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Abstract: Skin cancer (SC) is one of the most common cancers in the world and is a leading cause of
death in humans. Melanoma (M) is the most aggressive form of skin cancer and has an increasing
incidence rate. Early and accurate diagnosis of M is critical to increase patient survival rates; however,
its clinical evaluation is limited by the long timelines, variety of interpretations, and difficulty in
distinguishing it from nevi (N) because of striking similarities. To overcome these problems and to
support dermatologists, several machine-learning (ML) and deep-learning (DL) approaches have
been developed. In the proposed work, melanoma detection, understood as an anomaly detection task
with respect to the normal condition consisting of nevi, is performed with the help of a convolutional
neural network (CNN) along with the handcrafted texture features of the dermoscopic images
as additional input in the training phase. The aim is to evaluate whether the preprocessing and
segmentation steps of dermoscopic images can be bypassed while maintaining high classification
performance. Network training is performed on the ISIC2018 and ISIC2019 datasets, from which only
melanomas and nevi are considered. The proposed network is compared with the most widely used
pre-trained networks in the field of dermatology and shows better results in terms of classification
and computational cost. It is also tested on the ISIC2016 dataset to provide a comparison with the
literature: it achieves high performance in terms of accuracy, sensitivity, and specificity.

Keywords: skin cancer; melanoma classification; artificial intelligence; deep learning; convolutional
neural networks; computer aided diagnosis; interpretability

1. Introduction

Skin cancer is one of the most common types of cancer in the global Caucasian
population [1]. It is one of the three most dangerous and fastest-growing types of cancer
and is therefore a serious public health problem [2]. Skin tumors can be benign [3] or
malignant; the main malignant cancers are basalioma, squamous cell carcinoma, and
malignant melanoma [4]. Of these, melanoma is the least common but at the same time
is the most aggressive, and it can lead to death if diagnosed late. Therefore, it is critical
to detect it early, which increases the chances of treatment and cure [5]. Its diagnosis
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follows some simple rules [6]: the ABCDE rule, which is based on morphological features
of the lesions such as asymmetry (A), border irregularity (B), color variety (C), diameter
(D), and evolution (E); the Seven Point Checklist, which is based on seven dermoscopic
features representative of melanoma; and the Menzies method, which scores based on
the presence/absence of certain positive or negative characteristics. The ABCDE rule
is the most widely used because of the winning combination of ease of application and
diagnostic efficacy. In fact, while nevi generally are symmetrical (round or oval), have
regular edges (smooth and uniform), show homogeneous color, small size (diameter less
than 6 mm), and do not evolve over time (control in follow-up), most melanomas have
an asymmetrical shape with irregular edges, the color is not uniform but can vary in
shades of brown (as the melanoma grows, it can also take on red, blue, or white colors),
they are larger than nevi, and their features change over time. In some cases, however,
melanomas and nevi show similar features to each other, and it is therefore difficult to
distinguish them by simple visual inspection. The identification of some characteristics,
such as symmetry, size, broths, and the presence and distribution of color features (but also
blue–white areas, atypical pigmented networks, and globules) is essential for the diagnosis
of skin lesions [7]; however, it is a complex and time-consuming procedure that shows a
strong dependence on the subjectivity and experience of the physician. These problems
necessitate the development of computer-aided diagnostic systems (CAD systems), which
generally involve several steps for the analysis and classification of dermoscopic images
of skin lesions [8]: preprocessing, segmentation, feature extraction, and classification
using ML and DL approaches. Preprocessing aims to attenuate artifacts in the images,
which are mainly due to the presence of hairs and marker marks on the lesions, while the
segmentation phase aims to isolate the lesion from the surrounding skin and thus extract
clinically relevant features. Several solutions have been proposed for these two phases
by researchers [9–14], many of which are laborious and require the training of additional
machine and deep learning models. The feature extraction step can be manual [15] or can
be automated using machine learning algorithms. Manual feature extraction in the case
of skin lesion classification is based on the methodologies devised by dermatologists for
skin cancer diagnosis and, in particular, the ABCDE rule of dermatology. Using machine
learning methods, learned features are derived automatically from the datasets and require
no prior knowledge of the problem. A variety of approaches are also possible for the
final stage of classification: from classical machine learning approaches to state-of-the-art
methodologies based on deep convolutional neural networks.

Melanoma detection can be understood as an anomaly detection problem in skin
lesions because melanomas represent anomalies (shape, size, color, etc.) in the nevi pop-
ulation. In this paper, we propose an anomaly detection method that involves only the
manual and automatic feature extraction and classification steps. Specifically, we develop a
custom CNN that, in addition to the dataset of melanoma and nevi images, is trained on
additional handcrafted texture features extracted from whole of dermoscopic images. This
avoids the segmentation step and could capture some aspects of pathology related to the
tissue surrounding the lesions. In addition, no preprocessing is performed on skin lesion
images, which reduces the working time. The main contributions of this paper are:

1. A custom convolutional neural network model with added handcrafted features is
proposed that classifies melanomas and nevi accurately without the need for image
preprocessing and segmentation.

2. On the same test dataset, the performance of the proposed model exceeds that of the
most widely used pre-trained models for skin lesion classification (ResNet50, VGG16,
DenseNet121, DenseNet169, DenseNet201, and MobileNet).

3. The execution time required by the proposed model to execute the output results is
much less than that required by the pre-trained models tested.

4. The proposed model achieves better accuracy on the ISIC 2016 dataset than other
existing deep learning models.

5. A brief interpretability analysis of the proposed model is performed.



Algorithms 2023, 16, 466 3 of 24

The paper is organized into the following sections. Related work in the areas of skin
lesion classification and anomaly detection is reported in Section 2. Section 3 discusses the
main challenges and opportunities of skin cancer detection. Section 4 presents the materials
used for the present work, namely public datasets of dermoscopic images. Section 5
shows the workflow of the proposed methodology, including the extraction of handcrafted
features from dermoscopic images and the construction and training of the CNN network
for the melanoma–nevi discrimination task. Section 6 provides details on the settings of
the experiments and the creation of the datasets used in training and testing the model. In
addition, some ablation experiments and the results obtained for classification are presented.
In Section 7, the results obtained by comparing our model with some transfer learning (TL)
approaches commonly used in the field of dermatology and with the literature on the ISIC
2016 dataset and DermIS database are discussed. In addition, a brief interpretability analysis
of the proposed model is made. In Section 8, the conclusions reached are summarized, and
some future arrangements are discussed.

2. Related Works

In the last decade, there has been much increased interest among researchers in
developing ML and DL solutions for the classification of skin lesions [16]. This is a nontrivial
task that from time to time brings up critical issues that to this day are still unresolved. The
basic idea is to be able to provide an accurate diagnostic support tool that is introduced
into clinical practice. To date, there are many comparative studies demonstrating that
such systems show comparable or even better accuracy than dermatologists [17], and one
of these (Moleanalyzer Pro) has been approved for the European market as a medical
device [18]. In general, automatic AI-based approaches applied to skin cancer diagnosis
can be grouped into two macro-areas [19], one of which involves manual extraction of skin
lesion features and subsequent classification by ML algorithms, while the other involves
automatic extraction of lesion features and their classification by DL approaches.

2.1. Skin Lesion Classification with Machine Learning Methods

Regarding traditional ML methods, the most widely used classification approach is the
Support Vector Machine (SVM). In [10], an automatic method was proposed for multiclass
classification of melanoma, dysplastic nevus, and basal cell carcinoma. The work pipeline
includes feature extraction of skin lesions (related to shape, edge irregularity, color, and
texture), selection of relevant features with a recursive method (RFE), and classification
by SVM with a radial kernel (RBF). In [20], lesion segmentation is performed in the gray
space, and texture and color features are extracted in the RGB color space. Only the most
significant features are selected from the extracted features, which are then classified by a
linear SVM model for the melanoma/non-melanoma task. In [21], the authors propose an
original and innovative system for automatic melanoma detection (ASMD) that includes:
image preprocessing, two-dimensional empirical mode decomposition (BEMD), texture
enhancement, manual extraction of entropy and energy features, and binary classification
(benign vs. malignant lesion). This last step is operated using an SVM model with an RBF
function. All these approaches rely heavily on the preprocessing and segmentation steps of
dermatologic images, but they also rely on feature extraction; these are interchanged and
combined to find the best classification result. ML algorithms are standard and are already
implemented, so not much work can be done on this.

2.2. Skin Lesion Classification with Deep Learning Methods

Regarding DL approaches, the use of pre-trained networks is going mainstream for
skin lesion classification. The authors of [22] use transfer learning on InceptionV3, ResNet50,
and Denset201 to perform multiclass classification of skin lesions. They remove the output
layer from these architectures and add pooling and fully connected layers. In [23], new
adversarial example images are created using the fast gradient sign method (FGSM), and
some pre-trained networks (VGG16, VGG19, DenseNet101, and ResNet101) are trained
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and tested with them. Adversarial training allows maximizing the loss for the input image.
In some papers, different architectures are used in several different situations. In [24], three
pre-trained networks (EfficientNet, SENet, and ResNet) are evaluated in different training
scenarios: for the first, segmented images are used; for the second, pre-trained images are
used; and for the third the first two solutions are combined. In [25], a pre-trained ResNet52
network is used for skin lesion classification in different training situations: without data
augmentation (DA); with DA only for the positive class; with DA for the positive class
and downsampling (DS) of the negative class; and with DA only for the positive class but
adding other images taken from different datasets. The best solution is one in which data
are augmented only on lesions belonging to the positive class. The use of custom CNNs is
minor but has still been taken into account [26–28].

There is also a hybrid approach that involves both automatic feature extraction using
CNNs and manual feature extraction to obtain vectors for inclusion in the network upstream
of its decision-making process [29,30]. This approach is still little used in general and even
more so in the field of dermatology, but it allows for providing additional important
information to the network in order to improve its classification accuracy.

As previously introduced, melanoma detection can be understood as an anomaly
detection problem in skin lesions. In anomaly detection, the concept of “abnormality”
is contrasted with “normality”, which must be clearly and concretely defined. For the
melanoma detection task, normality is represented by the nevi population, while abnormal-
ities are melanomas. This scenario includes several semi-supervised papers in which DL
models are trained with only normal data, and anomalies are identified as those data that
deviate from the training ones [31–33]. In the present work, a supervised anomaly detection
approach is proposed in which both normal and anomalous data participate in training
the neural network. In addition, the proposed work is in the context of hybrid feature
extraction approaches; in fact, important texture features are extracted from dermoscopic
images and are injected into the CNN upstream of the classification layer. These features are
mixed with those previously extracted from the network, bringing additional information
to support correct prediction.

3. Challenges and Opportunities of Skin Cancer Detection

There are several difficulties and challenges in the automatic classification of der-
moscopic images by ML and DL methods; these difficulties are still being studied today,
and researchers try as much as possible to mitigate them. Some of these are more easily
solved than others. For example, real-world clinical validation of the algorithms proposed
in the literature is currently lacking [34]. Hence, although many studies show that the
performance of DL algorithms equals or even exceeds that of experienced dermatologists in
detecting and diagnosing skin lesions [35,36], the performance of these algorithms should
also be evaluated on images outside their area of expertise [37] and particularly in a clinical
setting (possibly after the clinical diagnosis has been made to avoid bias). In addition, it is
unclear how CNNs fare with respect to dermatologists performing visual assessments in
the field [38], as all studies comparing man vs. machine performance test dermatologists on
their ability to evaluate images and without providing the full picture of metadata normally
available in clinical settings. Among the most important and most difficult critical issues
to address are those involving the intrinsic characteristics of skin lesions, those related to
image quality, and those arising from the way dermatologic datasets are collected.

3.1. Intrinsic Criticalities

Skin lesions have inherent critical issues [39], including: low contrast with the sur-
rounding skin; high variability in shape, size, and location; similarity between healthy and
cancerous conditions; and different characteristics according to the patients’ skin conditions.
Skin color is a crucial aspect to be addressed [40], although it is still little addressed. In
fact, dermoscopic datasets, whether privately collected or publicly available, contain only
images of light-skinned people from Europe or East Asia. If trained only on these data,
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machine learning models cannot provide accurate diagnosis for dark-skinned patients.
Therefore, there is a need to expand existing datasets to fill this gap and to avoid incor-
porating racial disparity, which, unfortunately, exists in dermatology [41], into automatic
diagnosis algorithms.

3.2. Image Quality

As previously introduced, other difficulties are related to the quality of the images [42].
Indeed, different acquisition tools and techniques can produce outputs that are very similar
from a human perspective but very different for a machine. Poor-quality images are often
excluded from studies, but this would lead to unpredictable outputs if the automated model
were applied in clinical practice. In addition, the presence of ink marks, rulers, colored
discs and hairs tend to deteriorate classification performance. However, including these
images in model training could make the model more robust. Model robustness is critical
in real-world applications, and it takes on greater importance in medical applications.

3.3. Construction of Datasets

Another important aspect to consider is that for algorithm training, the images used
are labeled (diagnosed) by dermatologists; thus, there is a high risk that the networks learn
the decision-making process of dermatologists, including all possible biases. Therefore, it
would be good to use only biopsy-verified images.

Admitting that we have largely overcome the above challenges, in order to proceed
with the acceptance of AI models in dermatological clinical practice, one must be able
to understand and explain their decision-making processes. To do so, one must conduct
interpretability and explicability analyses of the models in order to interpret and explain
their rationale for making a certain decision. This would bridge the distrust—related to
not fully understanding—that many physicians place in new and emerging technologies
and facilitate their introduction into clinical practice. In addition, it would be good to
introduce training courses in the practices of dermatologists since most of them admit that
they are not familiar with the subject of AI [43]. The effort produced in addressing the
many challenges associated with automated skin cancer detection is certainly repaid by the
opportunities that result. In addition to those already mentioned, they include: the ability
to avoid unnecessary biopsies or missed melanomas, to make skin diagnoses without the
need for physical contact with the patient’s skin, and to reduce the cost of diagnosis and
treatment of non-melanoma skin cancer, which turns out to be considerable [44].

4. Materials

The dermoscopic images considered in this paper belong to the International Skin
Imaging Collaboration (ISIC) archive [45]. That archive combines several skin lesion
datasets and was originally released in 2016 for the challenge called the International
Symposium on Biomedical Imaging (ISBI). Specifically, the datasets used for the training
phase are the ISBI challenge 2018 and ISBI challenge 2019 datasets, while the dataset that
was intended for testing in the ISBI 2018 competition is used for testing. In addition, the
ISBI challenge 2016 dataset is used for comparison with the literature. The details of these
datasets are given in Table 1.

Table 1. Summary of the datasets used. The skin lesion classes are: nevi (N)/atypical nevi (AN),
malignant melanoma (M), seborrheic keratosis (SK), basal cell carcinoma (BCC), dermatofibroma
(DF), actinic keratosis (AK), vascular lesion (VL), and squamous cell carcinoma (SCC).

Dataset N/AN M SK BCC DF AK VL SCC Total

ISIC 2016 [46] 726 173 – – – – – – 899
ISIC 2018 [47] 6705 1113 1099 514 115 327 142 – 10,015
ISIC 2019 [48] 12,875 4522 2624 3323 239 867 253 628 25,331
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For the present study, only N and M image classes are considered to perform the task
of discriminating between normal (nevi) and abnormal (melanoma) data. To do so, we
simply access the ground truth files in the CSV format provided with the images and select
the names of the images for which the diagnosis of melanoma or nevus is expressed with a
score of 1 in the associated “MEL” or “NV” boxes, respectively.

5. Methods

The objective of the present work is to try to understand whether by using original
(unprocessed) dermoscopic images and additional texture information from whole (unseg-
mented) images a convolutional neural network can effectively distinguish between nevi
and melanomas, which show similar features and are therefore difficult to diagnose. In
this section, we present the workflow of the proposed methodology, which is illustrated in
Figure 1. Dermoscopic images are given as input to a very simple custom CNN, into the
flattened layer of which, during the training phase, previously extracted handcraft features
are injected.

Figure 1. Block diagram of proposed method.

5.1. Hadcrafted Feature Extraction

Manual extraction of skin lesion features takes its cue from the ABCDE rule used by
dermatologists in clinical practice. The main operations used for the extraction of skin
lesion features are: calculation of area, perimeter, major and minor axis length, eccentric-
ity, wavelet invariant moments, and symmetry maps for shape features; calculation of
mean, standard deviation, variance, skewness, maximum, minimum, entropy, 1D or 3D
color histograms, and autocorrelogram for color features; and calculation of gray-level
co-occurrence matrix (GCLM), gray-level length matrix (GLRLM), local binary patterns
(LBP), and wavelet and Fourier transforms for texture features. Typically, features extracted
from images—after undergoing a selection procedure—constitute the new dataset to be clas-
sified. The most commonly used classifiers in dermatology are SVM, K-Nearest Neighbors
(KNN), Linear Discriminant Analysis (LDA), and Multilayer Perceptron (MLP) [49–51]. The
injection of manually extracted features within a neural network, which already extracts
features from images, is still a new and untried approach.

In the present work, the handcrafted features considered are only texture features since
to extract shape features it is necessary to segment the lesion (an operation deliberately
not performed in this work) and, from our practical experience, the color features are
already largely captured by the developed CNN. This last statement comes from the
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results obtained by performing, upstream of neural network training, a color normalization
operation on dermoscopic images. The classification performance of melanomas obtained
in this situation is poor in general and comparable to that achieved by not performing any
preprocessing of the images (see section 6). In the context of automatic skin lesion diagnosis
using ML and DL algorithms, the most widely used texture features are GLCM and LBP;
these features are briefly described below.

GLCM: Gray-level co-occurrence matrices are one of the earliest techniques used for image
texture analysis and were proposed by Haralick et al. in 1973 [52]. A co-occurrence matrix,
also known as a co-occurrence distribution or gray-level spatial dependence matrix, is a
statistical method of image texture analysis that considers the spatial relationship of pixels.
It is defined on an image as the distribution of co-occurring values at a given offset and
represents the distance and angular spatial relationship over a subregion of the image of
specific dimensions. A GLCM is created from a grayscale image and characterizes the
texture of an image by calculating the frequency with which pairs of adjacent pixels occur
with specific intensity values i and j, and in a specified spatial relationship. The spatial
directions, i.e., the directions of analysis, are: horizontal (0°), vertical (90°), and diagonal
(−45° and −135°). Given an image I, a random spatial position (h,k), and the offset (∆x,∆y),
the co-occurrence matrix is expressed as:

Gi,j = ∑
h,k

{
1, I(h, k) = i, I(h + ∆x, k + ∆y) = j
0, otherwise

(1)

After creating GLCMs, it is possible to derive several statistics from them that provide
information about the structure of an image (not the shape, so not the spatial relationships
of pixels in an image). These properties [53], shown in Table 2, can be computed over the
entire matrix or by considering a window that is moved along the matrix.

Table 2. Properties of GLCM.

Statistic Equations

Correlation ∑
i,j

Gi,j

[
(i− µi)(j− µj)

σiσj

]
(2)

Homogeneity ∑
i,j

Gi,j

1 + (i− j)2 (3)

Energy
√

∑
i,j
|Gi,j|2 (4)

Contrast ∑
i,j

Gi,j(i, j)2 (5)

Dissimilarity ∑
i,j

Gi,j|i, j| (6)
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Table 2. Cont.

Statistic Equations

Entropy ∑
i,j

Gi,j(−lnGi,j) (7)

ASM ∑
i,j

G2
i,j (8)

The variables µ and σ are the mean and variance, respectively:

µi = ∑
i,j

i(Gi,j) , µj = ∑
i,j

j(Gi,j) (9)

σi = ∑
i,j

Gi,j(i− µi)
2 , σj = ∑

i,j
Gi,j(j− µj)

2 (10)

LBP: The local binary pattern, a special case of the Texture Spectrum model and first
described in 1994, is a simple but very efficient texture operator that labels pixels in an
image based on comparison with neighboring pixels [54]. In its simplest form, the LBP
feature vector is created by performing the following steps:

• Division of the image into cells of fixed size.
• Comparison of the center pixel of each cell with each of its neighbors (top left, top

center, top right, right, bottom right, etc.). If the value of the reference pixel is greater
than that of the neighboring pixel, a score of 0 is given. Otherwise, the score is 1.

• Calculation of the histogram of each cell (and, occasionally, normalization of the histogram).
• Concatenation of the histograms of each cell.

Because of its discriminative power and computational simplicity, the LBP texture
operator has become a popular approach in various applications. Perhaps its most im-
portant property is its robustness to monotonic changes in grayscale caused, for example,
by variations in illumination [55]. A useful extension of the original operator is the so-
called uniform pattern; this extension is motivated by the fact that some binary patterns
occur in texture images more commonly than others. A local binary pattern is called
uniform if the binary pattern contains at most two 0–1 or 1–0 transitions [56]. The uniform
model allows for reducing the length of the feature vector and implementing a simple
rotation-invariant descriptor.

As previously introduced, in the context of computer-assisted skin lesion diagnosis,
the most commonly used texture features are GLCM and LBP. Therefore, in the present
work, these features are extracted from dermoscopic images. For the GLCM, to obtain
the statistics of contrast, dissimilarity, homogeneity, second angular momentum (ASM),
correlation, and energy, Python’s Skimage library was used by setting the offset between
pixel pairs to a unity value, choosing four different orientations at 0°, 45°, 90°, and 135°,
and making sure that the output was non-symmetrical (the order of the pixel pairs is not
ignored) and not normalized by the total number of occurrences accumulated. Doing so
yields a total of 24 global textual features for each image. For the LBP, the same Skimage
library allows the use of a uniform method with a cell size of 3 × 3, resulting in a total of
26 global textual features for each image.
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5.2. Custom CNN with Handcrafted Features

Artificial neural networks (ANNs), inspired by brain connections, are designed to solve
complex real-world problems. ANNs have simple architectures organized in layers, each of
which is composed of functional units called neurons (or nodes), which are connected by
arcs that simulate synaptic connections [57]. Each layer extracts meaningful representations
for the problem at hand from the data and processes them before sending them to the next
layer. The learning process of a neural network is iterative and relies on adjusting the
weights associated with the connections between neurons; changing the weights is based
on experience gained in previous iterations.

Convolutional neural networks (CNNs or ConvNets) are artificial neural networks
that specialize in computer vision and are inspired by the biological neural networks of the
visual cortex [58]. Their structure involves an input, i.e., an image, a feature learning block
in which the various hidden layers are responsible for feature extraction, and finally, the
output. Each layer consists of elementary computational units that communicate through
weighted connections. CNNs are suitable for the field of computer vision precisely because,
unlike ANN, they have the units organized in three dimensions (width, height, and depth)
and also are connected to only a portion of the previous layer. Layers in CNNs may or may
not have trainable parameters; in the latter case, they simply implement functions. The
most frequently used types of layers in CNNs are [59]:

• Convolutional layers: Convolutional layers are able to learn local patterns invariant
to translation, so that any pattern learned within the image can be recognized even if
it is in a different spatial location, and the learning extends to spatial hierarchies of
patterns: i.e., the layers learn larger and larger patterns starting from the features of
previous layers. This allows the convnet to efficiently learn increasingly complex visual
concepts. Convolutional layers contain a series of filters that during the forward phase
are run on the input by performing the convolutional (or rather, cross-correlation)
operation—that is, the scalar product between the two matrices—from time to time.
The result is an m-dimensional feature map, with m equal to the number of filters
applied to each layer. The output of the convolution is processed using nonlinear
activation functions, such as Hyperbolic, Softmax, Rectified Linear Unit (ReLU),
Exponential Linear Unit (ELU), and Scaled Exponential Linear Unit (SELU).

• Pooling layers: Pooling layers aim to sub-sample feature maps by keeping the main
information contained in them in order to reduce the number of model parameters
and the computational cost. To do this, convolution is again performed between the
input image to the layer and a new filter, but in this case, the overlap between the
matrices is avoided. The most commonly used pooling filters use mean pooling, the
result of which is a matrix in which each value is the average of the submatrices of the
source image, and max pooling, the result of which is a matrix in which each value is
the maximum value of the submatrices of the source image. The hyperparameters of
the pooling layers are the filter size and pitch.

• Normalization layers: Normalization layers are layers for normalizing input data
by means of a specific function that does not provide any trainable parameters and
only acts in forward propagation. Their contribution is also to reduce the problem
of overfitting.

• Fully connected layers: Fully connected layers are layers in which all neurons are
connected to all neurons in the previous layer; that is, they use the global connectivity
property. The output of such layers is a 1 × 1 × k vector—where k is the number
of neurons hosted—containing the activations computed for each neuron. Gener-
ally, multiple fully connected layers are used in sequence, the last of which has the
parameter k equal to the number of classes in the dataset.

Training DL models with randomly initialized parameters requires a lot of labeled
data. In the absence of data, transfer learning is a viable solution because it allows reusing
knowledge (the weights) from pre-trained networks on large datasets, such as ImageNet,
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and achieves good results. The most widely used pre-trained CNN architectures are
GoogLeNet, InceptionV3, ResNet, SqueezeNet, DarkNet, DenseNet, Xception, Inception–
ResNet, Nasnet, and EfficientNet. In the field of dermatology, although several large public
datasets are available, many authors choose to use TL on individual networks [60,61] or by
constructing ensemble models from these [62–64]. A minority choose to develop custom
CNNs based on known networks [65–67] or totally new ones [68,69]. In the present work,
the custom CNN shown in Figure 2 is developed.

Figure 2. Proposed architecture.

The proposed architecture consists of five convolutional layers followed by five levels
of maxpooling and batch normalization. After the last normalization layer, two-dimensional
features are flattened into one-dimensional arrays and are given to the output layer consist-
ing of one neuron per class. The number of filters in the first two levels of convolution is
32, in the third and fourth is 64, and in the last level is 128. All convolutional kernels are
3 × 3 in size. Each convolutional layer is followed by a maxpooling layer with a size of
2 × 2 and a batch normalization layer to standardize the inputs. A Leaky Rectified Linear
Unit (LeakyReLU) activation function is used in this architecture to introduce nonlinearity
into the network. After the last convolutional block, features are flattened by switching
from two-dimensional to one-dimensional; thus, features are automatically extracted from
the network. To these, handcrafted features acquired using LBP are concatenated, leading
to better accuracy than the single-input convolution neural network model (results are
discussed in Section 6). In the process of training the proposed architecture, skin lesions
are scaled to 224 × 224 pixels and are given as input to the CNN. To reduce computational
time, no pre-processing was performed.

6. Results

Implementation details: A macOs computer with an Apple M1 Pro processor and 16 GB
RAM was used for training and validation of the proposed model. Models were created
with Spyder 5.1.5 and Python 3.9.12 using the Keras library. Scikit-learn, OpenCV, Pandas,
and Numpy were used as dependencies, and Tensorflow, which specializes in effective
training of deep neural networks by exploiting graphics cards, served as the backend
engine. The choice of the Python language was related to its power and accessibility, which
have made it the most popular programming language for data science.
Details of datasets used: The model was trained with the ISIC 2018 and ISIC 2019 training
datasets and was tested on the ISIC 2016 test dataset to ensure comparison of the results
obtained with those reported in other papers. As mentioned above, only melanoma and
nevi images were selected from each dataset. In the training datasets, the division between
classes shows a strong imbalance in favor of the nevi class, whose images are numerically
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more than three times as numerous as those of melanomas (a widespread phenomenon in
the medical field because it is relatively easy to get normal data, but it is quite difficult to
get abnormal data). To arrive at a balance between the two classes under consideration,
random downsampling (DS) of the nevi class was performed; specifically, the same number
of nevi images were selected from the two training datasets such that their sum was equal
to the number of melanoma images. The nevi images were randomly selected from each
dataset. The initial and final numbers of melanomas and nevi in the two training datasets
are reported in Table 3.

Table 3. Number of N and M samples in training datasets.

Dataset Before After

N M Tot N M Tot

ISIC 2018 6705 1113 7818 2818 1113 3931
ISIC 2019 12,875 4522 17,397 2818 4522 7340

The 10% training data are used as a validation set to provide the impartial process of
model training.

Network configuration. After testing several configurations obtained by varying the
optimizer between Adam, Adamax, and SGD; the initial learning rate between 10−1 and
10−4; and the batch size between 32 and 512; the parameters set for the proposed CNN
network were:

• Optimizer: Adam
• Initial learning rate: 10−3

• Loss function: binary cross entropy
• Number of epochs: 100
• Batch size: 128

Classification results: As already anticipated, for the present work, GLCM and LBP texture
features were considered for injection into the CNN network to improve its classification
performance. Several experiments were conducted to try to find out whether it is convenient
to use additional information to that already automatically extracted from the network
and, if so, whether it is better to use the two separately or combined. In addition, to
understand whether it is necessary to use a complex approach such as a CNN instead of
simpler methods, texture features were classified by the most widely used ML methods for
skin lesion classification, namely SVM, KNN, and LDA.

- SVM: Both the linear kernel (with the values of the inverse regularization parameter
C varied between 1, 10, 100, and 1000) and the RBF and polynomial kernels (with
all possible combinations between the values of C equal to the previous ones and
the values of the gamma parameter equal to 0.001 and 0.0001) were tested. For both
GLCM and LBP feature classification, the best results were obtained using the SVM
with the RBF kernel and setting the parameters C = 1000 and gamma = 0.001; for
GLCM + LBP feature classification, the best result is obtained with a linear SVM and
setting the parameter C = 100.

- KNN: The number of neighbors was varied between 3 and 10. For both GLCM and
LBP feature classification, the best result is obtained with K = 9; while for GLCM + LBP
combination, the best result is obtained with K = 10.

- LDA: Singular Value Decomposition (SVD) and Least Squares Solution (LSQR) res-
olution methods were tested, the former of which yielded the best classification
performance for all features.

For all ML methods, “best result” means the one that shows the best trade-off between
high sensitivity and specificity. The results obtained on the test dataset in the different
situations are shown in Table 4.
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Table 4. Comparison of different situations for the classification of melanoma vs. nevus: ML methods
for the classification of GLCM features; ML methods for the classification of LBP features; ML
methods for the classification of both GLCM and LBP features (G&L); CNN without the injection
of handcrafted features (CNN w.f.); CNN with the injection of both GLCM and LBP features (CNN
G&L); CNN with the injection of only GLCM features (CNN GLCM); and CNN with the injection of
only LBP features (CNN LBP). All values are in percentages.

Method Accuracy Sensitivity Specificity AUC

SVM GLCM 64.54 76.02 62.38 69.20

KNN GLCM 63.70 64.33 63.59 63.96

LDA GLCM 66.39 63.74 66.89 65.31

SVM LBP 74.26 69.59 75.14 72.36

KNN LBP 70.83 70.76 70.85 70.80

LDA LBP 75.83 62.57 78.33 70.45

SVM G&L 78.52 74.27 79.32 76.79

KNN G&L 72.50 74.85 72.06 73.46

LDA G&L 79.44 73.68 80.53 77.11

CNN w. f. 81.11 75.44 82.18 78.81

CNN G&L 81.57 68.42 84.05 76.23

CNN GLCM 80.83 75.44 81.85 78.64

CNN LBP 82.50 76.61 83.61 80.11

The ML methods show similar sensitivity values to those obtained with the various
CNN networks, but they have lower specificity, accuracy, and AUC. Looking at the results
obtained with CNNs, it is evident from the results that none of the situations is clearly
superior to the others, but the best is the one in which LBP texture features are injected into
the proposed CNN network. For these latter four situations, ROC curve plots are shown
in Figure 3.

Figure 3. ROC curves.
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One might also ask whether the LBP features extracted from the images are all relevant
or whether a selection of the most significant ones should be performed. In this regard,
two alternative scenarios were simulated in which Principal Component Analysis (PCA)
was applied to reduce the dimensionality of the features to 1/3 and 1/2 of their original
sizes. The results obtained by training the proposed CNN with the addition of these
reduced features are shown in Table 5 along with those obtained by considering all the
original features.

Table 5. Comparison of classification results obtained by training the CNN network with all the LBP
features and with a portion of them (PCA(1/3) and PCA(1/2)). All values are in percentages.

Method Accuracy Sensitivity Specificity AUC

PCA(1/3) 82.41 60.82 86.47 73.64

PCA(1/2) 82.31 71.35 84.38 77.86

CNN LBP 82.50 76.61 83.61 80.11

In the PCA(1/3) case, sensitivity increases compared with the situation where feature
dimensionality is not reduced, but specificity decreases greatly. In contrast, in the PCA(1/2)
case, the results are lower than the CNN LBP situation for all metrics. From the results
obtained, it can be inferred that it is not necessary to perform dimensionality reduction of
LBP texture features since they are all important for classification of skin lesions.

In addition, the present work aims to investigate whether a preliminary image pre-
processing step is necessary for the addressed anomaly detection task. In this regard, a
comparison is made between the performance obtained by training the custom CNN LBP
with the original images and with images preprocessed using the main techniques used in
the field of dermatology, as is discussed briefly below.

• Gaussian filter (GF) is a linear smoothing filter that operates as a kind of low-pass
filter [70]. It is a widely used preprocessing method in image processing and computer
vision to attenuate noise. In the present work, the standard deviation for the Gaussian
kernel (σ) is set to 1, 3, and 5; the smoothing operation is performed identically in
all directions, resulting in a filtering action independent of the orientation of the
structures in the image.

• Histogram Equalization (HE) is the most widely used global method for calibrating
contrast in images and is based on the idea of reassigning pixel intensity values to
make the intensity distribution maximally uniform [71].

• Color Normalization (CN) is a technique widely used in computer vision to compen-
sate for illumination variations in images. The method chosen for the present work is
based on the technique of color constancy [72] that ensures that the perceived color of the
image remains the same under different illumination conditions in order to facilitate
the classification algorithm.

Various combinations of the techniques just described were also tested: GF + HE,
GF + CN, and HE + CN. In such combinations, the Gaussian filter was set with σ = 1,
which has been shown to yield the best classification results. The results of applying the
various preprocessing methods to a skin lesion image are shown in Figure 4.
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Figure 4. Results of preprocessing: (a) Original image. (b) Gaussian filter. (c) Histogram Equalization.
(d) Gaussian filter + Histogram Equalization. (e) Color Normalizaion. (f) Gaussian filter + Color
Normalizaion. (g) Histogram Equalization + Color Normalizaion.

A comparison of the classification results obtained by training the neural network
with original and preprocessed images is shown in Table 6.

Table 6. Comparison of classification results obtained by training the CNN network with prepro-
cessed and original images (CNN LBP is the CNN trained with original images, i.e., images without
preprocessing). All values are in percentages.

Method Accuracy Sensitivity Specificity AUC

CNN GF (σ = 1) 80.09 71.35 81.74 76.54

CNN GF (σ = 3) 84.07 0 99.89 49.95

CNN GF (σ = 5) 83.43 40.35 91.53 65.94

CNN HE 77.59 77.78 77.56 77.68

CNN CN 83.98 67.25 87.13 77.19

CNN GF + HE 83.89 63.74 87.68 75.71

CNN GF + CN 75.93 81.87 74.81 78.34

CNN HE + CN 83.61 63.13 87.46 75.31

CNN LBP 82.50 76.61 83.61 80.11

It can be seen from the results that: (1) the Gaussian filter with σ = 3 and σ = 5
leads to high specificity values but very low sensitivity; (2) color normalization (CNN
CN), Gaussian filtering combined with histogram equalization (CNN GF + HE), and the
combination of histogram equalization and color normalization (CNN HE + CN) allows
for the obtainment of higher specificity values—and therefore higher accuracy—than that
obtained without preprocessing; however, in all these situations, the sensitivity, which
reflects the accuracy in correctly classifying melanomas and is therefore a parameter of
utmost importance for the specific application (anomaly detection in the medical field), is
much lower than that obtained with CNN w. p.; (3) application of the Gaussian filter with
σ = 1 leads to classification results similar to those obtained by training the network with
the original images, but lower; (4) the best trade-off between sensitivity, specificity and
accuracy seems to be achieved by the CNN network trained using the original images.

Once the best solution for melanoma detection was identified—which was obtained by
adding the texture information captured by the LBP operator from the unprocessed images
to the CNN network—we wanted to check whether the selection of the training dataset
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made to balance the two classes was the best one. In this regard, the proposed balancing
situation—the results of which have already been shown in Table 4—is compared with the
following two: (1) the imbalance between the classes is not balanced, and therefore, the
training set includes all nevi and melanoma images (scenario named M/Ntot). In this case,
the number of nevi is more than three times the number of melanomas; (2) to make the
number of melanomas approach the total number of nevi, data augmentation is applied on
the melanoma images until the number of melanomas is tripled (scenario named DA Mx3).
The operations performed to increase the number of images in the training dataset are:
rotation (range = 20), width shift (range = 0.1), height shift (range = 0.1), shear (range = 0.3),
zoom (range = 0.3), horizontal flip, and fill mode = ’nearest’. The results obtained by
training the network with these new datasets and the comparison without using DA are
shown in Table 7.

Table 7. Comparison of results obtained using different distributions of M and N in the training
dataset. Performance results are in percentages.

Method M N Accuracy Sensitivity Specificity AUC

M/Ntot 5635 19,580 45.00 73.68 39.60 56.64
DA Mx3 16,905 19,580 84.17 0.00 100.00 50.00

CNN LBP 5635 5636 82.50 76.61 83.61 80.11

Paradoxically, by not balancing the classes and thus having one-third as many melanomas
as nevi, the specificity is much higher than the sensitivity; on the other hand, as the number
of melanomas increases, the ability of the network to recognize nevi also increases, but the
network has zero sensitivity, indicating that no melanomas were classified correctly. The
results obtained, although it may not seem like it, are “lucky” results; in fact, they could
have been even worse considering the fact that during training, the performance of the
models on the validation dataset was anything but consistent in both scenarios previously
described. Figure 5 plots the accuracy curves obtained during training in the M/Ntot
Figure 5a and DA Mx3 Figure 5b situations.

(a) (b)
Figure 5. Model training accuracy graphs. (a) M/Ntot accuracy graph. (b) DA Mx3 accuracy graph.

Having verified that the best classification results for melanoma detection are obtained
by adding the texture information captured using the LBP operator to the CNN network
and dividing the two classes equally without applying DA techniques, we refer to this
situation below by talking about the “proposed work”. Then, the accuracy and loss plots of
the training and validation sets related to the proposed work are shown in Figure 6.



Algorithms 2023, 16, 466 16 of 24

(a) (b)
Figure 6. Model training graphs. (a) Accuracy graph. (b) Loss graph.

The model shows an excellent learning rate, as the training accuracy increases with
the number of epochs (Figure 6a), and the validation accuracy, although it tends to decrease
at first, stabilizes not far from the training curve. Both training loss and validation loss
decrease to the point of stability (Figure 6b). Training reaches convergence after about
50 epochs. The small gap between the training and validation curves shows that the model
is not affected by overfitting.

The results shown by the validation curves are very different from those obtained
on the test set (see Table 7). This could stand to mean that: (1) because the ISIC 2019
dataset is more numerous than the ISIC 2018 dataset, the network learned more about
the characteristics of this dataset, and that (2) the 10% of the training dataset intended to
constitute the validation set (obtained by means of the validation split function in Keras)
contains many more ISIC 2019 images than ISIC 2018 images, thus making the results
obtained on the validation and test sets not coincide. However, good generalization
capabilities across similar datasets would be expected from a model showing these curves;
in fact, although they were collected in different years and intended for different challenges,
the ISIC 2018 and ISIC 2019 datasets both contain dermoscopic images. It is beyond the
scope of this paper to investigate possible differences in the acquisition or preprocessing of
the images that make up the two datasets, which might be a good reason to balance the
training dataset not only from the point of view of classes (as many melanomas as nevi)
but also from the point of view of the source from which the images come (as many ISIC
2018 images as ISIC 2019 images).

Section 7 reports and discusses the results obtained from comparing the proposed
model with the most widely used pre-trained models for skin lesion classification: VGG16,
ResNet50, MobileNet, DenseNet121, DenseNet169, and DenseNet201. In addition, the
performances of the proposed network on the ISIC 2016 dataset and on the DermIS database
are compared with other state-of-the-art methods from the literature.

7. Discussion

The purpose of the proposed work is an in-depth study of the analysis and classifi-
cation of dermoscopic images. In fact, we want to understand whether the hard work of
preprocessing images of skin lesions—aimed at the elimination of hairs, marker marks, air
bubbles, etc.—is really essential for the classification of melanomas vs. nevi and whether
useful information can be drawn not only from the lesions under examination but also
from the area of skin surrounding them. In fact, imagining that the region of skin surround-
ing the lesions has also undergone some change that is, however, not yet visible to the
naked eye, not taking it into consideration would miss important and potentially useful
information for classification/diagnosis purposes. Thus, the proposed method is aimed
at examining these aspects and involves training a custom CNN with images that have
not undergone any kind of preprocessing to improve their appearance and adding texture
information related to whole images (lesion + surrounding skin). This method is compared
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with the most widely used pre-trained networks in the field of dermatology and other
state-of-the-art methods using ISIC 2016 as a test set.

7.1. Comparison with Common Pre-Trained Networks

Although public dermatology datasets are large enough to successfully train even
complex custom neural networks, the use of pre-trained networks— typically on the Ima-
geNet dataset—is widespread. In the dermatology field, the most widely used are: VGG16,
ResNet50, MobileNEt, DenseNet121, DenseNet169, and DenseNet201. A comparison of
the proposed model is performed with all these networks to see if it is the best one for the
task at hand. The results of the comparison between the proposed network and the tested
pre-trained models are shown in Table 8.

Table 8. Comparison of proposed work for the classification of melanoma vs, nevus with common
pre-trained networks. Performance values are in percentages.

Network Accuracy Sensitivity Specificity Total
Parameters

Trainable
Parameters

Time per
Epoch

VGG16 61.72 80.60 58.56 ∼124 M ∼200 k '56’

ResNet50 53.63 84.21 48.54 ∼3.5 M ∼100 k '16’

MobileNet 60.05 86.55 55.64 ∼7 M ∼100 k '4’

DenseNet121 54.46 90.64 50.78 ∼13 M ∼165 k '12’

DenseNet169 59.05 88.30 54.18 ∼24 M ∼200 k '14’

DenseNet201 59.80 86.55 55.35 ∼18.5 M ∼200 k '19’

Proposed work 82.50 76.61 83.61 ∼150 k ∼150 k '4’

Pre-trained models have millions of pre-trained parameters and only a small fraction
of trainable parameters, whereas in a custom CNN, since there is no prior knowledge, all
parameters are trainable. Information already learned from pre-trained networks can be
very useful in classifying new data, but it is not always the best solution, especially when
the pre-trained and newly trained data do not have similar characteristics. From the results,
it can be seen that the proposed model, in addition to being better able to distinguish
melanomas and nevi than the other networks, takes much less time for each epoch of
training because of the simplicity of its architecture. This is no small detail considering that
many epochs are planned for the training phase.

7.2. Comparison with the Literature

The different existing works regarding the melanoma vs. nevi classification task and
using ISIC 2016 as the test dataset, described in [19], are reported below and are finally
compared with the proposed model. In [73], the authors propose three different scenarios
for using the VGG16 network. First, they train the network from scratch, obtaining the least
accurate results. Then, they apply the TL method, which turns out to be better than the first
method but suffers from the phenomenon of overfitting. Finally, they apply fine-tuning,
obtaining the best results. The authors of [30] propose a framework that performs image
preprocessing and performs the classification task using a hybrid CNN consisting of three
feature extraction blocks whose results are merged to provide the final output. In [74],
an approach is proposed in which shape, color, and texture features are extracted from
previously segmented skin lesion images and then concatenated to features automatically
extracted from a custom CNN.

The comparison between the performance achieved by the proposed model and that
of works reported in the literature is summarized in Table 9.
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Table 9. Comparison of proposed work for the classification of melanoma vs. nevus with existing
work on ISBI 2016 dataset. All values are in percentages. The symbol “-” indicates missing information.

Author and Year Accuracy Sensitivity Precision Specificity AUC

Lopez et al. [73] 2017 81.30 78.70 79.70 - -

Kotra et al. [30] 2021 93.00 - - - -

Hasan et al. [74] 2022 - 92.00 92.00 - 96.00

Proposed work 98.15 97.33 93.59 98.35 97.84

On the 2016 ISIC dataset, the performance of the model is very high and reflects the
accuracy and loss curves shown in Section 6 (Figure 6). Both in terms of accuracy and
in terms of sensitivity, specificity, and AUC score, the proposed model outperforms the
models reported in the literature. Whether this result is due to the fact that, in contrast
to [30], the images were not preprocessed; or to the fact that, in contrast to [74], the texture
features were extracted from the entire image and not only from the segmented lesion; or
again, that both may have contributed to the result is not known for sure.

To show the robustness of the proposed work, an external validation was conducted
using the online public database Dermatology Information System (DermIS) [75]. This
dataset, which contains 1000 dermoscopic images, of which 500 are benign and 500 are
malignant, is the largest public dataset after the ISIC archive. Containing a limited num-
ber of data, the DermIS dataset is integrated with other public or private datasets, and
classification results are reported globally but not for the split datasets, thus preventing
comparison with the literature. A paper was identified that reports classification results on
the DermIS dataset not combined with other datasets, the comparison of which with the
proposed method is shown in Table 10.

Table 10. Comparison of proposed work for the classification of melanoma vs. nevus with existing
work on DermIS database. All values are in percentages. The symbol “-” indicates missing information.

Author and Year Accuracy Sensitivity Precision Specificity AUC

Abbes et al. [76] 2017 76.9 97.40 - 48.40 -

Proposed work 81.50 92.71 74.79 71.15 81.93

Although the sensitivity of the model proposed in [76] is higher than that obtained
in the present work, the specificity is much lower. This leads to a good ability to classify
melanomas correctly, but there is a high rate of false positives, which, although less severe
than false negatives, lead to increased costs for patients, who will have to undergo unneces-
sary additional visits and diagnostic tests. The proposed model once again shows good
results compared with the literature.

7.3. Analysis of Interpretability and Limitations of the Proposed Model

With the interpretability analysis of neural networks, it is possible to have a visual
explanation of the decisions made by the so-called “black-box”. For such analysis, the Grad-
CAM algorithm is used in the present work. This algorithm uses the gradient information
(global mean) flowing into the last convolutional layer of the CNN to assign importance
values (weights) to each neuron for a particular decision of interest [77]. The convolutional
layers naturally retain spatial information that is lost in the fully connected layers; therefore,
the last convolutional layers can be expected to have the best trade-off between high-level
semantics and detailed spatial information. Neurons in these layers search for class-specific
semantic information in the image (e.g., parts of objects). The heat map of the image that
results from applying this algorithm highlights the features of the image. The Grad-CAM
algorithm is applied on the last convolutional layer of the proposed custom CNN, that is,
before the injection of texture features. Some results obtained are shown in Figure 7.
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(a)

(b)
Figure 7. Analysis of interpretability. (a) Original images. (b) Grad-CAM heat maps.

As can be seen, the network focuses mainly on the pixels of the skin lesion; from here
emerges the contribution of adding texture features extracted not only from the lesion but
also from what surrounds it, which is not automatically considered by the neural network
and which could be useful for the correct classification of the lesion. However, injecting
into the network additional features extracted from images that have not undergone any
preprocessing of cropping out parts that are not relevant to the diagnosis may lead the
network to attribute to one of the two classes a specific feature that is not related to the
pathology at all. These are spurious correlations, and in the present case, these correlations
involve dark image contours due to the image acquisition process and associated with the
class of melanoma (Figure 8).

Such images are classified correctly, but interpretability analysis shows that to arrive
at the correct result, even before feature injection, the network focuses on regions of the
image that are not diagnostically important. If the network already sees these details as
possible important features for assigning the N or M label to the images, it is possible that
the additional feature vector is going to contribute in the same direction by emphasizing
the spurious correlation. One would then need to conduct an analysis on the outcome of
the classification after appropriately cropping the images so as to eliminate the black edge
disturbance while retaining as much of the surrounding tissue as can be saved.

Another important aspect to consider is that the proposed model is among the method-
ologies that can classify images of single skin lesions but not total body images. The single-
lesion approach allows the application of some dermatologic rules, such as the ABCDE
rule, but does not allow consideration of the global picture of patients’ skin lesions (as
opposed to dermatologic examinations in which macro-screening is performed). In fact,
with this approach, it is not possible to assess the presence of the so-called “ugly duckling”:
that is, a nevus that is different from a subject’s other nevi and is therefore suspect [78]. The
underlying concept is that most normal lesions resemble each other, whereas melanomas
differ in size, shape, and color just like they are ugly ducklings (abnormal data in the context
of anomaly detection). The total body photography (TBP) technique allows photographs of
the entire body or portions of the body (wide-field approaches) to be acquired, allowing
lesions to be mapped and the entire skin surface of the patient to be monitored [79]. This
technique was combined with DL techniques using 2D [80–82] and 3D [83] images and
showed excellent classification performance. The advantages of using this technique in
computer-assisted diagnosis systems relate to the possibility of getting an overview of
patients’ skin lesions, the possibility of implementing teledermatology since there is no
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specific acquisition instrumentation but images can be taken using traditional cameras,
and finally, the possibility of assessing the appearance of new skin lesions during follow-
up. There are limitations, however, in that, compared with the single-lesion method, the
total-body approach implies reduced image quality (even using high-resolution cameras,
the image quality of skin lesions is lower than that obtained with dermoscopy), and in
addition, the absence of public databases makes comparison with the literature impossible.

(a)

(b)
Figure 8. Analysis of interpretability. (a) Original images. (b) Grad-CAM heat maps.

8. Conclusions and Future Work

In the present work, the identification of cutaneous melanoma is intended as an
anomaly detection problem for which a simple custom CNN is proposed, in which ad-
ditional texture information from dermoscopic images of skin lesions is included to aid
in its increased classification performance for the melanoma vs. nevi task. The goal, in
addition to creating a network that is accurate in melanoma detection (anomaly detection),
is to test whether such a network, trained on unprocessed images from which features
are extracted in full, can achieve high performance. In fact, although lesion segmentation
allows the ABCD rules commonly used by dermatologists for the examination of skin
lesions to be applied, it is not necessarily the case that the features of the tissue surrounding
the lesions do not contain important information overlooked in clinical diagnosis. Several
experiments were conducted to (1) demonstrate that simple ML models are not suitable
for the purpose of this work; (2) show how there is no need to operate dimensionality
reduction of extracted features, which are found to be totally important; (3) demonstrate
that preprocessing of dermoscopic images is not strictly necessary; and (4) in the present
case, the data augmentation technique does not improve classification performance but
even worsens it. The proposed network, trained on the ISIC 2018 and ISIC 2019 datasets,
shows better results than the most commonly used pre-trained networks in dermatology,
especially with regard to computational cost. Moreover, on the ISIC 2016 dataset, the
proposed model achieves very high performance that is higher than that reported in the
literature. On the DermIS database, the proposed model also performs well. This could
mean that image preprocessing is not so necessary but also that image segmentation from
which additional information is then extracted tends to leave out important aspects of the
images not necessarily related to the lesion. An interpretability analysis is then conducted,
which shows that additional texture information related to the unsegmented whole images
may add to the network classification—which instead dwells on the skin lesion—but also
that these features could contribute to increased spurious correlations. Therefore, probably
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a preliminary step of partial elimination of any disturbances, such as black image contours,
could lead to improved classification results. Future work will go in this direction.
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Abbreviations
The following abbreviations are used in this manuscript:

SL Skin Lesion
M Melanoma
N Nevus
ML Machine Learning
DL Deep Learning
ANN Artificial Neural Network
CNN Convolutional Neural Network
CAD Computer-Aided Diagnosis
TL Transfer Learning
DA Data Augmentation
DS Downsampling
SVM Support Vector Machine
KNN K-Nearest Neighborhood
LDA Linear Discriminant Analysis
MLP Multilayer Perceptron
GLCM Gray-Level Co-occurrence Matrix
LBP Local Binary Pattern
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