ψ [34]. The sum
of these contributions along the line of sight is called the Integrated
Sachs-Wolfe (ISW) effect. Usually, this effect is divided in a early-ISW

effect and a late-ISW, accounting for the Λ-dominated epoch [34, 37].
Another similar effect is the Rees-Sciama (RS) one, where higher or-
der corrections to the density evolution cause time dependence in the
gravitational potentials from the Poisson equation [38].

• After the reionization of the Universe, the radiation scattering onto free
charges gets polarized and deviated, tending to erase small-scale peaks
in the spectrum [39].

• Gravitational lensing causes the geodetics of CMB photons to change
based on the spacetime distortions induced by massive objects [40].

All these anisotropies, along with many others we are not mentioning, carry
information on a number of cosmological parameters and physical phenom-
ena, allowing us to draw a comprehensive picture of the Universe.

4.5.3 CMB Polarization

Given the relevance for this Thesis, we spend some words on CMB polariza-
tion.

37 The more careful reader should have noticed that the over-densities are indeed 3D inhomo-
geneities and not anisotropies, thus an explanation is due. The LSS is a 2D surface of radius
ηCMB, corresponding to the length covered by light from the moment of recombination to
now, where we observe the effects of the inhomogeneities. Thus, the fact that the 3D inhomo-
geneities are projected on a 2D surface causes the fact that we see them as anisotropies on
the CMB, meaning that changing the direction in the full-sky, we observe a slightly different
temperature of the radiation.
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Indeed, CMB photons are expected to be polarized by Compton scattering.
There are two moments in time when this could leave measurable imprints
on the CMB: recombination and reionization.

Without entering into detail, it can be shown that the fundamental re-
quirement for polarization to be produced is the presence of a quadrupole
perturbation of the photon distribution impeding on ionized electrons.

In the 2D plane perpendicular to propagation, the intensity can be decom-
posed into

Iij =

(
T + Q U
U T −Q

)
, (160)

where T, Q, U are three of the 4 Stokes parameters. The fourth, that is, V
is expected to be null in the standard cosmological picture [3].

Q and U can be further rearranged and decomposed into SHs, similarly to
intensity:

(Q± iU)(n̂) = ∑
ℓm
±2aℓm(n̂)±2Yℓm , (161)

where this time

sYℓm =

√
(l − s)!
(l + s)!

(
∂+
)sYℓm and sYℓm = (−1)s

√
(l + s)!
(l − s)!

(
∂−
)−sYℓm

(162)

are the spin-weighted SHs ensuring the proper rotation properties on the
sphere to Q and U, and

(
∂±
)s f (θ, ϕ) = − sins θ

(
∂θ ±

i
sin θ

∂ϕ

)
sin∓s θs f (θ, ϕ) (163)

are the spin-raising and spin-lowering operators acting on a generic function
f (θ, ϕ).

By defining

aE
ℓm = −1

2
(+2aℓm + −2aℓm) and aB

ℓm = − 1
2i
(+2aℓm − −2aℓm) , (164)

we defined a decomposition of the polarization of CMB photons divided in
a gradient and a curl component, i. e. the E-modes and B-modes (analogous
to the electric and magnetic field of electromagnetism). One can show that
only E-modes are generated in the presence of scalar perturbations. In fact,
the E-mode varies in strength in the same direction as its orientation (or
perpendicular to it) [3], so it makes sense that it is generated by a scalar
quantity that carries only one DOF. Instead, B-modes need more than that to
be produced, e. g. a GW perturbation (see Chap. 5), which carries two DOFs

due to its tensorial nature.
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The detection of primordial B-modes in CMB would be a clear proof of the
presence of a Stochastic Gravitational Wave Background (SGWB). However,
we must emphasize that GWs are not the only source of the curl component
of polarization: for example, the deflection photons geodesics by mass distri-
butions can also generate B-modes (this is called CMB lensing). This, together
with many other complications, makes the detection of primordial B-modes
extremely challenging.

An honorable mention must be given to foregrounds: on top of the very
faint CMB B-mode signal, there are many more coming from galactic and
extra-galactic phenomena, which often are also much stronger than CMB (i. e.
thermal dust or synchrotron radiation). Fortunately, all these phenomena are
characterized by specific Spectral Energy Distributions (SEDs), which are also
different from the black-body we expect from CMB. This crucial feature al-
lows us to disentangle the various signals if we measure B-modes at different
frequencies through the so-called component separation techniques. Without
entering into the details of this very prolific field of research, we mention
that these techniques are separated into two macrocategories: in parametric
methods, one describes different phenomena with different SEDs and essen-
tially tries to fit their parameters [41–43]. On the other hand, blind methods
do not assume any shape for SEDs, as the name suggests, and instead mini-
mize the variance of the CMB component [44–48].





Part II

A D D I N G T E N S O R P E RT U R B AT I O N S

So far, we have examined the primary features of a ΛCDM Uni-
verse characterized by scalar perturbations. In this part, we in-
vestigate the implications of introducing tensor perturbations,
namely GWs. Our exploration will focus on one of the key pre-
dictions of inflationary models, a primordial background of GWs.
After exploring the characteristics of this background within the
standard single-field model, we will delve into examples of more
intricate inflationary models. Additionally, we will briefly touch
upon the ramifications that the existence of such a background
introduces into our understanding of the Universe outlined in the
preceding part. This will allow us to underscore the physical phe-
nomena that can be examined to explore the tensor component
of the Universe. Lastly, we will employ the Boltzmann approach
to model the distribution of GWs and derive the angular power
spectrum of the primordial GW background.





5
G R AV I TAT I O N A L WAV E S F R O M I N F L AT I O N

At this point, we have followed the entire course leading to one of the fundamen-
tal predictions of inflationary models, the Cosmological Gravitational Wave

Background (CGWB). In this chapter, we explore the implications of the standard
single-field slow-roll model of inflation and go beyond, momentarily setting aside
the criterion of simplicity. For example, we touch upon multifield inflation at the
second order in perturbations. Ultimately, we examine how the presence of GWs

modifies the aspects of the “scalar” Universe discussed in the preceding chapters.
For additional insights, refer to [30, 49, 50].

5.1 single-field slow-roll inflation

Even in the simplest model of inflation described in Chap. 4, tensor pertur-
bations of the metric generate a SGWB. Such a background is a continuous
set of waves fully characterized by their global statistical properties. In fact,
they consist of a signal coming from every direction in the sky and hav-
ing an entire spectrum in the frequency domain; on the contrary, a couple
of merging neutron stars produces GWs with a specific direction in the sky
and peaked at a specific frequency at coalescence. However, if we consider a
large enough number of merging astrophysical objects, one can obtain the as-
trophysical analogue of the CGWB, i. e. an Astrophysical Gravitational Wave
Background (AGWB). The number of objects must exceed the confusion limit
to make it impossible to distinguish one from the other on our detectors [51,
52].

Neglecting scalar and vector perturbations, the perturbed spatially flat
FLRW metric is38,

ds2 = −dt2 + a2(t)
[
δij + hij

]
dxidxj , (165)

with hij such that

hij = hji , hi
i = 0 , hi

j|i = 0 39. (166)

The gauge choice bringing to these relations is called Transverse-Traceless
(TT) gauge.

38 At linear level scalar, vector and tensor perturbations are decoupled, meaning that their evo-
lution do not depend on one another. For this reason considering only the tensor ones is not
a physical simplification, but only a way to obtain easier calculi.

39 The expression hi
j|i indicate the spatial covariant derivative built from the FLRW background

metric gij , which for k = 0 is the normal covariant derivative.

53
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At the linear level, the EOM for hij reads [1]

ḧij + 3Hḣij −
∇2hij

a2 = ΠTT
ij , (167)

where ΠTT
ij is a tensor with the same properties as Eq. 166, which is a

source term coming from possible anisotropic stress of the matter source.
It is related to the last term of the stress-energy tensor of a perfect fluid
Tµν = (ρ + P)uµuν + Pgµν + πµν, called the anisotropic stress tensor,
which, for example, can get a contribution by the quadrupole momentum
of two merging objects (see also next section Sec. 5.2). At first order, it is
vanishing for single field inflation, therefore during inflation holds

ḧij + 3Hḣij −
∇2hij

a2 = 0 , (168)

which is the same equation we solved for the quantum vacuum fluctuation
of a massless scalar field (see Chap. 4). Here, we are looking at the quantum
fluctuations of the metric itself, since there is no source term. In fact, these
primordial GWs are the result of intrinsic quantum fluctuations of the metric,
and if we can detect them, we will have found a “smoking gun” of inflation.
Also, they would be the first ever detected evidence of quantum gravity.

Eq. 168 describes the evolution of a tensor object, with 2 independent
DOFs40, corresponding to the two possible polarizations of GWs λ = (+,×).
We can decompose such an object in the Fourier space as [1]

hij(
#x , η) = ∑

+×

∫ d3k
(2π)3 ei

#

k #x hλ(
#

k , η)ελ
ij(

#

k ) , (169)

where ελ
ij(

#

k ) are the polarization tensors, which satisfy ∀λ

εij = εji , εi
i = 0 , kiεij(

#

k ) = 0, (170)

and the normalization conditions

ελ
ij(

#

k )ε∗ijλ′ (
#

k ) = δλλ′ ,
(

ελ
ij(

#

k )
)∗

= ελ
ij(−

#

k ) . (171)

Suppose to have a plane monochromatic gravitational wave propagating in
the ẑ direction, in Fourier space we obtain

ε+ij =

(
1 0
0 −1

)
, ε×ij =

(
0 1
1 0

)
, (172)

hij(
#

k , η) = h+(
#

k , η)ε+ij(
#

k ) + h×(
#

k , η)ε×ij(
#

k ) . (173)

40 hij is a 3× 3 object, symmetric condition reduces the 9 initial DOF into 6, while “traceless”
and “transverse” conditions consist in other 4 constraints. Therefore, hij has 2 DOF
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The EOM in Fourier becomes

ḧλ + 3Hḣλ + k2 hλ

a2 = 0 , (174)

which is the same for each polarization state and it is again analog to the
equation of motion of a minimally coupled scalar field (h+,×↔

√
32πGϕ+,×).

On super-horizon scales, k ≪ aH, the solution is h+,× =constant plus a
decaying mode (see Chap. 4). The amplitude is, due to canonical normaliza-
tion [1]:

|h+,×| =
√

32πG|ϕ+,×| =
√

32πG
H√
2k3

(
k

aH

)−ε

. (175)

On subhorizon scales, k≫ aH, h+,× = e−ikη

a(η) .

5.1.1 Stochastic Background of GWs

Let us analyze the power spectrum for a single polarization state of ten-
sor perturbations of the metric, which corresponds to gravitational waves;
remembering Eq. 175 it is given by

∆+,×
t (k) =32πG

k3

2π2 |h+,×|2 = 32πG
(

H
2π

)2( k
aH

)−2ε

=
8
π

(
H

MP

)2 ∣∣∣
t(1)H (k)

,

(176)

where t(1)H (k) is the time of horizon exit, in which the scale of gravitational
waves gets fixed, and k is the GW one k = 2π

λGW
. The total power spectrum is

the sum of the two polarizations

∆t(k) =
16
π

(
H

MP

)2 ∣∣∣
t(1)H (k)

=
16
π

(
H

MP

)2( k
aH

)−2ε

. (177)

Therefore the spectral index of inflationary GWs is defined as

nt ≡
d ln ∆t(k)

d ln k
= −2ε . (178)

As aforementioned, in the simplest models one has ε > 0 so nt is always
red tilted, thus on smaller and smaller scales the amplitude decreases. This
fact will play a key role in assessing the feasibility of a detection of such
a background with future GW detectors (see e. g. [53]). Note also that scale-
invariance is defined as nt = 0, whereas for scalar perturbations ns = 1 (see
Chap. 4).
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Figure 9:
Marginalized
joint 68% and
95% CL regions
for nS and r at
k = 0.002 Mpc−1.
Note that the
marginalized joint
68% and 95% CL
regions assume
dnS

d ln k = 0 (no index
running). Figure
extracted from [54].

In addition, we can define the tensor-to-scalar perturbation ratio as [1]

r ≡ ∆t

∆ δρ
ρ

=
∆t

∆ζ
. (179)

One can notice that since ∆t at horizon crossing depends only on H2, mea-
suring it would indeed provide us information of the energy scale of infla-
tion because V ≃ E4

INF.
We can also rewrite it as function of the slow-roll parameters. In fact, re-

calling ε = − Ḣ
H2 = 4πG φ̇2

H2 , we can express ∆ζ as

∆ζ =
H4

4πφ̇2

∣∣∣∣
tH

=
H2

4π2
4πG

ε

∣∣∣∣
tH

=
H2

πM2
Pε

, (180)

with which

r =
∆t

∆ζ
=

16H2

πM2
P

H2

πM2
Pε

= 16ε . (181)

Also, since we know the spectral index of tensor modes, nt = −2ε we have
the so-called single-field slow-roll consistency relation [1]

r = −8nt , (182)

which is a relation between two observable quantities. Observing it is a clear
proof of inflation, given that there are no other scenarios in the early Uni-
verse providing this same prediction. This is not an easy task at all, it re-
quires a full measurement of the CGWB in its amplitude and spectral index,
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but it would be so crucial to the Cosmology community that this is also
referred to as “holy grail of inflation”.

5.2 beyond single-field slow-roll inflation at first-order

Until now, we have considered only single-field slow-roll inflation at first-
order in the perturbations; however, a plethora of more complex models
have been explored in the literature, each with its own predictions on the
SGWB produced. Here, we will very briefly mention some alternatives to the
standard picture that we presented above.

5.2.1 Second-order GWs

First, suppose that we stick to single-field slow-roll inflation. At first order,
scalar, vector, and tensor perturbations are independent; however, at higher
order, this is not true. For example, the combination of first-order scalar per-
turbations gives rise to second-order GWs. In other words, even neglecting
completely tensor perturbations of the metric, the very existence of scalar
perturbations gives rise to tensor modes. It can be shown that the EOM of
GWs is essentially Eq. 167 where Π in this case is the source function that ac-
counts for the second-order production of GWs. Of course, if we consider the
scenario in which the scalar primordial perturbations are the origin of this
second-order term, this source term will be related to the scalar primordial
spectrum defined in Eq. 149 [55–60].

Of course, this scenario becomes even more important if we consider more
than one scalar field during inflation. For example, second-order GWs can be
sourced by the presence of a curvaton [61, 62] or spectator scalar fields [63–
65].

5.2.2 GWs from Particle Production

Another interesting mean of producing GWs is particle production. Indeed, if
the inflaton is coupled with some other field (minimally or non-minimally),
its energy can move to other sectors and produce extra quanta of other parti-
cles [66]. These would contribute to the anisotropic component of the stress-
energy tensor and source GWs (again through the RHS of Eq. 167). These
models are typically divided into two groups, depending on when parti-
cle production occurred. The first consists of models where the inflaton is
coupled to some field during inflation; for example, the inflaton might be
coupled to scalar fields [67, 68], axions [69–71], or gauge fields [72, 73]. The
latter group consists of models where the inflaton interacts during reheating
[74, 75]. We have not mentioned this period before, which represents the
bridge between inflation and the hot Big-Bang evolution of the Universe. In-
deed, we need to convert the energy stored in the inflaton into other particles
to account for the predictions, and observations, related to the hot Big-Bang
theory. The mechanisms behind the physics of reheating are still unknown
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and very difficult to test. In fact, any feature born during that phase would
be washed out by thermalization; also, such a feature evolves throughout
the entire history of the Universe without leaving imprints of their initial
conditions. For this reason, GWs represent a unique window in the physics
of reheating [76–78].

5.2.3 Modified Gravity Models

Of course, modified gravity models change the physics of GWs. Relatively
recently, the possibility of GWs propagating with a velocity different from c
has been essentially ruled out (or severely restricted) by [51, 52]; however,
many other models of modified gravity are still viable alternatives to GR [79–
83]. Notable mentions are f (R) theories, where higher-order terms as R2

appear in Eq. 2, and scalar-tensor theories, which allow for scalar fields in
the gravitational sector.

Among these, R2-inflation (also called Starobinski inflation) is regarded as
one of the most promising models today [84]. Indeed, looking at Fig. 9, one
can notice that this model fits well the posterior distribution in the r − ns
plane. The difference w. r. t. GR is given by this substitution:

R −→ R +
R2

6M2
P

(183)

in the Hilbert-Einstein action of Eq. 2.

5.2.4 General Consistency Relations

We saw that in standard single-field inflation the consistency relation of
Eq. 182 is enforced, i. e. a relation between r and nt. Other models may
predict different consistency relations; thus, here we list some of them.

general single-field inflation In these models [85, 86], the inflaton
sound speed can be cs ̸= c and the consistency relation reads

r = −8csnt . (184)

multi-fields inflation If, for example, inflation is driven dynamically
by multiple scalar fields, both adiabatic and isocurvature perturbations
are generated [87, 88]. The consistency relation becomes

r = −8nt sin2 ∆ , (185)

where cos ∆ parametrize the correlation between adiabatic and isocur-
vature perturbations at horizon exit.

space-time variations of inflaton decay We mentioned that dur-
ing reheating the inflaton decays to ordinary particles, which we can
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generally call χ. While the inflaton decays at a rate Γ, χ can fluc-
tuate and leave imprinted these variations on super-horizon scales.
In this scenario, Γ cannot be considered constant causing a change
in the perturbation of the curvature ζ [89]. Parameterizing it with
∆ = (ζ f − ζi)/ζi, where i and f indicate the beginning and end
of the reheating, we can write the consistency relation as

r = −8(1− 2∆)nt . (186)

eft inflation In the context of Effective Field Theories (EFTs) of inflation
[90–93], one can find a very general consistency relation:

r = −32
π

nt − st

ctc′2s

(
α0 +

√
β0

)3/2
∣∣∣∣∣Γ
(

5
4
+

α0

4α0 − 4i
√

β0

)∣∣∣∣∣
2

(187)

where: c′s = parameter related to the kinetic energy of a scalar field in the
action 41;

ct = tensor perturbation speed;

st = − ċt
Hct

is a slow-roll parameter associated with ct;

α0 = parameter controlling the term in the dispersion relation ∝ k2;

β0 = parameter controlling another term ∝ k4;

Γ = Euler Gamma function.

Despite the multitude of possibilities offered by inflation, from now on we
will stick to the single-field slow-roll model, until it is differently specified.
Also, we must mention that inflation is not the only production mechanism
in the early Universe. For example, both PTs, as the EW one introduced in
Chap. 2, or the presence of cosmic strings, i. e. topological defects due to
some spontaneous symmetry breaking (see also Chap. 3), can produce pri-
mordial GWs that can be treated through a Boltzmann approach as we are
about to present in Chap. 6 (see, for example, [94, 95]).

5.3 imprints of gws on the “scalar” universe

First, GWs can be a probe for the thermal history of the Universe (see Chap. 2).
It can be shown that the GW energy density for modes inside the horizon can
be written as [30]

ΩGW(k, η) =
1
12

(
k

aH

)2

∆2
t (k)T

2
h (k, η) (188)

41 Unlike the sound speed cs, it can be negative.
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where: ∆t = is the primordial power spectrum defined in Eq. 177;

Th(k, η) = is the transfer function describing the evolution of GW

modes when they enter the horizon (Th(k, η) → 1 for
k→ 0).

The transfer function can be written as

T2
h (k) = Ω2

m

(
g∗(Tin)

g∗0

)(
g∗s0

g∗s(Tin)

)4/3
(

3j1(kη0)

kη0

)2

T2
1 (xeq)T2

2 (xR) ,

(189)

where: g∗ = is the number of relativistic DOFs;

g∗s = is its counterpart in entropy;

0 = indicates a quantity evaluated at present time;

Tin = is the temperature at the horizon entry;

j1 = is the spherical Bessel function for ℓ = 1, which is aver-
aged over time to extract the amplitude behavior (the bar
indicates the average);

T2
1 (xeq) = 1+ 1.57xeq + 3.42x2

eq is a function that accounts for GWs

entering before and after the matter-radiation equality;

xeq = k
keq

;

T2
2 (xR) = 1− 0.32xR + 0.99x2

R is a function to describe the change
in the expansion rate after reheating;

xR = k
kR

.

This means that accurately measuring ΩGW provides information about
decoupling of relativistic species and about the physics of reheating. For
example, assuming that the reheating stage is matter-dominated, the shift to
the subsequent radiation-domination causes the presence of a knee in ΩGW .
If we take 106 GeV ≲ TR ≲ 109 GeV, the knee would affect the frequencies
of 10−1 − 102 Hz, which is in the frequency band of Laser Interferometer
Gravitational-Wave Observatory (LIGO)-Virgo-Kamioka Gravitational Wave
Detector (KAGRA) [96–100].

Furthermore, being GWs relativistic DOFs, they contribute to the radiation
energy density. This implies that BBN physics is affected by the presence of
a CGWB, providing a bound at frequencies of f ≳ 10−15 Hz [101–103].

Moving to another imprint, during the history of the Universe, free-streaming
particles and generate an anisotropic stress-energy contribution, which would
modify the GW EOM. The most studied particle species in this context are
neutrinos [104]. At first-order, this effect provides a damping of GWs [105,
106], while the second-order acts as a source term [107, 108]. The damp-
ing effect would act on scales corresponding to neutrinos decoupling, thus
f ∼ 10−11 Hz, which is close to the band of Pulsar Timing Arrays (PTAs).
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Figure 10: CMB
B-mode measure-
ments: Background
Imaging of
Cosmic Extra-
galactic Polariza-
tion (BICEP)3/Keck
Array [113],
Planck’s satellite
[114], Atacama Cos-
mology Telescope
Polarimeter (ACTPol)
[115], South Pole
Telescope polarime-
ter (SPTpol) [116],
POLARization of
the Background Ra-
diation (POLARBEAR)
[117, 118],
BICEP2/Keck Array
[119], Atacama B-
Mode Search (ABS)
[120], BICEP1 [121],
Wilkinson Mi-
crowave Anisotropy
Probe (WMAP) [122],
Q and U Extra-
galactic Sub-mm
Telescope (QUIET)
[123] and QUIET
at Degree Angular
Scale Interferome-
ter (DASI) (QUaD)
[124]. The solid
line represents
the lensing signal,
whereas the dashed
and dotted ones
are respectively the
primordial signal
obtained assuming
scale invariance
and r = 0.028 and
0.004, the former
being the 95% CL
upper bound of
this work, assuming
scale-invariance,
and the latter the
prediction of the
Starobinski model
[84].

In Chap. 4, we briefly discuss CMB polarization, mentioning that B-modes
are generated in the presence of GW perturbations. In fact, this is one of the
most promising imprints of GWs. Currently, we have quite a zoology of CMB
B-mode measurements, some of which are shown in figure 10. However,
CMB experiments are mostly sensitive to the large-scale part of the primor-
dial B-mode spectrum (at least by assuming a tensor spectral tilt close to
scale invariance). The small scales are hidden below several orders of mag-
nitude of the lensing B-mode as a result of photons passing through the
gravitational potential of the large-scale structure (compare the dashed, or
dotted, line of figure 10 with the solid one and see Sec. 4.5). In addition, any
peculiar feature of the primordial GWs would induce additional signatures
on the CMB, such as non-Gaussianity or chirality [67, 109–112].

Besides the CMB, GWs leave imprints on the large-scale structures too. For
example, at late times they induce: a tidal effect during structure forma-
tion in the presence of long-wavelength tensor modes, which manifest in a
quadrupole anisotropy contribution [125, 126]; a correlation on the galaxy
shear [127, 128]; and projection effect due to the space-time perturbation
caused by GW [127, 129]. They would also affect the propagation of light
from close objects, which can be tracked by looking at microsecond pulsars
(PTAs sensitive to f ∼ 10−9 − 10−7 Hz) [130, 131]. This channel of observa-
tion has gained a lot of momentum in the last few years. Indeed, PTA col-
laboration all over the world has claimed to have detected for the first time
a SGWB (see, for example, [132, 133]). Finally, GW interferometers can detect
single merger events, but in principle they can detect any background per-
meating space-time if the energy contribution at their scales is large enough
[52, 130, 134, 135].

This list is not meant to be complete at all; however, it should convey
the idea that the presence of GWs affects a vast range of frequencies that
can be probed with very different experiments to unveil various physical
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properties of our Universe. In this Thesis, we will consider three ways to
inspect primordial GWs: CMB, PTAs and GW interferometers.



6
B O LT Z M A N N A P P R O A C H T O T H E C G W B

In Chap. 5, we explored the general characteristics of a CGWB generated by single-
field slow-roll inflation (and beyond). Here, we utilize the Boltzmann framework

introduced in Chap. 2 to analyze GWs and derive the expression for the angular
power spectrum of the CGWB.
For further details, refer to [49, 50].

6.1 boltzmann equations

In Chap. 2 we have already introduced the basics of the Boltzmann approach
to track the behavior of a particle species. In particular, we showed the main
steps to obtain the scalar angular power spectrum of CMB photons.

Here, we do the same in much more detail for GWs. First, we define a
distribution function for “gravitons” as f = f (xµ, pµ), which generally de-
pends on their position xµ and the momentum along their trajectory pµ(x),
parameterized by an affine parameter λ. This function will evolve according
to the well-known Boltzmann equation [3, 136, 137]

L [ f (xµ, pµ)] = C [ f (xµ, pµ)] +I [ f (xµ, pµ)] , (190)

where:

• L is the Liouville operator.

• C is the collision operator that accounts for the GW scatterings.

• I is the emission operator [138]. In principle, this operator can contain
contributions coming from a number of possible sources of GWs. E. g.
from an astrophysical point of view, we know that merging binary
systems emit GWs, thus they would appear in terms of their changing
quadrupole momenta [52, 139].

From a cosmological point of view, instead, we know that many pro-
duction mechanisms of GWs can come into play (e. g. phase transi-
tions [140] or enhanced density perturbations leading to primordial
BHs [141–143], which occur at energies well below the Planck scale).
However, in our case, we consider only inflation as a production mech-
anism (see e. g. [66, 69]).

It must be emphasized that here we are interested in the GWs that we can
measure (or we forecast to be able to detect in the next future), which have
a typical wavelength much smaller than the scales where the background is

63
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varying. This means that we are in the limit of geometric optics and that we
can treat them separately [94].

Going back to Eq. 190, in our treatment we will disregard both the collision
term, given that graviton scatterings affect the distribution function at higher
orders in the gravitational strength M−1

Pl , where MPl is the reduced Planck
mass (see [144] for a discussion on collisional effects involving gravitons),
and the source terms coming from astrophysical sources, since we are only
interested in the CGWB. The GW emission coming from inflation is treated
as an initial condition on the distribution, thus the Boltzmann equation are
recast to

d f
dλ

= 0 =
dλ

dη

d f
dλ

=
d f
dη

=
∂ f
∂η

+
∂ f
∂xi

dxi

dη
+

∂ f
∂q

dq
dη

+
∂ f
∂ni

dni

dη
= 0 , (191)

where: η = conformal time;

n̂ = GW direction of motion;

q = a| #p | is the comoving momentum modulus.

In order to proceed further we need to explore how gravitons travel in a
perturbed Universe. This will provide us with the necessary tool to make
explicit the above expression for the evolution of the distribution function.

We know that the metric of a flat and unperturbed FLRW Universe is

ds2 = a2(η)
[
−dη2 + δijdxidxj

]
. (192)

In full generality the perturbed FLRW metric can be decomposed in [30]

g00 = −a2(η)

(
1 + 2

+∞

∑
r=1

1
r!

Φ(r)

)
, (193)

gi0 = g0i = a2(η)
+∞

∑
r=1

1
r!

ω
(r)
i , (194)

gij = a2(η)

{[
1− 2

(
+∞

∑
r=1

1
r!

Ψ(r)

)]
δij +

+∞

∑
r=1

1
r!

χ
(r)
ij

}
, (195)

where: (r) = order of the perturbation ;

Φ, Ψ = scalar perturbations called “gravitational potentials” ;

ωi = vector perturbations;

χij = TT tensor perturbations, for which χ
i(r)
i = 0 = ∂iχij .

It is easy to notice that sending all the perturbations to zero recovers the
background metric.

Considering only first-order perturbations, we can recast the metric to

ds2 = a2(η)
[
−(1 + 2Φ)dη2 + 2ωidηdxi +

[
(1− 2Ψ) δij + χij

]
dxidxj

]
.
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(196)

Now, exploiting the Helmholtz’s theorem one can always decompose a N-
vector to identify the nature of the DOF embedded in it [1]. Therefore, ωi =
ω⊥i + ∂iω

||, where ω|| is an irrotational, or curl-free, scalar component
(also called potential flow); on the other hand, ω⊥i is a divergence-free, or
solenoidal, vector with ∂iω⊥i = 0 (also called vorticity), which is perpendic-

ular to k̂ in Fourier space. Decomposing in a similar way a tensor, one can
distinguish scalar, vector and tensor DOF resulting in42:

χij = Dijχ|| + ∂iχ
⊥
j + ∂jχ⊥i + χT

ij , (197)

where Dij =
(

∂i∂j − 1
3 δij∇2

)
is the trace-free operator, χ|| is a scalar func-

tion and χ⊥i is a solenoidal vector field.
At this point, we have identified all the DOFs, so we can choose a gauge

in which to perform our calculations. In this case, we use the Poisson gauge,
which is translated as ω|| = χ|| = χ⊥i = 0. In addition, we neglect the
remaining vectorial perturbations, given that they are rapidly diluted by the
accelerated expansion [1]. This results in having

ds2 = a2(η)
[
−(1 + 2Φ)dη2 +

[
(1− 2Ψ) δij + χij

]
dxidxj

]
, (198)

where χij = χT
ij for the sake of notation.

Mimicking the procedure typical of CMB (see e. g. [136]), in this metric the
Christoffel symbols take the form

Γ0
00 = H+ ϕ′ ,

Γ0
0i = ∂iϕ ,

Γi
00 = ∂iϕ ,

Γi
0j = δi

j

[
H− ψ′

]
+

1
2

χ′ij ,

Γ0
ij = Hδij +

1
2

χ′ij − ψ′δij +Hχij − 2Hδijϕ− 2Hδijψ ,

Γi
jk = −

1
2

∂iχjk + δjk∂iψ +
1
2

∂jχi
k − δi

k∂jψ +
1
2

∂kχi
j − δi

j∂kψ ,

(199)

where: ′ = derivative w. r. t. conformal time;

∂i ≡ ∂
∂xi are the spatial derivatives;

H ≡ a′
a is the conformal Hubble parameter.

At this point, we need to look into the explicit expression of the graviton
momenta. Indeed, recalling Eq. 32, we need an expression for pα ≡ dxα

dλ .

42 These properties hold: χT
ij = χT

ji, ∂iχT
ij = 0 and χj T

i = 0.
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The first thing we can do is to exploit some basic property of momenta in
GR; indeed, calling p the modulus of spatial momentum #p and n̂ its versor,
we know that both the following expressions will hold

gij pi pj = p2 and pµ pνgµν = −m2 . (200)

Asking now that the spatial momentum takes the form [136] pi = G(p, ni,
a, Φ, Ψ, χ)ni, where G can be in principle a function of all the perturba-
tions, the modulus of the momentum and the scale factor, we can find its
expression exploiting the first relation of Eq. 200

43 Indeed, inserting this
parameterization of pi into it, we can write44

pi =
p
a

eΨ
(

1− 1
2

χjknjnk
)

ni . (201)

Looking instead at the second relation in Eq. 200 and assuming the graviton
to be massless, we can write

pµ pµ = g00

(
p0
)2

+ gij pi pj = −m2 = 0 . (202)

This allows us to find the explicit expression for p0:

g00

(
p0
)2

+ gij pi pj = −a2e2Φ
(

p0
)2

+ p2 = 0(
p0
)2

=
p2

a2 e−2Φ ⇒ p0 =
p
a

e−Φ .
(203)

Then, we can then define the comoving momentum as qµ ≡ pµ/a, which is
useful to write in an alternative way p0 and pi as [136]

p0 =
q
a2 e−Φ , pi =

q
a2 eΨ

(
1− 1

2
χjknjnk

)
ni (204)

At this point we can reconstruct the full expression of Eq. 191.

• Let us start from dxi

dη . We can recast it as [136]

dxi

dη
=

pi

p0 =

q
a2 eΨ

(
1− 1

2 χjknjnk
)

ni

q
a2 e−Φ

= eΦ+Ψ
(

1− 1
2

χjknjnk
)

ni .

(205)

This term is multiplied by ∂ f
∂xi , so that it depends on the distribution

function on the position. However, due to our homogeneity assump-

43 The procedure used to extract the expression of the momentum, together with the explicit
expression of the Boltzmann equation we are about to treat, is very similar to what is usually
done for CMB photons. For example, see [3, 136].

44 Here only first order contributions are kept into the equation.
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tion of the background spacetime, this term already provides a first-
order contribution; hence we must keep only the term at zeroth order

of the above expression of dxi

dη , i. e.

eΦ+Ψ
(

1− 1
2

χjknjnk
)

ni ≃ ni . (206)

Summarizing

∂ f
∂xi

dxi

dη
≃ ∂ f

∂xi ni . (207)

This term, together with ∂ f
∂η , encodes the free-streaming behavior of

gravitons, i. e. the propagation of perturbations on all scales [3] 45.

• The next term to be evaluated is ∝ dq
dη . To obtain its expression, it is

useful to consider the following equation [136]

dp0

dλ
+Γ0

αβ pα pβ = 0 =
dp0

dλ

dλ

dη
+

Γ0
αβ pα pβ

dη
dλ

=
dp0

dη
+

Γ0
αβ pα pβ

p0 . (208)

In fact, with some algebra and dropping higher-order contributions,
one can find

dp0

dη
≃ dq

dη

1−Φ
a
− q

a2

[
2H(1−Φ) +

dΦ
dη

+ ni dΦ
dxi

]
(209)

Γ0
αβ pα pβ

p0 ≃ q
a2

[
2H(1−Φ) +

dΦ
dη
− dΨ

dη
+

1
2

dχjk

dη
njnk + 2

dΦ
dxi ni

]
,

(210)

which contains the term we are interested in, that is, dq
dη . Summing the

two equations as in Eq. 208,

dq
dη
≃ q

[
dΨ
dη
− dΦ

dxi ni − 1
2

dχjk

dη
njnk

]
. (211)

This contribution accounts for the redshifting of gravitons during the
evolution of the Universe. We will see that this includes the SW, ISW

and RS effects.

• The last term ∝ ∂ f
∂ni does not need to be computed. In fact, ∂ f

∂ni is al-

ready at least of order one and dni

dη account for the gravitational lensing
among the propagation of the graviton, and thus it is also of at least
order one.

45 At higher order this includes time delay effects due to the deviation of the geodetic when
passing through distorted regions by massive objects.



68 boltzmann approach to the cgwb

Finally, we can write Eq. 191 in the first order as

∂ f
∂η

+
∂ f
∂xi ni +

[
dΨ
dη
− 1

2
dχjk

dη
njnk − dΦ

dxi ni
]

q
∂ f
∂q

= 0 , (212)

6.2 solutions of the boltzmann equations

In order to find the solutions of the above equations and to mimic exactly
the analogous CMB procedure, it is useful to decompose the gravitons distri-
bution function into a background contribution plus a first order one [3, 49,
50]

f (η, q, xi, ni) ≃ f̄ (η, q) + δ f (η, q, xi, ni) . (213)

where: f̄ (η, q) = solution of the zeroth order equation, giving
∂ f̄ (η,q)

∂η = 0 46;

δ f (η, q, xi, ni) = solution of the first order equation.

In order to simplify the first order Boltzmann equation, it is standard habit
to parametrize it with a function Γ(η, q, xi, ni) in the following way (see [3,
138])

δ f (η, q, xi, ni) ≡ −q
∂ f̄
∂q

Γ(η, q, xi, ni) . (214)

In the case of a thermal distribution of temperature T, such as the CMB,
Γ = δT/T, which indeed corresponds to what we will call Θ in Chap. 2.
However, the difference between the two cases, i. e. CMB and CGWB, is that
in the former photons were thermal, thus the continuous scatterings pro-
duced frequency-independent perturbations; whereas in the latter, being the
collision term negligible, Γ generally retains a dependence O(1) on the fre-
quency.

46 Also further in this Thesis, the over-line − on top of a quantity will indicate that it is a
background, i. e. zeroth order, one.
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Going back to the Boltzmann equations, at first order holds

∂ f
∂η

+
∂ f
∂xi ni +

[
dΨ
dη
− 1

2
dχjk

dη
njnk − dΦ

dxi ni
]

q
∂ f
∂q
≃

≃∂ f̄
∂η
− ∂

∂η

(
q

∂ f̄
∂q

Γ
)
+

∂ f̄
∂xi ni − ni ∂

∂xi

(
q

∂ f̄
∂q

Γ
)
+

dq
dη

∂ f̄
∂q

+

− dq
dη

∂

∂q

(
q

∂ f̄
∂q

Γ
)
≃

≃− q
∂ f̄
∂q

∂Γ
∂η

+ niq
∂ f̄
∂q

∂Γ
∂xi +

dq
dη

∂ f̄
∂q

= −q
∂ f̄
∂q

[
∂Γ
∂η

+ ni ∂Γ
∂xi −

1
q

dq
dη

]
≃

≃− q
∂ f̄
∂q

[
∂Γ
∂η

+ ni ∂Γ
∂xi −

dΨ
dη

+
dΦ
dxi ni +

1
2

dχjk

dη
njnk

]
= 0 .

(215)

At this point, we can define the source function

S(η, xi, ni) ≡ dΨ
dη
− dΦ

dxi ni − 1
2

dχjk

dη
njnk , (216)

in order to write the first order Boltzmann equation as

∂Γ
∂η

+ ni ∂Γ
∂xi = S(η, xi, ni) . (217)

The source function contains the scalar and tensor perturbations, which will
affect the further propagation of gravitons through the first order Boltzmann
equation, providing the “anisotropies” of the distribution function47. It is
also interesting to note that S do not depend on q, indicating that these
propagation effects are q-independent, at least at first order in the perturba-
tions.

It is convenient to go into Fourier space through

Γ ≡
∫ d3k

(2π)3 ei
#

k #x Γ(η,
#

k , q, n̂) , (218)

S ≡
∫ d3k

(2π)3 ei
#

k #x S(η,
#

k , n̂) = Ψ′ − ikµΦ− 1
2

ninjχ′ij (219)

to recast Eq. 217 to

Γ′ + ikµΓ = S(η,
#

k , n̂) , (220)

47 Notice that, sending the source function to 0, only the free-streaming terms survive, thus
one would obtain a “smooth” distribution function. Instead, as said before, the presence of
these perturbations, which contribute to the source function, will determine the generation
of small anisotropies.
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where µ ≡ k̂ · n̂ is the cosine of the angle between the wavenumber of each
Fourier mode and the GW direction of motion.

The formal solution of Eq. 220 is given by [49, 50] and reads 48

Γ(η,
#

k , q, n̂) =

=
∫ η

ηin

dη′eikµ(η′−η)
[
Γ
(

η′,
#

k , q, n̂
)

δ
(
η′ − ηin

)
+ S

(
η′,

#

k , n̂
)]

=

=
∫ η

ηin

dη′eikµ(η′−η)

[
Γ
(

η′,
#

k , q, n̂
)

δ
(
η′ − ηin

)
+ Ψ′ − ikµΦ− 1

2
ninjχ′ij

]
.

(222)

Then, we can integrate by parts the term ∝ Φ to obtain the final form of Γ

Γ(η,
#

k , q, n̂) =

=eikµ(ηin−η)Γ
(

ηin,
#

k , q, n̂
)
+
∫ η

ηin

dη′eikµ(η′−η)

[
Ψ′ − ikµΦ− 1

2
ninjχ′ij

]
=eikµ(ηin−η)Γ

(
ηin,

#

k , q, n̂
)
− eikµ(η′−η)Φ(η′,

#

k )
∣∣∣∣η
ηin

+

+
∫ η

ηin

dη′eikµ(η′−η)

[
Ψ′ + Φ′ − 1

2
ninjχ′ij

]
=

=−Φ(η,
#

k ) + eikµ(ηin−η)
[
Γ
(

ηin,
#

k , q, n̂
)
+ Φ(ηin,

#

k )
]
+

+
∫ η

ηin

dη′eikµ(η′−η)

[
Ψ′ + Φ′ − 1

2
ninjχ′ij

]
.

(223)

48 Obtaining this is very straightforward. Eq. 220 is of the type y′(x) = a(x)y(x) + b(x), thus
can be solved using

y(x) = eA(x)
[

C +
∫

e−A(x)b(x) dx
]

with A(x) =
∫

a(x) dx . (221)

The integration constant C can be easily fixed imposing that, at ηin, Γ is equal to some initial

value Γ(η,
#

k , q, n̂) = Γ
(

ηin,
#

k , q, n̂
)

set by the specific production mechanism.
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Disregarding the first isotropic term, representing a monopole contribution
to which we are not interested49, we can write

Γ(η,
#

k , q, n̂) = eikµ(ηin−η)Γ
(

ηin,
#

k , q, n̂
)
+

+
∫ η

ηin

dη′eikµ(η′−η)

Φ(η′,
#

k )δ(η′ − ηin) +
∂
(

Ψ(η′,
#

k ) + Φ(η′,
#

k )
)

∂η′


−
∫ η

ηin

dη′eikµ(η′−η)

[
1
2

ninj ∂χij(η
′,

#

k )
∂η′

]
=ΓI(η,

#

k , q, n̂) + ΓS(η,
#

k , n̂) + ΓT(η,
#

k , n̂) .
(224)

Here, we have distinguished three different contributions to Γ, indicated by
the subscripts I, S, T:

• the first term represents the initial condition set by some cosmological
process at ηin.

ΓI(η,
#

k , q, n̂) ≡ eikµ(ηin−η)Γ
(

ηin,
#

k , q, n̂
)

. (225)

It carries the “memory” of the initial conditions to the following evo-
lution of the distribution function in a completely different way w. r. t.
what one observes for the CMB [94, 95]. Indeed, CMB photons were ther-
mally coupled before the recombination epoch, thus the continuous
and very efficient scatterings erased any trace of the initial conditions,
leaving behind a nearly memory-less plasma 50. Once they decoupled,
they started free-streaming causing us to see the CMB. Instead, gravi-
tons have never being thermal (at least below the Planck energy [145]).

• The second term is the scalar sourced contribution to the distribution
function.

ΓS(η,
#

k , q, n̂) ≡
∫ η

ηin

dη′eikµ(η′−η)Φ(η′,
#

k )δ(η′ − ηin)+

+
∫ η

ηin

dη′eikµ(η′−η)
∂
(

Ψ(η′,
#

k ) + Φ(η′,
#

k )
)

∂η′
.

(226)

Inside it, the first term represents the SW effect, whereas an anisotropy
is set by the value of the gravitational potential Φ at ηin. The second
one accounts for the propagation of gravitons from ηin to us today,

49 Notice that indeed Φ does not depend on n̂, thus on the direction of observation in the sky.
The only angle dependency on that term is inside the exponent of eikµ(ηin−η), however this
particular combination is still isotropic on the full-sky.

50 In other words, the mean free path of photons was very short.
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including the ISW effect, i. e. propagation during radiation domination,
and the RS effect, i. e. propagation during the very late Universe in dark
energy domination.

• The last term is the tensor-sourced one, i. e. , generated by the GW

perturbation χij of the metric (see Eq. 198).

ΓT(η,
#

k , q, n̂) ≡ −
∫ η

ηin

dη′eikµ(η′−η)

[
1
2

ninj ∂χij(η
′,

#

k )
∂η′

]
. (227)

6.3 spherical harmonics decomposition

At this point we already show in Chap. 2 that it is convenient to decompose
these fluctuations into SHs.
After doing so, we plug into Eq. 155 the expression of the Γ(n̂) shown by
Eq. 224 in order to write

Γℓm =
∫

d2n Y∗ℓm(n̂)
∫ d3k

(2π)3 ei
#

k · #x

×
[
ΓI(η,

#

k , q, n̂) + ΓS(η,
#

k , n̂) + ΓT(η,
#

k , n̂)
]

=Γℓm,I + Γℓm,S + Γℓm,T ,

(228)

where we have carried onto the SH coefficients the same notation used to
identify the different contributions to Γ. Let us examine every term more
deeply.

6.3.1 Initial Condition Term

The initial condition term reads

Γℓm,I =
∫ d3k

(2π)3 ei
#

k · #x 0ΓI(η,
#

k , q, n̂)
∫

d2n Y∗ℓm(n̂)e
−ik(η0−ηin)k̂·n̂ . (229)

#x 0 is the origin of the reference frame where the observer is, which we can
set to #x 0 = 0 without loss of generality51 and that ηin represents the last
time that cosmological GWs have been produced, i. e. the end of inflation.

51 In the standard isotropic and homogeneous case the exponential containing #x 0 gets canceled,
even without choosing the specific reference frame in which #x 0 = 0. However, when consid-
ering modulations, it will not. The reason why involves the two-point correlation function of
Γℓm, and the stochastic variables present in it such as ζ, thus we will make a more detailed
comment on this in footnote 53.
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In order to make a little more explicit the initial conditions term, we can
make use of a useful decomposition of the exponential as function of spher-
ical Bessel functions, Legendre polynomial and SHs reading

e−i
#

k · #y =∑
ℓ

(−i)ℓ(2ℓ+ 1)jℓ(ky)Pℓ(k̂ · ŷ) =

=4π ∑
ℓ

ℓ

∑
m=−ℓ

(−i)ℓjℓ(ky)Yℓm(k̂)Y∗ℓm(ŷ) .
(230)

In our case, it yields

e−ik(η0−ηin)k̂·n̂ = 4π ∑
ℓ′

ℓ′

∑
m′=−ℓ′

(−i)ℓ
′
jℓ′ [k(η0 − ηin)]Yℓ′m′(n̂)Y∗ℓ′m′(k̂) .

(231)

Plugging this expansion into Eq. 229 and remembering the orthogonality
condition of SHs∫

dk̂Y∗ℓm(k̂)Yℓ′m′(k̂) = δℓℓ′δmm′ , (232)

one obtains

Γℓm,I = 4π(−i)ℓ
∫ d3k

(2π)3 ΓI(η,
#

k , q, n̂)Y∗ℓm(k̂)jℓ[k(η0 − ηin)] , (233)

where we stress the presence of a dependency on the frequency q, which
indicate the role of the specific physics we are considering behind the initial
conditions.

6.3.2 Scalar Sourced Term

As aforementioned, this term accounts for anisotropies of the distribution
function produced by the propagation of GWs in a perturbed Universe, specif-
ically due to scalar perturbations.

In this context, these perturbations are typically expressed as

Φ = ζ(
#

k )× {Transfer Function(k)} × {Growth Function(η)} , (234)

where: ζ(
#

k ) = primordial value of the curvature perturba-
tion set during inflation;

Transfer Function(k) = evolution of perturbations through the
epochs of horizon crossing and radiation/-
matter transition;

Growth Function(η) = wavelength-independent growth at late
times [3].
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From now on, until differently specified, we will refer with the name “trans-
fer function” to the actual product of Transfer Function(k)× Growth Function(η)
of Eq. 234, in such a way that we can write

Φ(η,
#

k ) = TΦ(η, k)ζ(
#

k ) , Ψ(η,
#

k ) = TΨ(η, k)ζ(
#

k ) . (235)

Being in an isotropic situation and not considering any anisotropic stress,
we consider for simplicity TΦ = TΨ.

Using the parametrization of Eq. 235 and exploiting the same expansion
of the exponential shown in Eq. 231, we can write

Γℓm,S = 4π(−i)ℓ
∫ d3k

(2π)3 ζ(
#

k )Y∗ℓm(k̂)
{

TΦ(ηin, k)jℓ[k(η0 − ηin)]

+
∫ η0

ηin

dη′
∂
[
Ψ(η′,

#

k ) + Φ(η′,
#

k )
]

∂η′
jℓ
[
k
(
η0 − η′

)]}
= 4π(−i)ℓ

∫ d3k
(2π)3 ζ(

#

k )Y∗ℓm(k̂)T
S
ℓ (k, η0, ηin) ,

(236)

where we have introduced the linear transfer function

T S
ℓ (k, η0, ηin) ≡TΦ(ηin, k)jℓ[k(η0 − ηin)]

+
∫ η0

ηin

dη′
∂
[
Ψ(η′,

#

k ) + Φ(η′,
#

k )
]

∂η′
jℓ
[
k
(
η0 − η′

)]
,

(237)

encoding the time evolution of the graviton fluctuations originated from the
primordial scalar perturbations.

6.3.3 Tensor Sourced Term

Finally, the last contribution coming from tensor perturbations reads

Γℓm,T = −
∫

d2n Y∗ℓm(n̂)
∫ d3k

(2π)3
ninj

2

∫ η

ηin

dη′eik(η′−η0)µ
∂χij(η

′,
#

k )
∂η′

.

(238)

Evaluating this term require a quite lenghty algebra and we are not inter-
ested in the details in this context; for this reason, we will just state the main
passages and report the final result.

Firstly, one has to decompose χij in right/left-handed circular polariza-
tions as (see e. g. [53])

χij = ∑
λ=±2

eij,λ(k̂) χ(η, k) ξλ(ki) , (239)
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where eij,λ(k̂) are the polarization operators defined from the more familiar
polarization tensors relative to the + and × polarizations, χ(η, k) is the
tensor mode function and ξλ(ki) is the stochastic variable analogue of ζ for
the scalar term.

Then, it will be necessary to rotate the system using a rotation matrix of
the form

S (Ωk) ≡

 cos θk cos ϕk − sin ϕk sin θk cos ϕk

cos θk sin ϕk cos ϕk sin θk sin ϕk

− sin θk 0 cos θk

 , (240)

which will be used to rotate the SHs following

Y∗ℓm (Ωn) =
ℓ

∑
m′=−ℓ

Dℓ
mm′ (S (Ωk))Y∗ℓm′ (Ωk,n) , (241)

where Dℓ
mm′ (S (Ωk)) is the Wigner rotation matrix [146]

Dℓ
ms (S (Ωk)) ≡

√
4π

2ℓ+ 1
(−1)s

−sY∗ℓm (Ωk) . (242)

The above expression make use of the spin-weighted SHs, which read[146]

−sY∗ℓm (Ωk) ≡(−1)m

√
(ℓ+ m)!(ℓ−m)!(2ℓ+ 1)

4π(ℓ+ s)!(ℓ− s)!
sin2ℓ

(
θk
2

)
×

ℓ−s

∑
r=0

(
ℓ− s

r

)(
ℓ+ s

r + s−m

)
(−1)ℓ−r−s

× eimϕk cot2r+s−m
(

θk
2

)
.

(243)

Then, exploiting the properties of SHs and of associate Legendre polynomials,
one can finally arrive at the result:

Γℓm,T = π(−i)ℓ
√

(ℓ+ 2)!
(ℓ− 2)!

∫ d3k
(2π)3 ei

#

k · #x 0 ∑
λ=±2

−λY∗ℓm (Ωk) ξλ(
#

k )

×
∫ η0

ηin

dη χ′(η, k)
jℓ (k (η0 − η))

k2 (η0 − η)2 =

= 4π(−i)l
∫ d3k

(2π)3 ei
#

k · #x 0 ∑
λ=±2

−λY∗ℓm (Ωk) ξλ(
#

k )T T
ℓ (k, η0, ηin) ,

(244)
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where we introduced again a linear transfer function for the tensor modes
reading

T T
ℓ (k, η0, ηin) ≡

1
4

√
(ℓ+ 2)!
(ℓ− 2)!

∫ η0

ηin

dη χ′(η, k)
jℓ (k (η0 − η))

k2 (η0 − η)2 . (245)

6.4 connection with observables

Now, we have an explicit expression for the SH decomposition’s coefficients.
Thus, we can see what the observable quantities are connected to the distri-
bution function of gravitons and to the CGWB.

6.4.1 Energy Density

Just like any other energy source in the Universe, GWs contribute to the over-
all energy density. Given that we are working with the distribution function
of gravitons in a Boltzmann approach, to find the energy density of GWs it
is sufficient to follow the natural route of integrating the distribution func-
tion, i. e. the average number of gravitons in a volume d3p, multiplied by the
energy contribution of the single particle:

ρGW (η0, #x ) =
∫

d3p p f (η0, #x , q, n̂)

=
1
a4

∫
d3q q f (η0, #x , q, n̂)

=
1
a4

∫
d ln qq4

∫
d2n̂ f (η0, #x , q, n̂)

≡ ρcrit

∫
d ln q× 1

ρcrit

q4

a4

∫
d2n̂ f (η0, #x , q, n̂)

≡ ρcrit

∫
d ln q×ΩGW (η0, #x , q) ,

(246)

where: ρcrit ≡
3H2

0
8πG = 3H2

0 M2
P is the critical density of a Universe per-

fectly flat;

ΩGW = spectral energy density for GWs, i. e. the logarithmic con-
tribution to the energy density.

We can write the spectral energy density as

ΩGW(η0, #x , q) =
∫

d2n̂ ωGW(η0, #x , q, n̂) , (247)
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where we have introduced the angular contribution of the spectral energy

ωGW(η0, #x , q, n̂) ≡ωGW(η0, q)
[

1 +
δω(η0, #x , q, n̂)

ωGW(η0, q)

]
=

1
ρcrit

q4

a4 f (η, #x , q, n̂) ,
(248)

from which we can define the quantity [49, 50]

δGW(η0, #x , q, n̂) ≡ δω(η0, #x , q, n̂)
ωGW(η0, q)

. (249)

Then, the zeroth order homogeneous component of ΩGW will be

ΩGW(q) =
4π

ρcrit

(q
a

)4
f (q) = 4πωGW(q) . (250)

These variables allow to write the energy density contribution of GWs as

ρGW (η0, #x ) = ρcrit

∫
d ln q

∫
d2n̂ωGW

= ρcrit

∫
d ln q

∫
d2n̂(ωGW + δωGW) =

= ρcrit

∫
d ln q

∫
d2n̂
(q

a

)4
(

f − q
∂ f
∂q

Γ
)
=

= ρcrit

∫
d ln q

(q
a

)4
f
∫

d2n̂
(

1− ∂ ln f
∂ ln q

Γ
)
=

= ρcrit

∫
d ln q

∫
d2n̂ωGW + ρcrit

∫
d ln q

∫
d2n̂ωGWδGW .

(251)

Exploiting now Eq. 250, one can find

∂ ln f
∂ ln q

=
q
f

∂ f
∂q

=
4πq5

ρcrita4ΩGW

ρcrita4

4π

(
∂ΩGW

∂q
q
q5 −

4
q5 Ω

)
=

=
q
Ω

∂ΩGW

∂q
− 4 =

∂ ln ΩGW

∂ ln q
− 4 ,

(252)

which allows to write finally

δGW(η0, #x , q, n̂) =

[
4− ∂ ln ΩGW

∂ ln q

]
Γ(η0, #x , q, n̂) . (253)

Through the presence of the Γ, all the different terms introduced before will
act onto the energy density of the Universe. For example, the memory of the
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production mechanisms carried by the initial condition can directly affect
the GW energy density that we can observe today.

Note that in this work we implicitly assume that the only primordial
source of GWs is inflation. This means that from Sec. 5.1.1 we know that

∂ ln ΩGW

∂ ln q
= nt . (254)

However in full generality, there are many other sourced we could consider.
Also, another implicit assumption is to start from adiabatic initial conditions.
For a complete treatment of different production mechanisms, the reader can
refer to Schulze et al. [94], Dall’Armi et al. [95] and the references therein.

6.4.2 Correlators and Angular power Spectrum

As previously mentioned in Sec. 4.3.3, in order to compare theoretical pre-
dictions with observations, we must study the two-point correlation function
of the quantities involved. In fact, all the stochastic variables we have intro-
duced (Γ(ηin,

#

k , q), ζ(
#

k ), ξλ(
#

k )) find their seeds in the quantum pertur-
bations enhanced to macroscopic scales by inflation. This causes the fact that
their expectation value is null, whereas their two-point correlation functions
are not.

In particular, assuming that the statistical variables have approximately a
Gaussian behavior (experimentally verified for the large-scale perturbations
of ζ and ξλ, as obtained from the CMB data [147], and assumed for the initial
condition term), we can write〈

Γ(ηin,
#

k , q)Γ∗(ηin,
#

k ′, q)
〉
=

2π2

k3 PI(q, k)(2π)3δ(
#

k − #

k ′) ,〈
ζ(

#

k )ζ∗(
#

k ′)
〉
=

2π2

k3 Ps(k)(2π)3δ(
#

k − #

k ′) ,〈
ξλ(

#

k )ξ∗λ′(
#

k ′)
〉
=

2π2

k3 Pt(k)δλλ′(2π)3δ(
#

k − #

k ′) .

(255)

Here, Ps and Pt are the scalar and tensor adimensional power spectra defined
in Chap. 4 and Chap. 5.

Assuming also statistical isotropy, which will be relaxed in Chap. 7, we
can also write the angular correlators of the SH decomposition coefficients
as52

⟨ΓℓmΓ∗ℓ′m′⟩ ≡ δℓℓ′δmm′Cℓ = δℓℓ′δmm′ [Cℓ,I(q) + Cℓ,S + Cℓ,T] , (256)

52 Here we have assumed that the various terms are not cross-correlated. This assumption can
be relaxed as in [141], where the anisotropic distribution of the GW originated in models with
primordial BHs was studied.
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where we have used the usual notation to distinguish the various contribu-
tions.

As an example, let us explicitly perform the calculi for the initial condition
term; the other two will be nearly identical53

〈
Γℓm,IΓ

∗
ℓ′m′ ,I

〉
=(4π)2(−i)ℓ−ℓ

′
∫ d3k

(2π)3

∫ d3k′

(2π)3

〈
Γ(ηin,

#

k , q)Γ∗(ηin,
#

k ′, q)
〉

×Y∗ℓm(k̂)Yℓ′m′(k̂′) jℓ[k(η0 − ηin)]jℓ′
[
k′(η0 − ηin)

]
=

=(4π)2(−i)ℓ−ℓ
′
∫ d3k

(2π)3

∫ d3k′

(2π)3
2π2

k3 PI(q, k)(2π)3δ(
#

k − #

k ′)

×Y∗ℓm(k̂)Yℓ′m′(k̂′) jℓ[k(η0 − ηin)]jℓ′
[
k′(η0 − ηin)

]
=

=4π(−i)ℓ−ℓ
′
∫

d3k
1
k3 PI(q, k) jℓ[k(η0 − ηin)]jℓ′ [k(η0 − ηin)]

×Y∗ℓm(k̂)Yℓ′m′(k̂) =

=4π(−i)ℓ−ℓ
′
∫ dk

k
PI(q, k) jℓ[k(η0 − ηin)]jℓ′ [k(η0 − ηin)]

×
∫

d2k̂Y∗ℓm(k̂)Yℓ′m′(k̂) =

=δℓℓ′δmm′4π
∫ dk

k
PI(q, k) j2

ℓ [k(η0 − ηin)]

=δℓℓ′δmm′Cℓ,I(q) .
(257)

Thus, summarizing we can define

Cℓ,I ≡ 4π
∫ dk

k
j2
ℓ [k(η0 − ηin)] PI(q, k) ,

Cℓ,S ≡ 4π
∫ dk

k
T
(S)2
ℓ (k, η0, ηin) Ps(k) ,

Cℓ,T ≡ 4π
∫ dk

k
T
(T)2
ℓ (k, η0, ηin) ∑

λ=±2
Pt(k) ,

(258)

where the transfer functions are defined in Eq. 237 and Eq. 245.
These functions in Eq. 258 represent the contribution to the angular power

spectra of the GW energy density, relative to the different source terms, and
fully describe it in the full sky.

We again stress that the fact that they are diagonal in both ℓ and m is a
consequence of statistical isotropy. We will see that relaxing this assumption

53 In Eq. 229, we had a factor exp
{

i
#

k · #x 0

}
, which in the following expression is not present

(see also footnote 51). In fact, the resulting factor exp
{

i
(

#

k −
#

k′
)
· #x 0

}
is equal to 1 when

computing the δ
(

#

k −
#

k′
)

coming from the two-point correlation function of ζ for example.
In other words, in this case homogeneity assures that this term get canceled.
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will give rise to non-diagonal couplings between different multipoles ℓ and
ℓ′.



Part III

D E PA RT U R E S F R O M T H E S TA N D A R D M O D E L O F
C O S M O L O G Y

In this part, we will investigate the prospect of deviating from
the conventional cosmological framework. For instance, we will
explore the consequences of relaxing the assumption of statis-
tical isotropy. This departure can be phenomenologically repre-
sented by introducing modulations in the gravitational poten-
tials, leading to a localized break in isotropy. We will provide
a concise overview of this concept in the context of the CMB,
where such modulations find their phenomenological justifica-
tion. Subsequently, we will extend this modulation to the frame-
work of the CGWB, employing the same Boltzmann approach
demonstrated in Chap. 6. However, our exploration of departures
from the standard model does not end here. Another example
we will address in this part is the lack-of-correlation anomaly ob-
served in the CMB. This anomaly, in principle, should also mani-
fest in the CGWB.





7
C M B P O W E R A S Y M M E T RY

We know that a crucial prediction of Big-Bang cosmology is the CMB: a relic
radiation coming from the LSS of photons, which gives us the most ancient

snapshot of the Universe we can observe with EM radiation. In Sec. 4.5 we briefly
described its anisotropies, whose study allows us to draw a comprehensive picture
of the Universe. This is not the end of the story though, since CMB hides some
hints of possible departures from the standard model of Cosmology, the so-called
CMB anomalies. In this chapter, we will briefly describe these features and focus
on the so-called CMB “hemispherical power asymmetry” and on how people in the
literature have tried to characterize it as the effect of isotropy breaking modulation
of gravitational potentials.

7.1 cmb anomalies

Despite the success of a spatially flat ΛCDM model, there are intriguing
anomalies in the large angular scales of the CMB sky that we observe. For
example, the alignment of low multipole moments [148–150], the hemispher-
ical power asymmetry [151], the low CMB variance [152], the parity asymme-
try [153–155], and the cold spot [156, 157] (see also [158–160]). Their statisti-
cal significance lies between 2-4σ, depending on which estimator is used and
which anomaly is considered. Another interesting anomalous feature of the
CMB is its topology [161–163]. It can be studied employing a zoology of dif-
ferent tests, such as Minkowski functionals [164–166] or the skeleton length
[167], and have also shown a relatively high significance [10, 168–172].

7.2 cmb power asymmetry

Since the first-year data of WMAP (see, for example, [151]), hints of a possi-
ble departure from statistical isotropy have started to show to the Cosmology
community. In particular, exploiting many simulated realizations of the CMB,
it was possible to show that the ratio between the power on the two ecliptic
hemispheres in the sky we observe is generally higher than the one obtained
in the vast majority of simulations (≈ 99%) [151]. Over the subsequent years,
this signature has been reassessed, for example, using five-year data from
WMAP, showing that only the ≈ 0.3% of the simulated data achieved a sim-
ilar level of asymmetry [173], or even the most recent Planck data [54, 174],
where the role of the statistics “a posteriori” was also emphasized.
All these “evidences” of some possible new physics lurking behind this
anomaly have obviously drawn a lot of attention in the scientific commu-
nity; thus various proposal solutions were studied.

83
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Figure 11: Intuitive
idea of how a
modulating field
can break the local
isotropy. Here the
modulating field
is represented as
a plain wave, our
Hubble volume is
the red circle and
the gradient of the
modulating field
is the blue arrow,
which will naturally
pick a direction in
the Hubble volume,
following the char-
acteristics of the
mode.

Such a power asymmetry could arise in the presence of some non-Gaussianity,
typically in the context of multiple-field inflationary scenarios [175–180].
These fields generate a local break of statistical isotropy through their gradi-
ent and act on the CMB [181], leaving as a relic the asymmetry we observe;
all this without flawing the hypothesis of an underlying global isotropy of
the Universe, since the modulation gets averaged over many Hubble vol-
umes.

7.3 modulation of gravitational potential

People have tried to describe the CMB power asymmetry by introducing in
the model a super-horizon scale modulation of the gravitational potential,
which will cause the temperature field to seem anisotropic on a local basis.
To see this in an intuitive way it is sufficient to imagine our Hubble volume
as a circle of radius R (see Fig. 11): any small-scale fluctuating field will have
a wavelength much smaller than R, thus they cannot contribute to a depar-
ture from isotropy and will determine the “standard” characteristics we see
in the CMB. However, if we consider a modulating field that has a wavelength
larger than R, it will generate a local break of isotropy through its gradient.
Considering now many Hubble volumes, the modulating field would still
average to 0, reestablishing the isotropy. To translate this in a more quantita-
tive way, we can assume that the gravitational potential Φ( #x ), introduced in
Chap. 4 as one of the scalar perturbations of the metric, actually depends on
two fields g( #x ) and h( #x ), where the latter is only related to super-horizon
scales fluctuations and the former to sub-horizon ones [181]. h will assume
a deterministic value in our Hubble volume, whereas g will look like a stan-
dard stochastic fluctuation. As mentioned above, within the Hubble volume
an observer will see broken statistical isotropy as an effect of the slow mod-
ulation of h, while its local gradient and curvature will pick a preferred
direction, breaking statistical isotropy. Specifically, we write

Φ( #x ) = g1(
#x )[1 + h( #x )] + g2(

#x ) , (259)
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where: g1(
#x ) = Gaussian random field accounting for fluctuations around

the horizon scales;

g2(
#x ) = Gaussian random field accounting for fluctuations on

well-sub-horizon scales, which makes our considerations
compatible with the observed statistical homogeneity and
isotropy on small scales;

h( #x ) = modulating field breaking isotropy.

Going into Fourier space, the product of g1 and h in real space becomes
naturally a convolution, thus Φ gets recast to

Φ(
#

k ) = g1(
#

k ) +
∫ d3k′

(2π)3 g1(
#

k ′)h(
#

k − #

k ′) + g2(
#

k ) . (260)

Given the Gaussian assumption we have made for the g fields, we can write
their power spectra as〈

g∗i (
#

k )gi(
#

k ′)
〉
= (2π3)δ(

#

k − #

k ′)Pgi(k) with i = 1, 2 , (261)

which obviously do not couple any mode of different
#

k thanks to the Dirac’s
delta.
We must now stress that we are doing ensemble averages only on one Hub-
ble volume, thus only the gi fields will get averaged, while h keeps its “de-
terministic” value. This allows us to write the 2-point correlation function of
Φ as 〈

Φ∗(
#

k )Φ(
#

k ′)
〉
=(2π)3δ(

#

k − #

k ′)
[
Pg1(k) + Pg2(k)

]
+
[
Pg1(k) + Pg1(k

′)
]
h(

#

k ′ − #

k )

+
∫ d3k̃

(2π)3 Pg1(k̃)h
∗(

#

k − #̃

k )h(
#

k ′ − #̃

k ) .

(262)

Already now, we can notice some peculiarity: in spite of what we have just
told for the 2-points correlation functions of gi, through the presence of
h(

#

k ′ − #

k ) modes with different wavenumber get correlated, assuming that
they are separated by less than the wavenumber of the modulating field h.
This already gives us some information to work on, however what we ob-
serve in the sky is the temperature of CMB photons, thus we must relate Φ
with that, exploiting [181]

Θ( #x ) = −1
3

Φ( #x ) , (263)

which can be decomposed in SHs as in Eq. 155. In this case

Θ(n̂) = ∑
ℓ

ℓ

∑
m=−ℓ

aℓmYℓm(n̂) , (264)
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inverted by

aℓm =
∫ d3k

(2π)3 Θ(n̂)4πiℓjℓ (kDrec)Y∗ℓm(k̂)

=− 1
3

∫ d3k
(2π)3 Φ( #x )4πiℓjℓ (kDrec)Y∗ℓm(k̂) ,

(265)

where: jℓ(x) = spherical Bessel functions;

Drec = distance to the recombination surface, i. e. the LSS.

The Spherical Bessel Functions (SBFs) are one of the two solutions of the
Helmholtz equation

x2 d2y
dx2 + 2x

dy
dx

+
(

x2 − n(n + 1)
)

y = 0 . (266)

They are defined from the “ordinary” Bessel functions as

jℓ(x) ≡
√

π

2x
Jℓ+ 1

2
(x) , (267)

which can be written as

Jℓ(x) =
∞

∑
m=0

(−1)m

m!Γ(m + ℓ+ 1)

(x
2

)2m+ℓ
. (268)

As expected, in the isotropic and homogeneous case the temperature fields
will obey to

⟨a∗ℓ′m′aℓm⟩ = CTT
ℓ δℓℓ′δmm′ , (269)

where CTT
ℓ is the angular power spectrum. Here, the very presence of δℓℓ′ is

a direct consequence of having assumed statistical isotropy. However, in the
presence of a modulating field, things change due to the modified expression
of the two-point correlation function of Φ.
For simplicity, we will consider a modulation of the following form

Φ( #x ) = g( #x )[1 + h( #x )] , (270)

so that we only compute the interesting modulated component, without
bothering to carry on also the standard isotropic results that g2(

#x ) would
have given (one can obtain the full result by adding the non-modulated one).
Hence, in Fourier space

Φ(
#

k ) = g(
#

k ) +
∫ d3k′

(2π)3 g(
#

k ′)h(
#

k − #

k ′) , (271)
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〈
Φ∗(

#

k )Φ(
#

k ′)
〉
=(2π)3δ(

#

k − #

k ′)Pg(k)

+
[
Pg(k) + Pg(k′)

]
h(

#

k − #

k ′)

+
∫ d3k̃

(2π)3 Pg(k̃)h∗(
#

k − #̃

k )h(
#

k ′ − #̃

k ) .

(272)

Now, we can write the correlation function for the SH coefficients at different
ℓ and m as

⟨a∗ℓmaℓ′m′⟩ =
1
9

∫ d3k
(2π)3

∫ d3k′

(2π)3

〈
Φ∗(

#

k )Φ
(

#

k ′
)〉

× (4π)2iℓ
′−ℓjℓ (kDrec) jℓ′

(
k′Drec

)
×Yℓm(k̂)Y∗ℓ′m′

(
k̂′
)

.

(273)

To proceed further we need to plug here Eq. 272, which requires us to specify
the expression for the modulating field.
There is no right or wrong choice for the modulation, but it all depends on
what we want to obtain. In our case, we want to reproduce an excess power
in one of the two hemispheres of the CMB, thus the most natural and simple
choice is to go for a dipole modulation, such as [181]

h( #x ) = w1

√
3

4π

1
k0Drec

sin
#

k 0 · #x , (274)

h(
#

k ) =
w1

2i

√
3

4π

(2π)3

k0Drec

[
δ
(

#

k − #

k 0

)
− δ

(
#

k +
#

k 0

)]
. (275)

where:
#

k 0 = wavenumber of the modulating field fluctuation;

w1 = amplitude of the modulation;

1 = the subscript on the amplitude will remind us that we are
considering a dipole modulation.

In first approximation, we can think of this modulation as ∝ Y10 (dipole), but
again, one could have considered something different. For example, Dvorkin,
Peiris, and Hu [181] also considers a quadrupolar modulation ∝ Y20 to ex-
plain another CMB anomaly, the alignment of the quadrupole and octopole.
Without entering into the details of the subsequent calculations that bring
us to the final angular power spectrum, which we will profusely explore in
Chap. 8 for the CGWB case, we report only the final results, so that we can
compare them in the end. Just be aware that in [181] the ISW effect was ig-
nored.
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Firstly, the apex (i) will indicate a term at i-order in powers of h, i. e. the
modulating field; thus, at zeroth order in the modulation we obtain 54

⟨a∗ℓmaℓ′m′⟩(0) = δℓℓ′δmm′CTT
ℓ , (276)

where the angular power spectrum reads

CTT
ℓ ≡

4π

9

∫ dk
k

k3Pg(k)
2π2 j2

ℓ (kηrec) . (277)

For what regard the first order term (in the modulating field), one finds

⟨a∗ℓmaℓ′m′⟩(1) = δmm′w1

[
R1,ℓ
ℓ′mC

TT
ℓ + R1,ℓ′

ℓm C
TT
ℓ′

]
, (278)

where

Rℓ1,ℓ2
ℓm ≡(−1)m

√
(2ℓ+ 1) (2ℓ1 + 1) (2ℓ2 + 1)

4π

×
(

ℓ1 ℓ2 ℓ

0 0 0

)(
ℓ1 ℓ2 ℓ

0 m −m

) (279)

is a coupling matrix, which in our case (for example ℓ1 = 1 and ℓ2 = ℓ′)
couples modes with ℓ to ℓ± 1 through the triangle rule of the 3− j Wigner’s
symbols [146].
Finally, without reporting the calculus, the second order term (in the modu-
lating field) is given by [181] and reads

⟨a∗ℓmaℓ′m′⟩(2) = δmm′w2
1

[
∑
j

R1,j
ℓmR1,j

ℓ′mC
TT
j

]
, (280)

which instead couples ℓ to ℓ± 2.
The first thing we notice is that every term preserves the proportionality to
δmm′ , which means that only coefficients with the same m are correlated.
Indeed, this delta is a consequence of having used the approximation of
Eq. 293, which assumes k0 ≪ k and allows us to exploit the orthogonality
property of SHs.
However, there is also another way to obtain this delta without assuming
k0 ≪ k. In fact, if

#

k 0 is taken parallel to the z-axis, adding it to
#

k will only
affect its azimuthal angle θ (and its modulus clearly). In other words, the

integral over the solid angle of Yℓm(k̂)Y∗ℓ′m′
(

#

k± #

k0
| #k± #

k0|

)
will still give a δmm′ .

On the other hand, the overall correlation between aℓm will not be diagonal
in ℓ, but there will be some non-diagonal terms correlating the first (ℓ± 1)
and second adjacent (ℓ± 2) terms.

54 The apex TT just indicates that we are considering the self-correlation of the temperature
field. In a more general context where one introduces other fields, such as the polarization
ones E and B, it is possible to look also at the cross-correlations.
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P O W E R A S Y M M E T RY W I T H T H E C G W B : T H E
T H E O R E T I C A L F O U N D AT I O N S

We have briefly seen in Chap. 7 what consequences a dipole modulation carries
onto the CMB temperature field, but now we will plug the same dipole mod-

ulation into the framework introduced in Chap. 6.
This time we will perform all the calculations in an explicit way so that all the pas-
sages are clear to the reader. We will see that some similarity with the CMB case will
pop up, together with some difference. Anyway, the same passages we are about to
present can be used to obtain the final expressions of Chap. 7 for the contributions
to
〈
ΘℓmΘ∗ℓ′m′

〉
.

This chapter is based on Galloni et al. [182].

8.1 scalar contribution of the angular power spectrum of

the cgwb

In Chap. 6, we have seen that the gravitational potentials act on the CGWB

through the SW and ISW effects. These two are part of the scalar contribution
to the angular power spectrum of the CGWB, thus let us remind few expres-
sions found in Chap. 6 and Chap. 7, which are very important to have clear.
The scalar sourced term of Γ, defined in Eq. 226, reads:

ΓS

(
η0,

#

k , n̂
)
=
∫ η0

ηin

dη′eikµ(η′−η0)
[
TΦ(η

′, k)δ(η′ − ηin)

+
∂ [TΨ (η′, k) + TΦ(η

′, k)]
∂η′

]
ζ(

#

k )

≡
∫ η0

ηin

dη′e−ikµ(η0−η′)TS
(
η′, k

)
ζ(

#

k ) .

(281)

We can then decompose it in SH using Eq. 155. The coefficients of such de-
composition are equal to

Γℓm,S = 4π(−i)l
∫ d3k

(2π)3 ei
#

k · #x 0ζ(
#

k )Y∗ℓm(k̂)
{

TΦ (ηin , k) jℓ (k (η0 − ηin ))

+
∫ η0

ηin

dη′
∂ [TΨ (η′, k) + TΦ (η′, k)]

∂η′
jℓ
(
k
(
η0 − η′

))}
= 4π(−i)l

∫ d3k
(2π)3 ei

#

k · #x 0ζ(
#

k )Y∗ℓm(k̂)T
S
ℓ (k, η0, ηin) ,

(282)

89
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where we have introduced the transfer function

T S
ℓ (k, η0, ηin) ≡TΦ (ηin , k) jℓ (k (η0 − ηin ))

+
∫ η0

ηin

dη′
∂ [TΨ (η′, k) + TΦ (η′, k)]

∂η′
jℓ
(
k
(
η0 − η′

))
.

(283)

As aforementioned, instead of the stochastic variable ζ(k) used in Chap. 4,
we can plug the modulation of the gravitational potential of Eq. 271 in
Eq. 282, introducing a Gaussian random field g(k), having power near the
horizon scale, and the modulation field h(k), called “modulating field” and
accounting for the symmetry breaking long-wavelength mode. This also al-
lows us to carry on in the calculations the transfer function TΦ, maintaining
a general approach. In fact, we will specify its explicit expression only after
having obtained the general expressions of the angular power spectrum of
the CGWB.
Thus, we write ζ as

ζ(
#

k ) = g(
#

k ) +
∫ d3k′

(2π)3 g(
#

k ′)h(
#

k − #

k ′) . (284)

Hence, the correlation function becomes〈
ζ(

#

k )ζ∗
(

#

k ′
)〉

=(2π)3δ
(

#

k − #

k ′
)

Pg(k)

+
[
Pg(k) + Pg

(
k′
)]

h
(

#

k − #

k ′
)

+
∫ d3k̃

(2π)3 Pg(k̃)h(
#

k − #̃

k )h∗
(

#

k ′ − #̃

k
)

,

(285)

which can be plugged into

〈
Γℓm,SΓ∗ℓ′m′ ,S

〉
=(4π)2(−i)ℓ−ℓ

′
∫ d3k

(2π)3 ei
#

k · #x 0

∫ d3k′

(2π)3 e−i
#

k ′· #x 0
〈

ζ(
#

k )ζ∗
(

#

k ′
)〉

×Y∗ℓm(k̂)Yℓ′m′
(

k̂′
)
× T S

ℓ (k, η0, ηin) T
S
ℓ′
(
k′, η0, ηin

)
.

(286)

Identifying the terms of Eq. 285 based on their order in h(
#

k ), we can write
the different contributions to the correlation of the ΓS.
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8.1.1 Zeroth Order Term in the Modulating Field

Starting from the zeroth order term (in the modulating field), it is easy to
find〈

Γℓm,SΓ∗ℓ′m′ ,S
〉(0)

=

=(4π)2(−i)ℓ−ℓ
′
∫ d3k

(2π)3 ei
#

k · #x 0

∫ d3k′

(2π)3 e−i
#

k ′· #x 0 × (2π)3δ
(

#

k − #

k ′
)

Pg(k)

×Y∗ℓm(k̂)Yℓ′m′
(

k̂′
)
× T S

ℓ (k, η0, ηin) T
S
ℓ′
(
k′, η0, ηin

)
=

=(4π)2(−i)ℓ−ℓ
′
∫ d3k

(2π)3 Pg(k)×Y∗ℓm(k̂)Yℓ′m′
(

k̂
)
× T S

ℓ (k, η0, ηin) T
S
ℓ′ (k, η0, ηin) =

=(4π)2
∫ dk

k(2π)3 k3Pg(k)δmm′δℓℓ′T
(S)2
ℓ (k, η0, ηin) =

=4π
∫ dk

k
∆g(k)δmm′δℓℓ′T

(S)2
ℓ (k, η0, ηin) =

=δℓℓ′δmm′C
(0)
ℓ ,

(287)

where ∆g ≡ k3

2π2 Pg. Here, we have used the orthogonality condition of SHs

and the fact that the observer is positioned in #x 0 = 0 55. As one can expect
by sending the modulating field to zero, this term gives the isotropic term
found in Chap. 6, where one have to substitute ∆g ↔ Ps

56.

8.1.2 First Order Term in the Modulating Field

For what regard the first order term (in the modulating field), we must fix
an explicit expression of h(

#

k ). In order to mimic what we have done in
Chap. 7, following [181], we assume a dipole modulation, thus we can write

h(
#

k ) =
w1

2i

√
3

4π

(2π)3

k0 (η0 − ηin )

[
δ
(

#

k − #

k 0

)
− δ

(
#

k +
#

k 0

)]
.

(288)

We stress again that this choice of the modulating field is not mandatory,
but instead represents the most simple example we could use to study a
departure from isotropy. For now, we stick to this parametrization, but in
the future it would be interesting to explore more general choices.

55 See footnotes 51 and 53 for further details on the choice for the origin of the reference frame
#x 0 = 0.

56 Once have defined which is the power spectrum and its adimensional counterpart, the two
expression are completely equivalent as one would expect.
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To go on with our calculation we need to make explicit h in
#

k ′ − #

k , thus
using the expression above in Fourier space

h(
#

k ′− #

k ) =
w1

2i

√
3

4π

(2π)3

k0 (η0 − ηin )

[
δ
(

#

k ′ − #

k − #

k 0

)
− δ

(
#

k ′ − #

k +
#

k 0

)]
,

(289)

which allows to find〈
Γℓm,SΓ∗ℓ′m′ ,S

〉(1)
=

(4π)2(−i)ℓ−ℓ
′
∫ d3k

(2π)3 ei
#

k · #x 0

∫ d3k′

(2π)3 e−i
#

k ′· #x 0 ×
[
Pg(k) + Pg

(
k′
)]

h
(

#

k ′ − #

k
)

×Y∗ℓm(k̂)Yℓ′m′
(

k̂′
)
× T S

ℓ (k, η0, ηin) T
S
ℓ′
(
k′, η0, ηin

)
=(4π)2(−i)ℓ−ℓ

′
∫ d3k

(2π)3 ei
#

k · #x 0

∫ d3k′

(2π)3 e−i
#

k ′· #x 0 ×
[
Pg(k) + Pg

(
k′
)]

×Y∗ℓm(k̂)Yℓ′m′
(

k̂′
)
× T S

ℓ (k, η0, ηin) T
S
ℓ′
(
k′, η0, ηin

)
× w1

2i

√
3

4π

(2π)3

k0 (η0 − ηin )

[
δ
(

#

k ′ − #

k − #

k 0

)
− δ

(
#

k ′ − #

k +
#

k 0

)]
.

(290)

Let us consider the first of the two Dirac deltas and solve that term. Again,
assuming the origin in x0 = 0 57 we can get rid of the exponentials and,
integrating the delta, we get

〈
Γℓm,SΓ∗ℓ′m′ ,S

〉(1)
1st

=

=(4π)2(−i)ℓ−ℓ
′
∫ d3k

(2π)3

∫ d3k′

(2π)3 ×
[
Pg(k) + Pg

(
k′
)]

×Y∗ℓm(k̂)Yℓ′m′
(

k̂′
)
× T S

ℓ (k, η0, ηin) T
S
ℓ′
(
k′, η0, ηin

)
× w1

2i

√
3

4π

(2π)3

k0 (η0 − ηin )
δ
(

#

k ′ − #

k − #

k 0

)
=
(4π)2

(2π)3 (−i)ℓ−ℓ
′
∫

d3k
[

Pg(k) + Pg

(
|

#

k +
#

k 0|
)]

×Y∗ℓm(k̂)Yℓ′m′

(
#

k +
#

k 0

|
#

k +
#

k 0|

)
× T S

ℓ (k, η0, ηin) T
S
ℓ′

(
|

#

k +
#

k 0| , η0, ηin

)
× w1

2i

√
3

4π

1
k0 (η0 − ηin)

.

57 See footnotes 51 and 53 for further details on the choice for the origin of the reference frame
#x 0 = 0.
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(291)

Now, we can make explicit the product of the transfer function and the SHs

evaluated in |
#

k +
#

k 0| , where we can identify the SW (second line) and the
ISW (third line) effects for the CGWB

1
k0 (η0 − ηin)

√
3

4π
T S
ℓ′

(
|

#

k +
#

k 0| , η0, ηin

)
Yℓ′m′

(
#

k +
#

k 0

|
#

k +
#

k 0|

)
=

1
k0 (η0 − ηin)

√
3

4π

[
TΦ

(
ηin , |

#

k +
#

k 0|
)
jℓ′
[
|

#

k +
#

k 0| (η0 − ηin)
]

+
∫ η0

ηin

dη′
∂
[

TΨ(η
′, |

#

k +
#

k 0| ) + TΦ(η
′, |

#

k +
#

k 0| )
]

∂η′
jℓ′
[
|

#

k +
#

k 0|
(
η0 − η′

)] ]

×Yℓ′m′

(
#

k +
#

k 0

|
#

k +
#

k 0|

)
.

(292)

Now, we can introduce an approximation to expand the product of a SBF and
a SH in the previous expression for k0 ≪ k. Specifically, one can show that
[181]

1
k0(η0−ηin)

√
3

4π jℓ

(∣∣∣ #

k + α
#

k 0

∣∣∣ (η0 − ηin)
)

Yℓm

(
#

k +α
#

k 0

| #k +α
#

k 0|

)
≈ 1

k0(η0−ηin)

√
3

4π jℓ(k (η0 − ηin))Yℓm(k̂)

− α
2 R1,ℓ+1

ℓm jℓ+1(k (η0 − ηin))Yℓ+1,m(k̂)
+ α

2 R1,ℓ−1
ℓm jℓ−1(k (η0 − ηin))Yℓ−1,m(k̂) ,

(293)

where

Rℓ1,ℓ2
ℓm ≡(−1)m

√
(2ℓ+ 1) (2ℓ1 + 1) (2ℓ2 + 1)

4π

×
(

ℓ1 ℓ2 ℓ

0 0 0

)(
ℓ1 ℓ2 ℓ

0 m −m

)
.

(294)
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In our case we have α = 1 and ℓ→ ℓ′, m→ m′, thus 58

1
k0(η0−ηin)

√
3

4π jℓ′
(∣∣∣ #

k +
#

k 0

∣∣∣ (η0 − ηin)
)

Yℓ′m′

(
#

k +
#

k 0

| #k + #

k 0|

)
≈ 1

k0(η0−ηin)

√
3

4π jℓ′(k (η0 − ηin))Yℓ′m′(k̂)

−1
2 R1,ℓ′+1

ℓ′m′ jℓ′+1(k (η0 − ηin))Yℓ′+1,m′(k̂)
+1

2 R1,ℓ′−1
ℓ′m′ jℓ′−1(k (η0 − ηin))Yℓ′−1,m′(k̂) .

(296)

With this approximation, we can write for the SW effect (second line of
Eq. 292)

1
k0 (η0 − ηin)

√
3

4π
TΦ

(
ηin , |

#

k +
#

k 0|
)
jℓ′
[
|

#

k +
#

k 0| (η0 − ηin )
]

×Yℓ′m′

(
#

k +
#

k 0

|
#

k +
#

k 0|

)
=

≈ 1
k0 (η0 − ηin)

√
3

4π
TΦ

(
ηin , |

#

k +
#

k 0|
)
jℓ′(k (η0 − ηin))Yℓ′m′(k̂)

− 1
2

R1,ℓ′+1
ℓ′m′ TΦ

(
ηin , |

#

k +
#

k 0|
)
jℓ′+1(k (η0 − ηin))Yℓ′+1,m′(k̂)

+
1
2

R1,ℓ′−1
ℓ′m′ TΦ

(
ηin , |

#

k +
#

k 0|
)
jℓ′−1(k (η0 − ηin))Yℓ′−1,m′(k̂) =

=
1

k0 (η0 − ηin)

√
3

4π
T SW
ℓ′

(
|

#

k +
#

k 0|
)

Yℓ′m′(k̂)

− 1
2

R1,ℓ′+1
ℓ′m′ T SW

ℓ′+1

(
|

#

k +
#

k 0|
)

Yℓ′+1,m′(k̂)

+
1
2

R1,ℓ′−1
ℓ′m′ T SW

ℓ′−1

(
|

#

k +
#

k 0|
)

Yℓ′−1,m′(k̂) ,

(297)

where we have defined the following quantity

T SW
ℓ

(
|

#

k +
#

k 0|
)
≡ TΦ

(
ηin, |

#

k +
#

k 0|
)
jℓ(k(η0 − ηin)) . (298)

58 In spite of what is reported in [181], in Eq. 293 we presented an extra 1/2 factor in front of the
first order terms in the expansion. This factors is due to the known relation of the derivative
of Bessel functions [31]

dJℓ(z)
dz

=
1
2
[Jℓ−1(z)− Jℓ+1(z)] . (295)

Even if this does not seem the case at first sight, this factor is indeed crucial to reconcile our
results with the ones of [181] (we will come back on this later on in this Thesis).
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We stress that this transfer function is different from the SW contribution of
Eq. 283 because here TΦ is evaluated in |

#

k +
#

k 0| and not in
#

k .
Looking now at the ISW effect (third line of Eq. 292), we can write similarly

1
k0 (η0 − ηin)

√
3

4π

∫ η0

ηin

dη′
∂
[

TΨ(η
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∂η′
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|

#
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#

k 0|
(
η0 − η′

)]
Yℓ′m′

(
#
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#

k 0

|
#
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#
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)
=

≈ 1
k0 (η0 − ηin)

√
3

4π
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ηin

dη′
∂
[

TΨ(η
′, |

#

k +
#

k 0| ) + TΦ(η
′, |

#

k +
#

k 0| )
]

∂η′

× jℓ′
(
k
(
η0 − η′

))
Yℓ′m′

(
k̂
)
+

− 1
2

R1,ℓ′+1
ℓ′m′

∫ η0

ηin

dη′
η0 − η′

η0 − ηin

∂
[

TΨ(η
′, |

#

k +
#

k 0| ) + TΦ(η
′, |

#

k +
#

k 0| )
]

∂η′

× jℓ′+1
(
k
(
η0 − η′

))
Yℓ′+1,m′

(
k̂
)
+

+
1
2

R1,ℓ′−1
ℓ′m′

∫ η0

ηin

dη′
η0 − η′
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∂
[

TΨ(η
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#

k +
#

k 0| ) + TΦ(η
′, |

#

k +
#

k 0| )
]

∂η′

× jℓ′−1
(
k
(
η0 − η′

))
Yℓ′−1,m′

(
k̂
)
=

=
1

k0 (η0 − ηin)

√
3

4π
T ISW
ℓ′

(
|

#

k +
#

k 0|
)

Yℓ′m′(k̂)

− 1
2

R1,ℓ′+1
ℓ′m′ T ISW⋆

ℓ′+1

(
|

#

k +
#

k 0|
)

Yℓ′+1,m′(k̂)

+
1
2

R1,ℓ′−1
ℓ′m′ T ISW⋆

ℓ′−1

(
|

#

k +
#

k 0|
)

Yℓ′−1,m′(k̂) .

(299)

This time the approximation of Eq. 293 gives us a new extra factor inside the
integral.
Indeed, when computing the first order term of the expansion, one has to
evaluate

djℓ(z(α))
dα

=
djℓ(z)

dz
dz(α)

dα
, (300)

where: z(α) ≡ |
#

k + α
#

k 0| (η0 − η′);

α≪ 1→ this allows to realize αk0 ≪ k.
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Then, looking at the derivative of z w. r. t. α

dz(α)
dα

=(η0 − η′)
d

dα

(√
k2 + α2k2

0 + 2α cos(θ)kk0

)
≃(η0 − η′)

d
dα

(√
k2 + 2α cos(θ)kk0

)
=(η0 − η′)

1
2

2 cos(θ)kk0√
k2 + 2α cos(θ)kk0

≃ (η0 − η′)
cos(θ)kk0

k

≃(η0 − η′) cos(θ)k0 ≃ k0(η0 − η′) ,

(301)

where we approximated the cosine to 1 as done for Eq. 293. We can see that
now the derivative just obtained does not cancel out the front factor present
in Eq. 299, giving instead an extra factor

η0 − η′

η0 − ηin
̸= 1 . (302)

For this reason in Eq. 299, we have defined two different transfer functions,
distinguished by a ⋆

T ISW
ℓ

(
|

#

k +
#

k 0|
)
≡
∫ η0

ηin

dη′
∂
[

TΨ(η
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k +
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k 0| ) + TΦ(η
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k +
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k 0| )
]

∂η′
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(
k
(
η0 − η′

))
,

T ISW⋆
ℓ

(
|

#

k +
#

k 0|
)
≡
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dη′
∂
[

TΨ(η
′, |

#

k +
#

k 0| ) + TΦ(η
′, |

#

k +
#

k 0| )
]

∂η′

× η0 − η′

η0 − ηin
jℓ
(
k
(
η0 − η′

))
.

(303)

We stress again that this transfer function is in general different from the ISW

contribution of T S
ℓ (see Eq. 283) because here TΦ and TΨ are evaluated in

|
#

k +
#

k 0| and not in
#

k .
In addition, the presence of the extra factor, induced by the modulation,
represents a signature of the departure from isotropy of the CGWB, given
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that it is not present in the isotropic computations.
Neglecting for the moment the ISW effect, Eq. 291 becomes

〈
Γℓm,SΓ∗ℓ′m′ ,S

〉(1)
1st

=

=
(4π)2

(2π)3 (−i)ℓ−ℓ
′w1
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[
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]

,

(304)

which, computing individually the three resulting terms, becomes〈
Γℓm,SΓ∗ℓ′m′ ,S

〉(1)
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=
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=
(4π)2

(2π)3
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(305)

In other words, we get an isotropic contribution (∝ δℓℓ′) and one that cou-
ples ℓ ± 1 to ℓ through the 3-j symbols in the definition of R. Indeed the
triangle inequality59 applied to the 3− j symbols gives the only non-null
contribution when ℓ′ = ℓ± 1.

We have just computed the first contribution to Eq. 290, so we must compute
the other one, coming from the other Dirac delta. However we can exploit
a simple trick to fasten the procedure: if we integrate the delta in k (instead
of k′), the delta sends k → k′ + k0 and the procedure becomes exactly the
same as in the previous case, at the cost of inverting the primes. One can
show that in the end the contribution reads60

〈
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=
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(2π)3
w1

2
R1,ℓ′
ℓm δmm′
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(
k′, η0, ηin
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T SW
ℓ′ (k′ + k0) .

(307)

59 For a symbol of the type(
ℓ1 ℓ2 ℓ

0 m −m

)
(306)

the following has to hold: |ℓ1 − ℓ2| ≤ ℓ ≤ ℓ1 + ℓ2. In our case this becomes |ℓ− 1| ≤ ℓ′ ≤
ℓ+ 1, however these are all integer quantities, thus ℓ′ is fixed to ℓ± 1 (see [146]).

60 We included the minus sign in front of the delta in such a way that the two contributions
have to be summed.
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Notice that the isotropic term is the same in the two contributions, exception
made for a minus sign in the latter expression, thus the final expression will
be〈

Γℓm,SΓ∗ℓ′m′ ,S
〉(1)

SW
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]
,

(308)

where we defined the angular power spectrum (of the CGWB) relative to this
contribution as

CSW
ℓ ≡ 4π

∫ dk
k

k3

2π2

[
Pg(k) + Pg

(
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#

k 0|
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.

(309)

In order to simplify our computation, until now we had temporarily ne-
glected the ISW effect contribution, leaving only the easier-to-treat SW one.
However, in spite of the different explicit expressions of the two effects, they
can be treated in the same way; just pay attention to the presence of the
modified transfer functions that characterize the ISW effect. In other words,
without reporting the same passages done for the SW case, we can write for
its integrated counterpart〈

Γℓm,SΓ∗ℓ′m′ ,S
〉(1)

ISW
=
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2
δmm′

[
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]
, (310)

where now

C ISW
ℓ ≡ 4π

∫ dk
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)

.

(311)

To obtain the full first order contribution to the correlation of the SH coeffi-
cients, we can then sum Eq. 308 and Eq. 310 to obtain〈

Γℓm,SΓ∗ℓ′m′ ,S
〉(1)

=
w1

2
δmm′

[
R1,ℓ
ℓ′mC

(1)
ℓ + R1,ℓ′

ℓm C
(1)
ℓ′

]
, (312)
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where

C(1)ℓ ≡4π
∫ dk

k
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(313)

Here, we defined a new transfer function

U⋆
ℓ

(
|

#

k +
#

k 0|
)
≡ T SW

ℓ

(
|

#

k +
#

k 0|
)
+ T ISW⋆

ℓ

(
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#

k +
#

k 0|
)

, (314)

which is different from the “regular” T S
ℓ (k, η0, ηin) of Eq. 283 since TΦ, TΨ

are evaluated in |
#

k +
#

k 0| and the ISW term contains the extra factor η0−η′

η0−ηin
(see Eq. 303 for the full expression of the transfer functions containing this
term).
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8.1.3 Second Order Term in the Modulating Field

We now compute the term
〈

Γ∗ℓm,S(q)Γℓ′m′ ,S(q)
〉(2)

, which however requires
a longer calculation to be carried out.
Reminding the expression of h(

#

k − #

k ′) of Eq. 289, we can write
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(315)

Following the same idea of the first order term (in the modulating field), we
calculate one contribution at a time, however in this case every term contains
a couple of deltas, instead of a single one. For all of them, the “secret” to
obtain a fairly simple calculation is to integrate

#

k and
#

k ′, leaving behind
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#̃

k .
Naturally, we start from the first one, which gives the following expression
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(316)

We can then apply again Eq. 293 for each of the product of transfer function
and SH 61. Reminding that the transfer function can be divided in a SW and
a ISW contribution, where we must keep track of the starred components, we
can write〈
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k +
#

k 0|
)

Yℓ′m′(
̂̃k)

− 1
2

R1,ℓ′+1
ℓ′m′ U⋆

ℓ′+1

(
|

#̃

k +
#

k 0|
)

Yℓ′+1,m′(
̂̃k)

+
1
2

R1,ℓ′−1
ℓ′m′ U⋆

ℓ′−1

(
|

#̃

k +
#

k 0|
)

Yℓ′−1,m′(
̂̃k)] ,

(317)

61 See also footnote 58.
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where we defined

Uℓ

(
|

#̃

k +
#

k 0|
)
≡ T SW

ℓ

(
|

#̃

k +
#

k 0|
)
+ T ISW

ℓ

(
|

#̃

k +
#

k 0|
)

. (318)

Let us now compute the product of the square brackets, multiplied by (−i)ℓ−ℓ
′

(all the spherical harmonics will depend on ̂̃k and the transfer functions on(
|

#̃

k +
#

k 0|
)

, so we drop dependencies for the sake of notation):

(−i)ℓ−ℓ
′
[ 3

4π

1

k2
0(η0 − ηin)

2UℓUℓ′Yℓ′m′Y∗ℓm+

− 1
2k0 (η0 − ηin)

√
3

4π
R1,ℓ′+1
ℓ′m′ UℓU

⋆
ℓ′+1Y∗ℓmYℓ′+1,m′+

+
1

2k0 (η0 − ηin)

√
3

4π
R1,ℓ′−1
ℓ′m′ UℓU

⋆
ℓ′−1Y∗ℓmYℓ′−1,m′+

− 1
2k0 (η0 − ηin)

√
3

4π
R1,ℓ+1
ℓm U⋆

ℓ+1Uℓ′Y∗ℓ+1,mYℓ′m′+

+
1

2k0 (η0 − ηin)

√
3

4π
R1,ℓ−1
ℓm U⋆

ℓ−1Uℓ′Y∗ℓ−1,mYℓ′m′+

− 1
4

R1,ℓ+1
ℓm R1,ℓ′−1

ℓ′m′ U⋆
ℓ+1U

⋆
ℓ′−1Y∗ℓ+1,mYℓ′−1,m′+

+
1
4

R1,ℓ+1
ℓm R1,ℓ′+1

ℓ′m′ U⋆
ℓ+1U

⋆
ℓ′+1Y∗ℓ+1,mYℓ′+1,m′+

− 1
4

R1,ℓ−1
ℓm R1,ℓ′+1

ℓ′m′ U⋆
ℓ−1U

⋆
ℓ′+1Y∗ℓ−1,mYℓ′+1,m′+

+
1
4

R1,ℓ−1
ℓm R1,ℓ′−1

ℓ′m′ U⋆
ℓ−1U

⋆
ℓ′−1Y∗ℓ−1,mYℓ′−1,m′

]
.

(319)
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Integrating in
∫

d̂̃k the products of spherical harmonics will provide several
different Kronecker deltas, which will then make explicit also the power of
−i for each term:

3
4π

1

k2
0(η0 − ηin)

2UℓUℓδℓℓ′δmm′(−i)0+

− 1
2k0 (η0 − ηin)

√
3

4π
R1,ℓ
ℓ′mUℓU

⋆
ℓ δmm′(−i)1+

+
1

2k0 (η0 − ηin)

√
3

4π
R1,ℓ
ℓ′mUℓU

⋆
ℓ δmm′(−i)−1+

− 1
2k0 (η0 − ηin)

√
3

4π
R1,ℓ′
ℓm U⋆

ℓ′Uℓ′δmm′(−i)−1+

+
1

2k0 (η0 − ηin)

√
3

4π
R1,ℓ′
ℓm U⋆

ℓ′Uℓ′δmm′(−i)1+

− 1
4 ∑

j

R1,j
ℓmR1,j

ℓ′mU
⋆
j U

⋆
j δmm′(−i)−2+

+
1
4 ∑

j

R1,j
ℓmR1,j

ℓ′mU
⋆
j U

⋆
j δmm′(−i)0+

− 1
4 ∑

j

R1,j
ℓmR1,j

ℓ′mU
⋆
j U

⋆
j δmm′(−i)2+

+
1
4 ∑

j

R1,j
ℓmR1,j

ℓ′mU
⋆
j U

⋆
j δmm′(−i)0 .

(320)

Thus, summing the various terms one ends up with

〈
Γℓm,SΓ∗ℓ′m′ ,S

〉(2)
1st

=

=
4π

2π2
w2

1
4

∫
dk̃ Pg(k̃)

[ 3
4π

1

k2
0(η0 − ηin)

2UℓUℓδℓℓ′δmm′+

+
i

k0 (η0 − ηin)

√
3

4π
R1,ℓ
ℓ′mUℓU

⋆
ℓ δmm′ −

i
k0 (η0 − ηin)

√
3

4π
R1,ℓ′
ℓm U⋆

ℓ′Uℓ′δmm′+

+ ∑
j

R1,j
ℓmR1,j

ℓ′mU
⋆
j U

⋆
j δmm′

]
.

(321)

At this point, one would have to compute the other three terms coming
from the other couples of Dirac deltas of Eq. 315, however one can exploit
the following shortcut to reach the final solution:

• the sign in front of the isotropic term (∝ δℓℓ′) is exclusively defined
by the sign in front of the couple of Dirac deltas (see the first term of
Eq. 321 for example);
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• the Dirac delta imposing k = k̃ ± k0 translates into a final term ∝
∓R1,ℓ′

ℓm (see the third term of Eq. 321 for example);

• the Dirac delta imposing k′ = k̃ ± k0 translates into a final term ∝
±R1,ℓ

ℓ′m (see the second term of Eq. 321 for example);

• if the two deltas has agreeing signs in front of k0, one ends up with
a plus in front of the term with the sum over j, otherwise one gets a
minus sign (see the fourth term of Eq. 321 for example).

Applying these rules, one can show that the only surviving term is the one
proportional to the sum over j 62:〈

Γℓm,SΓ∗ℓ′m′ ,S
〉(2)

=
4π

2π2
w2

1
4

∫
dk̃ Pg(k̃)4 ∑

j

R1,j
ℓmR1,j

ℓ′mU
⋆
j U

⋆
j δmm′

=w2
1δmm′4π

∫ d3k̃
k̃

k̃3

2π2 Pg(k̃)∑
j

R1,j
ℓmR1,j

ℓ′mU
⋆
j U

⋆
j

=w2
1δmm′ ∑

j

R1,j
ℓmR1,j

ℓ′mC
(2)
j ,

(322)

where

C(2)ℓ ≡4π
∫ dk

k
k3

2π2 Pg(k)U⋆
ℓ (k)U

⋆
ℓ (k) . (323)

8.1.4 Full Expression of the Correlator

Finally we are able to write the full expression for
〈

Γℓm,SΓ∗ℓ′m′ ,S
〉

, which
will contain the zeroth, first and second order contributions (in the modulat-
ing field) just derived (this subsection is intended to be a summary of the
previously obtained expressions). It reads〈

Γℓm,SΓ∗ℓ′m′ ,S
〉
= δℓℓ′δmm′C

(0)
ℓ +

w1

2
δmm′

[
R1,ℓ
ℓ′mC

(1)
ℓ + R1,ℓ′

ℓm C
(1)
ℓ′

]
+

+ w2
1δmm′ ∑

j

R1,j
ℓmR1,j

ℓ′mC
(2)
j ,

(324)

62 We implicitly assume here that the transfer function in k̃± k0 is approximately equal to the
one evaluated in k̃. Having done differently would have not allowed to cancel the various
term disappearing in this following passage.
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where

C(0)ℓ ≡4π
∫ dk

k
k3

2π2 Pg(k)T
(S)2
ℓ (k) ,

C(1)ℓ ≡4π
∫ dk

k
k3

2π2

[
Pg(k) + Pg

(
|

#

k +
#

k 0|
)]

T S
ℓ (k)U⋆

ℓ

(
|

#

k +
#

k 0|
)

,

C(2)ℓ ≡4π
∫ dk

k
k3

2π2 Pg(k)U⋆
ℓ (k)U

⋆
ℓ (k) .

(325)

We also remind the expression of the transfer functions

T S
ℓ (k, η0, ηin) ≡TΦ (ηin , k) jℓ (k (η0 − ηin ))

+
∫ η0

ηin

dη′
∂[TΨ (η′, k) + TΦ (η′, k)]
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(
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))
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|
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|
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|
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|
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|
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T ISW
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∂
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TΨ

(
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#

k +
#

k 0|
)
+ TΦ

(
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#

k +
#

k 0|
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∂η′
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(
k
(
η0 − η′
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T ISW⋆
ℓ

(
|

#

k +
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k 0|
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ηin

dη′
∂
[

TΨ

(
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#

k +
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k 0|
)
+ TΦ

(
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#

k +
#

k 0|
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∂η′
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(
k
(
η0 − η′
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(326)

Firstly, we notice that approximating these results for
#

k +
#

k 0 ≈
#

k and

neglecting the ISW effect, we get Uℓ = U⋆
ℓ = T S

ℓ , thus C(0)ℓ = C(1)ℓ =

C(2)ℓ . In other words, the results obtained in [181] are reproduced by our
computation, considering that they used TΦ = −1

3 .
The more careful readers would have noticed that, in the case of the second-
order term in the modulating field, the presence of the factor 1/2 in Eq. 293

(see footnote 58) has indeed allowed us to obtain the same contribution of
[181] reported in Eq. 280 (canceling out a 4, which would have come from
the sum performed to obtain Eq. 322). On the other hand, the same factor
seems to have made us fail in reproducing [181] for what concerns the first-
order term in the modulating field (see Eq. 278). This problem is solved by

looking closely at C(1)ℓ , where there is a sum of power spectra, which can
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be assumed to be equal at first-order in k/k0
63. This provides a factor 2,

canceling out the 1/2 we have here.

63 This reduces to show that

k3

2π2 Pg

(
| #k +

#

k 0|
)
= ∆0

(
| #k +

#

k 0|
k0

)ns−1

= ∆0


√

k2 + k2
0 + 2k · k0 cos(θ)

k0

ns−1

, (327)

which for k0 ≪ k can be approximated as

∆0

√( k
k0

)2
+ 1 + 2

k
k0

cos(θ)

ns−1

≃∆0

(
k
k0

)ns−1
=

k3

2π2 Pg(k) .

(328)





9
P O W E R A S Y M M E T RY W I T H T H E C G W B : R E S U LT S A N D
F O R E C A S T S

In the previous chapter, we laid the theoretical foundations to describe a modulation
of the gravitational potentials in the context of the CGWB. Here, we focus on

the analysis that can lead to some predictions on the significance of this anomaly
assuming to observe the GW background with some interferometer.
This chapter is based on Galloni et al. [182].

9.1 statistics in the presence of a dipolar modulation

In order to compute the contributions C(i)ℓ of Eq. 325 we modified the pub-
licly available Boltzmann code Cosmic Linear Anisotropy Solving System

(CLASS) [183, 184], both for the CGWB and the CMB. We add the CGWB in
the code similarly to [104] by mimicking the CMB procedures, while mod-
ifying the source functions as in Eq. 226. Furthermore, the tensor-induced
contribution is reproduced by mimicking the CMB procedure and exploiting
the equations of [49, 50]. Then, we modify the vector of values of the mode k
where the gravitational potential transfer functions are evaluated throughout
the code to shift them to k + k0 (recall Eq. 326). Furthermore, we calculate
the cross-correlation between the CMB and the CGWB, which will be crucial
in comparing the two observables [185–188] 64.

Recall that in [181] the ISW term was neglected, whereas in our modifi-
cation of CLASS we implement it. Furthermore, in our computation, we keep
the expression of the full transfer function encoded in CLASS, without assum-
ing any approximation. Also, remember that we assumed k ≪ k0 to obtain

the expression of C(1)ℓ and C(2)ℓ , therefore the results should only be trusted
when that condition is satisfied.

Before looking at the effects of the modulation, it is worth exploring how
the tensor spectral tilt affects the theoretical angular power spectrum of
the CGWB following Eq. 226. Fig. 12 shows respectively the CGWB angular
power spectrum (left) and its cross-correlation spectrum with CMB temper-
ature anisotropy (right) (in Sec. A.1 we distinguish the scalar and tensor
contributions to the spectra). These two figures need further clarification:
when we look at the CGWB, the actual observable we can measure with in-
terferometers is the GWs energy density and its anisotropies, i. e. the energy
contrast as a function of the direction in the sky. As mentioned above, this

64 At the time [182] was written, the work of Schulze et al. [94] was not available, so we inde-
pendently coded the CGWB in CLASS. Now, one can find an official release of CLASS that natively
provides these computations.
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Figure 12: CGWB
angular power
spectrum (left) and
cross-correlation
angular power spec-
trum between CMB
temperature and
CGWB (right) when
we assume different
values for the tensor
spectral tilt nt and
we do not consider
any effect due to
the modulation
(ω1 = 0).

is related to the anisotropies of Γ through Eq. 253. Thus, be aware that from
this point on we will work with the angular power spectrum of the density
contrast, gaining extra (4− nt) factors when we compute the CGWB, or its
cross-correlation with the CMB temperature. For this reason, these two will
depend on the spectral tilt nt through both the Γ → δGW conversion factor
and the presence of ΓI in Eq. 226. However, this is not all: Eq. 217 shows that
there is another term that contributes to the CGWB anisotropies induced by
the presence of tensor perturbations of the metric χij in Eq. 198. The transfer
function of this term is proportional to the time derivative of the tensor mode
function when decomposing the perturbation in circular polarizations (see
e. g. [53]), i. e. ∝ −χ′(η, k). Then, the angular power spectrum will depend
on the power-law description of the primordial tensor power spectrum [49].
In the case of CMB [189], the transfer function relative to tensor perturbations
is also ∝ −χ′, thus red-tilted spectra are expected not only to enhance both
the tensor contributions of the angular power spectra of CGWB and TT CMB

at large scales, but also their cross-correlation (see Sec. A.1 for some further
detail).

To fully explore the dependence on nt, we choose some values for the tilt
that span the limits provided by [54] when including the data from LIGO-
Virgo, i. e. −0.76 < nt < 0.52. Specifically, we choose nt = −0.76, −0.35,
0, 0.25 or 0.52. It should be emphasized once again that we are assuming
a power-law description of the tensor power spectrum in an inflationary
context. Furthermore, from this point on, all six ΛCDM parameters are set to
the best fit of [190], whereas the tensor-to-scalar ratio is chosen to saturate
the bound provided by [54] when including the data from LIGO-Virgo, that
is, r = 0.066 at 0.01 Mpc−1 65.

Going back to the CGWB angular power spectrum, the left panel of Fig. 12

shows how the spectrum changes when we assume different values of nt.
Recalling Eq. 226 and reminding the presence of the tensor-sourced contri-
bution, one can see that the higher the tilt, the more the anisotropies will be
suppressed. This same effect is brought to the cross-spectrum, as shown in
the right panel of Fig. 12. Interestingly, one can notice that for very red-tilted
spectra, the total cross-spectrum at large scales tends to increase significantly

65 The updated bounds on r and nt will be discussed in Chap. 13, which of course was not
available at the time [182] was written.
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Figure 13:
Covariance ma-
trix between ℓ and
ℓ′ for m = 0 for the
first 10 multipoles
of the CGWB. Here
the generated vari-
ance on the dipole
is clearly visible.

due to tensor contribution, as expected from the previous discussion of the
tensor sourced contribution (see also Sec. A.1).

9.1.1 Contributions to the correlators

Let us recall that C(1)ℓ and C(2)ℓ are just a part of the whole expression of the
two novel contributions to the correlators (see Eq. 325), and thus more work
has to be done to include the proportionality coefficients. The next step to
simplify the computation would be to fix the value of m, given that the corre-
lators are “diagonal” in m, and compute Eq. 325. Using HEALPix [191], we
are able to compute a realization of Θℓm once the angular power spectrum
is specified. In the standard case the Θℓm are distributed around a Gaussian
with zero mean and a variance given by the angular power spectrum 66. So,
we modified some of the routines of HEALPix in order to account for the
correlation between multipoles introduced by the modulation but, most im-
portantly, for the fact that now the results will depend on m (i. e. broken
statistical isotropy).

As an example, in Fig. 13 the correlation matrix between ℓ and ℓ′ for the
first 10 multiples for m = 0 of the CGWB when we assumed ω1 = 4. One can
notice that indeed there is a small contribution to the “pure” dipole coming
from the second order term in the modulating field and a much bigger one
coming from the cross-correlation between the quadrupole and the dipole
((ℓ, ℓ′) = (1, 2) or vice versa). Setting again the modulating amplitude to
ω1 = 4 just for illustrative purposes, we obtain the Fig. 14 for the modu-
lated case of the CGWB. Now, we compute the cross-correlation coefficient

between the CGWB and CMB, defined as CCMB×CGWB
ℓ /

√
CCMB
ℓ × CCGWB

ℓ .
This coefficient will clearly depend on the value of the spectral tilt nt, thus it
is worth showing its variation for different values of the tilt. Once again, we
choose nt = {−0.76, −0.35, 0, 0.25, 0.52}. Fig. 15 shows that there are
two main regions where the CMB and the CGWB are correlated, namely the
largest scales ℓ < 100 and around ℓ = 200. Indeed, the SW effect of GWs and
CMB photons are generated respectively at ηin and ηrec (respectively, through

66 In the standard case there is no correlation between multipoles, thus the variance of the Θℓm
is the same for every m once you fix ℓ and is solely controlled by the value of Cℓ.
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Figure 14:
Modulated
CGWB map with
ℓmax = 400 with a
very high modula-
tion amplitude to
enhance its effect.

Figure 15:
Correlation co-
efficient between
the CMB and CGWB
when we assume
different values of
the tensor spectral
tilt nt.

the convolution with a Dirac delta and the visibility function). However, the
spatial separation of the events is much smaller than the scale of the pertur-
bation considered on those multipoles, so the cross-correlation is still high67.
Instead, the other region is due to the correlation between the first acoustic
peak of CMB and the ISW effect on GWs [187].

9.1.2 Correlation CMB vs CGWB

To fully exploit the cross-correlation between CMB and CGWB and the avail-
able data for the temperature field, we generate constrained realizations of
the CGWB [187, 192]. In fact, looking again at Fig. 15, one can notice that on
multipoles lower than ≈ 50 the realization of the CGWB should be nearly
deterministically fixed by our observation of CMB, because the correlation
coefficient is nearly 1. However, in our case we have to emphasize a pecu-
liarity: a constrained realization of the CGWB (Γℓm) given a realization of the
CMB temperature field (aℓm) is customarily given by [193]

Γℓm =
CCMB×CGWB
ℓ

CCMB
ℓ

aℓm + ξℓm

√√√√√CCGWB
ℓ −

(
CCMB×CGWB
ℓ

)2

CCMB
ℓ

, (329)

67 In fact, the more you go towards small scales, the more that contribution fades away, given
that the spatial separation gets too large w. r. t. the scale of the perturbation.
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Figure 16:
Constrained realiza-
tion of the CGWB
with ℓmax = 400
(left) and Planck
CMB map, whose
spherical harmonics
coefficients with
ℓ > ℓmax = 400
are filtered out
(right). It is clear
that the large-scale
features of Planck’s
map are faithfully
reproduced here,
whereas the two
observables drift
apart on smaller
scales.

where ξℓm is a Gaussian random field with mean 0 and unitary variance.
In other words, for multipoles where the cross-spectrum is high, the real-
ization of the CGWB acquires a mean similar to the CMB one and will have
a suppressed variance around that. Vice versa, when the cross-spectrum is
low, the CGWB realizations will go back to the standard case, i. e. it will have
a null mean and a variance equal to the square root of the angular power
spectrum. In spite of this, we know that the dipolar modulation model we
adopted to describe the power asymmetry introduces a coupling between
different multipoles, which is not accounted for in Eq. 329. For this reason,
we need to generalize this equation to a case with non-zero contributions
in the off-diagonal elements of the covariance matrices. This is done by con-
sidering the known formulas of the mean and variance of a conditioned
multivariate Gaussian, which recast Eq. 329 to [194, 195]

#

Γ m = CovCMB×CGWB
m

(
CovCMB

m

)−1
#a m +

#

ξ m × Chol.[Mm] , (330)

Mm = CovCGWB
m −CovCMB×CGWB

m

(
CovCMB

m

)−1(
CovCMB×CGWB

m

)T
.

(331)

In Eq. 330 we are fixing the index m and for each we define #a m,
#

ξ m and
#

Γ m, which are vectors long ℓmax −m. Indeed, Γℓm, aℓm, ξℓm in Eq. 329 are
the elements of these vectors: #a m is extracted from the complete vector of
the CMB realization fixing m, while

#

ξ m is a multivariate Gaussian vector
with 0 mean and unit variance (Iℓmax−m). Finally,

#

Γ m is built using the co-
variance matrices between ℓ, ℓ′ (Eq. 324 shows the CGWB case, represented
graphically in Fig. 13). In addition, Chol. indicates that we are taking the
Cholesky decomposition of matrices Mm to obtain the correct covariance.
Thus, since we want to assess the significance of a certain modulating am-
plitude using these constrained realizations, we will plug in the expression
of the covariance matrices the estimated value of the amplitude we can get
from our CMB observation (see Sec. 9.2 for further details). Furthermore, one
can easily show that in the case of diagonal matrices (i. e. without modula-
tion), Eq. 330 is equivalent to Eq. 329.
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Comparing the left and right panels of Fig. 16, the latter being Planck’s
temperature map downgraded to ℓmax = 400, one can notice that the large-
scale features present in the CMB are faithfully reproduced in our realization
of the CGWB, given that the cross-correlation is high on those scales. Let us
recall that to pass to an energy-contrast description of the CGWB, we multiply
Eq. 330 by (4− nt).

9.2 the role of gw in assessing the anomaly

9.2.1 Estimator of the modulating amplitude

We apply the estimator defined in [181] to assess the amplitude of the modu-
lating field from a sky map realization. For every couple of sky-realizations
X∗ℓmYℓ+1,m, where XY = {TT, GWGW, TGW, GWT}, they define the
estimator for ω1 as

ω̂XY
1,ℓm =

X∗ℓmYℓ+1,m

f XY
ℓ R1ℓ

ℓ+1,m
. (332)

The coefficients f XY
ℓ are given by

⟨X∗ℓmYℓ+1,m⟩ = ω1 f XY
ℓ R1ℓ

ℓ+1,m , (333)

so that
〈

ω̂XY
1,ℓm

〉
= ω1. In our case, the expression of these coefficients is

fairly simple:

f XY
ℓ = CXY

ℓ + CXY
ℓ+1 , (334)

with f TGW
ℓ = f GWT

ℓ .
The estimators are combined to form a joint estimator defined as

ω̂1 = ∑
XY

∑
ℓm

AXY
ℓm ω̂XY

1,ℓm , (335)

where AXY
ℓm are weights which satisfy

∑
XY

∑
ℓm

AXY
ℓm = 1 (336)

and minimize the variance of the joint estimator. Their definition is as fol-
lows

AXY
ℓm =

∑X′Y′
[
D(ℓ)

]−1

XY,X′Y′

(
R1ℓ
ℓ+1,m

)2

∑XY,X′Y′ ∑ℓm
[
D(ℓ)

]−1
XY,X′Y′

(
R1ℓ
ℓ+1,m

)2 , (337)
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Figure 17: Estimated
modulating ampli-
tude for a set
of 1000 realiza-
tions, assuming
ℓmax = 100, nt = 0.
The dashed black
line indicates the
input value of the
modulating ampli-
tude. The solid blue
curve represents the
CMB modulated re-
alizations, whereas
the solid red one the
constrained CGWB
realizations. On the
left, we exploited
Eq. 329, whereas on
the right its gener-
alized counterpart,
Eq. 330.

where

D(ℓ)
XY,X′Y′ =

CXX′
ℓ CYY′

ℓ+1

f XY
ℓ f X′Y′

ℓ

. (338)

As a validating step of this estimator and our machinery, we generate a
set of N = 1000 realizations of the CMB and CGWB. We modulate each
CMB realization with ω1 = 0.5 and from each of them we generate a con-
strained realization of the CGWB. This is the perfect place to emphasize the
difference between using Eq. 329 or Eq. 330 to produce the constrained re-
alizations of the CGWB. The left panel of Fig. 17 shows that indeed the es-
timated amplitudes in the case of the CMB are correctly distributed around
the input value, with some dispersion given by cosmic variance. The distri-
bution for the CGWB is however centered around a lower value than the CMB

one. Indeed, this is not surprising, because we obtain these realizations as
constrained ones from the CMB set using Eq. 329. Since the “signal” of the
modulation is transferred to the CGWB by aℓm mainly through the first ≈ 50
multipoles, where the correlation is high, and given that the realizations we
produce have ℓmax = 100, the estimate on GWs is dragged to 0. However,
we underline that this effect is due solely to our procedure. Indeed, in the
right panel of Fig. 17 one can see that also the GW estimates are distributed
around our input value for the CMB modulated set with a similar variance.
This is due to the fact that in this case we use Eq. 330, thus even in low
correlation regions, the covariance of the CGWB realization retains the cou-
pling between multipoles induced by the presence of the modulation, which
carries the modulation-amplitude-information in all multipoles.

In any case, from this point on, we will set ℓmax = 20, since the power
asymmetry affects only large scales [174]. Furthermore, we will be using the
generalized expression of the constrained realizations, i. e. Eq. 330, since it
best represents our model predictions.

9.2.2 Cosmic variance distribution

We can now study what the Cosmic Variance (CV) distribution looks like
when we add GWs using the joint estimator defined from Eq. 332 to Eq. 338.
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Figure 18: Estimated
dispersion due to
cosmic variance
with a set of 1000 re-
alizations, assuming
ℓmax = 20, nt = 0.
The dashed black
curve is the dis-
persion of the
temperature real-
izations, whereas
the solid red line
indicates the dis-
persion of the joint
estimation using
both GWs and CMB.
This time, the GWs
realizations are
obtained indepen-
dently from the CMB
ones. The solid blue
line is the value
inferred by Planck’s
SMICA map.

This will allow us to find our null hypothesis to assess the significance of
CMB power asymmetry when adding a GWs observation. In this case, we
must use unconstrained realizations of the CGWB since we want both fields
to fluctuate freely [193]. The expression for unconstrained realizations can
be obtained from Eq. 330 setting CovCMB×CGWB

m = 0 68. For this analy-
sis, we assume a scale-invariant power spectrum, thus nt = 0. However, a
clarification is due: given that we have to study how CV can simulate the
presence of a modulation, we are assuming a cosmological model without
any modulating field. For this reason, the CXX′

ℓ we used for the estimator
are the standard ones (e. g. first row of Eq. 325 multiplied by the proper
Γ → δGW conversion factor). Fig. 18 shows that the cosmic variance disper-
sion decreases noticeably compared to the TT CV case. From this point on,
we will call Joint Cosmic Variance (JCV) the shrunken distribution obtained
when the CGWB is considered together with CMB temperature. The value we
estimate from Planck’s SMICA map ω1 = 0.23 passes from 1.95σ in the
TT-only case to 3.70σ when we consider the JCV, prominently favoring this
modulation model w. r. t. some unknown systematic effect.

However, notice that we have yet to introduce any instrumental noise for
the GWs part, which is expected to have an impact on the result. Indeed,
when we consider this extra source of noise Eq. 338 is recast to

D(ℓ)
XY,X′Y′ =

(
CXX′
ℓ + NXX′

ℓ

)(
CYY′
ℓ+1 + NYY′

ℓ+1

)
f XY
ℓ f X′Y′

ℓ

(339)

and we add a realization of the noise to the realization of the CGWB.
The inverse of Eq. 339, which is the one entering the equations for the esti-

mator, will tend to zero for noise-dominated cases. In other words, when the
noise of an experiment is too large, the JCV will be completely disrupted and
will become much larger than the TT CV, since the GWs part will contribute
to largely enhance the dispersion of the simulations. Here, we will consider
Laser Interferometer Space Antenna (LISA) and Big Bang Observer (BBO) as
our testing frameworks, whose instrumental noise is obtained through the

68 So equivalently, one can obtain the correct expression from Eq. 329 while imposing
CCMB×CGWB
ℓ = 0.
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Figure 19: JCV when
we include the
instrumental noise
coming from BBO.
The red curve is ob-
tained by assuming
ℓmax = 6, nt = 0.52,
whereas the blue
vertical line indi-
cates the value
estimated from
Planck’s temper-
ature map. The
dashed gray and
black lines represent
respectively the CV
when using only
CMB temperature
realizations and the
noiseless JCV, thus
when we include
also the CGWB.

publicly available code schNell [187, 196]. The noise spectrum of these in-
struments will depend on the value we assume for nt. In fact, the expected
noise levels Nℓ of LISA and BBO are related to the angular noise spectrum of
density contrast through NCGWB

ℓ = Nℓ/Ω2
GW . In our case, having assumed

a power-law description of the primordial power spectrum, we compute the
average energy density at some frequency69 as [54]:

ΩGW( f ) =
rAs

24zeq

(
f

fpivot

)nt

, (340)

where r is the tensor-to-scalar ratio at fpivot ≈ 1.55× 10−17 Hz, correspond-
ing to k = 0.01 Mpc−1, and zeq ≈ 3400 is the redshift of matter-radiation
equality (calculated by the Boltzmann code)70. In this way, the more blue
tilted the spectral index is, the higher will be ΩGW at the reference frequen-
cies of both BBO and LISA.

The resolution of GW interferometers is typically quite low and limited
to the first 10-20 multipoles [197], so the JCV we obtain will improve the
TT CV in just few cases. Here we report the case of BBO when we assume
nt = 0.52. Indeed, even if choosing a higher tilt decreases the GW signal
(see Fig. 12), its effect on how much power reaches the typical scales of in-
terferometers is far more dominant. Thus, we choose to maximize the value
in the allowed range of [54]. To obtain Fig. 19, we limit our analysis to the
first six multipoles, given that the noise for ℓ > 6 is too large. The figure
shows that despite the noise the GW signal is strong enough to allow BBO to
be signal dominated and to recover identically the noiseless JCV. Notice that
the Planck estimated value we report here is different from the one shown
in Fig. 18 because we changed the range of multipoles. Here, the value of
the modulating amplitude obtained for Planck’s SMICA map is ω1 = 0.80.

69 The reference frequency of LISA is 10−2 Hz, instead for BBO 1 Hz.
70 It can be shown that this expression is an approximation to Eq. 188.
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Figure 20: Left: Esti-
mated modulating
amplitude for a
set of 1000 realiza-
tions constrained
on the Planck’s
map, assuming
ℓmax = 20, nt = 0.
The dashed black
curve is the dis-
persion for the
CGWB realizations
constrained to
the Planck’s map,
whose value is
represented as a
solid vertical blue
line. The solid red
curve indicates the
dispersion of the
joint estimation
using both the real-
izations of the CGWB
and Planck’s map.
Finally, the dotted
gray line represents
the JCV dispersion.
Right: Estimated
significance for the
joint estimator of
the modulating am-
plitude using a set
of 1000 CGWB real-
izations constrained
on the Planck
map, assuming
ℓmax = 20, nt = 0.
The dashed black
curve indicates
the significance of
JCV (red curve of
Fig. 18). The Planck
map significance
without GWs is rep-
resented as a solid
vertical blue line,
whereas the solid
red curve indicates
the dispersion of
the joint estimation.

9.2.3 Forecasts for future observations

Finally, we can forecast what we can expect to see with a future observation
of GWs. Once again we start with the noiseless case and we generate a set
of 1000 realizations of the CGWB constrained on the Planck SMICA map,
assuming that a modulation is already present in this map. Also, here a
clarification is due: given the assumption we make for Planck’s SMICA map,
the modulating information is passed to the GW background through the
fact that the CGWB realizations are constrained on the CMB one. Thus, we
assume that the model describing the anisotropies of both CMB and CGWB

is a modulated one. So, the CXX′
ℓ we use in the estimator definitions are the

C(1)ℓ mentioned in Chap. 8 (e. g. see Eq. 313 for the CGWB equation). This is

indeed a difference w. r. t. [181], where C(0)ℓ = C(1)ℓ = C(2)ℓ . In spite of this,

having assumed C(1)ℓ is crucial to fully capture the modulation amplitude,
given that we do not neglect the ISW effect, of which we find a modified
expression w. r. t. the standard one in Eq. 326, and we do not assume any
approximation for the gravitational potential transfer functions.

The left panel of Fig. 20 shows that if a modulation is indeed there, the
CGWB will distribute as a normal with {µ, σ} = {0.23, 0.08}, whereas the
joint estimator with {µ, σ} = {0.22, 0.04}.

For the sake of clarity, we compute the significance of the joint estimator
w. r. t. the JCV. The right panel of Fig. 20 clearly shows the increase in signif-
icance that we can expect from a signal-dominated detection of the CGWB.
The significance of the joint estimator is distributed as a normal distribution
with {µ, σ} = {3.60, 0.63}; specifically, 83.4% of the simulations shown in
the right panel of Fig. 20 below the red curve has significance ≥ 3σ and all
improve the significance w. r. t. the Planck value of the SMICA map when
assuming ℓmax = 20, i. e. 1.95σ (solid blue line).

At this point, we repeat the same analysis including the instrumental
noise from either LISA or BBO. As we have previously mentioned, the CGWB

anisotropies are very hard to observe, thus we report here only the results
for BBO when assuming nt = 0.52. As it turns out, all other cases present a
large noise, which quickly dominates the measurement for multipoles ℓ > 4.



9.3 summary and conclusions 119

Figure 21: Left:
Joint estimation
of the modulating
amplitude when
we include the
instrumental noise
of BBO, assuming
ℓmax = 6, nt = 0.52.
The black and red
dotted lines are, re-
spectively, obtained
including or not the
BBO instrumental
noise. The dashed
black line indicates
the noiseless joint
estimation from
the constrained
realizations on the
Planck SMICA map,
whereas the dashed
red line represents
the CGWB con-
strained realizations.
Finally, the red solid
line is the joint
estimation when
we include the BBO
instrumental noise.
Right: Estimated
significance for the
joint estimator of
the modulating am-
plitude using a set
of 1000 CGWB real-
izations constrained
on the Planck map
and including the
instrumental noise
of BBO, assuming
ℓmax = 6, nt = 0.52
(solid red line). The
dashed gray curve
is the dispersion
of the BBO JCV we
show in Fig. 19.
The significance
of Planck’s map
without GWs is
represented as a
solid vertical blue
line. The black
dashed line is the
noiseless case.

The left panel of Fig. 21 shows the results: once again we limit our analysis
to the first six multipoles. This allows BBO to recover very well the modula-
tion inherited by the Planck map with the same precision as the noiseless
case (compare the solid red curve with the dashed black one). As before, we
recast the BBO JCV and joint estimation in terms of significance in the right
panel of Fig. 21.

This shows once again the increment in significance that we can expect
from a detection of the CGWB. The significance of the BBO joint estimator is
distributed as a normal distribution with {µ, σ} = {2.3, 1.3}; this time, the
27.9% of the simulations shown in the right panel of Fig. 21 below the red
curve has a significance≥ 3σ. This degradation is mainly due to the fact that
we had to limit ℓmax = 6. Indeed, in the noiseless case (black dashed line),
about the same percentage (within 1%) of the simulations has a significance
≥ 3σ . Also, the 60.1% of the BBO simulations improves the significance
w. r. t. the Planck value of 1.95σ.

So, in spite of this degradation, it is notable that BBO has indeed the po-
tential to shed light on the significance of the CMB power asymmetry.

9.3 summary and conclusions

In this chapter and in Chap. 8, we have computed the effect on the two-
point correlation functions of both the CMB temperature field and the CGWB

in the case of a dipolar modulation of the gravitational potentials, which can
potentially reproduce this power asymmetry. This modulation breaks the
statistical isotropy on our Hubble volume without flawing the Universe’s
global isotropy and homogeneity.

These kinds of model generate a coupling between multipoles ℓ, ℓ± 1 and
ℓ± 2 in all observables, which can then be tested through the statistical tools
developed in [181]. GWs behaves nearly identically to CMB temperature, thus
we exploited constrained realizations of the CGWB to perform our joint analy-
sis with the SMICA Planck temperature map and unconstrained realizations
of both the CMB and the CGWB to assess the cosmic variance associated with
a model without modulation.
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In Chap. 8, we present the main theoretical results of [182]: the analytic
expression of CMB and CGWB anisotropies in the presence of a dipolar mod-
ulation of gravitational potentials. In particular, we include SW and ISW for
both observables. In Sec. 9.1, we explore the dependence of the CGWB angu-
lar power spectrum on the tensor spectral tilt nt (also, in Sec. A.1 we explore
this dependency distinguishing between the contributions of the scalar and
the tensor to the anisotropies). This is done in a similar fashion to [104] for
other parameters as Ne f f (see also [198]). In Sec. 9.2, we study the role of
GWs in assessing the significance of the CMB power asymmetry. We show
that in the noiseless case, the significance is severely increased as shown in
figure 20. Specifically, 83.4% of the simulations has a significance ≥ 3σ and
all of them improve the value from Planck’s map of 1.95σ. Also, we study
the capabilities of both LISA and BBO to observe this kind of anomaly. In the
case of a blue tilted spectrum (r = 0.066 at 0.01 Mpc−1 and nt = 0.52,
which saturates the upper bounds of [54]), useful for providing enough en-
ergy density of GWs at the scales of the considered interferometers, we show
that BBO has the ability to fully reproduce the noiseless case, since it is signal-
dominated. Indeed, when limiting to the first six multipoles, the 60.1% of
the simulations improves the significance we obtain for the Planck’s temper-
ature map, i.e. 1.95σ, and the 27.9% reaches a significance greater than 3σ.
This suggests that future observation of the CGWB could be the keystone in
assessing finally the physical origin of the CMB power asymmetry.

It should be emphasized that we performed our analysis assuming a stan-
dard power-law characterization of the tensor power spectrum (Eq. 398).
This conservative perspective quite drastically limits the range of possibil-
ities we could explore, especially for the values of nt and so the average en-
ergy density of GWs we obtained at the typical frequencies of LISA and BBO. In
a more general context, one could study other inflationary models that bring
much more power to interferometric scales, thus enhancing the possibility
of measuring the anisotropies of the CGWB (see, for example, Chap. 5). Fur-
thermore, there are a plethora of other cosmological phenomena that could
produce a CGWB that we did not even mention, such as phase transitions,
cosmic strings, or reheating. All of these would contribute to a set of new fea-
tures, which could potentially enhance the detection of GWs anisotropies [94,
95]. Last but not least, in principle also the AGWB is affected by the presence
of a modulation of the gravitational potentials, opening another window on
the exploration of this anomaly. In the same line of reasoning, we could also
investigate possible connections with large-scale structures and tracers [199,
200].
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L A C K - O F - C O R R E L AT I O N W I T H T H E C G W B

In Chap. 7 we mentioned the presence of the so-called anomalies on the observed
CMB sky, while in Chap. 8 and Chap. 9, we showed the theoretical and observa-

tional consequences of a modulating field that accounts for the hemispherical power
asymmetry. Here, we move to another anomaly, i. e. the lack-of-correlation.
This chapter is based on Galloni et al. [201].

10.1 the anomaly

Unlike what was expected, we observed a strange feature in the so-called
two-point angular correlation of the CMB temperature anisotropies C(θ): it
is almost zero when evaluated on large angular scales (see Sec. 10.2.3 below).
For this reason, this was named “lack-of-correlation” anomaly [122, 202–206].
This characteristic of C(θ) was able to survive the test of time, since it was
first observed by COBE [32, 202, 207], then reassessed with WMAP [152, 208,
209], and further confirmed by Planck [174, 210, 211], suggesting that it is
not the consequence of some unknown systematic effect.

In order to assess the significance of these anomalies, a number of dif-
ferent techniques have been used. These can be based on some two-point
statistic (such as the angular power spectrum), or on peak statistics, and
N-point correlation functions (see [174] and the references therein). Inde-
pendently from the analysis, the fundamental question one tries to answer
is: are these features the consequence of a rare realization of the standard
ΛCDM model, or do we need to abandon it in favor of a more complex one?
One of the obstacles that this question poses is where to search for new in-
formation on the anomalies. In fact, CMB temperature has been observed in
a cosmic variance-limited fashion on low and intermediate multipole scales;
thus, we cannot unveil any new information from the temperature alone. To
determine whether these are the consequence of a physical phenomenon, we
must exploit other observables, correlated with the CMB temperature, such
as the CMB polarization [181, 193, 212–215].

Another non-trivial limitation in assessing the physical nature of the CMB

anomalies is the fact that one typically uses “a posteriori” statistics. In fact,
estimators are often designed to maximize the significance of a certain anomaly
under some a posteriori assumption on the data. Thus, one has to face
the following antithesis: neglecting the assumption made on the data, is
the evidence of the anomaly still significant? This is often called the “look-
elsewhere effect” [174]. Here, we will take care of this aspect of the lack-of-
correlation anomaly.
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10.2 datasets and methodology

As mentioned before, we want to study and build an estimator which is able
to reject the fluke hypothesis of the lack of correlation anomaly. Therefore,
we investigate the idea that what we observe in the CMB sky is just a rare
realization of the standard ΛCDM model. In particular, we want to use the
CGWB and try to predict its ability to shed some light on the physical origin
of the anomaly.

Before presenting the results, we describe the datasets used for our analy-
sis (see Sec. 10.2.1). In addition, we provide more information on our method-
ology, with a focus on specific key aspects. This includes developing a proce-
dure to simulate the CGWB sky (as outlined in Sec. 10.2.2), gaining a deeper
understanding of the crucial quantity that results in the lack of correlation
in our data (as described in Sec. 10.2.3), defining an estimator that measures
the anomaly (outlined in Sec. 10.2.4), and specifying the analysis that we
performed in this study (as presented in Sec. 10.2.5 and Sec. 10.2.6). Indeed,
the final goal of this analysis is to be able to associate a value with the lack of
correlation anomaly; for each value, we want to be able to conclude whether
it is compatible or not with the fluke hypothesis.

10.2.1 Datasets

We use the Planck SMICA temperature map as our observation for CMB

[216]71. It comes at a resolution of ≈ 5 arcmin, which corresponds to a pix-
elization of the sky in ≈ 5× 107 equal-area pixels72. Furthermore, masking
the galactic plane enhances the discrepancy between the data and the ΛCDM

predictions [174, 209, 217, 218], therefore, it is important to treat the cut-sky
case. To capture this feature, we will consider the full-sky SMICA map and a
masked version, where we use the Planck common mask for intensity73. In
the latter case (and whenever a mask is involved in the computations), we
use the pseudo-Cℓ formalism to recover the unbiased angular power spectra
(NaMaster [219])74.

Regarding the CGWB, we obtain the theoretical angular power spectrum
with a modified version of CLASS [183, 184]75. Specifically, we use the expres-
sions shown in [187] and set the ΛCDM parameters to their best-fit values
provided by Planck 2018 (see Tab. 1). We consider only the scalar contribu-
tion to the anisotropies, neglecting any tensorial contribution [49, 141].

Soon, detectors like LISA [220–224], DECi-hertz Interferometer Gravita-
tional wave Observatory (DECIGO) [225], Einstein Telescope (ET) [226, 227]
and Cosmic Explorer (CE) [228] will provide the possibility to observe the
CGWB, providing fundamental knowledge on the physics of the early Uni-

71 http://pla.esac.esa.int/pla/#maps.
72 This is usually expressed in terms of the Nside parameter of Healpy, which define the sky

partition. In this case, Nside = 2048.
73 http://pla.esac.esa.int/pla/#maps.
74 https://github.com/LSSTDESC/NaMaster.
75 https://github.com/lesgourg/class_public.

http://pla.esac.esa.int/pla/#maps
http://pla.esac.esa.int/pla/#maps
https://github.com/LSSTDESC/NaMaster
https://github.com/lesgourg/class_public
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Parameter Best-fit value

As × 109
2.100549

ns 0.9660499

Ωbh2
0.0223828

Ωcdmh2
0.1201075

τreio 0.05430842

H0 67.32117

[
km s−1 Mpc−1]

YHe 0.2454006

T0 2.7255 [K]

∑ mν 0.06 [eV]

Table 1: Assumed values of the 6 ΛCDM parameters and other important ones. The
quantities As and ns represent the amplitude and tilt of the primordial scalar per-
turbations. The energy densities of baryons and cold dark matter are denoted by
Ωb and Ωcdm, respectively. H0 is the Hubble constant expressed in km s−1 Mpc−1,
which is divided by 100 to obtain h ≡ H0/100. τreio represents the optical depth of
reionization. Then, YHe is the fraction of helium, T0 is the average temperature of
the CMB in Kelvin, and ∑ mν is the mass of neutrinos, assuming that 1 is massive
and the other 2 are massless.

verse. In fact, these could not only measure the average contribution to en-
ergy density brought by GWs, but they could also detect its fluctuations on
the celestial sphere. This possibility depends on the actual monopole radi-
ation at the frequencies of the various detectors; the higher the better. To
cover the possible performance of these experiments, we will consider 3

maximum multipoles to perform our analysis: ℓmax = 4, 6, 10. These are
the multipoles that one may be able to recover in a signal-dominated way
in the next future, exploiting one of the experiments mentioned or a com-
bination of them. To be consistent with this choice, we will also assume
ℓmax = 4, 6, 10 for the temperature part of the analysis. Also, to reduce the
computational cost of working at Planck’s full-resolution, the CMB map is
also degraded to Nside = 6476. Before degrading it, we smooth it with a
Gaussian beam with Full Width Half Maximum (FWHM) equal to 2◦. Note
that the scale corresponding to Nside = 64 is ≈ 0.92◦, but we follow the
general principle of applying a smoothing approximately two or three times
bigger than the grid scale to avoid pixelization effects [217]. Regarding the
mask, we also degrade it to Nside = 64 to match the CMB map. The mask is
then thresholded by setting to zero the pixels in which the value is less than
0.9; the others are set to unity [174].

Furthermore, since we also want to exploit the cross-correlation of these
two fields as an observable, we also produce the cross-maps from our realiza-

76 Although Nside = 64 allows to describe 3Nside − 1 multipoles (thus much more than what
is used for this analysis), in our case no significant computational advantage was found in
reducing Nside below 64.
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tions of TT and CGWB77. Although GWs are indeed very difficult to observe,
it could be possible in the next future to obtain a relevant signal-to-noise
ratio from their cross-correlation with CMB temperature without the need
to measure the GW autospectrum. In fact, cross-correlation is often used in
the literature to extract information from a noise-dominated context, since it
provides unbiased information on the two correlated probes (see, e. g. [187,
190, 229, 230]).

For the sake of brevity, we will use the expression “masked GWGW” in
the case where we apply a mask on TT (the CGWB is always evaluated full-
sky). Instead, when TT is also full-sky, we will simply use GWGW. For cross-
correlation, we will use TGW.

In conclusion, we produce N = 10, 000 realizations of unconstrained
CGWB and TT (full sky and masked). Using both sets of full-sky and masked
TT, we also compute the corresponding constrained CGWB realizations, using
Planck SMICA as our CMB observation. In addition, we also compute the
cross-correlation maps between unconstrained and constrained GWGW and
TT (full sky and masked).

10.2.2 Constrained realizations of masked sky

Let us consider a generic example with two observables X and Y, which
share a certain degree of correlation (in our case, they will be, respectively,
the CMB temperature and the CGWB).

In the full-sky case, we already know that a random Gaussian realization
of aXX

ℓm of X can be obtained by its angular power spectrum CXX
ℓ , which en-

codes the variance of the coefficients of the spherical harmonics (see Chap. 4).
In a more mathematical fashion, we can write

aXX
ℓm = ξℓm

√
CXX
ℓ , (341)

where ξℓm is a random Gaussian field with null mean and unitary variance.
Once aXX

ℓm have been measured, we can generate aYY
ℓm realizations consistent

with these, namely constrained realizations, as we have shown in Sec. 9.1.2.
In fact, to condition the random realizations of Y on the information already
available on X, one can use the same Gaussian seed ξℓm to write

aYY
ℓm =

CXY
ℓ√
CXX
ℓ

ξℓm + ξ ′ℓm

√√√√CYY
ℓ −

(
CXY
ℓ

)2

CXX
ℓ

. (342)

where CXY
ℓ is the cross-correlation spectrum of the two observables and ξ ′ℓm

is another random Gaussian field (⟨ξℓmξ ′∗ℓm⟩ = 0). Recasting this in terms of
aXX
ℓm , this expression becomes essentially Eq. 329.

77 To be consistent with what is customarily done for CMB temperature, we will indicate the
auto-spectra of the CGWB with GWGW.



10.2 datasets and methodology 125

In Eq. 329, the first term on the right side is extracting the Gaussian seed
of X, i. e. ξℓm, and translating it into a deterministic part of the realization
Y. Note that Eq. 329 depends on the underlying assumptions of Gaussian-
ity and statistical isotropy of the coefficients of the spherical harmonics (a
generalization is Eq. 330). Furthermore, the specific shape of CXX

ℓ , CXY
ℓ , CYY

ℓ
will depend on the assumed cosmological model, which in our case is the
ΛCDM model.

Eq. 329 can be generalized to the case of masked skies. To do so, we must
recall the definition of aXX

ℓm as the coefficients of the decomposition of spher-
ical harmonics of the X field on the 2D sphere. In particular, starting from
the full-sky (FS) case, we can write (we drop the apex XX for the sake of
notation) [231, 232]

aFS
ℓm ≡

∫
full−sky

Y∗ℓm(θ, ϕ)X(θ, ϕ)d(cos θ)dϕ , (343)

where Yℓm are the spherical harmonics and θ, ϕ are the angles on the celestial
sphere. These aFS

ℓm (Full-Sky (FS)) are predicted to be statistically isotropic
Gaussian realizations with a null mean and a variance defined as〈

a∗,FS
ℓm aFS

ℓm

〉
= δℓℓ′δmm′Cℓ , (344)

where Cℓ is the angular power spectrum of X. From a full-sky observation,
one can estimate the angular power spectrum as

Ĉℓ =
1

2ℓ+ 1

ℓ

∑
m=−ℓ

∣∣∣aFS
ℓm

∣∣∣2 . (345)

In the presence of a mask, Eq. 343 gets slightly modified in order to con-
sider that the integration is performed on the unmasked patch of the sphere.
Thus, the spherical harmonics do not constitute an orthogonal basis and the
aℓm coefficients measured on the Cut-Sky (CS) have couplings between multi-
poles. Despite this, it is possible to recover the corresponding full-sky values
knowing the geometrical couplings introduced by the mask (see Sec. B.1)
[231, 232]. In particular, they are related by (the sum over repeated indexes
is understood)

aCS
ℓm = aFS

ℓ′m′ ×Wℓ′m′
ℓm , (346)

where Wℓ′m′
ℓm is the window function of the mask considered.

Thus, Eq. 329 must be modified to account for this since it assumes the
full-sky condition. In particular, when we consider the coefficients of the cut-
sky, that is, aCS

ℓm, we must recast the first factor on the right-hand side as

CXY
ℓ

CXX
ℓ

× aCS
ℓm =⇒

CXY
ℓ

CXX
ℓ

× aCS
ℓ′m′

(
Wℓ′m′

ℓm

)−1
=
CXY
ℓ

CXX
ℓ

× âFS
ℓm . (347)
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Figure 22: The two
upper panels in the
upper part show the
SMICA map down-
graded to Nside =
64 and filtered to
remove the multi-
poles above ℓ >
10 for the full-sky
and masked case. In
the lower panels, we
show one of the
corresponding con-
strained realizations
of the CGWB.

In this way, the cut-sky coefficients are remapped to the full-sky ones and the
rest of the formula can remain the same. Note that we indicated the full-sky
coefficients on the right-hand side as âFS

ℓm to remark that we are not obtaining
their true values, but rather an estimate of them. In other words, following
this procedure, we get an estimator of the full-sky coefficients from a partial-
sky observation. Note that this becomes unfeasible as the window function
becomes singular for aggressive masks. For the full-sky case, the window
function goes to Wℓ′m′

ℓm = δℓℓ′δmm′ (see Sec. B.1), recovering the usual ex-
pressions. Accounting for the complete expression of this matrix allows us
to correctly obtain the full-sky coefficients for X, which are then converted
in terms of Y by the factor CXY

ℓ /CXX
ℓ . Note that another underlying assump-

tion of this generalized procedure is that Y is full-sky; otherwise, one has to
take care again of the couplings between multipoles of the Y realization.

As an example, in Fig. 22 we show different sky realizations of the CGWB.
In the upper part of the figure, we plot the downgraded SMICA map, for
which we filter out the multipoles with ℓ > 10. Respectively, we show the
full-sky and masked ones in the left and right panels. Instead, in the lower
part of the figure, we show two constrained CGWB realizations based on the
map above (thus full-sky or masked). Thus, the one on the left is obtained
with Eq. 329 and the other is responsible for the generalization discussed in
this section.

As is customarily done in the literature, we normalize the CMB anisotropies
to the monopole radiation of the CMB, T0 = 2.7255× 106 µK [23], so that
we show the maps in units of µK. Usually in the case of the CGWB one
plots the energy density contrast as defined in [49]. However, to be consis-
tent with the choice for CMB and to be visually clear, we also normalize the
CGWB anisotropies to the same quantity. Thus, the energy density will also
be expressed in units of µK.
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Figure 23: Two-
points angular
correlation function
of CMB temperature.
Here, we assume
ℓmax = 4. The red
line is the mean of
the ΛCDM realiza-
tions and the gray
bands are the 1 and
2 σ around that.

10.2.3 Angular correlation function

Having defined the datasets and how to obtain constrained realizations in
the masked case, we briefly explore the actual quantity presenting the lack-
of-correlation in current data. Indeed, we know that the fluctuations ∆T in
the photon temperature T that we observe are very well described by their
spherical harmonic coefficients defined in Eq. 343. For T, it is recast to [34]

aℓm ≡
∫

Y∗ℓm(θ, ϕ)
∆T
T0

(θ, ϕ)d(cos θ)dϕ , (348)

where T0 is the average temperature, i. e. , the monopole radiation. Then,
from a full-sky CMB observation, one can estimate the angular power spec-
trum using Eq. 345. This quantity plays a key role in almost every estimation
of cosmological parameters, given that it is a very efficient summary statistic
to study the properties of aℓm (at least assuming Gaussianity [147]).

An alternative and equivalent way to convey the same information is the
two-point angular correlation function, defined as [159]

C(θ) ≡
〈

∆T
T0

(n̂1)
∆T
T0

(n̂2)

〉 ∣∣∣∣
n̂1·n̂2=cos θ

=
∞

∑
ℓ=0

2ℓ+ 1
4π
CℓPℓ(cos θ) , (349)

where Pℓ are the Legendre polynomials. In other words, C(θ) and Cℓ are
related by a series of Pℓ, thus the former allows us to better appreciate the
large-scale behavior and the latter the small-scale one. Also, in the assump-
tion of Gaussian fluctuations, all the available information is encoded in Cℓ,
thus the same holds for C(θ).

Thus, at this point, we can compute CTT(θ) from the SMICA map to un-
derstand the actual anomaly. Fig. 23 shows the result. One can see that the
SMICA map, especially the masked one, has a low correlation for scales
larger than ∼ 60◦. Also, note that the curves shown in Fig. 23 are not equal
to those shown in [159]. Indeed, assuming ℓmax = 4 means that Fig. 23

shows only the angular correlation given by the first four multipoles of the
expansion.

Let us now look at the CGWB realizations. The top panels of Fig. 24 show
both the full-sky and masked realizations. Here, we can appreciate the fact
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Figure 24: In the
top panels, this fig-
ure shows the two-
points angular cor-
relation function of
the CGWB, while the
bottom ones the cor-
relation function of
TGW. The left and
right panels refer
respectively to the
full-sky and masked
cases. Here, we as-
sume ℓmax = 4. The
red line is the mean
of the ΛCDM realiza-
tions and the gray
bands are the 1 and
2 σ around that.

that the very high correlation existing between TT and GWGW contributes
to severely shrinking the dispersion of the CGWB realizations. Furthermore,
the TT mask makes them very consistent with zero on almost all the scales
considered (> 80◦). These two features already show that GWs could be a
pristine probe to test the fluke hypothesis.

Finally, the bottom panels of Fig. 24 shows the angular correlation func-
tions of TGW. It shows that the dispersion of the constrained realizations of
TGW is even smaller than that of the CGWB. This suggests that TGW could
also be a very interesting probe for this analysis of the fluke hypothesis. In
Sec. B.2, we show the angular correlation functions of GWGW and TGW
assuming ℓmax = 2000 to appreciate the difference w. r. t. CMB temperature,
while neglecting the expected performance of future interferometers.

10.2.4 S-statistic for auto- and cross-correlations

To quantify this lack of temperature correlation, Spergel et al. [203] intro-
duced the quantity

S1/2 =
∫ 1/2

−1
[C(θ)]2d(cos θ) , (350)

which integrates the squared correlation on scales larger than 60◦. Clearly,
this naturally captures the total distance between the angular correlation and
zero in that angular range, regardless of its sign.

Copi et al. [212] introduced a way to find the optimal angular range in
which an additional observable can provide most of the information. Thus,
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by varying the minimum and maximum angles, the estimator S1/2 is recast
to

Sθmin,θmax =
∫ θmax

θmin

[C(θ)]2d(cos θ) =
ℓmax

∑
ℓ=2

ℓmax

∑
ℓ′=2

(2ℓ+ 1)
4π

(2ℓ′ + 1)
4π

CXX
ℓ Iθmin,θmax

ℓℓ′ CXX
ℓ′ ,

(351)

with

Iθmin,θmax
ℓℓ′ =

∫ θmax

θmin

Pℓ(x)Pℓ′(x)dx . (352)

Here, we have introduced ℓmax ̸= ∞ since we must account for the fact
that a realistic observation depends on the angular resolution of the exper-
iments considered. In fact, above a certain multipole, we know that noise
will dominate the measurement. The same treatment was adopted in [193],
where the multipole cut was made when the signal-to-noise ratio of the E-
mode polarization was essentially saturated. It should be underlined that
ℓmax affects the calculation of Iθmin,θmax

ℓℓ′ . In fact, multipoles up to ℓmax will
describe scales larger than approximately 180◦/ℓmax. Instead, the behavior
on smaller scales will be determined by noise or by interference of the Leg-
endre modes considered. To be conservative on which scales we consider
well described by the available multipoles, we will impose a lower bound on
θmin and θmax of

θcut =
180◦

ℓmax − 1
, (353)

so that θmin, θmax ≥ θcut. In this way, we can also avoid “border effects”
when approaching 180◦/ℓmax.

We can apply the estimator defined in Eq. 351 to the three angular power
spectra by substituting CTT

ℓ , CGWGW
ℓ , or CTGW

ℓ into the above definitions.
This provides us with three quantities: STT

θmin,θmax
, SGWGW

θmin,θmax
, and STGW

θmin,θmax
.

In addition to the three Sθmin,θmax estimators, we study the joint estimator
following the definition introduced in Chiocchetta et al. [193], which yields

STT,Z
θmin,θmax

=

√√√√√
 STT

θmin,θmax〈
STT

θmin,θmax

〉
2

+

 SZ
θmin,θmax〈

SZ
θmin,θmax

〉
2

, (354)
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where Z = {TGW, GWGW}. We can also define the combination of all the
available estimators as follows

STT,TGW,GWGW
θmin,θmax

=

√√√√√
 STT

θmin,θmax〈
STT

θmin,θmax

〉
2

+

 STGW
θmin,θmax〈

STGW
θmin,θmax

〉
2

+

 SGWGW
θmin,θmax〈

SGWGW
θmin,θmax

〉
2

.

(355)

When we consider constrained realizations of GWGW or TGW, STT
θmin,θmax

will be replaced with SMICA data, that is, SSMICA
θmin,θmax

. Still, both of them,
GWGW and SMICA, will be normalized by their unconstrained counter-
parts.

Essentially, this joint estimator is a sum in quadrature of the two normal-
ized estimators. When this estimator departs from 1, it means that both TT
and GWGW are doing so. Note that in the constrained case, STT,GWGW

θmin,θmax
can-

not be lower than SSMICA
θmin,θmax

/
〈

STT
θmin,θmax

〉
. The same applies to STT,TGW

θmin,θmax
and

STT,TGW,GWGW
θmin,θmax

.
In Sec. 10.2.2 we mentioned that we normalize the CMB anisotropies to

T0, so the estimator STT
θmin,θmax

will be expressed in units of µK4. Since we

also use this normalization for the CGWB, the same is true for STGW
θmin,θmax

and

SGWGW
θmin,θmax

.

10.2.5 Optimal angular range

In order to select the optimal range of angles for the estimator Sθmin,θmax
(see Eq. 351), we apply the procedure introduced in [212] both to the case of
single estimators and to the joint case. Given an observation of the CMB tem-
perature, the optimal range of angles is issued by θmin and θmax that max-
imize the displacement between the values of Sθmin,θmax obtained through
constrained and unconstrained realizations of the CGWB. This somehow tells
us in what angular range the CGWB is most sensitive to the signal we ob-
serve in TT, in terms of lack-of-correlation. To quantify this displacement,
we proceed as follows:

1. we first grid the values of θmin and θmax and at each node of the grid
we compute the constrained and unconstrained estimators SGWGW

θmin,θmax
;

2. then, for each node, we compute the 99th percentile of the values
given by the constrained realizations, and we count how many un-
constrained realizations give a higher value of Sθmin,θmax . Translating
this in terms of a percentage, we call this quantity Percentage Displace-
ment (PD);

3. finally, by studying the results on the grid, we can identify which
regions give higher PDs. When searching for which specific config-
uration gives the optimal angular range, we have to keep in mind
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what our statistical error is in evaluating PDs. We can define it as
σPD = 1/N ≃ 0.01%. Thus, we round the obtained PDs to the sec-
ond decimal figure;

4. then, if two or more configurations have the same PD, we privilege the
one where ∆θ = θmax− θmin is maximal. In this way, we are choosing
the case where we integrate over the most scales.

We repeat the same analysis for STGW
θmin,θmax

, STT,GWGW
θmin,θmax

, STT,TGW
θmin,θmax

and STT,TGW,GWGW
θmin,θmax

.
In the joint cases, we find the optimal angular range to assess the fluke hy-
pothesis simultaneously exploiting more than one field.

10.2.6 Significance accounting for the look-elsewhere effect

Until now, we have only mentioned the fluke hypothesis, explaining the
methodology we want to use to find out whether GWs can help to reject at
least some of the assumptions of the ΛCDM model. Despite this, we cannot
say anything about the significance of the anomaly using the optimal angles
analysis.

Indeed, could we say that the significance of the anomaly is the distance of
a certain data point (i. e. a specific value of Sθmin,θmax of a realization) from the
unconstrained ΛCDM simulations (in terms of sigma or p-value)? The answer
is not that straightforward, and the reason is called the “look-elsewhere” ef-
fect [174]. Indeed, a certain realization would have a significance in each
angular range, and by choosing the optimal angular range, we would a pos-
teriori choose the configuration that maximizes that number. In other words,
we design the analysis to provide the best possible solution. In a different
angular range, the data may agree completely with the prediction of ΛCDM.

A well-known strategy to account for the look-elsewhere effect is to study
the PD of the realizations irrespective of their angular range: one searches
for the maximum PD for each realization without caring about the angular
range. Then, the fraction of these probabilities that are found to be lower
than the maximum PD yielded by the data is a global p-value [174].

Despite this, in this work we choose to follow a novel procedure to account
for the look-elsewhere effect. We define a new estimator for the lack of corre-
lation as the sum of all configurations in the angular range of Sθmin,θmax . For
a generic observable X, it reads

SXX ≡ ∑
{θmin,θmax}

SXX
θmin,θmax〈

SXX
θmin,θmax

〉 . (356)

This may be regarded as a marginalization of SXX
θmin,θmax

over angular in-

formation. Now, SXX tells us whether a simulation of X has an anomalously
low covariance, regardless of the angular range considered. This reasoning
can be applied to each field that we considered in the previous analysis; thus,
TT, TGW, GWGW, and their combinations. Note that we also normalize the
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values entering the sum by the mean of the unconstrained realizations, as
done in Eq. 354 and Eq. 355. This is because we do not want our results to
be driven by the eventual presence of a high Sθmin,θmax region, which would
dominate the sum over angular ranges.

Using this new estimator, we can study the significance of the lack-of-
correlation anomaly taking into account the look-elsewhere effect. In fact,
comparing the resulting values of S with those obtained from the CMB data
or from the constrained realizations of the CGWB, we compute the signifi-
cance in terms of sigma. In other words, with this approach, we can still
affirm that a future observation of the CGWB falling outside the constrained
curve indicates that we must revise our assumptions. However, we can also
associate significance to data points that fall within the predicted curve. In
this way, we can study the effects of the inclusion of GWs on the actual as-
sessment of the physical origin of the anomaly.

Finally, to quantify the significance we first compute the p-value of each
realization (so the probability of getting an unconstrained realization with a
lower value than the considered one), and then we translate the p-value in
terms of a σ-distance w. r. t. a normal Gaussian. Given that we have a finite
number of realizations, there may be cases in which no unconstrained real-
izations are found below a certain constrained value of S. In this case, we
recall that each percentage we obtain has an error of 0.01%, thus we asso-
ciate with null p-value realizations a probability of 0.01%. This may under-
estimate the significance of the furthest values of S w. r. t. the unconstrained
realizations.

Before reporting the results of this analysis, we mention that the complete
code to reproduce them is publicly available 78.

10.3 results

In the following, we show the results assuming the most pessimistic case
analyzed of ℓmax = 4. Finally, in Sec. B.4 we show the other two cases of
ℓmax = 6 and 10.

10.3.1 Optimal angles

We begin studying the optimal range of angles for each estimator as de-
scribed in Sec. 10.2.5. We show the results for SGWGW

θmin,θmax
and STGW

θmin,θmax
in the

top and bottom panels of Fig. 25. The left and right panels show the results
for the full-sky and masked analyses, respectively. Note that every optimal
angle plot we show from now on is symmetric by construction; however,
we add a gray-shaded region to emphasize that θmin cannot be greater than
θmax.

The PDs of both GWGW and TGW change when passing from the full
sky to masked analysis, showing that masking the galactic plane enhances
the lack of correlation [174, 209, 217, 218]. Comparing this result with [212],

78 https://github.com/ggalloni/lack_of_correlation_with_GWs.

https://github.com/ggalloni/lack_of_correlation_with_GWs
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Figure 25: Top:
optimal angles for
GWGW. Bottom:
optimal angles
for TGW. The left
and right panels
show respectively
the results when
we assume either
full-sky or masked
SMICA as our CMB
observation. The
star shows the
best angular range.
Here, we assume
ℓmax = 4.

who performed the same analysis using the CMB E-mode polarization, we
can appreciate how powerful GWs are in testing the fluke hypothesis. In
fact, having a ∼ 90% PD means that the distribution that TGW must follow
if ΛCDM is correct is extremely peaked and localized. This maximizes the
possibility of rejecting it in the event that a future observation happens to be
outside that distribution, with the corresponding level of significance.

We repeat the same analysis for STT,GWGW
θmin,θmax

, STT,TGW
θmin,θmax

and STT,TGW,GWGW
θmin,θmax

;
see Fig. 26. Once again, the left and right panels show the full-sky and
masked cases. Note that in all cases there is a high-PD region near the
range [60◦, 180◦], i. e. the range of the original estimator S1/2 introduced
by Spergel et al. [203].

In this context, the PD reaches values well above 90%, especially for the
masked case of STT,TGW

θmin,θmax
, where the optimal region reaches ∼ 98%. This

shows that GWs may be crucial to test the fluke hypothesis and eventually
reject the ΛCDM model. Interestingly, the best results are obtained by combin-
ing the CMB temperature with its cross-correlation with the CGWB. Instead,
including the GWGW spectrum seems to reduce the ability to test the fluke
hypothesis. All the results on the optimal angles are summarized in Tab. 2.

Assuming that we choose the optimal angular range for the full-sky and
masked case, the top panels of Fig. 27 show the correspondent distributions
of SGWGW

θmin,θmax
. Doing the same for TGW, we instead obtain the bottom panels

of Fig. 27. Note that TGW gives PDs consistently higher than the ones from
GWGW. This suggests that TGW is a better probe to test the fluke hypothe-
sis. In fact, even without combining more than one probe (see the following
paragraphs), TGW achieves a PD of 96.41% under the most pessimistic as-
sumption of ℓmax=4.
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Figure 26: Top: opti-
mal angles for the
combination of TT
and GWGW. Center:
optimal angles for
the combination of
TT and TGW. Bot-
tom: optimal angles
for the combination
of TT, TGW and
GWGW. The left
and right panels
show respectively
the results when
we assume either
full-sky or masked
SMICA as our CMB
observation. The
star shows the
best angular range.
Here, we assume
ℓmax = 4.

Full-sky
SGWGW

θmin,θmax
STGW

θmin,θmax
STT,GWGW

θmin,θmax
STT,TGW

θmin,θmax
STT,TGW,GWGW

θmin,θmax

θmin θmax θmin θmax θmin θmax θmin θmax θmin θmax

ℓmax = 4 63◦ 180◦ 77◦ 99◦ 62◦ 180◦ 79◦ 97◦ 61◦ 180◦

ℓmax = 6 56◦ 121◦ 65◦ 115◦ 55◦ 120◦ 68◦ 116◦ 54◦ 118◦

ℓmax = 10 58◦ 124◦ 71◦ 108◦ 58◦ 124◦ 72◦ 109◦ 57◦ 120◦

Mask-sky
SGWGW

θmin,θmax
STGW

θmin,θmax
STT,GWGW

θmin,θmax
STT,TGW

θmin,θmax
STT,TGW,GWGW

θmin,θmax

θmin θmax θmin θmax θmin θmax θmin θmax θmin θmax

ℓmax = 4 60◦ 167◦ 60◦ 180◦ 60◦ 166◦ 63◦ 180◦ 60◦ 166◦

ℓmax = 6 50◦ 95◦ 54◦ 129◦ 42◦ 122◦ 55◦ 180◦ 40◦ 122◦

ℓmax = 10 74◦ 77◦ 61◦ 132◦ 60◦ 88◦ 62◦ 134◦ 59◦ 88◦

Table 2: Optimal angles for every observable and combination of them.
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Figure 27: Top:
SGWGW

θmin ,θmax
distribu-

tions for the full-sky
and masked cases.
Bottom: STGW

θmin ,θmax
distributions for
the full-sky and
masked cases.
Angles θmin, θmax
are chosen to be
optimal in both
cases. Here we
assume ℓmax = 4.

We repeat the same for the joint analyses of the CMB temperature, CGWB,
and their cross-correlation. We obtain Fig. 28 using STT,GWGW

θmin,θmax
, STT,TGW

θmin,θmax
and

STT,TGW,GWGW
θmin,θmax

. All the results on PDs are summarized in Tab. 3. This shows
some interesting features: looking at the masked case, we notice not only an
overall consistency on the PDs obtained changing ℓmax on each probe, but
also there seems to be a certain pattern on how different probes perform at
each ℓmax. Indeed, ranking probes with ascending PD-ordering, the pattern
remains the same for all the masked case. This does not hold for the full-sky
case.

How can these results be used in the presence of a CGWB measurement?
Consider our highest PD assuming ℓmax = 4, thus the one given by the
masked STT,TGW

63◦ ,180◦ analysis. Exploiting the right central panel of Fig. 28 we
show different shaded areas corresponding to the different conclusions that
can be drawn. First, these regions are obtained by computing the range of
each histogram that encapsulates the 99% percent of the simulations. This
identifies five different parts of this plot:

• two gray regions corresponding to the values of STT,TGW
63◦ ,180◦ that are not

consistent with neither the constrained nor unconstrained realizations;

• the green and red regions, where the observation falls within the con-
strained or unconstrained histograms;

• the intersection of the green and red regions (resulting in a darker
region), in which we are not sure if the eventual observation follows
the constrained or unconstrained distribution.

Depending on the region where a future measurement of the CGWB will fall,
we can conclude the following:
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Figure 28: Top:
STT,GWGW

θmin ,θmax
distribu-

tions for the full-sky
and masked cases.
Center: STT,TGW

θmin ,θmax
distributions for
full-sky and masked
cases. The right plot
also shows shaded
areas correspond-
ing to different
conclusions that
one may draw if a
future observation
happens to be in
those (see the end of
Sec. 10.3.1). Bottom:
STT,TGW,GWGW

θmin ,θmax
distributions for
full-sky and masked
cases. Angles
θmin, θmax are cho-
sen to be optimal
in all cases and we
assume ℓmax = 4.

Full-sky
SGWGW

θmin,θmax
STGW

θmin,θmax
STT,GWGW

θmin,θmax
STT,TGW

θmin,θmax
STT,TGW,GWGW

θmin,θmax

PD PD PD PD PD
ℓmax = 4 58.58% 81.07% 86.09% 87.27% 88.86%
ℓmax = 6 60.75% 90.44% 87.61% 94.29% 90.35%
ℓmax = 10 62.27% 88.99% 88.51% 93.4% 91.22%

Mask-sky
SGWGW

θmin,θmax
STGW

θmin,θmax
STT,GWGW

θmin,θmax
STT,TGW

θmin,θmax
STT,TGW,GWGW

θmin,θmax

PD PD PD PD PD
ℓmax = 4 68.8% 96.41% 91.95% 98.34% 95.13%
ℓmax = 6 73.12% 96.98% 94.23% 98.9% 96.36%
ℓmax = 10 65.24% 96.9% 88.57% 98.89% 91.94%

Table 3: PDs for every observable and combination of them.
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• If it falls into the gray region, we may conclude that ΛCDM cannot
explain the observed value of STT,TGW

63◦ ,180◦ . Therefore, we need to find a
more comprehensive model that can explain this.

• If it falls inside the green one, we can say that our observation is well
explained by our model; however, we cannot say anything more that
this (being consistent, the fluke hypothesis remains valid).

• If the measurement is in the red region, we can draw two different
conclusions: either the ΛCDM model is unable to describe the observa-
tions and the fluke hypothesis can be rejected, or the CGWB signal is
not correlated (constrained) to the current measurements of the CMB

temperature anisotropies (this indeed is an assumption).

• If the observation falls at the intersection, it could be following the
ΛCDM prediction (green curve), preventing us from rejecting the fluke
hypothesis.

This reasoning can also be applied to the other fields, or combinations
of them, knowing that the distributions at the optimal angle maximize our
ability to get useful information from the CGWB.

In conclusion, in Sec. B.4 we show the optimal angles and the distributions
in the optimal range assuming the more optimistic cases of ℓmax = 6 and
ℓmax = 10.

10.3.2 Significance of the anomaly

Until now, we have explored the fluke hypothesis, finding that GWs can be
crucial in rejecting at least some of the assumptions of the ΛCDM model.
Despite this, as mentioned above, we cannot conclude anything regarding
the actual significance of the anomaly with such an analysis.

At the end of the previous section, we mentioned that in the green region
and at the intersection of the green and red of the right central panel of
Fig. 28 we cannot draw any meaningful conclusions since the fluke hypoth-
esis still holds.

Here we look at the same problem, but from the perspective of the signif-
icance of the anomaly, thus making use of the newly defined estimator in
Eq. 356.

Applying this to the SMICA maps, we obtain Fig. 29. We can see that
the SMICA is characterized by a low angular covariance irrespective of the
angular range considered, since each score consistently lowers than most
ΛCDM realizations. In terms of significance, full-sky and masked SMICA
correspond, respectively, to 0.82σ and 2.41σ. This confirms what has already
been found in the literature; i. e. masking increases the significance of the
anomaly, meaning that high-latitude points drive it.

We now apply this reasoning to the CGWB. In this case, the role of data is
played by our constrained realizations. The top panels of Fig. 30 show the
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Figure 29: Value of
STT for full-sky and
masked SMICA and
10000 ΛCDM realiza-
tions of CMB temper-
ature (ℓmax = 4).

Figure 30: Top: val-
ues of SGWGW for
full-sky and masked
constrained realiza-
tions of the CGWB
and the correspond-
ing significance in
terms of σ w. r. t.
the unconstrained
realizations. Bottom:
same quantities for
STGW. The dotted
and dashed verti-
cal lines indicate
the full-sky and
masked significance
of SMICA alone,
respectively.

results; the left panel shows the values of SGWGW and the right panel their
significance corresponding to the ΛCDM realizations.

Repeating the procedure for TGW, we obtain the bottom panels of Fig. 30.
In addition, in this case, TGW seems to perform similarly w. r. t. GWGW,
providing consistent values for the significance. However, both of them es-
sentially fail to increase the significance that one can get from TT.

Going to the joint analyzes, we obtain Fig. 31 for STT,GWGW, STT,TGW and
STT,TGW,GWGW.

Once again, we ask ourselves: how can these results be used in the pres-
ence of an eventual measurement of the CGWB? The answer is essentially the
same as the one at the end of Sec. 10.3.1, with an important exception. In
fact, we already know how to interpret a future observation falling in the
red or gray region. However, this time we can associate each constrained
realization with a significance in the form of sigma distance. Therefore, the
green region corresponds to high-significance realizations (where one can
claim that the anomaly is the result of a physical phenomenon), while the
intersection corresponds to low-significance ones (where further investiga-
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Figure 31: Top: val-
ues of STT,GWGW for
full-sky and masked
constrained realiza-
tions of the CGWB
and the correspond-
ing significance in
terms of σ w. r. t.
the unconstrained
realizations. Center:
same quantities for
STT,TGW. Bottom:
same quantities for
STT,TGW,GWGW. The
vertical lines dotted
and dashed indicate
the full-sky and
masked significance
of SMICA alone,
respectively.
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Full-sky
Signi. SSMICA SGWGW STGW STT,GWGW STT,TGW STT,TGW,GWGW

ℓmax = 4 0.82σ 63.13% 52.95% 98.34% 62.93% 98.81%
ℓmax = 6 1.3σ 38.49% 39.33% 97.59% 54.59% 98.59%
ℓmax = 10 1.18σ 47.15% 45.02% 98.3% 57.67% 99.01%

Mask-sky
Signi. SSMICA SGWGW STGW STT,GWGW STT,TGW STT,TGW,GWGW

ℓmax = 4 2.41σ 7.57% 12.34% 72.53% 7.78% 81.67%
ℓmax = 6 2.37σ 1.96% 1.23% 81.34% 0.31% 90.11%
ℓmax = 10 2.17σ 0.13% 0.46% 58.33% 0.15% 70.08%

Table 4: Percentage of constrained realizations that improve the significance of
SMICA, which is shown in the first column.

tion is needed to assess the origin of the anomaly). In other words, having
accounted for the look-elsewhere effect allows us to get useful information
on all the possible values of the estimator but the intersection.

Talking about the actual results, we summarize them in Tab. 4. Here, we
compare the performances of the various combinations of observables by
counting how many constrained realizations reach a better significance w. r. t.
SMICA alone.

For ℓmax = 4, despite what we find in Sec. 10.3.1, the best combination
seems to be TT + TGW + GWGW, which achieves the 98.81% and the 81.67%
of the constrained realizations, improving the significance of SMICA (full-
sky and masked, respectively). Therefore, to determine the actual signifi-
cance of the anomaly with GWs and to assess the physical origin of the
anomaly, it is crucial to observe the autospectrum. In fact, this brings the
majority of information when combined with TT, as shown by the last and
second to last columns of the Tab. 4.

10.4 summary and conclusions

Since COBE [32, 202, 207], we have measured a low two-point angular cor-
relation function of the CMB temperature on large scales. This feature has
been reassessed both by WMAP [152, 208, 209] and Planck [174, 210, 211] sug-
gesting that it is not the product of some systematic, given that the three
experiments are independent in this regard. Still, it is not clear whether the
so-called lack-of-correlation anomaly is the product of some non-standard
physics or whether it is the manifestation of the fact that we live in a rare
realization of the ΛCDM model. Since we already have a cosmic-variation-
limited measurement of CMB temperature on low and intermediate scales,
this latter possibility has to be explored with some observable other than
temperature. An example is the E-mode polarization of CMB photons, which
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is correlated with the temperature and can provide new information on the
anomaly [193, 212–214]. In this work, we study the ability of the CGWB to
shed light on this matter [49, 50, 104, 138, 140, 233]. This is done by exploit-
ing both the autospectrum of the CGWB and its cross-spectrum with CMB

temperature (hereby named TGW). In fact, we know that this primordial sig-
nal has a great degree of correlation with the temperature of the CMB [187].
Thus, we can produce both constrained and unconstrained realizations of
the CGWB using the SMICA temperature map as our CMB observation. Since
we know that the lack-of-correlation anomaly is enhanced when the galactic
plane is removed [209, 217, 218], this is done while considering both full-sky
and masked Planck’s SMICA. These maps are smoothed with a Gaussian
beam with FWHM = 2◦ and degraded to Nside = 64. We have not shown
this in the main body of this work, but we also repeated the analysis as-
suming a smoothing of FWHM = 0.92◦ (thus the grid scale corresponding
to Nside = 64) and FWHM = 4◦. As expected, the former case brings some
differences caused by pixelization effects, which is why it is usually advis-
able to smooth maps with a beam two or three times bigger than the grid
scale. Instead, the latter produces identical results w. r. t. our choice of 2◦,
proving that it is sufficiently large. When performing the analysis, we must
also take into account that GWs are notably difficult to observe. Thus, we
consider three different choices of what the maximum multipole is that we
can observe in a signal-dominated way, i. e. ℓmax = 4, 6 and 10. Depending
on the assumption one makes for the monopole radiation of GWs, this can
be obtained with one of the future GW interferometers or using a combina-
tion of them (for example, LISA [220–224], DECIGO [225], ET [226, 227] and CE

[228]).
Summarizing the methodology followed in this chapter, in Sec. 10.2.1 we

define the dataset we exploit to perform our analysis, while in Sec. 10.2.2
we generalize the full-sky expression of the constrained realizations to ac-
count for the multipole couplings brought by the presence of a mask (see
also Sec. B.1). Then, after having defined the key quantity on which the
lack-of-correlation manifests, i. e. , the two-point angular correlation func-
tion (see Sec. 10.2.3), in Sec. 10.2.4 we follow Copi et al. [212] to define
an estimator to quantify the anomaly. In particular, by integrating the two-
point angular correlation function (squared) over a certain angular range
[θmin, θmax], one can define the quantity named Sθmin,θmax for each field con-
sidered (in our case TT, TGW, and GWGW). Furthermore, [193] defines an
estimator capable of combining those of two different observables. There-
fore, in our case, we define three combined estimators STT,GWGW

θmin,θmax
, STT,TGW

θmin,θmax
,

and STT,TGW,GWGW
θmin,θmax

, which encode the information of all the observables
considered. In Sec. 10.2.5, we follow again Copi et al. [212], to define a way
to maximize the amount of information that we can obtain by adding CGWB

to the estimate. In particular, computing the constrained and unconstrained
realizations of the CGWB (considering both the full-sky and the masked ver-
sion of SMICA), we count how many unconstrained realizations can recover
higher values of SGWGW

θmin,θmax
w. r. t. the 99th percentile of the constrained ones.
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This defines what we call the PD of the two distributions. When this PD is
maximal, we can say that the CGWB is as sensitive as possible to what is
observed in the CMB (in terms of lack of correlation). The specific angular
range found is named the “optimal angular range”. The same procedure
is also performed for STGW

θmin,θmax
, STT,GWGW

θmin,θmax
, STT,TGW

θmin,θmax
and STT,TGW,GWGW

θmin,θmax
.

Finally, in Sec. 10.2.6 we define a new estimator for the lack-of-correlation
which takes into account the so-called look-elsewhere effect. Indeed, to study
the significance of the anomaly, we must find a way to marginalize the
angular-range information so that we recover the anomaly irrespective of
the particular range. In this way, we are able to provide a forecast of the
improvement brought about by the CGWB in terms of the significance of the
lack-of-correlation anomaly.

Summarizing now the results, in Sec. 10.3.1 we report the results for the
optimal angular ranges. We find that, in general, passing from the full-sky
treatment to the masked treatment increases the PDs obtained. This confirms
that the anomaly seems to increase in significance together with the angle
from the galactic plane. In addition, when considering one field at a time,
TGW seems to be a consistently better probe to test the fluke hypothesis
w. r. t. GWGW. Furthermore, using different combinations of fields, we show
that TT + TGW is the best combination to test the fluke hypothesis. In fact,
even in the most pessimistic case of ℓmax = 4 we obtain a PD of 96.41% in
the optimal angular range [63◦, 180◦] (see Tab. 2 and Tab. 3). This PD can
be compared with the ones in [212] regarding E-mode polarization, showing
that GWs are actually much more restrictive in testing the fluke hypothesis.
As discussed in Sec. 10.3.1, this means that this combination of observables
is extremely good for testing this hypothesis, maximizing the probability of
rejecting the ΛCDM model in the event that a future observation happens to
be outside the distribution shown in Fig. 28, with the corresponding level of
significance. Regarding the comparison with different assumptions on ℓmax,
we note that the best results in terms of PDs are obtained with ℓmax = 6,
suggesting that the lack of correlation signal lives in the first six multipoles
(see Sec. B.4 for the plots). Overall, we also show that there always seems
to be a high-PD region near the range where the original S1/2 estimator is
defined [203]. As mentioned in Sec. 10.3.1, another interesting feature of this
analysis is depicted in Tab. 3: the masked case seems to give more consis-
tent results in terms of PDs against a change of ℓmax or used probes. Indeed,
there seems to be a fixed order of probes at each ℓmax when we rank them
for ascending PD. This does not hold for the full-sky case. Then, one might
argue that the masked sky provides a more faithful representation of real-
ity due to its stronger consistency. Another feature emerges when changing
the ℓrmmax of the analysis (see Sec. B.4) Indeed, increasing the number of
multipoles acts in different ways on the optimal regions: the GWGW real-
izations start concentrating towards the ≈ 75◦ scale and the TGW abandon
θmax ≃ 180◦ in favor of ≈ 130◦. Hence, the various combined estimators
report a combination of the preferred regions of the two, or three, probes
involved.
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In Sec. 10.3.2, we show the results for the actual significance of the anomaly.
Firstly, when applying our newly defined estimator to the CMB temperature
alone, we obtain a significance of 0.82σ and 2.41σ for full-sky and masked
SMICA respectively. This confirms that masking the sky greatly enhances
the significance of this anomaly (in our case of a factor three). Also, Tab. 4

shows the significance of TT alone when increasing the number of multi-
poles. It peaks at ℓmax = 6, suggesting in accordance with the optimal angu-
lar range analysis that the anomaly lives in that multipole range. Focusing
then on the CGWB contributions, despite what we find analyzing the opti-
mal angular ranges, we point out that the autospectrum GWGW is crucial
to obtain a good level of significance when including a CGWB observation.
The best results in this sense are given by the full combination TT + TGW +
GWGW, which provides 98.81% (81.67%) of the realizations improving the
current significance w. r. t. full-sky (masked) SMICA (see Tab. 4). Unlike what
we could conclude with the analysis of optimal angles alone, using the new
estimator for the significance, not only can we reject the ΛCDM model if a
measurement of the CGWB falls outside the predicted distribution, but also
we can associate an actual significance to a measurement following those
curves. Comparing again different assumptions on ℓmax and focusing on
the full combination of observables, the significance remains fairly stable
in all cases in the full-sky case. Also, we observe that the constrained re-
alizations of GWGW and TGW are always centered on the significance of
SMICA alone (see Sec. B.4). For the masked case, the results are behaving
more complexly. Starting from ℓmax = 6, having included two extra multi-
poles seems to act as we expect, assuming that the anomaly lives in the first
six multipoles as our analysis suggests. Indeed, comparing the S-estimator
distributions with the results shown in the main body for ℓmax = 4, they ap-
pear to be in the same relative position w. r. t. the unconstrained realizations,
but with a shrunken dispersion (resulting in more peaked histograms). Thus,
the same “anomalous signal” is present and gets better constrained by the
higher number of multipoles. This is also testified by the increase in the sig-
nificance obtained (see Tab. 4). When considering the case of ℓmax = 10, the
situation gets flipped over. The S-estimator distributions approach tends to
move toward the mean of the unconstrained distribution (even getting super-
imposed to the full-sky case for GWGW alone), resulting in an overall loss of
significance. Together with the optimal range analysis and the significance
of TT alone, this suggests the following interpretation: if the anomaly actu-
ally lives in the first six multipoles, we may expect that including more and
more non-anomalous multipoles should decrease the significance since these
would distribute as the ΛCDM ones. In other words, since we are summing
over the considered multipole range (see eq. (351)), these new multipoles are
pushing the overall distribution toward the standard behavior.

Here, we use NaMaster to compute the angular power spectrum of masked
skies (see Sec. 10.2.1). In particular, this approach is applied whenever we
need the spectrum of masked SMICA to compute the estimators or when
we need to compute the spectrum of TGW while masking the CMB sky. Al-
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though this provides an unbiased estimate of the spectra, it does not mini-
mize their variance. For this reason, it would be interesting to explore this
anomaly with an analogous analysis employing some maximum likelihood
estimator, which instead allows one to get a minimal variance estimate of
the spectra [215, 234, 235].

Another interesting aspect to explore in the time ahead has been empha-
sized by Hansen et al. [236]. They show the evidence of the presence of an
extra-galactic foreground on top of the CMB temperature data. Indeed, if
their claim is found to be correct, it would mean that the variance measured
on large scales is actually enhanced by this signal. Therefore, mitigating this
foreground from our maps would bring the variance of the first CMB mul-
tipoles even lower than its current value, suggesting that the significance
of the lack-of-correlation anomaly might increase (even assuming TT alone).
By extension, if this hypothesis is correct, the CGWB might become crucial to
boost the significance to the level of an actual tension. In fact, in Sec. 10.3.2
we show that in some cases the CGWB is expected to provide a significance
near the 4σ level, even with current data.

Concluding, here we just consider the CMB temperature and the CGWB.
Instead, we know that CGWB also shares a correlation with E-mode polariza-
tion [187, 198]. Thus, this framework can be extended to all three of them. In
this context, future experiments such as Lite (Light) satellite for the studies
of B-mode polarization and Inflation from cosmic background Radiation De-
tection (LiteBIRD) [237] could be crucial to finally assess the physical origin
of this anomaly, given that LiteBIRD is expected to be fully cosmic-variance-
limited on the large-scale polarization [238].



Part IV

S TAT I S T I C S A N D D ATA A N A LY S I S

In this part of the Thesis, our focus shifts towards delving into
the methodologies employed for data analysis in Cosmology. We
introduce two key techniques that play pivotal roles in Bayesian
and frequentist approaches: the Markov-Chain Monte-Carlo (MCMC)
analysis and the Profile Likelihood (PL) analysis. These comple-
mentary methods are united by a critical element known as the
“Likelihood”. The MCMC analysis provides a powerful Bayesian
perspective on exploring parameter space, allowing us to derive
meaningful insights from our data. Simultaneously, the PL anal-
ysis, a cornerstone of the frequentist approach, offers an inde-
pendent means of scrutinizing the same data, ensuring robust
and unbiased conclusions, particularly for parameters with less
stringent constraints. Our investigation focuses on the tensor sec-
tor of the parameter space, where we apply both MCMC and PL

techniques. By presenting the results of these analyses, we aim
to offer a comprehensive understanding of the tensor sector and
underscore the importance of employing various statistical tools
to gain insights into the complexities of the Cosmos.
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B AY E S I A N S TAT I S T I C S

Bayesian statistics, alongside the frequentist approach, constitutes a fundamen-
tal component of data analysis, particularly in Cosmology. In this section, we

provide an overview of the basics of Bayesian statistics and introduce the Markov
Chain Monte Carlo (MCMC) technique. The MCMC method is widely used in Cos-
mology to extract parameter information from datasets.
For further insights, consult [239].

11.1 basics

In the pursuit of scientific understanding, we endeavor to assign a numeri-
cal measure to our confidence in a hypothesis encapsulated within the spec-
trum of real numbers from 0 to 1. This numerical representation signifies the
probability that the hypothesis is true, a fundamental concept in the realm
of scientific reasoning [240].
Consider two statements X and Y and some set of available information I.
The Bayes theorem states

prob(X|Y, I) =
prob(Y|X, I)prob(X|I)

prob(Y|I) . (357)

It is trivial to generalize this statement to a set of propositions whose de-
gree of belief is summarized by prob(A, B, C, . . . |I). We might be interested
in one of these propositions regardless of the others; this leads to a procedure
named marginalization: if now we call X the hypothesis we are interested in
and Yk with k = 1, . . . , N the rest79, the marginalization procedure reads
as follows:

prob(X|I) =
N

∑
k=1

prob(X, Yk|I) . (358)

If instead the alternatives are a continuum of values (such as the values of a
parameter), marginalization is recast to

prob(X|I) =
∫ y2

y1

PDF(X, Y|I)dy , (359)

79 Which we assume to be exclusive and mutually exclusive.

147
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where the Probability Density Function (PDF) is

PDF(X, Y = y|I) ≡ lim
δy→0

PDF(X, y− δy ≤ Y ≤ y + δy|I)
δy

(360)

and we assume y1 ≤ Y ≤ y2.
If now we substitute

Y→ Data from an experiment (361)

X→ Hypothesis that we want to probe (362)

I→ Theory providing some preliminary information , (363)

we can rewrite Eq. 357 as

prob(Hypo.|Data) =
prob(Data|Hypo.)prob(Hypo.)

prob(Data)
, (364)

where: prob(Hypo.|Data) ≡ P(h|d) is the posterior distribution;

prob(Data|Hypo.) ≡ L(d|h) is the Likelihood distribution;

prob(Hypo.) ≡ Π(h) is the prior distribution;

prob(Data) ≡ E(d) is the evidence distribution.

This encapsulates the essence of Bayesian analysis, where we explore the
probability associated with a parameter adopting a specific value, taking
into consideration the information provided by the available data.

11.2 an application : parameter estimation

Let us consider an example of a parameter estimation problem, the classic
coin toss.

We toss a coin N times and get M heads. Is the coin fair or not? The
likelihood is a binomial distribution:

L(Data|H, I) ∝ HM(1− H)N−M , (365)

where H is the probability to get a head and H = 0.5 defines a fair coin.
What about the prior? If we are in a dodgy casino, we may be suspicious

of the coin and choose a uniform prior between H = 0 (two-tailed coin)
and H = 1 (two-headed coin), and we assign a null probability otherwise
(H < 0 or H > 1). If instead we are playing with a trusted friend, we may
choose a prior peaked around H = 0.5, e. g. a Gaussian with some σ.

This last paragraph may sound strange to the most frequentist-minded
readers. Indeed, we want to apply this reasoning to science, so any subjec-
tivity seems at least problematic. This is a characteristic feature of Bayesian
statistics, where we may expect different answers from different prior beliefs,
and we must live with it (this concept is crucial to understand Chap. 13). De-
spite this, if our problem is well defined, we expect that two observers start-
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ing from the same prior will end up with the same posterior (in the limit of
many tosses). Furthermore, if the data provide enough information, we ex-
pect them to “dominate” the posterior anyway, even starting from different
priors.

Going back to our tossing problem and choosing the uniform prior, we
can now write our posterior asP(H|Data,I) ∝ HM(1− H)N−M 0 ≤ H ≤ 1

P(H|Data,I) = 0 otherwise
. (366)

Note that we ignored E(Data) since it is just a normalization constant.
In a pure Bayesian framework, Eq. 366 represents the solution of the prob-

lem; however, we would not be satisfied with that. In fact, we would like to
provide an estimate of H and an error bar. The most common estimator for
H is the maximum of the posterior, i. e. the value H0 for which the following
holds

dP
dH

∣∣∣∣
H0

= 0 and
d2P
dH2

∣∣∣∣
H0

< 0 . (367)

Note that if the prior is flat, it can be treated as a normalization constant and
P ∝ L; thus, this procedure would also lead to the maximum of likelihood.

To obtain the error bar, the most common procedure is to look at the
posterior curvature at maximum. Working with the logarithm of P, we can
write

log P(H) = log P(H0)

+
d log P(H)

dH

∣∣∣∣
H0

(H − H0) +
1
2

d2 log P(H)

dH2

∣∣∣∣
H0

(H − H0)
2 + . . .

= log P(H0) +
1
2

d2 log P(H)

dH2

∣∣∣∣
H0

(H − H0)
2 ,

(368)

where we exploit the fact that the first derivative is null at the maximum
and we truncate the Taylor expansion at the second-order. This means that
we can write

P(H) ∝ exp

{
1
2

d2 log P(H)

dH2

∣∣∣∣
H0

(H − H0)
2

}
, (369)
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which is a Gaussian distribution. Hence, truncating to the leading term in the
expansion amounts to approximating the posterior distribution as a Gaus-
sian, whose error bar is

σ =

(
− d2 log P(H)

dH2

∣∣∣∣
H0

)−1/2

. (370)

Note that of course one has to be careful and check whether this is a suit-
able approximation for the specific problem under study. For example, this
approach fails in the case of an asymmetric or multimodal posterior dis-
tribution. Note also that often in the literature one reports the mean of the
posterior instead of its maximum. Of course, in the Gaussian case those coin-
cide, however for very skewed distributions they give different information.
Indeed, the maximum of the distribution represents the most probable value
of the parameter of interest, while the mean is the expectation value of the
parameter given its PDF (the 1D posterior). Thus, for very non-Gaussian dis-
tributions, it may be wiser to report solely a credible interval (see Sec. 11.3.2).

Furthermore, the same procedure to obtain an estimate of H applied to
the likelihood distribution brings the equivalent formulas for the maximum
likelihood estimate, where the error bar is the Fisher error. In other words,
in such a case maximizing the likelihood is the same as minimizing a chi-
squared.

Concluding this application, it can be shown that in our tossing example,
the best estimate of H0 and its error bar are

Ĥ0 =
M
N

and σ =

√
H0(1− H0)

N
, (371)

as we may have expected from the beginning.
Before proceeding, we could have considered an arbitrarily difficult prob-

lem here to showcase this procedure. This simple approach to get the best
estimate and the error bar still holds if:

1. the variable considered is Gaussian,

2. data are independent,

3. the model for the parameter is linear.

For example, if these conditions are not attained, it is not guaranteed that
truncating the posterior to second-order is a good approximation. Further-
more, even if we find a problem in which conditions are respected, it can be
analytically challenging (or even impossible) to solve the problem, especially
if marginalization is involved80. For these reasons, we would like to have a
method to sample numerically the posterior. The way forward is the MCMC

technique [241–245].

80 Even a seemingly simple function can become a nightmare to integrate multiple times over
different parameters.
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11.3 the markov-chain monte-carlo technique

Let us recall the problem we want to solve. We know that

P(
#

θ | #D, I) =
L( #

D| #θ )Π(
#

θ |I)∫
L( #

D| #θ )Π(
#

θ |I)d #

θ
, (372)

where:
#

θ = vector of parameters of our model;
#

D = vector of data from some experiment;

E( #

D) =
∫
L( #

D| #θ )Π(
#

θ |I)d #

θ .

Both P(
#

θ ) and the marginalization procedure are often impossible to de-
scribe analytically. In real life, we could have up to 106 parameters on which
to marginalize.

The idea of a MCMC is that you produce a random walk in the parameter
space; starting from some value

#

θ 0, you move to
#

θ 1 with some prescription
to perform the step

#

θ 0 →
#

θ 1. Repeating the process N times, you end up
with {

#

θ 0,
#

θ 1, . . . ,
#

θ t,
#

θ t+1, . . . ,
#

θ N

}
. (373)

If a certain set of “rules” is respected, after a transient the points are sampled
from the posterior distribution.

Going through these rules and theorems is outside the scope of this Thesis,
however, we mention the main steps to achieve our final goal.

no memory A sequence of random variables on a discrete state space Ω is
a Markov chain if the probability that the random variable at step t (xt)
assumes the state st depends only on the previous step of the chain:

P(xt = st|xt−1 = st−1, xt−2 = st−2, . . . ) = P(xt = st|xt−1 = st−1) .
(374)

This means that a Markov chain is memoryless, since knowledge of the
full past is irrelevant in determining the next step.

homogeneity We define transition probability

P(xt = st|xt−1 = st−1) ∀(st+1, st) ∈ Ω×Ω . (375)

A Markov chain is homogeneous if the transition probability between
two states depends only on the initial and final state, and not on “time”
t.

ergodicity A Markov chain is ergodic if any state can be reached from any
other state (not necessarily in one step).
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stationary distribution A stationary distribution of a Markov chain is
a distribution p( #x ) in the space of states for which

P( #y ) = ∑
x∈Ω

P( #y | #x )P( #x ) (376)

A state is also recurrent if there is a probability 1 that after leaving it,
we will return to that state. On the contrary, the state is said to be
transient. Furthermore, a recurrent state can be said positive or null if
the expected return time is finite or infinite, respectively.

limiting distribution The probability distribution to which the chain
converges after an infinite number of steps is called limiting distribution:

lim
n→∞

P(xn = sn|x0 = s0) . (377)

convergence A Markov chain does not necessarily admit a limiting dis-
tribution, but a finite, ergodic, positive recurrent and aperiodic Markov
chain always converges to a limiting distribution as n → ∞. This dis-
tribution is also the stationary distribution.

detailed balance Calling P the transition distribution, a Markov chain
is reversible if there exists a probability distribution π in the space of
states Ω such that

P(x|y)π(y) = P(y|x)π(x) . (378)

This relation is called detailed balance and a reversible Markov chain has
a stationary distribution given by π.

Finally, we have all the ingredients we need to build a MCMC. Indeed, now
we can find a suitable reversible chain, using the detailed balance equation,
which converges to the posterior.

In Cosmology, the main algorithms are the Metropolis-Hastings algorithm
[241, 246, 247], the Gibbs sampling [248–251], and the Hamilton sampling
[252, 253]. Here, we just show briefly the idea behind the first one.

11.3.1 Metropolis-Hastings algorithm

Looking at Eq. 372, we call P̃(
#

θ ) the numerator of the RHS, which is the only
interesting part in a parameter estimation problem. Starting from an initial
state #x 0, we recursively update the state as follows: call #x t the parameter
vector at time t. Consider a proposal transition probability Q and generate
a new vector #y such that

#y ∼ Q(·| #x t) . (379)
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Now you accept or reject the new value #y with the following probability:

α( #x t+1 = #y | #x t) ≡ min

{
1,

P̃( #y )Q( #x | #y )
P̃( #x )Q( #y | #x )

}
. (380)

If #y is rejected, repeat the process from #x t, otherwise move to #x t+1 and
repeat.

It can be shown that, assuming ergodicity, the Markov chain generated
with the Metropolis-Hastings algorithm is reversible and has the posterior
as a stationary distribution [239].

11.3.2 Bayesian Intervals

Whatever algorithm we choose to use, in the end we will have a series
of points in parameter space that we can marginalize just by building his-
tograms on the parameter of interest. Name θ the parameter, and we would
have a function P(θ|D) describing the marginal probability distribution.
Thus, we can build Bayesian interval (or credible interval) with a certain
level of significance α finding the values

[
θlo, θup

]
that satisfy

α =
∫ θup

θlo

P(θ|D)dθ . (381)

This computation does not provide a unique solution, thus one needs to
choose a prescription to obtain an interval. One of the available methods is
to start from the maximum and find the requested integral value by drawing
horizontal lines on the posterior and taking the 2 intersecting points as the
extremes of integration. This method will automatically shift from one-tail
and two-tail credible intervals and is used for example by the well-known
getdist package [254].

If a physical boundary is present, e. g. θ cannot be negative, this informa-
tion is naturally embedded in the prior definition which could be

Π(θ) =

0 θ < 0

1 θ ≥ 0
. (382)

This procedure is now very simple thanks to the MCMC and also the inter-
pretation of the limits obtained is also quite simple. In Bayesian statistics, the
parameters are treated as random variables, therefore the boundaries are re-
ally a statistical statement on the true value of θ: if we repeat the experiment
N times, in α% of the experiments we would find θ inside the interval.

Despite this, in the following section we will show that there are some
subtleties to take into account in the Bayesian case.
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11.4 pitfalls of mcmc

We want to spend some words on the issues that one could encounter when
employing such a technique.

For example, even if we say that a MCMC solves the problem of analyti-
cally describing the posterior, it is not trivial at all to make the chain con-
verge. Computationally speaking, this is a demanding process that can po-
tentially last forever if it is not properly set. For example, a crucial aspect
is the choice of the proposal transition probability: the more we choose it
similar to the final posterior, the faster the chain is to converge. Another key
ingredient in this context is the degeneracy between parameters, which can
make convergence hard to achieve (different algorithms behave differently
in this regard). Even in the ideal case, where we properly choose every as-
pect of the proposal probability, the chain can take several days (or weeks)
to fully converge.

Furthermore, we mention that a certain degree of subjectivity in Bayesian
statistics is brought by the choice of the prior. However, we could try to make
it as objective as possible with a set of rules. For example, we could consider
the Jeffreys’ prior defined as

Π(θ) ∝
√

det(I(θ)) , (383)

where

Iij = −
〈

∂2 ln P(D|θ
∂θi∂θj

〉
(384)

is the Fisher information. One can show that the Jeffreys prior is invariant
under reparametrization of parameters.

Another notable example is the reference prior. We define the Kullback-
Leibler divergence as

Dn[Π, P] =
∫

P(θ|D) ln
P(θ|D)

Π(θ)
dθ , (385)

which represents the gain in information provided by data. In other words,
this measure the increase of information passing from describing some phe-
nomenon with prior knowledge Π(θ) to the posterior P(θ|D), which, of
course, takes advantage of having some informative data. The reference prior
is chosen to maximize ⟨Dn[Π, P]⟩.

Despite this, some prior dependence might still be present even in the
most sophisticated prior selection (as stated previously, this is just a charac-
teristic of Bayesian analysis that we must deal with). Furthermore, often one
chooses a simple constant prior not because it actually represents the actual
prior belief on the parameter, but because it allows one to produce intervals
whose frequentist properties can be studied. In fact, remember that if the
prior is chosen to be flat, P(θ|D) ∝ L(D|θ).
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We conclude with an important remark: of course, Bayesian statistics is
fully consistent and robust, and these effects do not pose any intrinsic prob-
lem to this framework or to the interpretation of the results. For every prior
we choose, the final posterior will still represent the most probable region
of parameter space given the data we have and the assumptions we make.
However, we must be aware that different prior choices may affect our final
results, so we must be clear about this dependence. For example, repeating
the analysis with multiple choices provides a transparent view of the prob-
lem being studied.
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F R E Q U E N T I S T S TAT I S T I C S

Together with Bayesian statistics, frequentist statistics completes the toolbox
for data analysis and model inference. As demonstrated in Chap. 11, MCMC

analysis may be influenced by prior choices and volume effects. In contrast, the fre-
quentist approach provides an analysis that is independent of both. However, caution
is warranted when comparing the outcomes of these two complementary methodolo-
gies, as they yield different insights from the same dataset.
This chapter, primarily drawing from [255] and the Particle Data Group (PDG)81,
introduces fundamental concepts of hypothesis testing in a frequentist context. Our
objective is to present the PL technique as an alternative to MCMC. PL has gained
significant traction in Cosmology, especially when exploring extensions beyond the
standard ΛCDM model to more exotic and unconstrained scenarios.

12.1 volume effects on bayesian statistics

There is a subtle problem as to how we can interpret the results of a MCMC.
In a multidimensional problem, if a large part of the probability volume is
in a certain area, the final posterior will be drawn towards that region just as
a result of the marginalization procedure that is performed when the result
is given on a single parameter [256]. An example is a “Pinocchio-shaped”
posterior as shown in Fig. 32 [257]. In fact, there is a large region of relatively
low probability around θ1 = 2 and a small region with high probability
around θ1 = 7. When marginalizing over θ2, Nygaard et al. [257] obtain the
blue line of the top panel. However, if instead they plot the maximum of the
likelihood for each value of θ1 they obtain the red one. It is clear that the
two lines are pushing us to very different conclusions about the parameter.
These effects on the PDF resulting from marginalization are commonly called
volume effects. As the dependence on the prior (see Chap. 11), these are not
internal issues of the Bayesian statistics, which is still a robust framework,
but rather a feature that must be understood and properly characterized.

The second procedure shown in Fig. 32 is called PL, which is the main topic
of this chapter. However, before jumping to its definition we must introduce
some important concept of frequentist statistics.

12.2 hypothesis testing

Consider a generic hypothesis H0; a frequentist test of H0 is a rule that tells
us for which data x we can reject H0. We can also define a region ω of the

81 https://pdg.lbl.gov/.
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Figure 32: Example
of a posterior
which brings to vol-
ume effects when
marginalization
is applied. Figure
extracted from
[257].

data space where the probability is under a certain significance level α such
that

P(x ∈ ω|H0) ≤ α . (386)

Say now that H0 is some null hypothesis for a certain signal to be observed
and H1 represent instead a detection. How can we claim a detection, i. e.
reject H0?

We can use the Neyman-Pearson lemma to maximize the “rejection power”
of a test; in fact, the lemma states that the region ω should be chosen in such
a way that

λ(x) =
f (x|H1)

f (x|H0)
> cα ∀x ∈ ω , (387)

where: cα = is a value determined from the significance level α;

f (x|·) = PDF of the data given a hypothesis.

At this point, it is also convenient to define a test statistic of data t(x) as a
scalar function of the data in such a way that the boundary of the region ω is
a constant surface t(x). In fact, another way to define the Neyman-Pearson
lemma is to say that Eq. 387, which is essentially a likelihood ratio, repre-
sents the optimal test statistic [255]. Despite the apparent simplicity of these
definitions, as mentioned in Chap. 11, it could be difficult to work analyti-
cally with such objects, so often one moves to some Monte-Carlo approach.

To quantify the agreement of some data with a hypothesis, say H0, we can
use the p-value, defined as the probability of finding some statistic t in the
region of less compatibility with H0 w. r. t. to the value in the observed data
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tobs. E. g. if we consider a situation in which the bigger is t the poorer the
compatibility with H0 becomes, we can write the p-value as

p =
∫ ∞

tobs

f (t|H0)dt . (388)

Often, one converts this number into a significance Z by computing the
amount of standard deviations of a Gaussian random variable that brings
you to the observed value:

Z = Φ−1(1− p) , (389)

where Φ is the cumulative distribution of a standard Gaussian.

12.3 dealing with nuisance parameters

Up to now, we have worked with an underlying assumption: H0 and H1
must be simple hypothesis, which for example do not depend on other un-
determined parameters. Suppose now that we want to test some hypotheti-
cal value of a parameter θ, but the model contains a nuisance parameter ν.
Assuming the same definition of the p-value as before and a test statistic qθ ,
we can write

pθ(ν) =
∫ ∞

qobs
θ

f (qθ|θ, nu)dqθ , (390)

which of course depend on the value of ν. In a frequentist environment, θ is
rejected if the p-value is less than α for all values of ν. This is solved if we
manage to find a qθ independent of ν, however, this is not easy to achieve.
An approximate solution is given by the PL ratio. Firstly, we define the PL:
assuming to have a likelihood L(θ, ν), i. e. a function of both θ and ν, the PL

on θ is given by

Lp(θ) = max
ν
L(θ, ν) . (391)

In other words, for each value of θ, the value of ν is chosen to maximize
the function L, leaving in the end a function Lp which depends only on the
profiled parameter.

The PL ratio in given by

λp(θ) =
maxν L(θ, ν)

maxθ,ν L(θ, ν)
, (392)

so the ratio of the PL and the absolute maximum of the likelihood. Provided
that certain conditions are satisfied, Wilks’ theorem states that −2 ln λp(θ)

follows a χ2 distribution in the limit of a large data sample and independent
of the values of ν. In a real application, e. g. with a finite sample, θ will retain
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some dependence on ν, which will cause some deviation from the behavior
of χ2 (see Chap. 14).

12.4 intervals

As mentioned in Chap. 11, to obtain some results from an experiment, we
would like to report an estimate of θ as θ̂ ± σθ . With distributions that are
not Gaussian or if there are physical boundaries on the values of θ, this
may not be possible; therefore, we need a way to extract confidence intervals.
In Sec. 11.3.2 we showed the procedure to obtain the Bayesian intervals, or
credible intervals; instead, here we show the frequentist equivalent.

The procedure here is slightly more involved due to the nature of frequen-
tist intervals: in fact, now the true value parameters is not a random variable,
but rather fixed values that nature choose. Thus, the boundaries obtained
from a set of data are specific for the experiment considered and represent
the random variable in this case. Repeating the experiment would cause
these bounds to fluctuate. In this context, the coverage probability refers to the
fraction of intervals that contain the true value of the parameters among the
N different repetitions of the experiment. The confidence intervals are then
determined to have a coverage probability greater than or equal to a certain
CL.

12.4.1 Neyman Construction

As before, consider some data x and their PDF f (x|θ), where θ is some
parameter. Once we fix a significance level α, we can find, for each value of
θ, an interval [x1(θ, α), x2(θ, α)] such that

prob(x1 < x < x2|θ) =
∫ x2

x1

f (x|θ)dx ≥ α . (393)

Repeating this process for a set of values of θ and drawing each segment
[x1, x2] in a plot, we can find the so-called confidence belt (see Fig. 33).

Performing an experiment means having a measured value of x = x0,
thus the confidence interval of θ is found by drawing a vertical line at x0
in that plot. In fact, the interval consists of all values of θ for which the
corresponding segment [x1(θ, α), x2(θ, α)] is intercepted by the vertical line.
Suppose that the true value of θ is θ0; Fig. 33 shows that

θ0 ∈ [θ1(x), θ2(x)] ⇐⇒ x ∈ [x1(θ0), x2(θ0)] . (394)

Once again, if we repeat the experiment, [θ1, θ2] would change but would
cover the true value with the requested level of significance.
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Figure 33: Example
of confidence belt
constructed à la
Neyman. Figure
extracted from
[255].

12.4.2 Feldman-Cousins

Note that, actually, Eq. 393 does not define uniquely x1 and x2, therefore, we
need another equation to close the system. For example, we could impose
the condition of central intervals, i. e. asking that the probability below x1
and the one above x2 are identical and equal to α/2. In other cases, we may
want to report an upper or lower limit on some parameter, but this decision
cannot be taken a posteriori by looking at the data (so-called “flip-flopping”).
The way to solve both of these problems is given by Feldman and Cousins
[258].

To construct the confidence intervals, we could consider a hypothesis test
that the true value is θ; then, recalling the definitions of the p-value above,
the interval is found by imposing pθ = α. If we choose a test statistic as

λ(x, θ) =
f (x|θ)
f (x|θ̂)

, (395)

i. e. a likelihood ratio where θ̂ maximizes f (x|θ), we obtain the Feldman-
Cousins (FC) prescription; in particular, to construct the bounds à la FC one
has to enforce Eq. 393 while asking λ(x1, θ) = λ(x2, θ).

This prescription not only recovers the correct coverage probability, it is
also able to naturally account for any eventual physical boundaries of the pa-
rameters, shifting “automatically” from a two-sided interval to a one-sided
one. Suppose that

f (x|θ) = 1√
2π

exp

(
− (x− θ)2

2

)
(396)
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Figure 34: FC con-
fidence belt with a
physical bound µ ≥
0. Figure extracted
from [258].

and that θ must be non-negative. Our physically allowed best estimate of θ

is θ̂ = max(0, x); then, we can write

λ(x, θ) =
f (x|θ)
f (x|θ̂)

=


exp

(
− (x−θ)2

2

)
if x ≥ 0

exp
(

xθ − θ2

2

)
if x < 0

. (397)

Searching now for [x1(θ, α), x2(θ, α)] results in Fig. 34 (note that θ =
µ in the figure). Note that if the measured value of x is too close to the
physical limit or is negative, the correspondent vertical line would intercept
only x1(θ, α), automatically defining an upper limit on θ. At some point,
increasing the measured value, we would instead intercept also x2(θ, α),
shifting to a two-sided confidence interval. For this reason, the FC intervals
are also said to be unified [258].
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C O N S T R A I N I N G T H E T E N S O R S E C T O R W I T H M C M C

Here, we push the boundaries of our understanding in the tensor sector of the pa-
rameter space primarily from a Bayesian perspective, as discussed in Chap. 11.

The significance of measuring the tensor-to-scalar ratio and the introduction of the
tensor spectral tilt are highlighted in Chap. 5. We have seen that the standard single-
field inflation model sets the tensor spectral tilt to nt = −r/8. Despite this, in this
chapter, based on Galloni et al. [259], we take a more exploratory approach by allow-
ing nt to vary. This investigation aims to embrace a broader framework, avoiding
the imposition of single-field inflation.

13.1 mcmc analysis

Let us report some details on the technique used to extract these constraints
from the data, i. e. the MCMC analysis [241–245] (see also Chap. 11). We use
Cobaya [260] to run our MCMC chains82, whose results are analyzed through
GetDist83 [254], and CAMB 84[245, 261, 262] to generate the CMB spectra.

13.1.1 ΛCDM parameters

For what regards the 6 ΛCDM parameters {As, ns, Ωbh2, Ωcdmh2, θs, τreio},
which are not the focus of this work, we only mention that we choose uni-
form and very wide priors, as is usually done to include as little information
as possible. Also, these parameters are very well constrained, so the choice
of the prior is not as important (see Chap. 11). It is important to let them
vary to fully capture the variance of the tensor parameters [263]. In partic-
ular, Tab. 5 reports the ranges of the uniform priors we choose, together
with the usual meaning of the parameters. Note that, if not otherwise stated,
these parameters are always kept free to vary. For further details on how the
newly available data affect this sector of parameters, see Sec. C.1 and [190,
263–265].

13.1.2 Tensor parameters

For what concerns the tensor sector of the parameters, we must give some
more details.

82 https://github.com/CobayaSampler/cobaya.
83 https://github.com/cmbant/getdist.
84 https://github.com/cmbant/CAMB.
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Parameter Prior Range

log(1010As) [1.61, 3.91]
ns [0.8, 1.2]

Ωbh2 [0.005, 0.1]
Ωcdmh2 [0.001, 0.99]

θs [0.5, 10]
τreio [0.01, 0.8]

r0.01 [10−5, 3]
nt [− 5, 5]
r1 [0, 3]
r2 [0, 3]

Table 5: Prior ranges for the ΛCDM parameters + the tensor sector. Here As, ns are
the amplitude and the tilt of the scalar primordial perturbations, Ωb, Ωcdm are the
energy densities of baryons and cold dark matter, h is the Hubble constant H0
divided by 100, θs is the angular scale of the sound horizon at recombination, and
τreio is the optical depth of reionization. Instead, r0.01 is the tensor-to-scalar ratio at
0.01 Mpc−1, nt is the tensor spectral tilt and r1, r2 are two tensor-to-scalar ratios at
two arbitrary scales (k1, k2) = (0.002, 0.02) Mpc −1.

As we showed in Chap. 5, the tensor power spectrum is customarily
parametrized as a power law around an arbitrary pivot scale k∗

Pt(k) = Asr
(

k
k∗

)nt

. (398)

Naively, one would choose a uniform prior for both r and nt, such as 0 <
r < 3 and −5 < nt < 5, however, we have to keep in mind that we actually
have not detected r yet. Thus, for extremely low values of the amplitude, nt
will be completely free to vary in its prior ranges, producing a pathological
behavior of the final posteriors.

In a Bayesian context, there are two ways to solve the issue (for an alterna-
tive prior-independent method, see [266]):

• the first consists of imposing a cut to the lowest values of the ampli-
tude, typically setting the threshold value at some undetectable level
for the considered experiments. For example, Cabass et al. [267] show
the efficacy of this method while choosing r > 0.001. Today, this
threshold value is exactly the target sensitivity of experiments such
as LiteBIRD; therefore, one may want to choose a less aggressive cut.
Throughout the remainder of this paper, we will refer to this approach
as the Single-Scale Approach (SSA).

• On the other hand, what Ade et al. [268] did to solve the issue (sub-
sequently repeated in [54]) is to actually re-parameterize the tensor
power spectrum using two different tensor-to-scalar ratios (r1, r2) at
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Figure 35: 1D and
2D sampled priors
on the (r0.01, nt)
plane, obtained
using the SSA
or the TSA. The
vertical dotted
line represents
scale-invariance, i. e.
nt = 0.

two different pivot scales (k1, k2), which are arbitrarily chosen. This,
in fact, allows us to solve the problem: when r1 approaches 0, r2 will
do so accordingly without producing any pathological behavior. Then,
from (r1, r2) one can recover (rk̃, nt) through

nt = [log (r2/r1)/ log (k2/k1)] + ns − 1 ,

rk̃ = r1(k̃/k1)
nt−ns+1 ,

(399)

where k̃ is some arbitrary scale (typically k̃ = 0.01 Mpc−1). Specifically,
Akrami et al. [54] choose (k1, k2) = (0.002, 0.02) Mpc−1, imposing
uniform priors on (r1, r2). For obvious reasons, we will refer to this
approach as the Two-Scales Approach (TSA).

13.1.3 Robustness test: priors

Both approaches have their strengths and weaknesses; however, it is impor-
tant to emphasize them to make a conscious choice on which to use.

The first test we perform is to run an MCMC analysis on the priors alone,
without introducing any other source of information (see Tab. 5 for the spe-
cific values of the prior ranges), such as the likelihoods of the considered
probes. In other words, this is a behavior check on the priors of the SSA and
TSA, focused on the plane (r0.01, nt) (also the ΛCDM parameters are kept
free to vary). This allows us to obtain “sampled” priors to compare with the
input ones and to gauge prior information on derived parameters.

Fig. 35 shows the marginalized 1D distributions and the marginalized 2D
68% and 95% CL85. Here, we can see that the sampled prior on (r0.01, nt)
using the SSA are flat, as expected since the sampling is performed directly
on those two parameters. For what regards the TSA, Fig. 35 instead shows
a neat preference for values of r0.01 different from zero, thus mimicking a
detection (for the derived parameter r0.01 here we impose r0.01 ∈ [0, 3]).
The marginalized distribution gives 0.08 < r0.01 < 2.61 at 95% CL. In
addition, there is a pretty strong pull on nt towards scale invariance (nt = 0),
giving −1.33 < nt < 1.31 at 95% CL. This suggests that while this method
will solve the pathological behavior of nt, it might also introduce a bias,
especially if the dataset does not well constrain these parameters (in this case,
the likelihood will dominate the final posterior). To explore this behavior

85 From now on, every 2D plot will show the 68% and 95% CL.
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Figure 36: Top: 1D
and 2D sampled pri-
ors on the (r0.01, nt)
plane (left) and on
the (r1, r2) plane
(right), obtained
using the TSA with
and without the
Jacobian reweight-
ing (see Eq. 400).
The vertical dotted
line represents
scale-invariance,
i. e. nt = 0. Bottom:
1D and 2D sam-
pled priors in the
(r0.01, nt) plane, ob-
tained using the TSA
with (k1, k2) =
(0.005, 0.02),
(0.002, 0.02) or
(0.002, 0.05) Mpc−1.
The vertical dotted
line represents
scale-invariance, i. e.
nt = 0.

more thoroughly, we also repeat this latter test on the TSA while reweighting
the sample on the Jacobian of the transformation (r1, r2)↔

(
rk̃, nt

)
:

J =
r0.01

r1r2
× 1

log (k1/k2)
. (400)

Indeed, this procedure has been used in the literature to alleviate this bias
introduced by the prior (e. g. Planck 2018). As the top left panel of Fig. 36

shows, this seems to mitigate the amount of information introduced by the
priors of the TSA but does not completely solve the problem. In particular,
we obtain r0.01 < 1.67 and −1.90 < nt < 2.11 at 95% CL. Thus, on one
side the sampled priors are not mimicking a detection of the tensor-to-scalar
ratio anymore, however, we still obtain a range of variation of nt roughly
equal to 4 units. This same range is very similar to what we obtain using the
SSA on the state-of-the-art dataset (see Sec. 13.4), thus the results obtained
through the TSA might be affected by bias, even when including the Jacobian.
The top right panel on Fig. 36 shows that the sampled priors on r1 and r2
are correctly flat and are remapped to non-flat distributions by the Jacobian.
In accordance with what we show here, for example, Planck 2018 shows that
re-weighting the sampling allows obtaining a final posterior shifted towards
r0.01 = 0 [54].

In the TSA, we can further test the choice of arbitrary scales (k1, k2), which
in [54] are chosen to be (0.002, 0.02) Mpc−1. Thus, we repeat the prior analy-
sis for (k1, k2) = (0.002, 0.05) Mpc−1 and (k1, k2) = (0.005, 0.02) Mpc−1.
Note that in the first case, we increase the separation between k1 and k2,
while in the latter case we decrease it. In other words, we are testing the de-
pendence of the prior on the leverage arm given by k2− k1, which will affect
the capability to recover nt. The bottom panel of Fig. 36 shows that the sam-
pled prior in the tensor-to-scalar ratio is only partially affected by the choice
of scales, while the one in the tilt changes significantly as expected. Indeed, a
larger leverage arm exacerbates the preference for scale invariance and vice
versa. Thus, while using the TSA, one must be careful of what scales to use.
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For example, the largest and smallest scales that an experiment has access to
should provide an upper bound on the leverage arm length. However, going
for this choice will produce the most peaked prior distribution possible on
nt.

Despite this, both cases analyzed here seem to break more prominently the
degeneracy between r0.01 and nt w. r. t. the choice (k1, k2) = (0.002, 0.02)
Mpc−1. Notice that this test depends to some degree on the fact that the
MCMC sample is finite. Indeed, after convergence, the MCMC stops exploring
the parameter space, potentially under-representing low-probability regions.
In Sec. C.2 we perform it in an alternative way, i. e. directly from the coordi-
nate transformation equations shown above, and so taking care of this effect.
The conclusions do not change following this method, however, we can ex-
plain better the behavior of the region at low r0.01 and high nt of Fig. 36 (left
panel). Indeed, in that low-probability region, there are no samples to be
re-weighted, thus the probability drops to zero because the sample is finite
(see Fig. 83 in Sec. C.2). In this specific case, this leads to an underestimation
of the upper bound of the tilt. In general, this may or may not be the case
depending on the specific choice between k1 and k2. Thus, together with the
leverage arm, one should also keep this in mind when choosing those scales.

13.1.4 Robustness test: mock dataset

We perform another robustness check on the two approaches: we fix the 6

ΛCDM parameters to the best-fit values of Planck(2018) [190] and we allow
only the tensor sector to vary. Then, instead of running the MCMC analysis
on actual data (i. e. with the likelihood of some experiment), we define an
exact likelihood for the B-mode spectrum [269]:

−2 logL = ∑
ℓ

(2ℓ+ 1)

[
ĈBB
ℓ

C̄BB
ℓ

− log

∣∣∣∣∣ ĈBB
ℓ

C̄BB
ℓ

∣∣∣∣∣− 1

]
. (401)

Here, ĈBB
ℓ is a fiducial BB spectrum, and C̄BB

ℓ is the theoretical predic-
tion based on the MCMC step. Notice that we do not introduce any source
of instrumental noise. Instead, we use lensing as our noise level: indeed, we

can write both the fiducial and theoretical spectra as CBB
ℓ = Cprim.

ℓ + Clens.
ℓ ,

where Cprim.
ℓ is the primordial spectrum coming from the presence of an in-

flationary background of GWs, obtained fixing r0.01, nt, whereas Clens.
ℓ is the

contribution given by the lensing of polarized photons by mass distributions
(see Fig. 10). In other words, this likelihood represents a mock data set from
which we try to extract the fiducial values of the tensor parameters and their
95% CL intervals.

As for the fiducial choice of the BB spectrum, we want to reproduce the
case in which the primordial spectrum is below the noise, in order to see how
the two approaches deal with a non-detection of the tensor spectrum. For
this reason, we choose (r0.01, nt) = (10−4, 0.3). The results are summarized
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Figure 37: 1D and
2D posteriors on the
(r0.01, nt) plane, ob-
tained using the SSA
with an exact like-
lihood on the B-
mode spectrum. The
dotted markers indi-
cate the fiducial val-
ues for (r0.01, nt) =
(10−4, 0.3). r0.01 Best-fit 95% CL

SSA 1.00× 10−4 [0.1, 6.0]× 10−4

TSA 0.95× 10−4 [0.2, 7.6]× 10−4

nt Best-fit 95% CL

SSA 0.30 [− 0.24, 3.43]
TSA 0.30 [− 0.15, 2.30]

Table 6: 95% CL and best-fit values obtained with SSA and TSA when using an exact
likelihood on the B-mode spectrum. The fiducial values are (r0.01, nt) = (10−4, 0.3).

in the left and right panels of Fig. 37. The 95% CL ranges that we obtain are
instead shown in Tab. 6.

From this table, together with the figure, one can see that both approaches
are able to recover approximately the correct value of the amplitude and tilt
as the best fit of the MCMC run. Regarding the estimation of the 95% CL, the
SSA provides a slightly stricter bound on the amplitude and a broader one
on the tilt, as one can expect from Sec. 13.1.3. Fig. 38 highlights this by com-
paring the posterior distributions in nt obtained with the exact likelihood
with the priors shown in Fig. 35. Notice that the distributions of Fig. 38 are
normalized to their maximum. We can also test an arbitrary choice affect-
ing the SSA, i. e. the cut-off at low r. In fact, SSA results could be driven by
marginalization effects: in a multidimensional problem, if a large part of the
volume of probability is in a certain area, the final posterior will be drawn
toward that region just as a result of the marginalization procedure that one
performs when giving the result on a single parameter [256].

To investigate this potential problem, as a first step, we repeat this analysis
assuming rcut

0.01 = 10−4, 10−5, 10−6. Notice that the first value is equal to the
fiducial tensor-to-scalar ratio, so that case will show what happens if we cut
some relevant part of the parameter space, marginalizing the rest. The other

Figure 38: 1D poste-
rior on the nt, ob-
tained using the SSA
and the TSA with
an exact likelihood
on the B-mode spec-
trum. The dashed
lines represent the
sampled prior dis-
tributions obtained
in Fig. 35. The dot-
ted line indicates
the fiducial value of
nt = 0.3.
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Figure 39: 1D and
2D posteriors on
the (r0.01, nt) plane,
obtained using the
SSA and changing
the cut-off at low
amplitudes: rcut

0.01 =

10−4, 10−5, 10−6.
The dotted mark-
ers indicate the
fiducial values
for (r0.01, nt) =
(10−4, 0.3).

r0.01 Best-fit 95% CL

rcut
0.01 = 10−6 1.03× 10−4 [0.01, 6.09]× 10−4

rcut
0.01 = 10−5 1.00× 10−4 [0.10, 5.95]× 10−4

rcut
0.01 = 10−4 1.11× 10−4 [1.00, 6.25]× 10−4

nt Best-fit 95% CL

rcut
0.01 = 10−6 0.30 [− 0.28, 3.54]

rcut
0.01 = 10−5 0.30 [− 0.24, 3.43]

rcut
0.01 = 10−4 0.31 [0.002, 2.92]

Table 7: 95% CL and best-fit values obtained with SSA when using an exact like-
lihood in the B-mode spectrum. The fiducial values are (r0.01, nt) = (10−4, 0.3).
Here, we also assumed a different value of the cutoff at low amplitudes, rcut

0.01 =

10−4, 10−5, 10−6.

two cutoffs are below the fiducial value; thus, they will test the stability of
the estimate when we exclude a region with little-to-no posterior volume.
Focusing on the first cutoff value, Fig. 39 shows that cutting an interesting
part of the parameter space does have consequences on the final posterior,
as expected. Indeed, looking at the 1D posterior of r0.01 the posterior area
below rcut

0.01 = 10−4 is redistributed on the allowed region, providing a worse
bound on the parameter. On the other hand, the estimate of nt improves. In
fact, the most extreme values of the tilt are obtained by the MCMC analysis
for very low values of r0.01, which in this case are completely neglected.

Then, focusing on the other two cases, Fig. 39 shows that the analysis
is stable in both r0.01, nt as soon as the cut is performed underneath the
fiducial value since the corresponding posterior volume is small. Indeed, the
posteriors obtained in these cases are nearly identical. Tab. 7 summarizes the
results of this test.

Secondly, we inquire about an eventual over-weighting of the region near
the cut-off in r0.01 when using the SSA. Indeed, we already said that with-
out the cutoff nt would be completely unconstrained near r = 0. This
means that near 0 there would be a lot of posterior volume, producing an
over-weighting of the region of low tensor-to-scalar ratio, affecting the final
results through the marginalization procedure. If this is the case, the con-
tours should be dependent on the width of the nt-prior, since the larger it
is, the more available volume there would be. The prior is changed from
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Figure 40: 1D and
2D posteriors on
the (r0.01, nt) plane,
obtained using the
SSA while changing
prior range on
nt: nt ∈ [−5, 5],
nt ∈ [−7, 7] and
nt ∈ [−3.5, 3.5].

nt ∈ [−5, 5] to nt ∈ [−7, 7] and to nt ∈ [−3.5, 3.5] (cutting a relevant part
of the posterior volume). The results are shown in Fig. 40, and, as expected,
the difference comes from how much posterior volume has been excluded
in the various cases.

Therefore, once the cutoff rcut
0.01 (prior on nt) is taken sufficiently low (large

enough) to avoid excluding a relevant portion of the posterior volume, the
SSA results will not change significantly.

In light of these tests and given that we want to provide reliable bounds
in the tensor sector, avoiding a prior-induced detection, we choose to pro-
duce our baseline results with the SSA, assuming rcut

0.01 = 10−5. In fact, one
of the most promising models for describing tensor modes is the Starobin-
sky model [84], which predicts r ≈ 0.004, so 10−5 is more than two orders
of magnitude lower, as was 10−6 in the robustness test. For nt we stick to
the prior range reported in Tab. 5. These choices ensure that we do not ex-
clude a large portion of the posterior volume, thus we do not introduce any
additional marginalization effect. This would artificially increase the upper
bound of r0.01 as a result of having used an aggressive rcut

0.01, or having ex-
cluded a priori some inflationary model characterized by a high |nt|. How-
ever, we must keep in mind that SSA might be affected by volume effects
toward r = 0.

Despite this, in Sec. C.3 we report the results obtained with the TSA, while
assuming (k1, k2) = (0.002, 0.02) Mpc−1 (as done in [54]) and no Jacobian
transformation reweighting. This allows one to have a complete Bayesian
picture on the tensor sector of parameter space.

13.2 datasets

Before going to the new bounds on (r0.01, nt), we must understand what
data are available in the market. In Chap. 5 we have seen what imprints a
CGWB would leave on our Universe. Here, we focus on CMB, PTAs and GW

interferometers.
We will divide this section according to the different experiments. Here,

we just collect the ones that have been used to obtain the current bounds
on the tensor parameters and those that we want to use to update the con-
straints. As partially shown in Fig. 10, there are many others that we will
not mention.
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13.2.1 Planck satellite

In most parameter estimation problems concerning CMB, Planck satellite
data play a key role. Indeed, the current bounds on (r0.01, nt) are obtained
using data from Planck Release 3 (PR3) in the form of publicly available like-
lihoods (see [270] and [119, 271] for further details). In particular, sticking to
the common nomenclature, we will call the ones used here:

• “plikTTTEEE”, encoding the high-ℓ parts of CMB temperature, E-mode
polarization, and their cross-correlation, i. e. the TT, EE, and TE spectra
[270];

• “lowlTT”, encoding the low-ℓ parts of the TT spectrum [270];

• “lowlEE”, encoding the low-ℓ parts of the EE spectrum [270];

• “lensing”: encoding the presence of gravitational potentials along the
line of sight, which will convert EE→ BB [270, 272].

For the sake of notation, we will refer to the combination of these 4 like-
lihoods as “PL18”. Furthermore, recently the Planck Collaboration has re-
leased Planck Release 4 (PR4), exploiting the NPIPE end-to-end pipeline [264,
265, 273]. This instead consists of

• High ℓ Likelihood for Polarized Planck (HiLLiPoP)86, encoding the high-
ℓ region of TT,TE and EE;

• Low ℓ Likelihood for Polarized Planck (LoLLiPoP)87, encoding the low-ℓ
one of EE, EB and BB.

Note that LoLLiPoP contains information on B-modes, whereas PL18 does
not. With these additional likelihoods, we define another abbreviation, i. e.
“PL21”. This corresponds explicitly to plikTTTEEE+lowlTT+LoLLiPoP+lensing,
in such a way that the high multipole part is still carried out by the likelihood
of PR3, together with the low-ℓ part of temperature and lensing. Instead,
the low-ℓ part of E-mode, B-modes, and their cross-correlation is described
through the PR4. In principle, PR4 is not independent of PR3, thus one has to
be careful on combining them. In our case, we isolate the PR4 contribution to
the low-ℓ part of the polarization fields (LoLLiPoP), so that we can still com-
bine it with products of PR3 encoding different multipole ranges, or fields,
assuming them to be independent.

13.2.2 BICEP/Keck Array

Together with Planck, the BICEP/Keck array data have been crucial in obtain-
ing our current knowledge on tensor perturbations. As for Planck, the data
are available through public likelihoods, named:

86 https://github.com/planck-npipe/hillipop
87 https://github.com/planck-npipe/lollipop

https://github.com/planck-npipe/hillipop
https://github.com/planck-npipe/lollipop
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• “BK15”, representing the measurement of BICEP2/Keck Array of the
B-mode polarization [119];

• “BK18”, representing the newly released dataset from BICEP3/Keck Ar-
ray [263].

13.2.3 LIGO-Virgo-KAGRA interferometers

As mentioned above, CMB alone can only probe the largest scales of the ten-
sor primordial spectrum (approximately k ≃ 10−2 Mpc−1). In fact, even
in the ideal case of no instrumental noise, the cosmological B-mode contri-
bution would be several orders of magnitude lower than the lensing contri-
bution on small scales (see Fig. 10). On the other hand, GW interferometers
are probing scales almost 18 orders of magnitude away from the CMB ones
(approximately k ≃ 1016 Mpc−1), thus they provide a way to strongly con-
strain small scales. This line of reasoning hides a caveat though: in order
to obtain helpful information on the tilt from GW interferometers, we must
assume that nt remains constant on the huge range of frequencies dividing
CMB from interferometers, which could not be the case in nature [274–276].
However, given that we have not yet detected the amplitude of the tensor
modes, i. e. r, it is already challenging to constrain the tensor tilt nt; thus, we
choose to neglect any running of the tensor tilt, as commonly done in the
literature.

Currently, interferometers provide only upper bounds on the energy den-
sity of GWs at their frequency range. Indeed, knowing the minimal energy
density detectable by a GW interferometer and assuming our parametriza-
tion of the tensor power spectrum (see Eq. 398), one can extract a bound on
how blue tilted the primordial spectrum can be. In particular, one can trans-
late (r0.01, nt) into an energy density at some reference frequency f with [54,
267]

ΩGW( f ) =
r0.01As

24zeq

(
f

fCMB

)nt

, (402)

where fCMB ∼ 10−17 Hz is the frequency corresponding to the chosen pivot
scale (i. e. k = 0.01 Mpc−1) and zeq ≃ 3400 is the redshift of the matter-
radiation equality [54].

The datasets from GWs interferometers will be named:

• “LV15”, referring to the results after the first observing run of LIGO-
Virgo-KAGRA (LVK). The upper bound on the energy density at a refer-
ence frequency of fLVK = 20 Hz is ΩGW( fLVK) < 1.7× 10−7 at 95%
CL. Note that this was obtained by assuming a scale-invariant spectrum
[134].

• “LV18”, referring to the results after the second observing run of LVK.
This time, the bound on the energy density we consider is marginal-
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ized on the value of the spectral tilt and at a frequency of 25 Hz. In
particular, ΩGW(25 Hz) < 3.4× 10−8 at 95% CL [135].

• “LV21”, referring to the results after the third observing run of LVK.
The upper bound reported is ΩGW(25 Hz) < 6.6× 10−9 at 95% CL,
obtained once again marginalizing over the spectral tilt [277].

Note that these datasets are not independent. Instead, they are the result
of a longer observation time and of a progressive improvement of the sys-
tematics that affect LVK. For this reason, we cannot combine them since the
information provided by LV15 is already contained in LV18, etc.

As regards the actual inclusion of these bounds, one may encode them
in an MCMC analysis as a half-Gaussian prior to the energy density of GWs

predicted with Eq. 402, having the 95% limit at the value reported by LVK

(this approach is used in [54]); an alternative, but equivalent way would be
to define a Gaussian likelihood for LVK, centered in µLVK = 0 and having a
dispersion σLVK that is half of the 95% bound provided by LVK:

−2 log (LLVK) =
(ΩGW − µLVK)

2

σ2
LVK

, (403)

where ΩGW is the value extracted from the MCMC analysis for a specific set
of parameters (this is how we include it in our analysis).

13.2.4 NANOGrav

Together with these data, we also want to study the consequences of the
claim from North American Nanohertz Observatory for Gravitational Waves
(NANOGrav) collaboration [133]. In fact, they report a significant detection of
a common signal among several pulsars, but they do not obtain a clear detec-
tion of the spatial correlation of those, which would be the definitive proof of
the stochastic origin of the signal. Despite this, it is interesting to include this
dataset in our analysis, implying the assumption of a cosmological origin88.

As regards the actual bound, there is an intermediate step we must take
w. r. t. the LVK case. NANOGrav Collaboration reports its data in terms of am-
plitude ACP and spectral tilt αCP (see [133] for details); therefore, we must
first obtain the corresponding ΩGW. In particular [30, 278]:

ΩGW( f ) =
2π2

3H2
0

f 2h2
c( f ) , (404)

where hc is the power spectrum of the characteristic GW strain reading

hc( f ) = ACP

(
f

fyr

)αCP

. (405)

88 At the time [259] was written, the latest results of NANOGrav were not present [132].
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Figure 41: NANOGrav
data marginalized
over the spectral
index. The solid
curve represents the
Gaussian likelihood
we used for our
analysis.

Now, each {ACP, αCP} couple will correspond to a function ΩGW( f ).
However, mimicking what is done for the LVK results, we are interested in
the reference frequency of the experiment, thus we fix the frequency to f =
fNANO = 1 yr−1 (which corresponds to kNANO ≃ 2.0× 107 Mpc−1), such
that

ΩGW( fyr) =
2π2

3H2
0

f 2
yr A2

CP . (406)

This does not depend on αCP; at this point, one can verify that the logarithm
of ΩGW follows approximately a Gaussian distribution, thus we fit it to
find the bound: log (ΩGW) = −9.4 ± 0.8. This procedure allows us to
get Fig. 41, which is obtained from the NANOGrav chains89. To include this
bound in the MCMC, one may follow the same procedure proposed for the
LVK, thus defining a likelihood as

−2 log (LNANO) =
[log (ΩGW)− µNANO]

2

σ2
NANO

. (407)

Differently from the LVK case, now µNANO ̸= 0. Finally, to refer to this
dataset we will use “NANO”.

We collect all the names and abbreviations in Tab. 8.

Name Likelihoods Description

PL18 plikTTTEEE+lowlTT+lowlEE+lens. Combination from PR3 [270, 272]
PL21 plikTTTEEE+lowlTT+LoLLiPoP+lens. Combination of PR3 and PR4 [264, 270, 272]
BK15 BICEP2/Keck array BICEP2/Keck Array likelihood [119]
BK18 BICEP3/Keck array BICEP3/Keck Array likelihood [113]
LV15 LIGO-Virgo-KAGRA LVK likelihood with 2015 data [134]
LV18 LIGO-Virgo-KAGRA LVK likelihood with 2018 data [135]
LV21 LIGO-Virgo-KAGRA LVK likelihood with 2021 data [277]
NANO NANOGrav NANOGrav likelihood with 2021 data [133]

Table 8: Names of the main likelihoods, or collection of them, used here.

89 The dataset and further information can be found at https://github.com/nanograv/12p5yr_
stochastic_analysis.

https://github.com/nanograv/12p5yr_stochastic_analysis
https://github.com/nanograv/12p5yr_stochastic_analysis
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13.3 state-of-the-art

In this section, we will briefly go through the combination of datasets that
have been implemented to obtain the current bounds on r0.01 (or r0.05) and
nt (the literature on this is quite vast, thus we consider only a few of the
most recent works).

Akrami et al. [54] (Planck 2018) consider two combinations while studying
the ΛCDM+r1+r2 model (TSA):

• PL18 + BK15, obtaining r0.01 < 0.076 and −0.55 < nt < 2.54 at 95%
CL, obtained by exploiting TSA with (k1, k2) = (0.002, 0.02) Mpc−1.

• PL18 + BK15 + LV15, resulting in r0.01 < 0.066 and −0.76 < nt <
0.52 at 95% CL, using TSA with (k1, k2) = (0.002, 0.02) Mpc−1.

From this, it is clear that CMB experiments are not able to constrain very
well the bluest tilts of the spectrum. Instead, the addition of LV15 (as a half-
Gaussian prior) severely cuts the allowed range of nt. Notice that LV15 is
obtained by fixing the spectral tilt to scale invariance, while the MCMC is
performed by letting it vary.

Tristram et al. [114] explored the PR4 on the ΛCDM+r0.05 model, thus keep-
ing nt fixed to its single-field slow-roll prediction: nt = −r0.05/8, where
0.05 Mpc−1 is the pivot scale of scalar perturbations. Given that they report
their results for this scale, we will compute a very rough estimate of the cor-
responding bound on r0.01. In particular, if they report r0.05 < X at 95% CL,
we will use Eq. 399, nt = −X/8, and the best-fit value of ns of Planck 2018 to
get the corresponding r0.01 < X′ bound (we will report this in parenthesis).
The most relevant (for this work) cases analyzed in [114] are:

• LoLLiPoP, which yields r0.05 < 0.069 at 95% CL (r0.01 < 0.066).

• HiLLiPoP(only TT)+lowlTT+LoLLiPoP, yielding r0.05 < 0.060 at 95% CL

(r0.01 < 0.057).

• HiLLiPoP(only TT)+lowlTT+LoLLiPoP+BK15, yielding r0.05 < 0.044 at
95% CL (r0.01 < 0.042).

Ade et al. [113] presented the new release of data from the BICEP/Keck
Array (here BK18). While keeping the ΛCDM parameters fixed and using
nt = −r0.05/8, they obtain r0.05 < 0.036 at 95% CL (r0.01 < 0.034).

Finally, Tristram et al. [263] used PR4 and BK18 to obtain the state-of-the-
art upper bound on r0.05 on the ΛCDM+r0.05 model (nt = −r0.05/8). In
particular, they consider HiLLiPoP + lowlTT + LoLLiPoP + BK18 + BAO + lensing,
finding r0.05 < 0.032 at 95% CL (r0.01 < 0.030). Notice that, they consider a
dataset we are not including here, which is BAO from [279].

This set of bounds, especially Tristram et al. [263] for what regards r0.05,
and Akrami et al. [54] for what regards nt, represent the current state-of-
the-art. As mentioned before, for the ones with nt fixed, we compute in
parenthesis a corresponding r0.01 value, however, comparing them with the
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results we are about to show is not so trivial. In fact, we let nt vary, thus
our results on r0.01 will be marginalized on the tilt. However, that rough
correspondence can help put this work in perspective w.r.t the rest of the
literature.

13.4 results

Finally, let us report the results of our analysis. This has been performed
using the SSA on the complete ΛCDM+r0.01+nt parameter space, assuming
rcut

0.01 = 10−5. The priors for these parameters are flat and their ranges are
shown in Tab. 5 (in Sec. C.3 we also show the results for the TSA case). In
terms of convergence, we used the Gelman-Rubin test to determine when to
stop the MCMC runs [280]. Given the number of dataset combinations, the
number of varied parameters making the convergence difficult to achieve,
and the finite CPU hours available, we assumed a minimal level of conver-
gence of R− 1 < 0.04. For a few selected cases (the most constraining ones),
we instead assumed R− 1 < 0.01 in order to explore more thoroughly the
tails of the distribution and to avoid over/underestimating our bounds. Re-
garding the size of the MCMC chains, we quantify it using the “total weights”
given by GetDist. Indeed, when a proposed step of the chain is rejected,
the weight of the current point in parameter space will increase, as if it is
counted once again. In other words, this quantity represents the total num-
ber of steps, regardless of their being accepted, or not. As an example, the
shortest length obtained (PL18 + BK18) is ∼ 27, 000, while the longest is
∼ 141, 000 (PL21 + BK18 + LV21).

We performed the MCMC runs for most of the relevant permutations of
Planck, BICEP/Keck, and LVK data, searching for the most constraining one.
Instead, given the nature of the NANOGrav claim, and knowing the results
of our analysis, we keep the discussion on that dataset separated from the
others.

Tab. 9 reports the one-dimensional 95% CL for each combination analyzed.
Assuming PL18 + BK15 to be our “starting point”90, the first 4 rows show
the individual improvements brought by various datasets. Among them, it
is clear that BK18 prominently improves the bound on the tensor-to-scalar
ratio (as shown by [113, 263]), while shifting the allowed range of nt towards
lower values w. r. t. PL18 + BK15.

The next 4 cases feature combinations of different upgrades w. r. t. PL18 +
BK15. Given that we want to privilege the stricter bound on the tensor-to-
scalar ratio, PL21 + BK18 + LV21 is what we consider our best dataset to
constrain the tensor sector, resulting in

r0.01 < 0.028 and − 1.37 < nt < 0.42 , (408)

90 As mentioned before this is essentially the state-of-the-art combination for what regards the
case in which nt is allowed to vary. Notice that here we are not including LV15, since it is
actually obtained assuming scale-invariance at the typical frequency range of interferometers.
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r0.01 95% CL nt 95% CL R− 1 test

PL18+BK15 < 0.056 [-0.22, 4.16] 0.032

PL18+BK18 < 0.032 [-0.98, 3.46] 0.033

PL18+BK15+LV18 < 0.059 [-1.00, 0.45] 0.039

PL18+BK15+LV21 < 0.057 [-0.91, 0.42] 0.025

PL18+BK18+LV21 < 0.032 [-1.14, 0.42] 0.034

PL21+BK15 < 0.049 [-0.60, 4.34] 0.010

PL21+BK18 < 0.029 [-1.21, 3.54] 0.016

PL21 + BK18 + LV21 < 0.028 [-1.37, 0.42] 0.006

PL18+BK15+NANO < 0.071 [0.44, 0.83] 0.028

PL21+BK18+NANO < 0.033 [0.47, 0.85] 0.005

Table 9: 95% CL intervals of the 10 considered combinations of datasets. Our main
result is PL21 + BK18 + LV21. Here we also show the results of the Gelman-Rubin
test for each combination.

Figure 42: 2D 68 and
95% CL contours in
the (r0.01, nt)-plane
for PL18+BK15,
PL21+BK18 and
PL21+BK18+LV21.
The dashed
black line is
the well-known
slow-roll single-
field prediction
nt = −r/8 = −2ϵ.at 95% CL, which is the main result of this work and represents the most

constraining bound on the tensor-to-scalar perturbation ratio to our knowl-
edge.

We show the 2D posterior contours of this case in Fig. 42, compared to
some other relevant cases: PL18 + BK15 (representing the state of the art)
and PL21 + BK18 (to underline the improvement carried out by LV21).
Furthermore, in Fig. 43 we show the posterior distribution on the plane
r0.002 − ns for the same datasets as in Fig. 42. To do so, we mimic figure
8 of [54], showing a few relevant inflationary scenarios and fixing nt to its
standard single-field prediction. As already highlighted by [113, 263], we
confirm with improved sensitivity that all potentials for the single-field in-
flationary models we show are ruled out by the data. The same can be said
of natural inflation, which is well outside the 95% CL region.

13.4.1 Marginalization effects

In Chap. 11 we argue that marginalization effects should be taken into ac-
count to check the sanity of our results. Instead of performing a full PL

analysis (which will be the topic of Chap. 14), here we show the “profile
distribution” for our most constraining dataset, i. e. PL21 + BK18 + LV21.
In fact, Gómez-Valent [256] presented this technique as an approximation

3 http://pla.esac.esa.int/pla/#home

http://pla.esac.esa.int/pla/#home


178 constraining the tensor sector with mcmc

Figure 43: 2D 68 and
95% CL intervals in
the (r0.002, ns)-plane
for PL18 (publicly
available MCMC
chains3), PL18 +
BK15 and PL21 +
BK18 + LV21. r0.002
is obtained from our
chains assuming the
standard prediction
nt = −r/8 = −2ϵ.

Figure 44: 1D
results on r0.01
and nt, obtained
using SSA, TSA, and
PL on our most
constraining dataset,
that is, PL21 +
BK18 + LV21. This
plot refers to the
case with 30 bins.
The vertical dotted
lines represent the
boundaries of the
SSA and TSA 95%
CL intervals. Note
that SSA gives a
single-tail bound on
r0.01 while the TSA
provides a two-tail
one. Also, the green
dotted lines indicate
the 95% confidence
intervals of the
profile distribution.
These are also
summarized in
Tab. 10.

of the PL useful if one already has an MCMC to exploit and proved its ro-
bustness on highly dimensional likelihoods, such as Planck’s. To obtain the
profile distributions on r0.01 and nt, we follow the following procedure:

1. starting from our MCMC chains, we bin the values of r0.01 or nt;

2. in each bin, we search for the minimum value of χ2.

3. Then, we fit a polynomial4, using the mean value of the profiled pa-
rameter in the bin as the x-coordinate;

4. the resulting curve represents χ2 as a function of this parameter.

This procedure indeed approximates an actual PL, which instead is per-
formed point-by-point via some minimization algorithm over all the non-
fixed parameters (see Chap. 12). In this case, instead, the very low compu-
tation time of this technique (of the order of a fraction of a second) comes
at the cost of having to choose a binning strategy. In fact, the value of χ2 in
each bin is “noisy”, since it is not guaranteed that it has reached its absolute
minimum. Clearly, the larger the bin, the more probable it is to find the real
minimum of χ2, and the larger the uncertainty on the x-axis. In other words,
one has to find the right trade-off between having small bins and populating
them sufficiently. In our case, we focus mainly on r0.01, for which we explore
4 different binning strategies in the range [0, 0.05] with 10, 30, 50, and 100

bins. Instead, we bin nt in [−2.0, 0.48] with 100 bins.
Fig. 44 shows the results for r0.01 (30 bins) and nt, respectively (see also

Tab. 10). In terms of 95% confidence intervals, we obtain−1.63 < nt < 0.32.

4 In the case of a Gaussian likelihood this would simply be a parabola, which is the case for
r0.01. For the nt distribution, which is highly non-Gaussian, we use a polynomial with a
degree equal to 8.
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r0.01 95% CL nt 95% CL

SSA < 0.028 [− 1.37, 0.42]
TSA [0.01, 0.033] [− 1.30, 0.37]

r0.01 95% CI nt 95% CI

PL < 0.025 [− 1.63, 0.32]

Table 10: 95% CL obtained with SSA and the TSA compared to the 95% confidence
intervals of the profile distribution.

For r0.01 we obtain r0.01 < 0.028, 0.025, 0.025 and 0.024 using 10, 30, 50,
and 100 bins, respectively. In addition, we compare PL with both the SSA

and the TSA results. The left panel shows that the SSA and the PL are very
similar, even if the SSA seems to obtain slightly more conservative results.
This shows that marginalization effects have only a partial role in obtaining
our result for PL21 + BK18 + LV21. Note that the case with 10 bins, thus
the one in which it is more probable that χ2 reaches its absolute minimum,
gives the same result as our MCMC. However, there is no guarantee that this
has the correct coverage probability (see Chap. 14).

On the other hand, it is clear that the bias observed in the TSA case is due
to the informative prior discussed in Sec. 13.1.3.

Looking at the right panel, both the SSA and TSA are fairly similar to the PL

distribution, with the former being slightly more conservative, as expected.

13.4.2 Including NANOGrav

In order to study the posterior distribution of r0.01 and nt when including
the NANOGrav dataset, we do not use LV18 or LV21. Also, let us recall that
performing this analysis for NANOGrav implies the assumption of a cosmo-
logical origin of the measured signal.

The last two rows of Tab. 9 (see also Fig. 46) show the results of PL18

+ BK15 + NANO and PL21 + BK18 + NANO, together with all other
8 combinations. Notice that there is a discrepancy between the estimated
1D 95% CL bound of nt obtained exploiting NANOGrav or LVK. The reference
frequency of NANOGrav is fNANO = 1 yr−1 ≃ 32× nHz→ kNANO ≃ 2.0×
107 Mpc−1, instead of the LVK one is fLVK = 25 Hz→ kLVK ≃ 1.6× 1016

Mpc−1, thus they are separated by 9 orders of magnitude. This discrepancy
suggests that the signal detected by the NANOGrav collaboration cannot be a
cosmological background signal characterized by a simple power-law [281–
283]. In fact, fitting the NANOGrav bound on ΩGW at kNANO with our best-fit
power-law of PL21 + BK18 + NANO would make it inconsistent with the
LVK bound we have at kLVK. This is represented visually in Fig. 45 where it
is clear that a single power-law cannot fit both NANO and LVK. Here, we
also show some examples of models fitting them, as a SU(2) model [281, 282,
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Figure 45:
Illustrative rep-
resentation of the
current bounds
on the GW energy
density. Here, we
show that a simple
power law is not
enough if one wants
to include every
dataset.

284], a broken power-law [283], and a power-law with a non-null running of
nt [274–276].

This is consistent with what has already been found in the literature [281–
283]. In fact, there is a zoology of different models trying to explain the
NANOGrav claim in a cosmological fashion; however, this is beyond the scope
of this work.

13.5 summary and conclusions

In this chapter, we have obtained new Bayesian bounds on the tensor-to-
scalar ratio r and the tensor spectral index nt. We have exploited newly
released datasets from both an EM point of view, i. e. BICEP/Keck 2018 [113]
and Planck PR4 [114], and a GW perspective, that is, LVK collaboration data
[277]. In particular, the complementarity of Planck and BK measurements
allows us to better constrain the amplitude of the tensor perturbation spec-
trum, while the information at small scales coming from LVK can cut the
values of permitted spectral tilts.

To obtain reliable bounds on the tensor sector, we have studied the be-
havior and performances of two approaches encoding r and nt into our
MCMC analysis, i. e. the SSA and the TSA. The former consists of sampling
directly these two parameters while cutting the lowest values of r at some
undetectable threshold rcut

0.01 [267]; in the latter, one defines two tensor-to-
scalar ratios r1 and r2 (at scales k1 and k2) with which the parameter space
is explored [54]. Then r0.01 and nt are recovered as functions of r1 and r2
(see Eq. 399). In Sec. 13.1 we perform different tests to assess how a priori
and arbitrary choices affect both methods. In particular, we inspect the prior
information injected in the TSA by the coordinate transformation (see also
Sec. C.2) and the performance of both approaches on a mock dataset.

Starting from the TSA, in Sec. 13.1 we find that the informative prior on
r0.01 biases the results toward higher values w. r. t. what data suggest to the
point that r0.01 = 0 is excluded at more than 95% CL. In addition, the infor-
mative prior on nt introduces a strong pull toward scale-invariance (nt = 0)
disfavoring inflationary models characterized by a large |nt|.

With respect to SSA, we find that the main weakness is marginalization
effects. Thus, even if one considers a very low rcut

0.01 and a large prior in nt
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(thus without excluding a priori a large part of the posterior volume), there
might be a push towards small values of r0.01, caused by the presence of a
large posterior volume near r0.01.

Despite this, the SSA seems to be more robust against a priori arbitrary
choices w. r. t. to the TSA (see Sec. 13.1.4). Thus, we provide our baseline
results in Sec. 13.4 using the SSA (Sec. C.3 reports the TSA results).

We have analyzed 10 combinations of the available datasets and we have
found that the most constraining consists of a combination of Planck PR3

(high-ℓ part of TT, EE, and TE, low-ℓ part of TT and lensing) and PR4 (low-ℓ
part of EE, BB, and EB), BK18, and the last release from LVK. Together they
provide r < 0.028 and −1.37 < nt < 0.42 at 95% CL with a sensitivity
on r of σr = 0.0086. To our knowledge, these are the most constraining
bounds available in the literature for what concerns an inflationary scenario
characterized by a power-law. Standard single-field slow-roll prediction for
the spectral tilt (nt = −r/8 = −2ϵ) is still completely compatible with our
results. The TSA gives 0.001 < r < 0.033 and −1.32 < nt < 0.37 at 95% CL

on the same combination of datasets, which seems to be consistent with the
biases mentioned before.

Furthermore, to assess the possible influence of marginalization effects
on our main result with the SSA, in Sec. 13.4 we compute the profile dis-
tribution of our MCMC chain using the technique proposed in [256], which
approximates the results of a PL (see Chap. 14). The agreement between this
and our SSA marginalized distributions suggests that our results are driven
by data and not by marginalization effects, which surely play a role, but not
a significant one. In fact, for each binning strategy, we assumed, the upper
bound of r0.01 provided by the profile distribution is always less than or
equal to r0.01 < 0.028, demonstrating the robustness of our result. Instead,
the biases on the TSA find confirmation when comparing it with the profile
distribution.

In addition, we have considered two additional combinations of data sets
that account for the NANOGrav collaboration results [133]. In these cases, we
found an apparent inconsistency in the allowed range of nt w. r. t. what we
have obtained using LVK data as our small-scale dataset, according to what
has already been underlined in the literature. Specifically, we have obtained
r < 0.033 and 0.47 < nt < 0.85 at 95% CL. If we assume that NANOGrav

common-signal has a cosmological origin, one must abandon the single
power-law description of the tensor power spectrum, given that NANOGrav

and LVK cannot be reconciled in such a context. Instead, one may consider
Axion-SU(2) spectator field [281, 282, 284], broken power-law description of
the primordial tensor spectrum [283], GW contribution to the relativistic de-
grees of freedom [285, 286], k-dependence of the tensor tilt [274–276], cosmic
strings [287], phase transitions [288], domain walls or large-amplitude curva-
ture perturbations [289] to obtain a framework accounting for all constraints
at all scales (see also Chap. 4 and Chap. 5).

In conclusion, in Fig. 46 we translate the results presented in Tab. 9 into a
visual representation to help comparing the different datasets.
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Figure 46: 95% CL
intervals for r0.01
and nt, considering
different datasets,
given in Tab. 8.
Our main result is
PL21+BK18+LV21.

In the future, CMB space missions such as LiteBIRD [237] will provide an
unprecedented capability of measuring the large-scale part of the B-mode
spectrum. Indeed, the target sensitivity of LiteBIRD alone is σr = 0.001 (a
factor ∼ 9 better than the sensitivity obtained here); thus it will allow us
to obtain crucial information of the inflationary model which took place in
nature (for some insights, see [290]).



14
C O N S T R A I N I N G T H E T E N S O R S E C T O R W I T H P R O F I L E
L I K E L I H O O D

Previously in Chap. 13, we demonstrated the procedure to derive updated CL in-
tervals from a Bayesian perspective. A critical consideration involves the poten-

tial impact of volume effects, which, while not intrinsic to the Bayesian framework,
can contribute to an incomplete or potentially misleading portrayal of the tensor
sector of the parameter space.
In Chap. 13, our approach to data involved an approximate technique resembling a
PL. This chapter extends our analysis to incorporate the latest datasets, employing
both MCMC and PL, with particular emphasis on the latter technique.
This chapter draws on collaborative work conducted with the IJCLab in Orsay
(France), which will be referred to as “Galloni et al. (in prep.)”. As the project is
still in progress at the time of writing, the results presented should be treated as
preliminary.

14.1 dataset

In Chap. 13 we go through the datasets used in [259]. Here, we update the
previous combinations to the latest available data.

14.1.1 Planck PR3 and PR4

This study uses Planck sky measurements from the PR4 maps5. These maps
are generated through the NPIPE processing pipeline, producing calibrated
frequency maps in both temperature and polarization using data from both
the Planck Low-Frequency Instrument (LFI) and the High-Frequency Instru-
ment (HFI). The NPIPE process, detailed in [291], incorporates data from
previously overlooked repointing periods, along with several enhancements
that reduce noise and systematic errors across frequencies and component-
separated maps, enhancing consistency between different frequencies.

We use Planck likelihoods that cover the multipole range from ℓ = 2 to
ℓ = 2500. For large angular scales in temperature, we consider Commander
TT likelihood (lowlT) based on a Bayesian posterior Gibbs sampling (see
Chap. 11) that combines astrophysical component separation and likelihood
estimation [43, 270]. For large angular scales in polarization, we use the
LoLLiPoP likelihood (lolEB) based on the Hamimeche-Lewis approximation
for the EE, BB and EB power spectra [263]. At small angular scales, we
use alternatively HiLLiPoP or CamSpec which both are capable of combining

5 Available on the Planck Legacy Archive: http://pla.esac.esa.int.
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TT, TE and EE CMB spectra over a large fraction of the sky (75% and 80%
respectively). HiLLiPoP is a multi-frequency likelihood based on cross-spectra
of the 100, 143 and 217 GHz frequency maps, with astrophysical models
for the residuals of foreground emissions [29]. CamSpec is based on cross-
spectra at 143 and 217 GHz which are pre-processed by a cleaning procedure
using the 545 GHz maps as a template of Galactic dust emission [292].

All Planck likelihoods are based on PR4 (with the exception of lowlT, based
on PR3).

14.1.2 BICEP/Keck Array

We use the BICEP/Keck likelihood (BK18), representing data gathered by the
BICEP2, Keck Array, and BICEP3 CMB polarization experiments up to the 2018

observing season [113]. This likelihood is based on the Hamimeche-Lewis
approximation [293] for the joint likelihood of the BB auto- and cross-spectra
obtained across multiple frequency maps: BICEP/Keck (two at 95 GHz, one
each at 150 and 220 GHz), WMAP (23 and 33 GHz), and Planck (PR4 at 30, 44,
143, 217, and 353 GHz). Covering an effective area of roughly 400 square de-
grees (equivalent to 1% of the sky), this dataset is centered on a region char-
acterized by minimal foreground emission. The data model encompasses
Galactic dust and synchrotron emission, incorporating correlations between
dust and synchrotron components.

14.1.3 LIGO-Virgo-KAGRA Interferometers

GW interferometers probe scales (k ∼ 1016 Mpc−1) nearly 18 orders of mag-
nitude above those probed by the CMB (k ∼ 10−2 Mpc−1), offering a potent
means to constrain small scales.

We adopt the same approach as described in Chap. 13.

14.1.4 Combinations of Data

We consider a baseline combination of datasets:

• Planck PR3 lowl TT [43, 270],

• Planck PR4 LoLLiPoP [263],

• Planck PR4 lensing [294],

• BICEP/Keck array 2018 (BK18) [113],

• LVK 2021 (LVK21) [277],

Note that these datasets do not cover the high ℓ part of CMB, thus we define
on top of baseline the 2 combinations of datasets we explore in this work as

1. baseline + CamSpec [292]
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2. baseline + HiLLiPoP [29]

For notation sake, we will avoid writing “baseline” every time referring to
these two combinations of datasets. Any eventual modification will be em-
phasized.

Note that we slightly modified the high-ℓ likelihoods (both HiLLiPoP and
CamSpec) to avoid any correlation with the low-ℓ LoLLiPoP. Indeed, to maxi-
mize the information coming from BB, we use LoLLiPoP up to ℓ = 150 and
consequently adjust the ℓmin of high-ℓ likelihoods for EE at ℓ = 151.

As previously done in [263], we neglect correlations between Planck and
BICEP/Keck datasets and simply multiply the likelihood distributions. This
is justified because the BK18 spectra are estimated on 1% of the sky, while
the Planck analysis is derived from 50% of the sky.

14.2 methodology

We will not enter the details of either MCMC or PL, given that they have been
discussed in Chap. 11 and Chap. 12. Still, let us spend some words on the
latter.

To derive a confidence region that has the correct frequentist coverage
properties, one can make use of the likelihood ratio statistics. For multi-
parametric spaces, this amounts to constructing the likelihood profile: for
fixed values of the parameter of interest (pi), we look for the maximum of
the likelihood function in all the other dimensions (for both the physical pa-
rameters and the nuisance parameters). We then have access to the function
χ2

min(pi) = −2 lnLmax(pi).
The best fit (or min(χ2

min(pi))) gives the mean value of the parameter
under consideration. This procedure ensures that its determination is inde-
pendent of any change of variable, making it parameterization invariant;
furthermore, no integration is performed, since we do not have to marginal-
ize as in a Bayesian framework (see Chap. 11), thus this procedure is also
robust to any volume effect.

The error on the parameter p can be deduced from the shape of the
χ2

min(pi) function. For a parabolic shape (i. e. Gaussian estimator distri-
bution), the 1σ error bounds are simply obtained by a cut at χ2

min(pi) −
min(χ2

min(pi)) = 1. For more asymmetric shape of the χ2 function near the
minimum, or when dealing with physical boundaries, one needs to make
use of the FC prescription and the Neyman construction (see Sec. 12.4).

Finally, in Chap. 11 we do not mention a byproduct of PL: co-profiles. Not
only do we obtain a function χ2

min(pi), but also N − 1 functions pj(pi)
where j ̸= i. These co-profiles allow us to gauge the direction of degeneracy
of other parameters on the profiled one and are very useful as a diagnostic
tool of the PL procedure.
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Figure 47: 2D pos-
terior of r0.01 − nt
for baseline + Cam-
Spec and baseline +
HiLLiPoP.

From a more pragmatic point of view, here, we consider CAMB as a Boltz-
mann solver [245, 261, 262] and the MINUIT algorithm6 to minimize our like-
lihoods [295] 7.

As done for the MCMC, we use Cobaya to compute the PL. Together with
the MCMC infrastructure, this code is capable of providing the maximum
likelihood; thus, by modifying it, we can build our PLs. Cobaya also offers
two alternative minimizers: py-BOBYQA [296] and scipy [297], however, in
our case, MINUIT outperformed both. For this reason, we contributed to the
addition of MINUIT as an alternative minimization method in the official re-
lease of Cobaya. Furthermore, at the time of writing, the new module of
Cobaya that we use to perform PLs is being reviewed for approval in the
official release.

One of the difficulties in constructing the PL is the precision with which
we need to determine the values of χ2

min(pi). We must rely both on a very
accurate minimizer and on a possible boost to the accuracy parameters of
the Boltzmann code [298]. Various configurations have been tested here that
are further detailed in Sec. D.1.

14.3 mcmc results

Here we report the results of the MCMC preformed on the baseline combina-
tion plus CamSpec or HiLLiPoP. Fig. 47 shows the resulting 2D posteriors.

6 We may refer to this algorithm with iMinuit, which is the python wrapper of MINUIT.
7 We will use the expression “minimize a likelihood”, we refer to the fact that we can obtain

the maximum of L by minimizing its logarithm. Of course, the two are totally equivalent.
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Figure 48: Left:
Comparison of PL
between HiLLiPoP
and CamSpec.
Right: Different
considering LVK21

or not.

The 95% CL marginalized intervals for HiLLiPoP are

r0.01 < 0.029 and − 1.39 < nt < 0.41 , (409)

while for CamSpec

r0.01 < 0.028 and − 1.36 < nt < 0.42 . (410)

Furthermore, we repeat the analysis of CamSpec removing LVK21 to gauge
the contribution of GW interferometers. As expected, LVK21 severely con-
strains the blue tilts; removing it yields

r0.01 < 0.029 and − 1.35 < nt < 3.36 . (411)

These are very similar to the results of [259] presented in Chap. 13
8. When

using GW interferometers they obtained r0.01 < 0.028 and −1.37 < nt <
0.42 at 95% CL. This suggests that the tensor sector has remained stable after
updating the dataset to PR4, since it is dominated by the low-ℓ part. The
most relevant difference is the slightly more conservative bound provided
by HiLLiPoP. As regards the case without LVK21 likelihood, they obtained
r0.01 < 0.029 and −1.21 < nt < 3.54 at 95% CL. In this case, the bound
on the tensor-to-scalar ratio has remained identical, while the one on the tilt
has shifted a little to the left.

14.4 profile likelihood results

14.4.1 Tensor-to-scalar Ratio

First, we apply the PL described in Chap. 12 to the tensor-to-scalar ratio. Our
underlying model is ΛCDM + r0.01 + nt, so the likelihoods are minimized
both w. r. t. the standard ΛCDM parameters and nt (together with all the
nuisance parameters in each likelihood). Fig. 48 shows the results for the
combinations of datasets defined above.

All of them are very similar, however, one can note that HiLLiPoP tends to
provide slightly shallower bounds w. r. t. CamSpec, as in the MCMC case.

8 In that work, PR3 was used both for the high-ℓ part of Planck (plik) and for the lensing. Thus,
one should compare these sets of intervals with care.
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Figure 49:
Comparison be-
tween the 1D
marginalized pos-
teriors and the
profiles on r0.01.

Despite this, the most striking feature of this plot is found when focusing
on the parabolic fit we show with solid lines. Indeed, using the complete
set of points to fit a parabola results in a poor description of χ2 around
the minimum. From Chap. 12 we know that the PL is expected to follow a
χ2 distribution if Wilks’ theorem is satisfied. This seems to hold near the
absolute minimum and not far away from it. In fact, if we exclude the points
with r0.01 ≳ 0.02, we recover Gaussianity.

Before quantitatively reporting the confidence intervals using the FC pre-
scription, we show in Fig. 49 the comparison between the PL points and the
posterior distribution obtained in the previous section for CamSpec. This
suggests that some volume effect is present in the Bayesian framework, push-
ing the posterior towards r = 0. Note that this feature is not present in
Chap. 13 using the profile distribution. This also suggests that this approx-
imate technique fails to detect this volume effect, so one must be careful
when using such a shortcut.

If we now forget about the FC prescription, we could try to integrate the
curve underlying the PL points. This amounts of applying a Bayesian reason-
ing to a PL, which is not a likelihood and, more importantly, is not the PDF of
r0.01. Thus, it is difficult to give an interpretation of the result, and we are not
guaranteed at all that it has the correct coverage probability [299]. Despite
this, we find that the 95% integral of the distribution gives r0.01 < 0.028.

14.4.2 Feldman-Cousins for r0.01

We now apply the FC prescription to recover the confidence interval with the
correct coverage probability and accounting for the physical limit r0.01 ≥ 0.

We have seen in Chap. 12 that for a Gaussian distribution with parameter
θ we can include a physical bound in a frequentist framework by using the
following test statistic

λ(θ) =
f (x|θ)
f (x|θ̂)

=


exp

(
− (x−θ)2

2

)
if x ≥ 0

exp
(

xθ − θ2

2

)
if x < 0

. (412)

However, we mentioned above that the PL points we get from both Cam-
Spec and HiLLiPoP are not following a χ2 distribution far away from the
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Figure 50: FC belts
for CamSpec and
CamSpec without
LVK21 (left), and
CamSpec and
HiLLiPoP (right).

best-fit value of r0.01. Furthermore, Fig. 49 shows an additional characteris-
tic of HiLLiPoP; in fact, at the lowest values of r0.01, the PL presents a “bump”.
In Sec. D.3 we explore the possibility of generalizing the FC prescription to
more complex curves that fit our data. Still, for the purpose of this section,
the solution has already been suggested: near the best-fit the PL is Gaussian.
However, what does near mean? Since we are interested in precisely describ-
ing the best-fit value, we can look at the chi2-distance between χ2

min and the
value of our fit at the same value of r0.01. If we use the complete set of points,
we typically get quite large distances, so we cut the considered points until
we minimize this quantity. The results are shown in Fig. 50 for CamSpec. We
call this approach “partial Gaussian” to emphasize that we are discarding a
part of the PL. In the case of HiLLiPoP, we also exclude the points belonging
to the extra bump mentioned above.

In terms of upper bounds, we obtain

r0.01 < 0.032 with CamSpec,

r0.01 < 0.032 with CamSpec without LVK21,

r0.01 < 0.033 with HiLLiPoP.

(413)

All these bounds are more conservative w. r. t. Sec. 14.3, showing that the
MCMC seems to be affected by some volume effect toward r = 0.

14.4.3 Tensor Spectral Tilt

Looking at the PL for nt in Fig. 51, it is clear that we are far from a χ2

distribution. In such an extreme case, it is hard to extract solid statistical
results in terms of coverage probability.

In principle, to build the FC intervals we need the analytical expression
of the likelihood as a function of the profiled parameter (see Chap. 12 and
Sec. D.3); however in this case it is clear that we do not have that. Alterna-
tively, we could empirically build the likelihood. This requires the capability
of simulate reliably the data for any value of nt. Even though this route is
feasible, it is outside the scope of this work.

The only thing we can do is qualitatively describe the PL we get. Let us
start as in Sec. 14.4.1 by comparing CamSpec and HiLLiPoP: the most striking
feature of Fig. 53 is the presence of two “plateaus” in the PLs at blue and red
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Figure 51: PL on the
tensor spectral tilt.
Left: comparison
between Campsec
and HiLLiPoP. Right:
comparison be-
tween CamSpec
with and without
LVK21.

Figure 52: Co-
profiles of r0.01 as
a function of the
profiled value of nt.
On the left we use a
logarithmic axis for
r0.01 to underline
the behavior at
small values. On
the right, the axis
is linear, showing
that the behavior
resembles the pos-
teriors obtained in
Sec. 14.3. tilts. Furthermore, we can see that both datasets do not have clear upper or

lower bounds. Finally, note that both plateaus have a quite low value of λ.
Furthermore, we note that the plateaus of HiLLiPoP are slightly higher than
the ones of CamSpec. The former also shows a “bump” at nt ∼ −1. These
characteristics raise some questions: why do we not see the same plateaus
in the MCMC analysis of Sec. 14.3? What does it mean to have no bounds on
nt?

To answer both questions, we can look at the co-profiles mentioned in
Sec. 14.2. For example, we can look at r0.01(nt), since the likelihoods are
minimized w. r. t. the tensor-to-scalar ratio too.

Focusing on the left panel of Fig. 52, which shows the results, we can
see that to accommodate more and more extreme values of nt, the tensor-
to-scalar ratio is suppressed to very small values. This is exactly the reason
behind the analysis we show in Chap. 13 with SSA and TSA. Indeed, if we do
not impose a lower cutoff in r0.01, the datasets we consider are not sufficient
to constrain nt given that one can always find a value of r0.01 low enough
to accommodate any tilt. This is the reason why we do not have a clear
upper or lower bound on nt in Fig. 51. In obtaining that figure, we encounter
numerical problems as we try to probe more extreme tilts, and the r0.01 tends
to zero.

Thus, the reason why we do not see these plateaus in Sec. 14.3 is also
clear: by assuming r0.01 > 10−5 we do not allow the chain to explore these
regions of parameter space. Despite this, the values of r0.01 found by the
PL minimization are so low (r0.01 ∼ 10−10 − 10−17) that even without the
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Figure 53: Left: Com-
parison between
PL on nt and the
Gaussian prescrip-
tion to obtain the
confidence intervals.
Right: Comparison
between the PL and
the MCMC results on
nt.

SSA cutoff it would be impossible to explore that region with our MCMC9.
Finally, not that the region explored by the MCMC corresponds to the region
of the co-profile with the highest values of r0.01. This also corresponds to the
region of the PL between the plateaus.

Looking instead at the right panel of Fig. 51, we can see that removing
LVK21 brings us to an even less constraining scenario for blue tilts.

To obtain constraints on nt, we can try to mimic the MCMC procedure. For
example, we try to profile the tilt while asking r0.01 > 10−7. The results
are shown in the left panel of Fig. 53. First, note that as soon as the tensor-
to-scalar ratio is restricted, we recover both an upper and a lower bound.
In fact, even with r0.01 = 10−7, at some point the tilt will be so red that
the corresponding B-modes should be observed by LoLLiPoP. Thus, this will
make χ2 diverge to infinity.

Furthermore, we show in the right panel of Fig. 53 the comparison be-
tween the PL and the 1D marginalized posterior from the MCMC analysis.
This clearly shows the difference between the two approaches caused by the
features we just discussed.

14.5 2d profile

An alternative way to obtain constraints on nt is to fix the value of r0.01. Say,
for example, that we fix the tensor-to-scalar ratio to the value predicted by
Starobinski inflation r0.01 ∼ 0.0046 (see Chap. 5). The profile on nt would
be the one shown in Fig. 54.

Note that the plateaus are not present in this PL and we get both an upper
and a lower bound, in agreement with what we would expect from the pre-
vious discussion. Also, note that the lower bound is found well before the
one of Fig. 53, due to the fact that this value of r0.01 does not allow for very
red tilts.

Furthermore, we can reiterate this procedure for an array of values of r0.01,
effectively getting a 2D PL on the tensor sector of parameters. With such a
tool, we can extract the PL of nt for any hypothetical value of the tensor-to-
scalar ratio, and vice versa.

9 This is not strictly impossible, but rather extremely unlikely. Indeed, it is a well-known fea-
ture of uniform priors to poorly explore the region where the parameter of interest is ex-
tremely close to the boundaries
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Figure 54: PL on nt
assuming Starobin-
ski inflation.

Figure 55: 2D PL
on r0.01 and nt. The
star indicates the
absolute minimum
we find with this
procedure, whereas
the gray lines show
some iso-χ2 curves
to emphasize the 2D
shape of the profile.
The black dots are
the points in which
a minimization is
performed. Fur-
thermore, we show
in black solid the
2D marginalized
posterior.

Of course, such an analysis is very demanding in terms of Central Process-
ing Unit (CPU) time, given that we have to iterate an already computationally
heavy procedure. For this reason, we perform it only on CamSpec, which is
our fastest combination of datasets. We showed before that this dataset does
not differ much from HiLLiPoP, therefore the results we are about to present
can be taken as representative of both. Still, we again emphasize the differ-
ence in plateau levels and the presence of a bump for HiLLiPoP shown in
Fig. 51. These may change the results; we plan to explore this in the future.

We assume a range of the tensor-to-scalar ratio from a maximum of r0.01 =
0.028, saturating the bound in Sec. 14.3, to a minimum of r0.01 = 10−6, for
a total of N = 15 steps. The range in nt varies case by case, as Fig. 55 shows.
Then, we interpolate these points to get a smooth surface that represents the
result for N → ∞.

Here, if we imagine intersecting this surface with any horizontal (vertical)
plane for a value of r0.01 (nt), we would obtain the PL of nt (r0.01) conditioned
on that value.

Furthermore, we can overplot the marginalized 2D posterior from Sec. 14.3
to obtain the solid black contour in Fig. 55.



14.6 summary and conclusions 193

Figure 56: Left: Com-
parison between
the 2D PL on r0.01
and nt and the
2D marginalized
posterior when
following the TSA.
Right: Same compar-
ison but exploiting
the SSA with a
log-uniform prior
on r0.01.

Note that the posterior seems to follow the same behavior as the iso-χ2

curves. This suggests that in the context where we do not allow r0.01 → 0,
the MCMC and the PL agree to each other; this means that there are no volume
effects on the r0.01−nt plane. On the other hand, these effects manifest when
we integrate over nt as in Sec. 14.3.

In other words, this 2D PL shows that the marginalized 2D posterior ob-
tained with the MCMC procedure described in Chap. 13 (i. e. the SSA) is not
affected by volume effects. However, when reporting the results for r0.01
alone is necessary, an extra marginalization in nt must be made. Instead, in
Fig. 87 of Sec. C.3 we show that typically TSA brings to posteriors that signif-
icantly detach from r = 0 and tend to increase this gap towards the red tilts.
Both of these features are not present in our 2D PL suggesting that those are
artifacts induced by the prior.

In response to this result, we tested the TSA on the same dataset explored
here, thus repeating the MCMC analysis presented above while sampling r1
and r2 (see Chap. 13). Furthermore, we employ a SSA with a log-uniform
prior on r0.01. This set of “initial conditions” of the MCMC encompass the
most “popular” choices explored in the literature. The results are shown in
Fig. 56, which proves that both the TSA and the log-uniform prior on r0.01
bring to a clear mismatch with the 2D PL, even though in opposite directions.

This confirms the discussion above and suggests that the SSA is the ap-
proach that reproduces more faithfully the 2D frequentist results.

14.6 summary and conclusions

In this chapter, we explore the tensor sector of parameter space utilizing
the latest available data. Specifically, while allowing all the ΛCDM parame-
ters to freely vary (see Sec. D.2), we focus on the tensor-to-scalar ratio r0.01
and the tensor spectral tilt nt. Our dataset encompasses information from
Planck satellite, covering both CMB temperature and polarization, alongside
polarization data sourced from the BICEP/Keck array. Given that these exper-
iments lack access to the small scales of the tensor spectrum, we incorporate
the LVK upper bound on the energy density of GWs to constrain this region
(see Sec. 14.1). Within this data ensemble, we define two combinations of
datasets explored in this work. The key distinction between the two lies in
the choice of the high ℓ likelihood, either CamSpec or HiLLiPoP.
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In Sec. 14.2, we outline our methodological approach. Firstly, we assume
for the MCMC analysis the same setup explored in Chap. 13, and in particular
the SSA. Secondly, we introduce the PL, discussed in more detail in Chap. 12.
We already mentioned that the Bayesian approach may encounter volume ef-
fects arising from the marginalization procedure in a multi-dimensional pa-
rameter space, potentially influencing conclusions, especially for relatively
unconstrained parameters. In this context, the PL offers a volume-effect-
independent means to explore these aspects and present an alternative per-
spective on the tensor sector. Both the MCMC and the PL are executed using a
modified version of Cobaya, leveraging CAMB for power spectra computation
and MINUIT for chi2 minimization (see also Sec. D.1). This version of Cobaya
that we have developed, featuring the capability to perform a PL, will soon
be made publicly available.

From a Bayesian standpoint (Sec. 14.3), the tensor sector of the param-
eter space appears to have remained robust following the dataset update
compared to [259]. Specifically, utilizing HiLLiPoP yields r0.01 < 0.029 and
−1.39 < nt < 0.41 at a 95% CL, while with CamSpec, we obtain r0.01 <
0.028 and −1.36 < nt < 0.42 at 95% CL. Both results align well with the
prior state-of-the-art bounds from Chap. 13. Additionally, we replicate the
analysis with CamSpec, excluding the likelihood from LVK, resulting in a
significantly broader upper bound on nt as anticipated: r0.01 < 0.029 and
−1.35 < nt < 3.36 at 95% CL. This underscores the critical role played by
GW interferometers in constraining the tensor spectral tilt.

In Sec. 14.4.1, we scrutinize the PL of r0.01. Upon inspecting the profiles
derived from our dataset combinations, we observe a departure from a Gaus-
sian distribution, especially for points in far away from the absolute mini-
mum (refer to Fig. 49). While this non-Gaussian behavior is anticipated when
Wilks’ theorem is not applicable, it is noteworthy that the departure impacts
points close to the minimum too, particularly in the HiLLiPoP case. To restore
the validity of Wilks’ theorem, we discard these points and apply the FC pre-
scription in Sec. 14.4.2 (see also Sec. D.3). The results indicate that CamSpec
(with and without LVK) yields r0.01 < 0.032 at 95% CL, whereas HiLLiPoP

leads to r0.01 < 0.033. Both results show a more conservative stance com-
pared to the MCMC analysis, suggesting that the latter could be influenced
by volume effects.

Having said this, we must emphasize the difference between a Bayesian
and a frequentist statement on r0.01. In a Bayesian context, the upper bound
on the tensor-to-scalar ratio is a statistical statement grounded in the pos-
terior, representing the PDF of r0.01 given the data. This means that r0.01 <
0.028 (or 0.029 for HiLLiPoP) signifies the most probable region to locate the
true value of the parameter within our assumptions, with probability deter-
mined by the CL. As demonstrated in Chap. 13, different assumptions yield
distinct results, showcasing an inherent characteristic of Bayesian analysis,
especially for insufficiently constrained parameters. For example, the TSA

analyzed in Chap. 13 brings to a “2σ detection” of r0.01 as a result of the
prior choice. Conversely, the PL result r0.01 < 0.032 (or 0.033 for HiLLiPoP)
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is a statistical statement about the likelihood, i.e. the PDF of data given the
theoretical model. In other words, r0.01 = 0.032 represents the largest value
of the tensor-to-scalar ratio that can consistently explain our data in 95%
of N hypothetical repetitions of the Universe. Of course, this consideration
assumes the correctness of the ΛCDM model used to describe the Universe.

The results for the tensor spectral tilt are presented in Sec. 14.4.3. As ev-
ident from Fig. 51, employing the FC prescription utilized in Sec. 14.4.2 is
not feasible here, as the profile does not exhibit a Gaussian shape. Moreover,
the absence of a distinct bound, either lower or upper, suggests the poten-
tial accommodation of highly extreme spectral tilts at the expense of driving
r0.01 toward zero (refer to Fig. 52). This is fundamentally linked to the prob-
lematic behavior of the MCMC method mentioned earlier. As in that scenario,
imposing a lower cutoff to r0.01 resolves this issue, as depicted in Fig. 53.
However, due to the intricate shape of the profile, extracting a reliable confi-
dence interval remains challenging, as there is no assurance of achieving the
correct frequentist coverage probability.

Moreover, after illustrating the PL while fixing r0.01 to the value predicted
by Starobinski inflation, we conduct a 2D PL analysis involving both r0.01 and
nt (Sec. 14.5). In Fig. 55, a noteworthy agreement between this 2D PL and the
2D marginalized posterior obtained with the SSA is evident. This suggests
two key observations: firstly, it indicates that no volume effects are induced
by other parameters (physical or nuisance) on this 2D plane; secondly, as a
consequence, the volume effects emphasized in Sec. 14.4.1 are generated by
the integration in nt. This result prompted us to explore the consequences
of other commonly used priors on r0.01 − nt. For this reason, we re-run the
MCMC for CamSpec, adopting both the aforementioned TSA and an SSA with
a log-uniform prior on r0.01

10. Subsequently, in Fig. 56, we present the same
comparison between 2D posterior and 2D PL. The figure clearly indicates
that these two alternative approaches result in a mismatch (i.e., a volume
effect) that is not present in the SSA case. In particular, the TSA seems to be
pushed toward relatively high values of r0.01, as already demonstrated by
[259]. On the contrary, the log-uniform case induces a significant push on
r0.01 toward zero.

Embracing the philosophy that achieving correspondence between fre-
quentist and Bayesian approaches is at least desirable [255, 299], the SSA

appears to be the most suitable choice to mitigate additional volume effects
on the 2D plane. Nevertheless, it is important to reiterate that no formal
contradiction exists in any of the Bayesian methods mentioned above. How-
ever, it is crucial to be aware and transparent of the effects introduced by the
assumptions employed.

In this work, we do not provide any frequentist bound on nt, given the
issues mentioned above. However, a potential avenue for obtaining it exists.
Specifically, we could simulate N realizations of the CMB with M different
values of nt to empirically derive the likelihood. This would allow us to

10 We will refer to this as the “log-uniform case”.
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build the FC belt and extract bounds with the correct coverage probability.
We leave this for future exploration.

In summary, this chapter delivers a comprehensive and statistically robust
analysis of the tensor sector of parameter space. Beyond offering an updated
perspective utilizing the latest datasets, the analysis underscores the signif-
icance of probing relatively unconstrained parameters with frequentist ap-
proaches, complementing the widely used Bayesian methods. This insight
proves valuable for forthcoming investigations into CMB polarization, such
as with LiteBIRD, and for any endeavors exploring extensions to the standard
ΛCDM model.



15
C O N C L U S I O N S

Here , we summarize the journey outlined in this thesis. The manuscript is orga-
nized into four parts, divided into two groups. The first group includes Part I

and Part II, where we lay down the theoretical foundations necessary for subsequent
discussions. Initially, we introduce the key elements of our current understanding
of the Universe, overlooking the presence of GWs. We then incorporate tensor pertur-
bations to examine the implications of their existence and the imprints they generate
as they propagate to us.
The second group stems from the first, addressing two fundamental questions: What
happens if we deviate from the standard cosmological model? What insights do we
have into the tensor sector of parameters with current data? Part III delves into the
first question, while Part IV tackles the latter.
This exploration provides a glimpse into the origins of our Universe, with a par-
ticular focus on the inflationary model at its core. Here, we will present the main
conclusions drawn from this extensive exploration.

15.1 adding tensor perturbations to a “scalar” universe

In Part I, we begin by introducing the basics of Cosmology (Chap. 1). A cru-
cial concept is the thermal coupling between particle species and the ther-
mal bath. The moment of decoupling determines the physics to which a
particle is sensitive, making information before decoupling inaccessible (see
Chap. 2).

This concept enables us to trace the thermal history of the Universe, reveal-
ing its “Big-Bang evolution”. However, this description conceals flaws, man-
ifesting as a fine-tuning of initial conditions to match current observations
(Chap. 3). Here, inflation justifies its existence, resolving inconsistencies in
the hot Big-Bang model.

In Chap. 4, we dive into the basics of the inflationary paradigm, focusing
on the single-field slow-roll model. Toward the end of the chapter, we in-
troduce a key actor: the CMB. This radiation, a consequence of the thermal
decoupling of photons, exhibits characteristic anisotropies stemming from
quantum fluctuations of the inflaton during inflation.

Studying the consequences of adding GWs to our Universe’s recipe is the
focus of Part II. In Chap. 5, we explore predictions of single-field slow-roll
inflation and more complex scenarios. The key takeaway is that GWs leave
specific imprints, such as the B-mode polarization of CMB photons.

Additionally, GWs constitute a primordial background (CGWB) character-
ized similarly to CMB photons using the Boltzmann equations (Chap. 6). We
show the complete computation to pass from the Boltzmann equations to the
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final angular power spectra of the CGWB. One of the key messages here is
that GWs are not coupled with the “rest-of-the-world” below energies of the
Planck mass. This is a crucial difference w. r. t. photons, which allows us to
have a direct window on the physics of inflation. Having introduced tensor
perturbations, this section provides a complete picture of the Universe.

15.2 departures from the standard model of cosmology

In Part III, we test departures from the standard model. The cosmologi-
cal principle assumes the Universe is homogeneous and isotropic. However,
Chap. 7 presents observational hints of potential violations, specifically the
CMB anomalies. In particular, we delve into the hemispherical power asym-
metry in Chap. 8, which can be described as a modulating field acting on the
scalar perturbations. We perform the complete computation that accounts
for this anomaly when we consider the Boltzmann equations of the CGWB.
This brings us to the first theoretical results of this work: in previous studies
(see [181]) the ISW effect was neglected for the CMB case. Here, we not only
include this effect, but also provide equivalent equations for the CGWB.

In Chap. 9, our focus shifts to the practical implementation of these ex-
pressions, which involves a modification of the CLASS Boltzmann solver. Ad-
ditionally, we introduce a generalized form of the well-known constrained
realization formulas, enabling the simulation of a CGWB sky based on Planck
CMB maps. Notably, this generalization accounts for the couplings between
multipoles introduced by the modulating field. These tools play a pivotal
role in forecasting the potential of GWs in aiding the measurement of such a
modulating field, crucial for explaining the observed anomaly. Our approach
involves assuming a cosmic-variance-limited observation and considering
the capabilities of future space-based GW interferometers, namely LISA and
BBO. Despite the inherent complexity associated with measuring primordial
GWs, our analysis demonstrates that BBO holds significant promise in helping
us unravel the physical origin of the hemispherical power asymmetry.

In Chap. 10, our attention shifts to a distinct CMB anomaly known as the
lack-of-correlation. Specifically, the two-point angular correlation of temper-
ature perturbations in photons exhibits an unexpected consistency with no
correlation on scales larger than 60◦, a departure from the predictions of the
ΛCDM model. The motivation behind this chapter mirrors that of Chap. 8:
can an observation of the CGWB assist in elucidating the physical nature of
this feature?

Once again, we introduce a generalization of the constrained realization
expressions, this time incorporating the effects of a mask on the CMB sky.
Additionally, we define a novel estimator tailored for this anomaly, capable
of addressing the so-called “look-elsewhere” effect. Moreover, for each con-
sidered observable (or combination thereof), we identify the optimal angular
range for future investigations into this anomaly. Finally, we establish that
a GW observation would significantly enhance the statistical significance of
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detecting the lack-of-correlation, even under the most pessimistic scenario
considered in this study.

15.3 statistics and data analysis

In Part IV, our attention turns to the statistical methods and data analysis un-
derpinning the current understanding of our Universe. Specifically, Chap. 11

delves into Bayesian statistics and introduces the widely recognized MCMC

analysis. In the realm of Cosmology, adopting a Bayesian perspective is a
natural choice, given our reliance on a single realization of the Universe for
analysis. However, it is crucial to acknowledge that the MCMC analysis can be
influenced by volume effects, potentially leading to misleading conclusions
on certain parameters, especially when these parameters lack robust con-
straints from the data. To address this, we explore an alternative approach
in Chap. 12, focusing on frequentist statistics, i. e. a methodology indepen-
dent of prior choices and volume effects. Here, we introduce the PL analysis,
serving as a complementary tool to the MCMC approach. This dual perspec-
tive allows for a more robust and comprehensive examination of the data,
enhancing our ability to draw meaningful conclusions about the fundamen-
tal parameters of the Universe.

In Chap. 13, we examine the Bayesian perspective on the tensor sector of
the parameter space. The chapter provides a comprehensive analysis of the
consequences arising from two different prior choices commonly employed
in the literature.

Following a series of tests to determine the most reliable approach for
constraint derivation, we analyze 10 distinct combinations of datasets, incor-
porating information from sources such as CMB, GW interferometers, and PTA

data. This collective effort culminates in establishing the most stringent up-
per bound on the tensor-to-scalar ratio currently available in the literature.

However, the obtained result might be influenced by the volume effects
mentioned earlier. Therefore, in Chap. 14, we explore the frequentist counter-
part of this analysis. Initially, we update the datasets considered to include
the most recent ones available in the market. Subsequently, we conduct both
a MCMC and a PL analysis to provide a comprehensive understanding of the
tensor sector of the parameter space. As of the current writing, this project
is still a work in progress; nonetheless, it has already yielded intriguing in-
sights.

From a Bayesian standpoint, we reaffirm results consistent with those in
Chap. 13; however, we highlight their susceptibility to volume effects.

On the other hand, we present the inaugural PL performed on the tensor
spectral tilt and the first 2D PL on the tensor sector. The latter implies a
concurrence between the MCMC and PL outcomes when employing a single-
scale approach to sample the tensor sector, aligning with the discourse in
Chap. 13.

In essence, Chap. 13 and Chap. 14 collectively constitute a thorough and
statistically sound data analysis of the tensor sector of the parameter space.
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These chapters underscore a crucial aspect of the present and future explo-
ration of primordial GWs and, consequently, the inflationary model. In the
absence of a tensor-to-scalar detection, it becomes imperative to remain cog-
nizant of potential prior dependencies, volume effects, and biases. Therefore,
a Bayesian approach should involve studying the effects of different priors
that may encapsulate diverse prior beliefs. Furthermore, the integration of a
PL is vital for a comprehensive evaluation of MCMC results, recognizing the
fundamental distinction between credible and confidence intervals.

15.4 future prospects

This Thesis encapsulates a portion of the work accomplished over the course
of three years in pursuit of this Philosophiae Doctor (PhD) degree. It serves
as a foundational platform for my ongoing and future explorations in the
realms of inflation and primordial GWs.

In Chap. 9 and Chap. 10, we demonstrated that GWs emerge as invaluable
tools to scrutinize the physical nature of CMB anomalies. Specifically, the
cross-correlation between the CMB and the CGWB opens avenues for intrigu-
ing analyses. Utilizing the tools developed in these chapters, we can extend
our investigations to different features connecting GWs and CMB photons.

In the field of data analysis, we showcased in Chap. 13 and Chap. 14 a
robust approach to confining the tensor-to-scalar ratio and the tensor spec-
tral tilt, employing both Bayesian and frequentist perspectives. Nevertheless,
numerous potential refinements to these analyses beckon for exploration in
the future. For example, can we employ more sophisticated statistical tools
to scrutinize these parameters? Or, is there room for improvement in our
depiction of the likelihood, capturing the probability of observed data given
our theoretical framework? Although these questions serve as examples, I
think that the response to both is affirmative.

In conclusion, this Thesis did not investigate my participation in the LiteBIRD

collaboration. I actively contribute to various working groups dedicated to
the science of inflation, cross-correlation with galaxy surveys, simulation
of the experiment’s future performance, and the likelihood analysis of its
results. Throughout this manuscript, I underscored the importance of mea-
suring B-modes, directly linked to primordial GWs, thereby emphasizing the
heightened relevance of future measurements in this domain.
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A P P E N D I X T O T H E S TAT I S T I C A L I S O T R O P Y A N A LY S I S

a.1 scalar vs tensor contributions to the anisotropies

As mentioned in Chap. 8, part of both the CMB and the CGWB anisotropies
are induced by the presence of tensor perturbations of the metric. Here we
explore the role of both scalar and tensor contributions to the anisotropies
of the CGWB, the CMB and their cross-correlation, emphasizing their depen-
dency on the tensor spectral tilt nt. In the case of CMB, the solution of the
Boltzmann equation for the tensor modes will be proportional to the integral
of a source function defined as [189, 300]

S(T)
Temp. = −χ′e−κ + pol. , (414)

where (T) stands for tensor, κ is the optical depth and pol. stands for the
contribution of polarization on which we are not interested (see Sec.3.6 of
[300] for further detail). On the other hand, the analogous solution in the
case of the CGWB is proportional to [49]

S(T)
GW = −χ′ . (415)

These source functions will then play a role in the solutions for either Θℓm
or Γℓm. However, let us recall that in order to characterize the statistical
behavior of Θ, Γ we turn to their angular power spectrum, given that they
are fields of null mean. The expression for their spectra will then contain the
square of the appropriate source function, since

〈
XℓmX∗ℓ′m′

〉
∝ CXX

ℓ with
X = Θ, Γ. Then, Eq. 414 and Eq. 415 generate a positive contribution of the
angular power spectrum ∝ (h′)2.

Furthermore, the CXX
ℓ will also depend on the primordial tensor power

spectrum, which we parametrize as a power-law (see Sec. 9.1). Indeed, Fig. 57

shows that a negative spectral index nt (red tilt) enhance the tensor anisotropies
on large scales, which actually reach the same order of the scalar induced

Figure 57: CGWB
(left) and CMB
temperature (right)
angular power
spectrum when we
assume different
values for the tensor
spectral tilt nt and
we do not consider
any effect due to
the modulation
(ω1 = 0). Scalar in-
duced anisotropies
are reported in solid
lines, whereas the
tensor induced ones
with dotted lines.

203



204 appendix to the statistical isotropy analysis

Figure 58: Cross-
correlation
CMBxCGWB angular
power spectrum
when we assume
different values for
the tensor spectral
tilt nt and we do not
consider any effect
due to the mod-
ulation (ω1 = 0).
Scalar induced
anisotropies are
reported in solid
lines, whereas the
tensor induced ones
with dotted lines.

anisotropies. From the right panel of Fig. 57, it is clear that in the case of the
CMB only the tensor contribution will depend on nt through the primordial
spectrum, as expected. Instead, for the CGWB, the left panel of Fig. 57 allows
us to distinguish the dependence of the scalar (see Sec. 9.1 for more details)
and the tensor contributions.

The same reasoning holds also for the cross-correlation between CMB and
CGWB. Indeed, its angular power spectrum contains the product of the source
functions coming from CMB and CGWB. Once again the result is a positive
contribution (∝ (χ′)2) and the overall spectrum depends on the primor-
dial power spectrum of the tensor perturbations, thus the spectral index nt.
Fig. 58 shows this dependence for both the scalar and tensor contributions.

Finally, all of these spectra and their dependencies on nt generate what
we see in Fig. 15, where the tensor induced anisotropies are contributing to
increase the correlation coefficient.
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A P P E N D I X T O T H E L A C K - O F - C O R R E L AT I O N A N A LY S I S

b.1 window function in a partial sky

In Sec. 10.2 we generalize the formula for constrained realizations to the cut-
sky case. In doing so, we use the window function of a mask, so here we
give more details on this quantity.

Assume to have an observable field X, which gets decomposed using
spherical harmonics. This provides an efficient description of an observation
in terms of the aℓm coefficients. However, these will have different values
and different statistics depending on the fraction of the sky one is able to ob-
serve. In particular, the relation between FS and CS coefficients is [231, 232]

aCS
ℓm =

∫
cut−sky

X(θ, ϕ)Y∗ℓm(θ, ϕ)d(cos θ)dϕ

=
∫

cut−sky
∑
ℓ′m′

aFS
ℓ′m′Yℓ′m′(θ, ϕ)Y∗ℓm(θ, ϕ)d(cos θ)dϕ

= ∑
ℓ′m′

aFS
ℓ′m′

∫
cut−sky

Yℓ′m′(θ, ϕ)Y∗ℓm(θ, ϕ)d(cos θ)dϕ

.

(416)

In the full-sky case, the integral gives δℓℓ′δmm′ thank to the orthogonality of
the spherical harmonics on the complete sky. However, on a portion of the
sphere, they are not orthogonal, so ℓ− ℓ′ couplings will emerge.

We can write Eq. 416 as a function of a window function W defined by
the particular mask we are using as

aCS
ℓm = aFS

ℓ′m′W
ℓ′m′
ℓm , (417)

where repeated indexes are summed over. Thus, in order to estimate the
full-sky coefficients from a partial sky observation we must compute Wℓ′m′

ℓm .
Since one typically works with maps divided in pixels, we can write the
discretized window function as a sum over the unmasked pixels p [232]

Wℓ′m′
ℓm = ∑

p ∈ CS
Yℓ′m′(p)Y∗ℓm(p)Ωp , (418)

where Ωp is the angular area of the pixel and the spherical harmonics are
evaluated in the center of each pixel. This sum will depend on the consid-
ered pixelization (Nside parameter of Healpy), but it will tend to the contin-
uous integration as the pixel size goes to zero. Note that in the case of very
aggressive masks, the window function may become singular.
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Figure 59: The left
panel shows the
window function
obtained from the
common intensity
mask at Nside = 64
and computed from
Eq. 418. The right
panel shows the
covariance of the
cut-sky spherical
harmonic coeffi-
cients, as defined
in Eq. 419. For both
panels, we mark the
m-blocks, following
the usual indexing
of the aℓms (note
that the last block
for m = 10 is not
labeled for visual-
ization purposes).
Here we assume
ℓmax = 10.

An alternative route to obtain the window function is to use partial sky
realizations of the considered field. Indeed, looking at the covariance of the
aCS
ℓm we can write (here we drop the indexes for the sake of notation)〈(

aCS
)∗

aCS
〉
= W∗

〈(
aFS
)∗

aFS
〉

W

= W∗DW

=
(

D1/2W
)∗(

D1/2W
)

,

(419)

where D is a matrix with the angular power spectrum in the diagonal ele-
ments (see Eq. 344). In the last line, we obtain the classic definition of the
Cholesky decomposition. This shows that having an empirical covariance ob-
tained from N cut-sky realizations of X is equivalent to having computed the
window function of the mask while knowing the angular power spectrum
of the observable. In particular, we can write

D1/2W = Chol.
(

CovCS
)

W = D−1/2 × Chol.
(

CovCS
)

,
(420)

obtaining the window function from the cut-sky realizations. Obviously, this
alternative way will depend on the realizations used and their number.

At this point, we can specify the window function to our case, hence to
the common intensity mask of Planck (see Sec. 10.2.1). We compute the win-
dow function from Eq. 418 and using Nside = 64. Fig. 59 shows the real
part of the obtained matrix assuming ℓmax = 10 and of the full covariance
matrix W∗DW (the imaginary part of both is negligible w. r. t. the real one)
normalized to the diagonal elements to emphasize the correlation structures.
The figure shows that the window function is not block diagonal. Instead,
coefficients with different m will get slightly correlated. Indeed, Mortlock,
Challinor, and Hobson [232] show that in the case of symmetric, constant lat-
itude cuts, the window function goes exactly to a block diagonal matrix. Still,
the elements correlating different orientations are negligible with respect to
elements belonging to the same m. To highlight this feature, we labeled in
the figure the different m-blocks, which contain the ℓ− ℓ′ correlations.
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Figure 60: Pixel
standard deviation
across the sky for
the true full-sky
coefficients and the
reconstructed ones.

b.1.1 Sky variance of the reconstructed coefficients

As shown in Eq. 347, we use this window function to reconstruct the full-sky
spherical harmonics coefficients, however this must come at a cost. Indeed,
assuming to have a very aggressive mask, it is intuitive to expect that not all
the harmonic modes can be recovered, especially if the typical angular scale
of those is comparable with the width of the mask. In more mathematical
terms, the window function would be singular, thus one cannot invert it to
compute the reconstructed full-sky coefficients from the cut-sky ones [232].
In our case, the W is invertible, however we expect the reconstructed coeffi-
cients to be more noisy than the true ones. To verify this, we generate 1000

full-sky realizations, we mask each and we reconstruct the âFS
ℓm. Then, we

compute the standard deviation of each pixel to investigate whether an extra
scatter is present w. r. t. the full-sky dispersion. Focusing on the ℓmax = 10
case, Fig. 60 shows the results: on the left we plot the standard deviation
pixel by pixel of the true aFS

ℓm, while on the right we plot the extra standard
deviation induced by the reconstruction procedure.

Note that this contribution concentrates around masked areas of the sky
(see Fig. 22), suggesting that we pay the price of a full-sky description by
increasing the noisiness of those regions, as expected.

b.2 angular correlation functions for the cgwb

In Sec. 10.2.3 we show the angular correlation functions for GWGW and
TGW, however, we limit the angular range to the one accessible imposing
ℓmax = 4. This is done to account for the performance of future GW in-
terferometers. Despite this, it is interesting to have a look at the 2-point
angular correlation function on all scales, as predicted by ΛCDM. Indeed,
the angular power spectrum of the CGWB is very similar to the one of CMB

temperature due to their high correlation, but they diverge on small scales
(ℓ ⪆ 100). Hence, Fig. 61 shows C(θ) for GWGW and TGW when assuming
ℓmax = 2000. Indeed, note that both the GWGW and the TGW present the
typical “sinusoidal” behavior on large scales. Instead, on small ones GWGW
tend to very high values since the CGWB spectrum is not dumped as the CMB

temperature one.
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Figure 61: Angular
correlation function
C(θ) of GWGW
(left) and TGW
(right) assuming
ℓmax = 2000.

Mask-sky
SGWGW

θmin,θmax
STGW

θmin,θmax
STT,GWGW

θmin,θmax
STT,TGW

θmin,θmax
STT,TGW,GWGW

θmin,θmax

θmin θmax θmin θmax θmin θmax θmin θmax θmin θmax

ℓmax = 4 60◦ 179◦ 60◦ 180◦ 60◦ 178◦ 61◦ 180◦ 60◦ 180◦

ℓmax = 6 37◦ 98◦ 54◦ 127◦ 40◦ 99◦ 52◦ 180◦ 44◦ 99◦

ℓmax = 10 66◦ 77◦ 60◦ 132◦ 38◦ 94◦ 58◦ 173◦ 36◦ 128◦

Table 11: Optimal angles for every observable and combination of them while as-
suming a different FWHM for smoothing SMICA products.

b.3 changing the smoothing scale

In Sec. 10.2.1, we said that we smooth SMICA products with a Gaussian
beam with FWHM = 2◦. Thus, one could ask what difference would a dif-
ferent smoothing strategy bring to the analysis? To explore this aspect, we
repeat all the analysis while choosing FWHM ≃ 0.92◦, which is the angu-
lar scale corresponding to Nside = 64. We find that the full-sky analysis is
totally unaffected by the smoothing choice giving identical results. On the
other hand, the masked analysis shows some differences, shown in Tab. 11,
Tab. 12, and Tab. 13. The most significant one in found in the percentage
of realizations improving SMICA significance. Indeed, assuming a less ag-
gressive smoothing and to use all the observables (TT, TGW and GWGW),
allows us to obtain almost the 90% of them above SMICA in all the con-
sidered cases (see last column of Tab. 13). Despite this, in the main body
of this work we decided to keep the 2◦-smoothing since we think that it
is safer to stick with a bigger FWHM to avoid mask-induced effects. To test
this, we also repeat the analysis while smoothing with a FWHM = 4◦. We do
not show the results for this case, since they are completely identical to the
ones in Sec. 10.3 suggesting that our 2◦ choice is sufficient to get rid of any
pixelization dependence.
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Mask-sky
SGWGW

θmin,θmax
STGW

θmin,θmax
STT,GWGW

θmin,θmax
STT,TGW

θmin,θmax
STT,TGW,GWGW

θmin,θmax

PD PD PD PD PD
ℓmax = 4 72.0% 96.33% 93.51% 98.32% 96.15%
ℓmax = 6 77.11% 96.84% 95.88% 98.78% 97.4%
ℓmax = 10 71.64% 96.75% 93.51% 98.72% 95.71%

Table 12: PDs for every observable and combination of them while assuming a dif-
ferent FWHM for smoothing SMICA products.

Mask-sky
Signi. SSMICA SGWGW STGW STT,GWGW STT,TGW STT,TGW,GWGW

ℓmax = 4 2.41σ 12.73% 14.86% 79.32% 9.35% 86.37%
ℓmax = 6 2.37σ 8.13% 1.19% 90.31% 0.34% 94.52%
ℓmax = 10 2.17σ 3.81% 1.35% 87.33% 0.42% 91.35%

Table 13: Percentage of constrained realizations that improve the significance of
SMICA, which is shown in the first column. Here we assume a different FWHM for
smoothing SMICA products

b.4 optimistic gws detection

Here, we show some of the results of the same analysis performed in the
main body if we change the assumption on ℓmax. Indeed, we just showed the
most pessimistic case of ℓmax = 4. For the sake of brevity, we cannot show
everything as we did in the main body. Instead, we will show exclusively
the results when we assume masked SMICA to be our CMB observation.

b.4.1 Optimal angles with ℓmax = 6

We show here the results of the optimal angles analysis for SGWGW
θmin,θmax

on

Fig. 62 and on Fig. 63 for STGW
θmin,θmax

.

Figure 62: Optimal
angles for GWGW.
The left and right
panels show respec-
tively optimal an-
gles analysis and the
results at the opti-
mal range. Here we
assume ℓmax = 6.
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Figure 63: Optimal
angles for TGW. The
left and right panels
show respectively
optimal angles anal-
ysis and the results
at the optimal range.
Here we assume
ℓmax = 6.

Figure 64: Optimal
angles for the
combination of TT
and GWGW. The
left and right panels
show respectively
optimal angles anal-
ysis and the results
at the optimal range.
Here we assume
ℓmax = 6.

Instead, Fig. 64, Fig. 65 and Fig. 66 show the same respectively for STT,GWGW
θmin,θmax

,

STT,TGW
θmin,θmax

and STT,TGW,GWGW
θmin,θmax

. As mentioned in Sec. 10.3.1, there always
seems to be relatively high-PD region where the original S1/2 estimator is
defined, i. e. between 60◦ and 180◦.

b.4.2 Significance with ℓmax = 6

As done in Sec. 10.2.6, we report here the significance analysis performed
using the newly defined estimator of Eq. 356. Here, we can also show the
full-sky results given that we can plot both in the same figure. Starting from
SGWGW, we obtain Fig. 67, while for STGW we get Fig. 68.

Switching to the multi-field analysis, we obtain Fig. 69, Fig. 70 and Fig. 71

for STT,GWGW, STT,TGW, and STT,TGW,GWGW.

Figure 65: Optimal
angles for the com-
bination of TT and
TGW. The left and
right panels show
respectively optimal
angles analysis and
the results at the
optimal range. Here
we assume ℓmax =
6.
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Figure 66: Optimal
angles for the
combination of TT,
TGW, and GWGW.
The left and right
panels show re-
spectively optimal
angles analysis
and the results at
the optimal range.
Here we assume
ℓmax = 6.

Figure 67: Values of
SGWGW and their
corresponding sig-
nificance in terms of
σ w. r. t. the uncon-
strained realizations
(ℓmax = 6). The ver-
tical lines indicate
the significance of
SMICA alone.

Figure 68: Values
of STGW and their
corresponding sig-
nificance in terms of
σ w. r. t. the uncon-
strained realizations
(ℓmax = 6). The ver-
tical lines indicate
the significance of
SMICA alone.

Figure 69: Values
of STT,GWGW and
their corresponding
significance in
terms of σ w. r. t. the
unconstrained real-
izations (ℓmax = 6).
The vertical lines
indicate the signif-
icance of SMICA
alone.
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Figure 70: Values of
STT,TGW and their
corresponding sig-
nificance in terms of
σ w. r. t. the uncon-
strained realizations
(ℓmax = 6). The ver-
tical lines indicate
the significance of
SMICA alone.

Figure 71: Values of
STT,TGW,GWGW and
their corresponding
significance in
terms of σ w. r. t. the
unconstrained real-
izations (ℓmax = 6).
The vertical lines
indicate the signif-
icance of SMICA
alone.

b.4.3 Optimal angles with ℓmax = 10

We repeated the same thing for ℓmax = 10. Firstly, for SGWGW
θmin,θmax

we obtain

Fig. 72 and Fig. 73 for STGW
θmin,θmax

.

Instead, Fig. 74, Fig. 75 and Fig. 76 show the same respectively for STT,GWGW
θmin,θmax

,

STT,TGW
θmin,θmax

and STT,TGW,GWGW
θmin,θmax

. Once again, there seems to be relatively high-
PD region where the original S1/2 estimator is defined.

b.4.4 Significance with ℓmax = 10

As regards the significance, starting from SGWGW, we obtain Fig. 77, while
for STGW we get Fig. 78.

Switching to the multi-field analysis, we obtain Fig. 79, Fig. 80 and Fig. 81

for STT,GWGW, STT,TGW, and STT,TGW,GWGW.

Figure 72: Optimal
angles for GWGW.
The left and right
panels show respec-
tively optimal an-
gles analysis and the
results at the opti-
mal range. Here we
assume ℓmax = 10.
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Figure 73: Optimal
angles for TGW. The
left and right panels
show respectively
optimal angles anal-
ysis and the results
at the optimal range.
Here we assume
ℓmax = 10.

Figure 74: Optimal
angles for the
combination of TT
and GWGW. The
left and right panels
show respectively
optimal angles anal-
ysis and the results
at the optimal range.
Here we assume
ℓmax = 10.

Figure 75: Optimal
angles for the com-
bination of TT and
TGW. The left and
right panels show
respectively optimal
angles analysis and
the results at the
optimal range. Here
we assume ℓmax =
10.

Figure 76: Optimal
angles for the
combination of TT,
TGW, and GWGW.
The left and right
panels show re-
spectively optimal
angles analysis
and the results at
the optimal range.
Here we assume
ℓmax = 10.
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Figure 77: Values of
SGWGW and their
corresponding sig-
nificance in terms of
σ w. r. t. the uncon-
strained realizations
(ℓmax = 10). The ver-
tical lines indicate
the significance of
SMICA alone.

Figure 78: Values
of STGW and their
corresponding sig-
nificance in terms of
σ w. r. t. the uncon-
strained realizations
(ℓmax = 10). The ver-
tical lines indicate
the significance of
SMICA alone.

Figure 79: Values
of STT,GWGW and
their corresponding
significance in
terms of σ w. r. t. the
unconstrained real-
izations (ℓmax = 10).
The vertical lines
indicate the signif-
icance of SMICA
alone.

Figure 80: Values of
STT,TGW and their
corresponding sig-
nificance in terms of
σ w. r. t. the uncon-
strained realizations
(ℓmax = 10). The ver-
tical lines indicate
the significance of
SMICA alone.
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Figure 81: Values of
STT,TGW,GWGW and
their corresponding
significance in
terms of σ w. r. t. the
unconstrained real-
izations (ℓmax = 10).
The vertical lines
indicate the signif-
icance of SMICA
alone.
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c.1 constraints on the Λcdm parameters

Fig. 82 (see also Tab. 14 for mean values and standard deviations) shows
the posterior distribution for the 6 ΛCDM parameters for the most constrain-
ing combination for the tensor sector, i. e. PL21+BK18+LV21, compared to
PL18+BK15, PL18+BK18, and PL21+BK18. The results shown here refer
to our baseline approach to the tensor sector, i. e. SSA (see the beginning of
Sec. 13.4 for a summary of the assumptions used). Looking at the first two

Parameter PL18+BK15 PL18+BK18 PL21+BK18 PL21+BK18+LV21

log
(
1010As

)
3.046± 0.014 3.044± 0.014 3.053± 0.012 3.053± 0.012

ns 0.9654± 0.0040 0.9652± 0.0042 0.9676± 0.0039 0.9676± 0.0039
Ωbh2 0.02239± 0.00015 0.02238± 0.00014 0.02241± 0.00014 0.02241± 0.00014
Ωcdmh2 0.1200± 0.0012 0.1200± 0.0012 0.1194± 0.0011 0.1194± 0.0011
τreio 0.0549± 0.0073 0.0542± 0.0074 0.0603± 0.0061 0.0602± 0.0061
H0 67.38± 0.53 67.37± 0.53 67.62± 0.51 67.61± 0.52

Table 14: Mean and standard deviation of the 6 ΛCDM parameters using a selection of the analyzed dataset.

columns, we know that the constraints on the 6 ΛCDM parameter are essen-
tially driven by PL18. Thus, we can compare our results with Planck 2018

ones [190], which are extremely compatible with ours (almost identical).
Instead, it is less trivial to compare the other two columns with the litera-

ture, given that, to our knowledge, our combination of datasets PL21 has not
been explored. Despite this, we know that the main differences are caused

Figure 82: Posterior
distribution for
log
(
1010 As

)
, ns,

Ωbh2, Ωcdmh2, τreio
and H0.

217
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by the fact that LoLLiPoP provides a better characterization of the low-ℓ part
of the polarization, while HiLLiPoP gives almost identical results w. r. t. PR3

[114]. Then, we can, for example, compare Tab. 14 with [266]. They report
the best-fit values on the ΛCDM parameters (together with all the others) ob-
tained using HiLLiPoP + lowlTT + LoLLiPoP + BK18 + BAO ([279]) + lensing.
These values are almost identical to the mean values we obtain from the
MCMC; thus, the two are extremely compatible given our error bars. Since
the difference w. r. t. Planck 2018 reported in [266] is due to LoLLiPoP, we can
confirm the same shifts; however, note that the results of [266] are obtained
through a PL.

The general behavior of our results can also be found in [114]. In particular,
it seems that the major effect of PR4 is to push for slightly higher values of{

log
(
1010As

)
, ns, τreio

}
w. r. t. Planck 2018. However, notice that they do

not exploit the high-ℓ part of polarization and lensing; therefore, one has to
be careful in comparing [114] with this work.

In conclusion, Adam et al. [301] constrains the reionization history using
plikTT + lowlTT + LoLLiPoP + lensing, finding τreio = 0.058+0.011

−0.012. This com-
bination is very similar to the one used here (PL21+BK18), the difference is
the high-ℓ part of polarization and BK18, and the result is compatible with
ours. This confirms the shift we find in this parameter, which probably is
also driving the increase in log

(
1010As

)
through their degeneracy. Also,

ns and H0 are positively correlated with τreio (although not as strongly as
log
(
1010As

)
), thus also their slight shift may be explained by the pull on

the optical depth (at least partially). The opposite seems to happen to Ωch2,
which is anti-correlated with τreio.

c.2 coordinate transformation

In Sec. 13.1, we perform a test to assess the prior information injected by the
coordinate transformation (r1 − r2) → (r0.01 − nt) characterizing the TSA.
To do so, we performed an MCMC analysis on priors alone, finding that the
TSA has a strong pull toward scale invariance (nt = 0) and tends to exclude
r0.01 = 0.

Now, given the nature of the MCMC analysis, one may ask himself if the
results shown are flawed by the fact that the sampling is finite. Indeed, at
some point, the MCMC converges and stops exploring the parameter space.
To answer the question, we take here a more direct approach to the problem,
which does not imply any sampling effect. Indeed, we can find the proba-
bility according to the TSA of a point in the r0.01 − nt plane given the prior
probability distribution of the TSA on the r1− r2 plane (Tab. 5) and recalling
Eq. 399. It reads

PTSA(r0.01, nt) = P(r1, r2)

∣∣∣∣
r1/2=r1/2(r0.01,nt)

∣∣∣∣ d(r1, r2)

d(r0.01, nt)

∣∣∣∣ . (421)
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Figure 83: 1D and
2D histograms
on the (r0.01, nt)
plane, obtained
from a uniform
grid of points in the
(r1 − r2) plane. The
left panel shows
the simple result
of the coordinate
transformation,
while the right
one is the Jacobian
reweighting.

Here, P(r1, r2) acts as a “selection function”: for each r0.01 and nt, it gives a
constant factor if the corresponding r1 and r2 are within their prior ranges,
zero otherwise. The second term is the inverse Jacobian of the coordinate
transformation. As mentioned in Sec. 13.1.3, because of its nature an MCMC

cannot explore regions of very low probability, since it is a finite sampling.
So, plotting PTSA we can have a look at the distribution to which the MCMC

tends while the steps go to infinity. The left panel of Fig. 83 shows this, while
we color in gray the points where the probability is identically null. As you
can see, the region at low r0.01 and high nt has a negligible probability, which
however is not zero. Instead, the gray region corresponds to the r0.01 − nt
points bringing to r1 − r2 points outside their prior.

We can now reweigh the obtained distribution. The weights are given by
the ratio

PSSA(r0.01, nt)

PTSA(r0.01, nt)
=
U (r0.01)U (nt)

PTSA(r0.01, nt)
, (422)

where U (r0.01),U (nt) are the uniform distributions reported in Tab. 5. Thus,
it is clear that the re-weighted probability goes back to a constant. Despite
this, note that reweighting cannot recover completely the SSA prior, since a
large portion of the SSA prior is excluded because it brings you outside of
the r1− r2 priors (the gray region). For this reason, the bias carried by using
the TSA can only be alleviated, but not solved, even when considering the
theoretical probability distribution.

Compared with Sec. 13.1.3, even if the 2D histograms seem quite different
from the distributions shown in Fig. 35 and Fig. 36, we remind the reader
that the contour plots are obtained by using a Gaussian kernel. If we apply
a kernel to the histograms shown in Fig. 83 we obtain very similar contours.

On the other hand, note that the marginalized 1D histograms are very
similar to those shown in Fig. 35 and Fig. 36. The 95% CL intervals for the
left panel are 0.15 < r0.01 < 2.68 and −1.33 < nt < 1.27 which are
consistent with those of Sec. 13.1. For what regards the right panel, we get
r0.01 < 2.11 and −1.61 < nt < 3.90 at 95% CL. Thus, as in Sec. 13.1, the 2σ
detection of r0.01 is no longer there, while the pull toward scale invariance is
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Figure 84: 1D and
2D histograms on
the (r0.01, nt) plane,
obtained from a
uniform grid of
point in the (r1 − r2)
plane when chang-
ing the leverage
arm. The green
one is obtained
with (k1, k2) =
(0.005, 0.02) Mpc−1

and the purple
on with (k1, k2) =
(0.002, 0.05) Mpc−1,
mimicking Sec. 13.1.

just alleviated. Note that the upper bound on nt is the most affected by the
finite sampling, as expected. Thus, if one wants to use the TSA to study some
datasets and use reweighting to alleviate the bias, some extra attention must
be given to the length of the sampling. The larger the better to represent the
low-probability regions. Still randomly exploring these regions may be un-
feasible. In general, the same could be said for any MCMC analysis, however,
we find the TSA to be particularly sensitive to this.

With the same method, we can also show what happens when we change
the lever arm k2 − k1. As expected, the results shown in Fig. 84 are similar
to those in Sec. 13.1.

In conclusion, this alternative way of exploring the prior information brought
by the TSA leaves our conclusions of Sec. 13.1.3 unchanged.

c.3 results using the tsa

As mentioned at the end of Sec. 13.1.4, despite the choice we made to report
our main results, we also performed the analysis using TSA. This allows
us to appreciate the differences in the final posteriors due to the aspects
underlined in Sec. 13.1. Sticking to [54] we choose (k1, k2) = (0.002, 0.02)
Mpc−1 and the priors shown in Tab. 5.

Tab. 15 reports the one-dimensional 95% CL for each combination ana-
lyzed, together with the best fit, mean values, and the convergence param-
eters (see Tab. 9 for the SSA results). In particular, we can notice that the
most constraining is again PL21+BK18+LV21 (see Sec. 13.2 for more details
on the likelihoods we include in the analysis), which results in 0.001 <
r0.01 < 0.033 and −1.30 < nt < 0.37 at 95% CL. For this case, we show
the 2D contours in Fig. 85, compared to some other relevant cases: PL18+
BK15 (representing the state of the art) and PL21+BK18 (to underline the
improvement carried out by small-scale measurement).

Both Tab. 15 and Fig. 85 show that the TSA mimics a 2σ-detection on every
dataset we considered, while generally shrinking the bounds obtained on
the tilt (see Sec. 13.1).
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r0.01 95% CL nt 95% CL R− 1 test

PL18+BK15 [0.004, 0.079] [-0.62, 2.63] 0.008

PL18+BK18 [0.003, 0.039] [-1.07, 2.10] 0.016

PL18+BK15+LV18 [0.001, 0.070] [-0.77, 0.42] 0.010

PL18+BK15+LV21 [0.001, 0.070] [-0.79, 0.39] 0.013

PL18+BK18+LV21 [0.001, 0.035] [-1.09, 0.39] 0.019

PL21+BK15 [0.002, 0.064] [-1.06, 2.68] 0.027

PL21+BK18 [0.001, 0.035] [-1.43, 1.74] 0.035

PL21+BK18+LV21 [0.001, 0.033] [-1.30, 0.37] 0.005

Table 15: 95% CL intervals of the 8 considered combinations of datasets. These have
been obtained through the TSA. Here we also show the results of the Gelman-Rubin
test for each combination.

Figure 85: 2D 68 and
95% CL intervals
in the (r0.01, nt)
plane (left) and the
(r1, r2) plane (right)
for PL18+BK15,
PL21+BK18 and
PL21+BK18+LV21

using the TSA. The
dashed black line
is the well-known
slow-roll single-
field prediction
nt = −r/8 = −2ϵ.

With Fig. 86, one can compare the results on the 95% CL intervals for r0.01
and nt from SSA and TSA visually, mimicking Fig. 46.

On a more technical note, the 95% CL intervals shown in Tab. 15 are ob-
tained using GetDist, which will try to find the values of r0.01 or nt between
which the integral of the posterior gives 95% of the total. It will attempt to
do so in a two-tail fashion; if it fails, meaning that the upper or lower bound
does not exist, it will shift to a single-tail. Thus, in the case of TSA, GetDist is
capable of recovering a two-tailed bound consistently with every dataset. To
avoid this, we would have to worsen the 1D and 2D smoothing scale param-
eters of GetDist, together with the approximation used by the package to ac-
count for the prior bounds (the keywords are “boundary_correction_order”

Figure 86: 95% CL
intervals for r0.01
and nt, considering
different datasets,
given in Tab. 8.
Here we compare
SSA and TSA. Our
main result is
PL21+BK18+LV21.
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Figure 87: 1D and
2D posteriors on
the r0.01 and nt, ob-
tained using the SSA
and the TSA on the
PL21+BK18+LV21

dataset. The dashed
lines represent
the single-field
slow-roll prediction
for nt = −2ϵ. and “mult_bias_correction_order”, which are left by default to first-order

correction 11).
Furthermore, we can compare the first row of Tab. 9 with the results of

Planck 2018 [54], mentioned in Sec. 13.3. Planck reports r0.01 < 0.076 and
−0.55 < nt < 2.54 at 95% CL, whereas we obtain a 2σ detection on r0.01
and slightly wider bounds on nt. As mentioned above, if we set the 1D and
2D smoothing scale parameters to 0.35 and 0.40 (these are units of the width
of the GetDist bins), respectively, and the approximations to account for the
prior bounds to their minimum, we recover the exactly the bound on the
amplitude r0.01 < 0.076, while we obtain a larger bound on the tilt, that
is −0.79 < nt < 2.68. This residual difference in the tilt may be due to a
different level of convergence between the two analyses. Note that we run
our MCMC very deep into convergence to ensure a careful exploration of the
tails of the distributions.

In Fig. 87 we also show the comparison between the posterior distributions
obtained using the SSA and the TSA on the PL21+BK18+LV21 dataset.

11 For more details on these parameters, see https://getdist.readthedocs.io/en/latest/
index.html .

https://getdist.readthedocs.io/en/latest/index.html
https://getdist.readthedocs.io/en/latest/index.html
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d.1 tests on the accuracy

In Chap. 14 we mention that to perform a precise PL, it is crucial to efficiently
minimize the likelihood, reaching in each point of the profiled parameter the
absolute minimum of the conditional likelihood (and not a local one). Thus,
to verify the precision of our minimizing procedure, we performed different
tests. For instance, we fix the tensor-to-scalar ratio to r = 0.02 and minimize
the likelihood eight times, storing the result of each. We repeat this while
changing the accuracy parameters of CAMB and of MINUIT. The dispersion of
the results is an indication of the precision of the minimization performed
by MINUIT, since it gauges the reliability of recovering the absolute minimum.
In addition, the value at which these points tend depends to some degree
on the accuracy of the Boltzmann solver [298].

In particular, the parameters we considered for these tests are

• stra of MINUIT, which allows to change the “strategy” of the minimiza-
tion from fast (stra = 0), balanced (stra = 1) and accurate (stra = 2).
The default value is stra = 1.

• AccuracyBoost of CAMB, which controls several other accuracy parame-
ters of the Boltzmann solver. The default value is 1.

• lAccuracyBoost of CAMB, which is related to the resolution in ℓ space
of the Boltzmann solver. The default value is 1.

Fig. 88 shows the different sets of minima we obtain, where we define

standard accuracy → Default settings;

high accuracy iminuit → stra = 2;

high accuracy camb → AccuracyBoost = 2 and lAccuracyBoost = 2;

Figure 88: Different
set of minima ob-
tained with different
settings for the ac-
curacy of CAMB and
MINUIT.
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Parameter Prior Parameter Prior

log(1010As) [1.61, 3.91] τreio [0.01, 0.8]
ns [0.8, 1.2] θMC [0.5, 10]
Ωbh2 [0.005, 0.1] r0.01 [10−5, 3]
Ωcdmh2 [0.001, 0.99] nt [− 5, 5]

Table 16: Priors on the parameters of ΛCDM + r0.01 + nt. Here, As is the scalar
perturbations amplitude, ns the scalar spectral tilt, Ωb and Ωcdm are the abundances
of baryons and CDM, h ≡ H0/100 is the Hubble constant divided by 100, τreio the
optical depth and θMC is an approximate quantity representing the sound horizon.

all high accuracy → stra= 2, AccuracyBoost= 2 and lAccuracyBoost

= 2;

super high accuracy camb → AccuracyBoost= 3 and lAccuracyBoost

= 3;

super high camb + high iminuit → stra = 2, AccuracyBoost = 3
and lAccuracyBoost = 3.

It is clear that these settings have an effect on the values that we obtain for
the minimum. Fig. 88 shows that when we increase the accuracy of MINUIT
the dispersion of the points gets severally reduced. Instead, the absolute
minimum we obtain here is given by increasing the accuracy of CAMB to high,
since going to super high actually increases the values of χ2. Despite this,
all of these non-default settings increase significantly the computation time
necessary to minimize the likelihood, so is it worth?

First, note that even with high CAMB accuracy, the typical χ2 decreases of
∼ 0.125. Still, if this difference is just a constant offset between the two
configurations, it will essentially disappear when we normalize the likeli-
hood values on the absolute minimum (see Chap. 12 for the definition of PL).
Furthermore, note that although increasing the accuracy of MINUIT leads
all points to converge to the absolute minimum, it is not worth it in terms
of computation time. In fact, usually more than half of the points with the
default MINUIT converge to the same point, so statistically we always get at
least one point there.

Despite these considerations, we also build a parabolic fit for each accu-
racy configuration (with O(10) points) to verify that we can stick to the
default settings. We find no significant differences in the final PL.

d.2 constraints on the Λcdm parameters

As mentioned in Sec. 10.2, the focus of this work is the tensor sector of
parameter space, which consists of r0.01 and nt. Despite this, to correctly
capture the variability in these parameters, it is also important to sample all
the other ΛCDM and nuisance parameters. First, we define a set of priors in
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Figure 89: ΛCDM
contours for the
explored combina-
tions of parameters
(see Sec. 14.1).

Tab. 16, encoding our knowledge about the physical parameters. For what
regards the nuisance parameters of the various likelihoods, we stick to the
default settings.

In addition, we fix the number of relativistic degrees of freedom to Neff =
3.046, asking for a massive neutrino with Mν = 0.06 eV.

In Sec. 14.3, the results on the tensor sectors are discussed, while here we
show those on the ΛCDM parameters. In fact, Fig. 89 shows the triangle plot
of what we may call the “scalar” sector of parameters. Note that here we
substitute θMC with H0 as it is a more physical parameter controlling the
sound horizon. Here, we consider CamSpec with and without LVK21, and
HiLLiPoP, showing that they are all compatible with each other.

To be more quantitative, we also report in Tab. 17 the mean values and
standard deviations of these parameters.

As expected, removing LVK21 brings no difference on the ΛCDM parame-
ters. The only noticeable difference is found by looking at ns for CamSpec
and HiLLiPoP, which is estimated to be slightly higher (approximately 0.5σns

higher) by the latter. This feature is also remarked in [29]. For completeness,
we also mention that HiLLiPoP also estimates H0 to be higher of ∼ 0.2σH0 .

d.3 generalized feldman-cousins

In Chap. 12 we discussed the FC prescription to obtain confidence intervals
with the correct frequentist coverage probability in the presence of a phys-
ical boundary. The resulting procedure is known for Gaussian or Poisson
distributions. In Chap. 14 we mentioned that our PL seems to depart from a
Gaussian far from the minimum. Although this is expected, we ask ourselves
whether it is possible to generalize the FC prescription for a more complex
curve fitting our PL.

We consider two simple alternatives that have two characteristics: we re-
quire that one of the parameters of the function corresponds to the position
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Parameter CamSpec HiLLiPoP CamSpec without LVK21

log(1010As) 3.046± 0.012 3.044± 0.012 3.045± 0.012
ns 0.9653± 0.0039 0.9673± 0.0039 0.9653± 0.0038
Ωbh2 0.02220± 0.00013 0.02222± 0.00013 0.02220± 0.00013
Ωcdmh2 0.1194± 0.0010 0.1192± 0.0011 0.1194± 0.0010
τreio 0.0586± 0.0059 0.0594± 0.0060 0.0586± 0.0059
H0 67.37± 0.46 67.49± 0.50 67.40± 0.45
r0.01 < 0.028 < 0.029 < 0.029
nt −1.36 < nt < 0.42 −1.39 < nt < 0.41 −1.35 < nt < 3.36

Table 17: Summary of the constraints on the ΛCDM + r0.01 + nt model. For the
6 ΛCDM parameters we report the mean and the standard deviation; instead, we
report the 95% CL intervals for the tensor sector, as done in Sec. 14.3.

Figure 90: Fits of dif-
ferent curves on the
CamSpec PL.

of the maximum; in addition, we will consider only this parameter as free to
vary in the FC procedure. In other words, the curve we choose will shift to
the right or to the left with the maximum position while keeping its “shape”
unchanged.

In particular, we consider what we call double Gaussian, defined as

P(x|µ, ∆µ, σ1, σ2, A) ∝ exp
[
− (x− µ)2

2σ1

]
+ A exp

[
− (x− µ− ∆µ)2

2σ2

]
,

(423)

and piecewise Gaussian, which reads

P(x|µ, ∆µ, σ1, σ2, xsep) ∝

exp
[
− (x−µ)2

2σ1

]
for x ≤ xsep

exp
[
− (x−µ−∆µ)2

2σ2

]
for x > xsep

. (424)

Of course, these curves do not find any physical justification, but are born
from the pragmatic attempt to fit our PL with analytical formulas. Parameter
values are estimated by fitting Eq. 423 and Eq. 424 to our PL; the left panel
of Fig. 90 shows that these formulas allow us to recover quite well the shape
of the tail.
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In the case of HiLLiPoP, we also explore the scenario where we exclude
points for r0.01 > 0.022 and we fit the double Gaussian to recover the bump
shown in Fig. 49.

We perform the FC computation, as shown in Chap. 12, again asking
µbest = max(0, x) and keeping fixed the values of the parameters different
from µ. We find that the upper bounds given by the FC belts do not change
significantly, thus in the main body we just stick to the partial Gaussian to
characterize the various upper bounds.
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