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Abstract—In this paper, an innovative microwave imaging
approach that combines deep learning techniques and qualitative
inversion methods is presented. In particular, the proposed ap-
proach is meant for imaging piece-wise homogeneous targets and
aims at providing an augmented morphological reconstruction,
which not only retrieves the shape of the targets, but also the
spatial variations of the permittivity values. Such an information
is not displayed by qualitative inversion methods; however it
is efficiently encoded in the gradient of the unknown contrast.
In particular in this paper, a physics-assisted deep learning
technique, where domain knowledge is given in the inputs
of a U-Net architecture, is developed. The domain knowledge
is provided by the qualitative image of the unknown targets
obtained using the orthogonality sampling method, thus allowing
the architecture to provide, once trained, a fully automated and
real-time prediction. An initial assessment for the approach with
synthetic data is provided.

I. INTRODUCTION

Microwave imaging (MWI) technology enables accurate
inspections and explorations of unknown scenarios not directly
accessible. As such, it is relevant to several applications,
e.g., biomedical imaging, subsurface sensing, food security
monitoring or through-wall imaging. Many techniques have
been proposed in the literature to cope with the underlying
non-linear and ill-posed inverse scattering problem (ISP) [1].
Among them, qualitative imaging approaches, which aim at
recovering just morphological properties of unknown targets
from the knowledge of the field they scatter, are worth men-
tioning [2]. More recently, deep learning (DL) has attracted the
attention of many researchers who have explored its potential
in the solution of inverse scattering problems [3].

In a previous study [4], a combined framework using
qualitative imaging and deep learning (DL) was developed
to set an automatic framework for the reconstruction of the
shape of unknown targets from their scattered fields encoded
as binary images. The chosen qualitative imaging technique,
the orthogonality sampling method (OSM), was selected for
the advantage over other typical qualitative imaging techniques
for its computational efficiency and the fact that it provides a
user-independent regularized solution. The DL architecture of
choice was a fully convolutional network called U-Net. Among
the positive features of the architecture, its non-iterative nature
allowed it to work jointly with OSM. Also, the fact it performs

image-to-image processing makes it a remarkable option in
image enhancement frameworks.

In this paper, an improved framework combining OSM
and DL is developed to provide an augmented reconstruction
of the targets. The term augmented refers to the fact that
the resulting image not only predicts the morphology of
the targets, but also the relative changes in the permittivity
values. The rationale behind the proposed approach lies on
two circumstances. First, assuming piece-wise homogeneous
targets, the gradient of the contrast function efficiently encodes
both the information on the target’s shape and the different
permittivity values. Secondly, the OSM indicator function
is related to the radiating part of the contrast sources [5],
thus embeds both information on the shape and the (relative)
spatial variations of the permittivity. Accordingly, the proposed
architecture exploits the OSM as physics-assisted learning [3]
and assumes as ground truth the gradient of the unknown
contrast function.

In the following, the proposed automated quantitative inver-
sion framework is detailed and assessed in the canonical 2D
scalar problem (TM polarized fields) in free space.

II. FORMULATION OF THE PROBLEM

Let Ω denote the imaging domain which hosts the cross-
section Σ of a collection of lossless targets invariant along
one direction (say the z-axis). The targets are embedded in a
homogeneous and lossless medium of relative permittivity εb
and each target is characterized by a relative dielectric permit-
tivity ε(r), with r = (x, y). All materials are supposed to be
non-magnetic, i.e., the magnetic permeability is everywhere
that of vacuum, µ0.

The unknown targets are probed with TM-polarized incident
fields Einc, transmitted by a set of antennas located in rt ∈ Γ,
with Γ being a closed curve located in the far-zone of Ω.

The antennas radiate in the frequency band F =
[fmin, fmax]. For each transmitter, the interaction between the
incident field and the targets gives raise to the scattered field
Es. The superposition of these two fields is the total field
E = Einc +Es, which is measured by a set of receivers that,
without any loss of generality, is assumed to be located on Γ
as well, with the receiver position being rs.

For each frequency f ∈ F , the overall phenomenon is cast
through a Fredholm type integral equation as:
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Es(rs, rt) =

∫
Ω

G(rs, r
′)τ (r′)E (r′, rt) dr

′, (1)

where G(rs, r
′) is the Green’s function of the assumed homo-

geneous background medium and τ (r) = ε(r)/εb − 1 is the
contrast function encoding the properties of the targets.

The problem which is faced is the retrieval of the changes
in contrast ∇τ of targets, from measurements of the scattered
fields Es. However, directly tackling equation (1) implies
solving a non-linear and ill-posed problem.

III. OUTLINE OF THE PROPOSED APPROACH

A. Qualitative Inversion: Orthogonality Sampling Method

OSM is a qualitative method which exploits the measured
scattered field Es and the knowledge of the Green’s function
to form an image of the unknown target shape [5], [6].

The OSM indicator function is built exploiting the reduced
field Ered, which, for each scattered field, is computed as [5],
[6]:

Ered(rp, rt) =< Es(rs, rt), G(rs, rp) >Γ (2)

where <,> denotes the scalar product on Γ and rp a point of
an arbitrary grid sampling the imaging domain Ω. The OSM
indicator function is then obtained as:

I(rp) = ||Ered(rp, rt)||2Γ, (3)

with || || denoting the L2 norm. The indicator I provides an
estimation of the morphological properties of the unknown
target as it assumes large values where a target is located,
rp ∈ Σ, and low values elsewhere. Furthermore, the intensity
values of the indicator carry information on the electromag-
netic properties as well. As can be deduced from Equations
(2) and (3), the computation of I is quick, hence a real-time
framework using this technique is viable.

As shown in [5], the reduced field can be seen as an implicit
way to enforce the regularization of the underlying inverse
problem, as Ered is linked to the radiating component of
the currents induced in the targets by the incident fields. In
addition, since these induced currents depend on the spatial
distribution of the electromagnetic properties of the targets, the
reduced field also embeds information on the electromagnetic
properties of the targets besides the morphological ones.

B. Deep Learning

DL techniques are increasingly used to solve inverse scat-
tering problems [3], thus it is worth considering them as
an alternative approach to tackle the problem of estimating
∇τ of the targets, by automatically and quickly (real-time)
turning the smooth transition of the OSM indicator into sharp
boundaries, and visualizing the jumps in contrast present in
the imaging domain. In Fig. 1, a diagram of the proposed
approach is shown. One advantage of this implementation
scheme, mapping the scattered field Es to a final prediction
of the gradients magnitude ‖ ∇τ ‖ is that reconstructing the
gradient instead of the actual contrast τ benefits from the
predominantly sparse nature of the gradient which facilitates
the task of estimating its values since the majority of the pixels
will be put to 0.

From the perspective of DL, the solution of an inverse
problem is driven by data [3]. In particular, denoting with
Fθ the adopted DL architecture, the key step is the training
process in which, for a given set of N data pairs (xn, yn), in
which xn denotes the information the network has to be able to
retrieve after the training, and y

n
the corresponding available

knowledge that should lead to xn, the set of parameters
θ which characterizes the network are iteratively optimized
through (non-linear) regression.

Fig. 1. Physics-assisted deep learning method for fast automatic retrieval of contrast gradient. From the scattered field, OSM indicator maps are built and
fed into U-Net. The network automatically retrieves the predicted gradient for those inputs. When U-Net is on the training stage, the feedback loop is used
to optimize the inner parameters of the network by minimizing mean squared error between the ground truth and the prediction of the samples.
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As far as the architecture Fθ is concerned, since the problem
can be seen as a pixel-wise estimation of ‖ ∇τ ‖ (i.e.,
assigning a gradient value to each pixel), a Fully Convolutional
Network (FCN) can be exploited [7]. A peculiar implemen-
tation of FCNs, called U-Net [8], [9] is explored for our
problem. U-Net can be easily configured to generate a gradient
map, allowing the user to quantitatively asses the jumps in
contrast occurring in the imaging domain, as a consequence of
changes in the electromagnetic properties, hence shaping the
targets and identifying differences in contrast among them.

In regression problems, a convenient choice of loss function
to be minimized is the mean squared error [10]:

MSE = arg min
θ

1

NP

NP∑
i=1

(xi − x̂i)
2 (4)

where NP is the total number of pixels per image. Moreover,
to avoid introducing regularization terms in the cost function,
overfitting is dealt with via dropout [11], that is by randomly
deactivating connections in the inner structure of the network
during the training. Therefore the estimation of the output
becomes x̂n = Fθ,drop(yn).

IV. NUMERICAL ASSESSMENT

A. Training and Test Data Generation

In a similar way to what was done in [9], the training
of the network was carried out by simulating a number
of scattering experiments involving combinations of lossless

homogeneous circular cylinders. In particular, two cylinders
with variable size, location and permittivity were considered
for each simulation. More details of the setup conditions are
listed in Table I.

TABLE I
SIMULATIONS FOR TRAINING DATA GENERATION

Size of imaging domain 25× 25 cm2

Image size in pixel 64× 64

Pixel size 0.1526 cm2

Background medium Air

Number of illuminating antennas 8

Angular spacing between emitters 45o

Number of receiving antennas 241

Angular spacing between receivers 2/3o

Distance of the source from the center of Ω 167 cm

Distance of the receiver from the center of Ω 167 cm

Frequency band [2, 9] GHz

Frequency step 1 GHz

Number of frequencies 8

SNR 70 dB

Target radius range [1.2, 5] cm

Target relative permittivity range [1.3, 3.5]

For the training and the performance assessment, a total set
of 4000 scattering experiments was simulated. Among them,
90% were used as the training set and 10% as test set. 4
random samples of the test set are shown in Fig. 2. For each

Fig. 2. Imaging results of 4 test samples. One sample per row, with the 1st column depicting the contrast used to compute the forward solution. The following
4 columns represent the OSM indicators from measured scattered fields at 2, 4, 6 and 8 GHz (4 other indicators not shown). The 6th column shows the
prediction for the gradient of the contrast made by U-Net, while the last column shows the ground truth gradient.
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experiment, an input data-ground truth pair for the network
training was generated. The input is a stack of 8 images 64×
64 with the obtained OSM indicator maps at the 8 simulated
frequencies (Table I). The ground truth is made by 64 × 64
resulting from the calculation of the discrete gradient of the
known contrast spatial distribution.

The optimization of the objective function was carried out
for 200 epochs, using Adam optimizer with a learning rate
of 10−5 and a batch size of 32 [12], whereas the dropout
regularization parameter was set to 0.5 .

B. Results and Performance Evaluation

The trained network was assessed with test data. To assess
the performance, the mean squared error in equation (4) was
calculated and averaged across the 400 samples of the test set.
A MSE of 2.2% is reported. However, the unbalance between
zero-valued pixels versus the rest present in the images weights
down the error and therefore its interpretation should be done
cautiously. Such a low error could be interpreted as boundary
detection accuracy metric, as clearly proven in Fig. 2.

To provide a further assessment, the MSE was computed
and averaged only considering the pixels whose ground truths
had non-zero gradient values. Such a modified MSE resulted
in a 28.3% error which is representative of the error done
by the network when predicting the quantitative values of the
gradient.

V. CONCLUSION

In this work, an innovative MWI framework for quick and
automatic retrieval of the shapes and partial information on the
EM properties of targets from measured scattered fields has
been presented. To this end, the processing approach combines
qualitative imaging and deep learning.

In particular, assuming piece-wise homogeneous targets, the
developed architecture was trained to retrieve the gradient of
the unknown contrast function, as this embeds information
on both the shape and the permittivity changes of the target.
Aiming to reconstruct the gradient simplifies the optimization
process since the network learns to identify sparse solutions.
In doing so, the network takes advantage of the physics-
assisted learning supplied by the qualitative reconstruction of
the targets.

The performance of the processing architecture was tested
with simulated data and quantitatively assessed, showing
compelling capabilities for a real-time computing framework.
Further examples will be presented at the conference.
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