
Chapter 16

Deep Learning for Protein–Protein Interaction Site
Prediction

Arian R. Jamasb, Ben Day, Cătălina Cangea, Pietro Liò,
and Tom L. Blundell

Abstract

Protein–protein interactions (PPIs) are central to cellular functions. Experimental methods for predicting
PPIs are well developed but are time and resource expensive and suffer from high false-positive error rates at
scale. Computational prediction of PPIs is highly desirable for a mechanistic understanding of cellular
processes and offers the potential to identify highly selective drug targets. In this chapter, details of
developing a deep learning approach to predicting which residues in a protein are involved in forming a
PPI—a task known as PPI site prediction—are outlined. The key decisions to be made in defining a
supervised machine learning project in this domain are here highlighted. Alternative training regimes for
deep learning models to address shortcomings in existing approaches and provide starting points for further
research are discussed. This chapter is written to serve as a companion to developing deep learning
approaches to protein–protein interaction site prediction, and an introduction to developing geometric
deep learning projects operating on protein structure graphs.

Key words Protein, Structure, Protein–protein interaction, Deep learning, Structural biology,
Machine learning, Graph, Geometric deep learning

1 Introduction

Proteins adopt complex three-dimensional structures in order to
carry out cellular functions. Many of these functions are carried out
by larger assemblies of protein complexes and regulated through
physical contacts between effectors and regulators. Understanding
protein–protein interactions (PPIs) is fundamental to understand-
ing cellular processes in healthy and diseased states, and their
accurate prediction is a longstanding goal of computational biol-
ogy. Predicting the interacting residues involved in PPIs is useful
for constructing refined PPI networks, understanding the impact of

Daniela Cecconi (ed.), Proteomics Data Analysis, Methods in Molecular Biology, vol. 2361,
https://doi.org/10.1007/978-1-0716-1641-3_16, © The Author(s) 2021, Corrected Publication 2021

The original version of this chapter was revised. The correction to this chapter is available at https://doi.org/
10.1007/978-1-0716-1641-3_19

263

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-1641-3_16&domain=pdf
https://doi.org/10.1007/978-1-0716-1641-3_16#DOI
https://doi.org/10.1007/978-1-0716-1641-3_19#DOI
https://doi.org/10.1007/978-1-0716-1641-3_19#DOI

mutations, improved accuracy in protein-protein docking and
richer annotation of protein function [1]. Furthermore, predicting
PPIs is desirable for structure-based drug discovery; PPI interfaces
offer the potential for highly selective modulation of pathological
processes [2].

Experimental methods for characterizing protein–protein
interactions include Yeast-2-hybrid (Y2H) methods [3], mass spec-
trometry [4], tandem affinity purification [5], and protein chips
[6]. However, these methods are time and resource intensive [7],
and high false-positive rates are prevalent in larger experimental
screens [8] limiting the scalability of protein–protein interaction
characterization to the proteome level. There exist high-quality
structurally annotated databases characterizing PPI sites such as
BioLIP [9] (https://zhanglab.ccmb.med.umich.edu/BioLiP/),
which collates structural interaction sites for a variety of protein
interaction types. However, these databases characterize only a
subset of extant proteins, and a significant proportion of the space
remains unannotated and not structurally characterized. Further-
more, accurate predictions are made increasingly challenging due
to the promiscuity of protein interactors; a given protein may have
multiple interaction partners over disparate or overlapping regions
of its surface. Proteins with multiple binding partners may interact
with their partners at different times or feature large interaction
sites capable of interacting with multiple partners simultaneously.
Reporting of interactions may be biased; it has been shown that the
number of reported interactions for a given protein is correlated
with its frequency of occurrence in the literature [10]. Efficient and
reliable computational prediction of protein–protein interactions is
therefore highly desirable, though challenging.

Existing methods for PPI site prediction broadly fall into three
categories. Protein-protein docking methods seek to produce
structures of the resulting protein complex, and typically produce
a number of scored candidate structural models as output
[11]. Structure-based methods seek to perform prediction of inter-
action sites by leveraging protein structural information
[12]. Sequence-based methods perform predictions based on pro-
tein sequences and form the bulk of the existing body of work due
to the relative abundance of protein sequence data. While docking
and structure-based methods typically require structural data,
sequence-based approaches benefit from greater availability of
data. However, structural methods may be limited in their utility
for applications involving intrinsically disordered proteins (IDPs)
or regions (IDRs), which play important roles in facilitating some
PPIs, often allowing concerted folding and binding of sequences
with these regions, and are enriched in protein and nucleic acid
binding proteins [13]. The difficulty in structurally elucidating
IDPs and IDRs means that structural datasets are typically deficient
in disorder-mediated interactions. It should be noted, however,

264 Arian R. Jamasb et al.

https://zhanglab.ccmb.med.umich.edu/BioLiP/

that supervised sequence-based methods typically rely on datasets
curated from structurally characterized protein–protein interac-
tions (see Subheading 2.2 for details), where residues for which
the solvent-accessible area decreases upon binding are considered
interacting residues. Many machine learning-based approaches
have the advantage that the bulk of the computational cost is
incurred during training; inference from a trained model is rela-
tively computationally inexpensive, whereas docking-based meth-
ods require large quantities of computational resources for each
prediction to score and rank structures in the conformational space.
An overview focused on machine learning and deep learning
approaches and the requisite data preparation is provided in Fig. 1.

An example of a structure-based approach is ProtCHOIR
(https://github.com/monteirotorres/ProtCHOIR), a tool for
proteome-scale generation of homo-oligomers in an automated
fashion, providing detailed information for the input protein and
output complex (Torres PHM& Blundell TL, Manuscript in prep-
aration). ProtCHOIR requires input of either a sequence or a
protomeric structure that is queried against a pre-constructed
local database of homo-oligomeric structures, then extensively
analyzed using well-established tools such as PSI-Blast [14]
(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYP
E¼BlastDocs&DOC_TYPE¼Download), MAFFT [15] (https://
mafft.cbrc.jp/alignment/software/), TMHMM [16] (http://
www.cbs.dtu.dk/services/TMHMM/), PISA [17] (https://www.
ccp4.ac.uk/MG/ccp4mg_help/pisa.html), Gesamt [18] (http://
ccp4serv7.rc-harwell.ac.uk/gesamt/), and Molprobity [19]
(http://molprobity.biochem.duke.edu). Finally, MODELLER
[20] (https://salilab.org/modeller/) is employed to achieve the
construction of the homo-oligomers. The output complex is thor-
oughly analyzed taking into account its stereochemical quality,
interfacial stabilities, hydrophobicity and conservation profile.
The software is easily parallelizable and also outputs a comma-
separated value file with summary statistics that can straightfor-
wardly be concatenated as a spreadsheet-like document for large-
scale data analysis.

This chapter focuses on the considerations involved in applying
deep learning methods to protein structure data for the prediction
of protein–protein interaction sites. The main steps in developing
such a project, from data collection and preparation, featurization
and representation, through to model design and evaluation are
highlighted. The choice of representation is a key decision in such
an undertaking. There exist in the literature many machine
learning-based approaches to this problem covering a range of
classical models and representations including: logistic regression
[21], Naive Bayes classifiers [22], Support Vector Machines (SVM)
[23–25], and random forests [26–28]. A full review of existing
approaches is beyond the scope of this chapter. Neural network-

Deep Learning for PPI Sites 265

https://github.com/monteirotorres/ProtCHOIR
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download
https://mafft.cbrc.jp/alignment/software/
https://mafft.cbrc.jp/alignment/software/
http://www.cbs.dtu.dk/services/TMHMM/
http://www.cbs.dtu.dk/services/TMHMM/
https://www.ccp4.ac.uk/MG/ccp4mg_help/pisa.html
https://www.ccp4.ac.uk/MG/ccp4mg_help/pisa.html
http://ccp4serv7.rc-harwell.ac.uk/gesamt/
http://ccp4serv7.rc-harwell.ac.uk/gesamt/
http://molprobity.biochem.duke.edu
https://salilab.org/modeller/

Fig. 1 Overview of machine learning and deep learning approaches to protein–protein interaction site
prediction. Input structural or sequence data requires feature engineering or transformation into an appropri-
ate representation for the architecture of the model

266 Arian R. Jamasb et al.

based approaches have included shallow neural network models
with limited width (models with comparatively few hidden layers
and limited dimensionality compared to more recent architectures)
[29–32] and, more recently, deeper architectures. Larger datasets
and GPU acceleration have enabled the training of deeper neural
network architectures. Amongst the more recent deep learning
approaches, convolutional neural networks (CNNs) [33], recurrent
neural networks (RNNs) including Long Short-Term Memory
networks (LSTMs) [34] and hybrids thereof [35] have been applied
to the sequence-based interaction site prediction problem. Here
the authors note a novel problem framing where models operate
directly on graph-structured representations of protein structures
(see Note 1) that has recently developed using Message Passing
Neural Processes [36]. The graphs are composed of constituent
amino acid residues and their interactions, and the target labels are
binary labels indicating whether or not a particular residue takes
part in a protein–protein interaction. The authors believe this is
timely due to rapid development and early successes in geometric
deep learning and its applications to computational structural biol-
ogy [37–42], and indeed applications to the study of protein–
protein interactions [37]. Indeed, the work of Fout et al. [38]
where the authors applied a Graph Neural Network (GNN)
model to PPI interface prediction between two interacting proteins
is acknowledged.

There are a number of problems to be aware of in designing
machine learning predictors. For instance, data often suffer from
class imbalances, where the number of negative sites
(non-interacting residues) is much greater than the number of
positive sites (see Note 2). This problem is exacerbated in larger
proteins as the fraction of positive sites decreases with size [29, 43]
and has been shown to bias predictors that do not account for this
[44]. Sequence-based predictors have also been shown to confuse
small molecule ligand, DNA, and RNA binding regions with
protein-binding regions [45].

2 Materials

2.1 Computing

Resources

Most of the development workflow can be performed on a standard
UNIX workstation equipped with a GPU suitable for training deep
learning models. The exact GPU memory requirements will
depend on the model architecture and dataset sizes used. If models
are to be trained on local or cluster-based GPU acceleration
(strongly recommended for training and running models at
scale), an installation of an appropriate CUDA (https://devel
oper.nvidia.com/cuda-toolkit) version compatible with the GPU
will be required. The user should be familiar and comfortable with
running command line tools, base python, a commonly used deep

Deep Learning for PPI Sites 267

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit

learning framework (such as PyTorch or Tensorflow) as well as
installing python packages and machine learning basics.

2.1.1 Software

Installations

It is recommended to install the required packages in a virtual
environment. A virtual environment can be set up using Conda
[46] (https://docs.conda.io/en/latest/), a commonly used pack-
age and environment manager.

2.1.2 Machine Learning

Frameworks

There are a number of actively developed machine learning frame-
works. A popular choice for traditional ML is SciKit-Learn [47]
(https://scikit-learn.org/stable/). For deep learning frameworks,
popular choices include: PyTorch [48] (https://pytorch.org), Ten-
sorFlow [49] (https://www.tensorflow.org), and Theano [50]
(http://deeplearning.net/software/theano/). Each framework
has an associated ecosystem of community-developed implementa-
tions of popular methods and tools. A fuller discussion of popular
frameworks can be found in a review by Erickson et al. [51].

2.2 Databases

and Datasets

There are a number of databases which collect relevant data for
constructing datasets of protein–protein interactions. Zhang et al.
[52] collated a large database of protein sequences, annotated with
protein, small molecule ligand and nucleic acid binding sites at the
residue level. Li et al. used this resource to create a large training
dataset by removing training data sequences with >40% sequence
similarity to the test datasets and >40% to other training examples
to ensure diversity in the training set [35]. The authors of this work
make available training (87.5%, n ¼ 9681) and validation (12.5%,
n ¼ 1382) splits. This is, to our knowledge, by far the largest
dataset collated for PPI site prediction.

In addition, there are four other processed datasets that can be
used for training and testing: Dset_72 [53], Dset_164 [54],
Dset_186 [22], and Dset_448 [21], where the tail number indi-
cates the number of sequences in each dataset. Dset_72, Dset_164,
and Dset_186 are constructed through curating heterodimeric
PDB entries with structural resolution <3 Å and <25% sequence
identity. It is suggested that these datasets be used as independent
test sets (practitioners should take care to avoid overlap with these
datasets in their training data, discussed in Subheading 3.1.2) to
enable benchmarking of novel methods against existing
approaches.

2.3 Tools

for Computing

Features

and Representations

There exist many tools for computing both sequence-based and
structure-based features for proteins. Previous research by Jones
and Thornton [55] into identifying important features for PPI site
prediction has revealed solvation potential, residue interface pro-
pensity, hydrophobicity, planarity, protrusion, and accessible sur-
face area (ASA) as important features to discriminate between
binding residues. In the intervening years, many more tools for
calculating protein and amino acids properties from sequences and

268 Arian R. Jamasb et al.

https://docs.conda.io/en/latest/
https://scikit-learn.org/stable/
https://pytorch.org
https://www.tensorflow.org
http://deeplearning.net/software/theano/

structures have been made available. Example tools and featuriza-
tion options that practitioners may wish to consider in developing a
PPI site prediction project are outlined.

2.3.1 Sequence-Based Sequence-based tools include: PROFEAT [56, 57] (http://bidd.
group/cgi-bin/profeat2016/ligand/profnew.cgi), a longstanding
web server for calculating structural and physicochemical proper-
ties for protein sequences. ProPy [58] (https://pypi.org/project/
propy3/1.0.0a2/) is a python package capable of calculating a
large number of structural features from protein sequences
(amino acid composition descriptors, dipeptide composition
descriptors, tri-peptide composition descriptors, Normalized
Moreau-Broto autocorrelation descriptors, Moran autocorrelation
descriptors, Geary autocorrelation descriptors, Composition, Tran-
sition, Distribution descriptors (CTD), sequence order coupling
numbers, quasi-sequence order descriptors, pseudo amino acid
composition descriptors, amphiphilic pseudo amino acid composi-
tion descriptors). Putative Relative Solvent Accessibility (RSA) can
be computed using ASAquick [59] (http://mamiris.com/
ASAquick/). Meiler et al. [60] make available a set of
low-dimensional embeddings of the physicochemical properties of
amino acids that can be used for featurization. Position-specific
scoring matrices (PSSMs) are often highly informative features
[33], as residues important for facilitating interactions are likely
to be evolutionarily conserved and can be readily computed using
PSI-BLAST [14]. Similarly, evolutionary conservation (ECO) can
be computed from HHBlits [61, 62] (https://github.com/
soedinglab/hh-suite). Further to these descriptors, Li et al. [35]
make use of several other descriptors including: High-Scoring Pairs
(HSP), which are similar sub-sequences between two proteins
scored using scoring matrices such as PAM & BLOSUM [63]
using SPRINT [64] (https://github.com/lucian-ilie/SPRINT/).
ANCHOR [65] (https://iupred2a.elte.hu) can be used to calculate
the putative protein-binding disorder. Hydrophobicity information
can be encoded using the hydropathy index computed using [66].

2.3.2 Sequence

Embeddings

Embedding-based methods take sequences as input and return a
fixed-length representation of the sequence. The goal of sequence
embeddings is to keep similar sequences close in the embedding
space, while maintaining distance between dissimilar sequences.
There are a number of pre-trained sequence embedding models
that can be used with protein sequences. For instance, ProtVec [67]
is one such method that has shown good results when applied to
protein family classification. ProtVec has been leveraged in PPI site
prediction in work by Li et al. [35] in which the authors summed
the 100-dimensional representations of each of the sequence
3-mers to produce the fixed embedding and speed up computation.
UniRep [68] provides a pre-trained RNN model trained on

Deep Learning for PPI Sites 269

http://bidd.group/cgi-bin/profeat2016/ligand/profnew.cgi
http://bidd.group/cgi-bin/profeat2016/ligand/profnew.cgi
https://pypi.org/project/propy3/1.0.0a2/
https://pypi.org/project/propy3/1.0.0a2/
http://mamiris.com/ASAquick/
http://mamiris.com/ASAquick/
https://github.com/soedinglab/hh-suite
https://github.com/soedinglab/hh-suite
https://github.com/lucian-ilie/SPRINT/
https://iupred2a.elte.hu

24 million sequences from UniRef50 [69]. Rives et al. [70] make
available a pre-trained transformer model trained on over 250 mil-
lion sequences that can be utilized to generate sequence embed-
dings for PPI tasks.

2.3.3 Structure-Based DSSP [71, 72] (https://swift.cmbi.umcn.nl/gv/dssp/DSSP_3.
html) is a longstanding tool for calculating secondary structural
descriptors of proteins from their structures. Graphein [73]
(https://github.com/a-r-j/graphein) is a python library for com-
puting geometric representations of protein structures. It is capable
of flexibly creating protein structure graphs at various levels of
granularity (amino acid, atomic) and under various construction
schemes (based on intramolecular contacts and/or various
distance-based methods) and mesh representations of protein sur-
faces. It also includes various featurization schemes, such as the
aforementioned DSSP descriptors, cartesian coordinates, and the
low-dimensional embeddings of the physicochemical properties of
amino acids. Voxelized representations of 3D atomic structures
where atoms are fixed as points on a 3D grid can be featurized
using a variety of atomic descriptors such as: encodings of atom-
type, atomic number, atomic mass, explicit and implicit valence,
hybridization, ring status, aromaticity, formal charge, and chiral
status as additional channels.

3 Methods

3.1 Data Training and evaluating a supervised deep learning model requires
datasets of labeled examples. These data should be partitioned into
training, validation, and test datasets. The raw data should be
converted into an appropriate representation and pre-processed

Fig. 2 Overview of data processing and model development pipeline

270 Arian R. Jamasb et al.

https://swift.cmbi.umcn.nl/gv/dssp/DSSP_3.html
https://swift.cmbi.umcn.nl/gv/dssp/DSSP_3.html
https://github.com/a-r-j/graphein

prior to training and inference. Important commonalities and con-
siderations in preparing a dataset are highlighted in this section. A
schematic overview of a standard preparation procedure is shown in
Fig. 2.

3.1.1 Curation First, a set of protein structures or sequences with protein–protein
interaction binding site annotations is required. Some of the avail-
able processed and raw sources for such data are discussed in
Subheading 2.2.

3.1.2 Train-Test Split

Strategies

Data should be split into training, validation, and testing data.
Training data are used to iteratively train the parameters of the
model while validation data and testing data are used to evaluate
model performance for hyperparameter selection and final evalua-
tion, respectively. The proportions 80/10/10 are commonly used
for training/validation/testing data. The experimenter can make a
number of choices with respect to splitting data. The most obvious
and straightforward solution is to split the data randomly. How-
ever, this can produce misleading results if related sequences are
over-represented in the data compared to true protein space. Fur-
thermore, highly similar training and testing examples may reward
predictions based on homology, rather than learning the data-
generating function. Both of these scenarios violate the indepen-
dent and identically distributed (i.i.d.) assumption, where one
assumes that the training and test data are drawn from the same
underlying joint distribution. In developing a model, one is inter-
ested in performing predictions on novel protein structures that
may lie outside of this distribution (ideally a dataset with a repre-
sentative distribution is constructed), and so a practitioner wishes
to examine the generalization of the model, i.e., the extent to which
the model can make accurate predictions on unseen data, indicating
learning of the underlying physical process, rather than memoriza-
tion of the input data points. Thus, a good test set should contain a
set of protein structures distinct from the structures the model was
trained on. However, the exact manner by which one can achieve
this depends on the application domain. For instance, if the experi-
menter is looking to build a model that is specific to predicting
interaction sites on, say, kinases, then a random partitioning of the
data could be considered valid given a sufficiently large and diverse
dataset of annotated kinase structures.

While often used, splitting should not be performed on the
basis of clustering by sequence similarity (e.g., using tools such as
BLAST [74, 75]) or thresholding by sequence similarity. Instead,
the experimenter should make use of resources such as SCOP [76]
(http://scop.mrc-lmb.cam.ac.uk) or CATH [77] (https://www.
cathdb.info) to obtain information about related structures in
order to prevent leaking data from the training set into the test
set in the form of structural homologs. This is important as

Deep Learning for PPI Sites 271

http://scop.mrc-lmb.cam.ac.uk
https://www.cathdb.info
https://www.cathdb.info

sequences with 35–40% sequence similarity are highly likely to
adopt similar structural folds [78, 79]. Furthermore, structural
similarity has been found between proteins with sequence similarity
in the 8–30% range [80]. However, many PPIs are mediated at the
domain level, and similarity at this level is not captured by simplistic
sequence similarity scores. These can be thought of as structurally
and somewhat evolutionarily independent subunits. Thus, more
nuanced data partitioning based on knowledge-based annotation
databases should be standard practice in developing a well-
principled project. It should be noted that this presents a much
more challenging, but more representative, task for a classifier and
obtaining good predictive performance will be difficult but more
widely applicable.

3.1.3 Representation Protein structures are not data structures and there is a large
amount of flexibility available to the practitioner in deciding how
to represent them. Some common choices are outlined in Table 1.
As discussed previously, the choice of representation is central to
designing a machine learning project. It informs the choice of
architecture and techniques available to the experimenter.

Table 1
Summary of different choices of representations for protein structures

Representation Model Pros Cons

Sequence RNN
LSTM
CNN
GRU

Large quantities of protein
sequence data available

Handles inputs of varying
sizes

Pre-trained sequence-based
language models for
producing embeddings

Poor structural signal

Grid 3DCNN Have shown strong
performance on structural
tasks [81–85]

Do not effectively handle inputs of varying
sizes

Not rotationally invariant
Computationally expensive. Studies
typically limit the inputs to voxels
containing only the area of interest

Require structural data

Graph GNN Representation captures the
internal chemistry of the
protein

Handles inputs of varying
sizes

Large number of possible
construction schemes

Require structural data

272 Arian R. Jamasb et al.

A good representation will infuse the model with a strong
inductive bias. An inductive bias allows a model to prioritize one
solution to a problem over another and can express assumptions
about the underlying data-generating process or the solution space
[86]. For instance, it makes sense to perform 1D convolutions over
protein sequences and 3D convolutions over grid-structured repre-
sentations of protein structures as the spatial components of the
convolutions are meaningful and valid. Meaningful inductive biases
in the case of PPI site prediction may include the ability to account
for both long- and short-range interactions between constituent
amino acids. For instance, residues that are distant from one
another in the sequence may be found in the same interaction
interface.

The choice of representation also affects the applicability of the
trained model. For instance, a model trained using a sequence-
based representation will be able to perform predictions on unseen
sequences. However, a model trained on a representation derived
from crystal structures will require crystal structures in order to
make predictions after training (learning using privileged informa-
tion offers a framework in which both sequences and structures can
be leveraged during training while allowing for sequence-based
predictions during inference. See Subheading 4). The desired use
case is therefore an important consideration in the choice of repre-
sentation and should be balanced with the availability of data and
relevant inductive biases in the decision-making process.

3.1.4 Input Features Featurization of the input data can be performed using various
stand-alone programmatic bioinformatics tools and web servers
according to the representation selected by the experimenter. A
non-exhaustive collection of these is highlighted in Subheading
2.3.

3.1.5 Pre-processing Data and labels used in a machine learning model should be scaled
to enable efficient training (see Note 3). Training features and real-
valued labels should be pre-processed using a standard scaler (i.e.,
zero mean and unit variance). This training scaling transformation
should be kept and applied to any validation or test data used. It is
important to note that the scaling is performed on the training
data, and this same transformation is applied to the validation and
test sets, rather than scaling each dataset independently. This step is
performed to ensure that different features with different scales are
standardized to prevent the accumulation of large spread of weights
in the network. Large weights are often unstable, as they may
produce large gradient values, causing large updates to the net-
work, or result in dead neurons in the network (see Note 8).
Alternative pre-processing techniques for numeric features can
include min-max scaling and transformations, such as

Deep Learning for PPI Sites 273

log-transforming features that range across many orders of magni-
tude. Categorical and ordinal features should be numerically
encoded, e.g., through one-hot encoding.

3.2 Model Evaluation

3.2.1 Hyperparameter

Tuning

The goal during training is to minimize a loss function by iteratively
updating the model parameters (see Note 4). During each training
epoch, the model is presented with mini-batches, subsets of the
training data, in between which weights are updated (see Note 5).

Deep learning models are themselves described by hyperpara-
meters, which describe the various aspects of the model architecture
and the training regime. The set of all possible hyperparameters
forms a space, from which the objective is to approximate the
combination of hyperparameters that lead to the best predictive
performance at test time (see Note 6). A selection of common
hyperparameters and commonly used values is described in
Table 2. It should be noted that different architectures have addi-
tional hyperparameters associated with them. For instance,
CNN-based models should include convolution filter sizes,
padding, stride length, and pooling types; graph-based methods
will have hyperparameters such as the aggregation and readout
functions; sequence-based architectures have hyperparameters
such as the embedding dimension. Furthermore, some hyperpara-
meter choices have additional hyperparameters associated with
them, such as the momentum term used in Adam optimization.

3.2.2 Evaluation Metrics In order to determine the optimal set of hyperparameters, practi-
tioners are required to make comparisons betweenmodels and their
performance. When is a model considered better than another?
What is considered to be the key measure of performance? These
questions fall into the categories of model assessment and selection.

Ideally, the true error of the classifier is approximated. Broadly
speaking, there are two methods for approximating this and evalu-
ating the performance of a model: Cross-Validation (CV) based
methods and using training/validation/testing data splits. Within
CV, there are two main paradigms to consider. The first is k-fold
CV, where the data are split into k segments and train on k � 1 of
the folds, assessing the performance on the left-out fold. This is
performed k times and the errors averaged, to assess the model. The
second paradigm is leave-one-out-cross-validation (LOOCV),
which is a special case ofK-fold CV, whereK¼ n (the total number
of examples in the dataset.). Using CV-based methods for evaluat-
ing deep learningmodels can be difficult in practice, due to the high
computational and time requirements associated with model train-
ing. Training/Validation/Test data splits are useful compromises,
where the data are partitioned into three sets. The model is trained
on the training data, the hyperparameters are tuned using the
performance on the validation data as a guide, and the final

274 Arian R. Jamasb et al.

assessment of the model is carried out on the test data. It is
important to prevent leakage of information between the sets
(e.g., having very similar training and testing examples, discussed
in Subheading 3.1.2) as this prevents accurate model assessment.

Table 2
Common hyperparameters found across neural network architectures with commonly used choices
or ranges

Hyperparameter Type Scope Description

Architecture

Loss function Categorical {Cross entropy, Hinge,
MSE Ordinal}

The loss function measures the prediction
error associated with the current state of
the model. This function is minimized by
the optimizer during training

Layer width Integer 0 <. Typically [8–1024] The number of hidden units in a given layer

Activation
functions

Categorical {Sigmoid, tanh, ReLU} Non-linear functions applied to the output
of hidden units

Model depth Integer [1–100] The number of layers in the model

Weight
initialization

Categorical {Zero, Random, Xavier
[87]}

Controls the starting values of the model
weights

Dropout Float 0 < d < 1. In practice, {0,
0.25, 0.5, 0.75} are
common choices

Dropout is a regularization technique
where some hidden units in a layer are
“switched off” with some probability
during each training epoch

Regularization Categorical {L1, L2} Regularization adds a penalty to the loss
function that penalizes large weights

Training

Learning rate Float [1e-5–1] Controls how strongly a network updates
its weights by scaling the error gradients.
See Note 4

Learning rate
schedule

Categorical Constant, cyclic, decay Controls adjustment of the learning rate
throughout training

Batch size Integer [8, 16, 32, 64, 128, 256] The number of training examples presented
to the network between each weight
update

Batch
normalization

Boolean {True, False} Controls whether each training batch is
normalized

Optimizer Categorical SGD, ADAM, rmsprop Optimizers update the network weights to
minimize the loss function

Epochs Integer [0–1000] The number of times the training dataset is
presented to the network during training

Some hyperparameter choices will have additional hyperparameters associated with them. This table is not exhaustive and
does not include architecture-specific hyperparameters

Deep Learning for PPI Sites 275

Furthermore, hyperparameters should only be tuned on the basis of
training and validation performance; hyperparameter tuning on the
test set performance is another form of leakage.

To understand and evaluate model performance, a selection of
classification metrics should be examined. To begin, consider the
possible outcomes of a prediction with respect to its true label.
Table 3 is known as a confusion matrix and the relevant metrics
discussed below are dependent on the desire types of classification
correctness. It is important to note that PPI site prediction is an
imbalanced classification problem: positive and negative labels do
not occur at similar rates in the data (see Note 2). Thus, simple
metrics, like the fraction of correct predictions, are inappropriate as
the null predictor (a model that predicts 0 for each output) would
score according to the frequency of inactive residues in the
sequence data. Thus, a rigorous evaluation would leverage an
ensemble of metrics to assess a model and understand its perfor-
mance on each of prediction classes outlined in the confusion
matrix. These are presented in the definitions below (Fig. 3). Read-
ers should note there are a number of ways of computing these
scores, e.g., on a per-residue or per-protein basis (see Note 7).

Table 3
Confusion matrix displaying possible classification outcomes

True labels

Y N

Predicted labels Y True positive (TP) False positive (FP)
N False negative (FN) True negative (TN)

Fig. 3 Illustration of classification error types

276 Arian R. Jamasb et al.

Sensitivity This is equivalent to the fraction of correctly identified
interaction sites. This is also referred to as recall or the true positive
rate (TPR).

Sensitivity ¼ TP
TPþ FN

False-Positive Rate (FPR) This is the fraction of negative sites
wrongly classified as positive over the total number of negative sites.

FPR ¼ FP
FPþ TN

Specificity This is equivalent to the fraction of correctly classified
non-interacting sites out of all the non-interacting sites.

Specificity ¼ TN
TNþ FP

Precision This is equivalent to the fraction of correctly classified
interactions sites out of all interaction sites.

Precision ¼ TP
TPþ FP

Accuracy This is equivalent to the fraction of correctly predicted
interacting and non-interacting sites.

Accuracy ¼ TPþ TN
TPþ FNþ TNþ FP

ROC and AUC The Receiver-Operator Characteristic curve
(ROC) plots the TPR vs FPR at different classification thresholds.
The Area Under the ROC Curve (AUC) gives a measure of perfor-
mance across classification thresholds from 0 to 1.

F1 Score This is the harmonic mean of the precision and the sensi-
tivity and ranges between 0 and 1, where one indicates perfect preci-
sion and recall.

F1 ¼ 2� Sensitivity � Precision
Sensitivity þ Precision

Matthew’s Correlation Coefficient (MCC) This measure ranges
between �1 and 1. A high score is only achievable if a binary classifier
performs well in all the metrics in the confusion matrix. It has the
advantage of being robust to class-imbalanced datasets and provides
the most truthful measure of classifier performance [88]. Therefore,
obtaining a strong score with this metric will be the most challenging
of the metrics outlined here, and should form the basis for assessing the
performance of a protein–protein interaction site-prediction classifier.

MCC ¼ TP� TN� FN� FPffi
TPþ FNð Þ � TPþ FNð Þ � TNþ FPð Þ � TNþ FNð Þp

Deep Learning for PPI Sites 277

3.2.3 Overfitting In the development process, it is important to report metrics for
both the training and validation datasets in order to identify over-
fitting. Overfitting arises from a combination of data scarcity and a
model that is too flexible, resulting in “memorization” of the
training data, rather than learning of the underlying process. Tech-
niques for countering overfitting include adding regularization
penalties to the loss function, using dropout or reducing the capac-
ity of the model (e.g., restricting depth or the size of the hidden
layers). See Note 8 for more details regarding regularization
techniques.

3.2.4 Attribution Most machine learning and deep learning methods are black-box
predictors that do not allow for a clear and interpretable examina-
tion of the relationship between the input features and the output
classification of the predictor. However, there are techniques that
allow for some exploration of this relationship, such as gradient
attribution methods [89] and attention mechanisms (Subheading
4) through visualization of the attention weights.

3.3 Alternative

Training Regimes

for Future Model

Development

Deep learning has demonstrated excellent performance in a variety
of tasks within computational biology, and indeed computational
structural biology. Supervised deep learning involves training with
data an artificial neural network that learns to perform regression or
classification tasks. The training process involves iteratively tuning
the weights of a series of feedforward feature-extracting layers.
These layers learn hierarchical features based on their inputs, such
that deeper layers in the network learn higher-order features as a
composition of earlier layers. Such methods have already been
applied successfully to PPI site prediction. While this has resulted
in impressive performance gains, PPI site prediction is far from a
solved problem and the utility of a highly-performant predictor
demands further development in this area. This requires improve-
ments in both training and benchmark dataset quality, as well as in
the modeling process. In this section, alternate training regimes
that may provide utility for researchers interested in furthering
future model development in this field are highlighted.

3.3.1 Multi-modal Input Combining additional data modalities has proven useful in PPI site
prediction. For instance, Zeng et al. [33] make use of a combina-
tion of local and global sequence based features for their predictor.
Local features are captured using a sliding window over the amino
acid sequence, and global features through the use of a text CNN,
and their contributions validated through feature-ablation studies.
When utilizing multiple data modalities, the question arises as to
whether these features should be fused early or late in the model
architecture and whether they require individual input encoders to
extract features. Furthermore, the correspondence of the modal-
ities should be taken into account, e.g., is each training example

278 Arian R. Jamasb et al.

presented as a tuple xi, xj or is the second modality repeated across
certain examples. Feature ablation studies are useful to understand
the relevant contributions of each modality (see Note 9).

3.3.2 Transfer Learning Transfer learning involves training a model on a similar task, which
can then be fine-tuned to the primary task. Such fine tuning typi-
cally involves replacing or adding to the latter layers of the model
and re-training on the primary dataset. The intuition here is that
the earlier layers of the model have learned useful representations
relevant to the task and can thus help improve performance and
speed up convergence. Practitioners using such a strategy may
consider whether or not to freeze the weights of the pre-trained
layers during the fine-tuning procedure and conceive of the
pre-trained layers as fixed feature extractors.

3.3.3 Multi-task Learning Multi-task learning (MTL) involves training a predictor onmultiple
related tasks simultaneously, typically optimizing using additional
auxiliary losses with the goal of improving predictive performance
or generalization. The intuition underlying this is that the related
tasks contain related training signals that are useful to the model to
better learn the main task through inductive transfer. For instance,
in the case of PPI site prediction, Zhang et al. make use of a multi-
task framework to jointly predict interaction sites and solvent-
accessible residues as only solvent-accessible residues are capable
of interacting with another protein and identify this as an effective
strategy in countering the class-imbalance problem [34]. Further
model development leveraging multi-task learning may like to
examine joint prediction of PPI sites and nucleic acid or small
molecule binding sites, an approach developed by [21] to address
cross-prediction of these sites.

3.3.4 Learning Using

Privileged Information

Learning Using Privileged Information (LUPI) is an approach
where a model is trained on multiple sources of data, but evaluated
and deployed on examples where some of these data sources are
unavailable [90]. Formally, training examples are presented as tri-
ples xi, x∗i , yi

� �
(instead of tuples (xi, yi) in the classical case), where

x∗i is the additional information for training example xi and yi is the
corresponding label. For instance, a LUPI approach to PPI site
prediction could involve training a model on protein structures and
sequences, where available, which is then evaluated on and
deployed to predict interaction sites from sequences alone. Such
an approach has been developed for sequence-based protein-ligand
binding affinity prediction, to produce results comparable to
structure-based approaches [91]. LUPI presents an attractive
framework in which multiple data modalities can be used without
requiring complete coverage for all the examples; this is especially
relevant in the context of biological datasets which are often

Deep Learning for PPI Sites 279

fragmented in this respect as they are typically collected without a
strategy amenable to machine learning projects in mind.

3.3.5 Uncertainty

Modeling and Active

Learning

Modeling of uncertainty is of vital importance in computational
biology. In data-limited scenarios, as is often the case in computa-
tional structural biology, uncertainty modeling can avoid over-
confident predictions and enable judicious exploration of space
outside of the training distribution [92, 93]. Uncertainties are
especially vital in experimental contexts where the acquisition of
additional data points is slow, arduous or expensive, as they can
allow the experimenter to prioritize hypotheses with a high likeli-
hood of success or experiments of potential greater novelty and
higher associated risk [94]. Furthermore, uncertainty modeling
opens the possibility for active learning loops, where further explor-
atory and validation experiments can be prioritized using the model
and an associated acquisition function, and the new data
incorporated into the model iteratively to explore increasingly dis-
tant regions of biological space [95].

Acquisition functions are used to propose which examples in
the search space should be considered next by a model. These
functions are typically inexpensive to evaluate, and examples
include greedy approaches, where data points with the highest
predicted response are prioritized, variance-based, where data
points with the highest-associated prediction variance are priori-
tized or expected improvement based methods. Other commonly
used acquisition functions include Upper Confidence Bound
(UCB) and Maximum Probability of Improvement (MPI).

3.3.6 Attention

Mechanisms

Attention mechanisms allow models to apply learnable weights to
subsets of their inputs, depending on their perceived importance.
Co-attention is a mechanism useful in multi-input models, which
allows the attention on each input to be conditional on the other
input. For instance, when designing a model to predict PPI sites
between two proteins, co-attention mechanisms may allow the
model to attend to more relevant parts of each protein in a manner
specific to that particular interaction. When presenting one of these
proteins with a different interaction partner, the model may attend
to different parts of the proteins if the interaction occurs in a
different region. Attention mechanisms have successfully been
applied to paratope prediction [96].

3.3.7 Ensembling Ensemble models involve constructing multiple models to perform
predictions on the same input. The final prediction then results
from some form of averaging of all of the individual model predic-
tions. This can take the form of voting (e.g., as in Random Forests),
averaging or by training another model that takes these predictions
as inputs. It is often recommended to ensemble models with differ-
ent architectures as each will have different biases and therefore

280 Arian R. Jamasb et al.

make different mistakes, making the ensemble model more robust
and more beneficial. It is possible to ensemble models of the same
architecture, e.g., through snapshot ensembling [97], where
“snapshots” of the weights are taken throughout the training of a
single model and ensembled to create the final predictor. These
approaches can be thought of as ensembling in model space, as
several models are constructed and ensembled. This can be com-
putationally costly, due to the requirements of constructing multi-
ple models during training and performing several predictions
during inference. Ensembling methods have previously been
applied to PPI site prediction [98]. Weight averaging is another
ensembling technique that can be considered ensembling in weight
space as the procedure results in a singular model.

4 Notes

1. Graphs,G¼ (V,E,Xv,Xe), are structures used to model objects
consisting of a set of nodes (or vertices), vi ∈ V. with, typically,
pairwise relations, ei, j ¼ (vi, vj) ∈ E, between them such that
E � V � V. Node features, Xv ∈ ℝ|V| � d; xvi∈ℝd , are the
d features associated with node vi. Similarly, edge features,
Xe ∈ ℝ|E| � c and xei,j ¼ xevi ,v j

∈ℝc are the c features associated
with edge xevi ,v j

. Protein structures can be represented as graphs
of residues joined by intramolecular interactions or some
distance-based criteria, such as thresholding of Euclidean dis-
tance or on the basis of K nearest neighbor clustering of dis-
tances. Protein structure graphs have been used in
computational biology for prediction of protein–protein inter-
action interfaces [38] and protein structural classification
[41]. One can distinguish between geometric deep learning
methods, which operate directly on the graph structure, and
machine learning applied to graph-based features. For instance,
graph-based signatures have proved effective in a variety of
applications relating to the impact of mutations on protein
interactions [99, 100]. However, recent developments in
graph representation learning offer the potential to exploit
the relational structure of the data as an inductive bias in the
model.

In this problem-setting, PPI site prediction becomes a node
classification task, where the objective is to predict a binary
label, by∈ 0, 1f g , for each amino acid in the structure graph,
indicating whether or not it partakes in a protein–protein
interaction. In order to do this, graphs are enriched with
information about the protein structure in the form of node
and edge features. These features provide the basis for comput-
ing the message passing signals in the model to exploit the

Deep Learning for PPI Sites 281

relational structure present in the data. Node features can take
the form of an encoding of the amino acid residue type, sec-
ondary structure information, surface accessibility metrics, car-
tesian coordinates of centroid position and PSSMs. Additional
features highlighted in Subheading 2.3 can be computed and
used to enhance the modeling by practitioners. Edge features
can be used to specify the intramolecular interaction type or
Euclidean distance between two adjacent nodes. The authors
have developed an example of this type of approach using
Message Passing Neural Processes [36].

2. Protein–protein interaction data and site annotations are
heavily class-imbalanced as negative results are not often
reported or collated. Tools such as SMOTE [101], class
weighting techniques, or loss functions that account for this
can be used [34].

3. It is typically best to perform some normalization/scaling on
input features. The intuition for this can be to ensure equal
contribution from each predictor to the model. However, one
should be careful when scaling quantities measured in the same
units and whether it makes sense to normalize some features
at all.

4. Learnable parameters in the model are iteratively tuned during
training by backpropagating computed error gradients. Various
optimization techniques for this procedure exist such as Sto-
chastic Gradient Descent (SGD) and Adam [102]. The optimi-
zation technique is itself a hyperparameter of the architecture,
and there may be additional hyperparameters associated with it,
such as the learning rate. The learning rate is a small positive
value (typically [0, 1]), and can be thought of controlling the
“speed” at which a model learns by scaling the size of the
weight updates in response to the computed error gradient.
Large learning rates typically allow for fast learning, at the cost
of potentially resulting in a sub-optimal set of weights. Smaller
values will require more epochs to train but may improve the
final set of weights by finding better quality minima. The
learning rate is often considered to be the most important
hyperparameter to tune [103]. Typical starting points are
0.001, 0.01, or 0.1. Learning rate schedulers can be used to
vary the learning rate over training time. A fuller discussion of
optimization techniques can be found in [104].

5. Training data should be shuffled between training epochs in
order to reduce variance and reduce overfitting. Imagine a
dataset where the examples are ordered by class. When a mini-
batch is selected from this dataset, it is desirable that the mini-
batch is representative of the true dataset in order to estimate
the true error gradient. If the dataset is ordered in some man-
ner, this is not achieved. In the context of regular SGD,

282 Arian R. Jamasb et al.

shuffling is beneficial as it ensures each example produces an
independent change in the model that is not biased by ordering
artifacts.

6. Deep learning models have many learnable parameters within
the model, whereas the architecture as a whole is determined by
hyperparameters. Non-exhaustively, these include the number
of epochs, the size and depth of the layers, the size of each
training batch, and the learning rate. These hyperparameters
form a search space that must be traversed to produce a per-
formant predictor. Various strategies for this include: random
search [105], grid search and Bayesian optimization
techniques [106].

7. When calculating evaluation metrics for predictions, the practi-
tioner is left with the question of whether to compute the
metrics for each protein and average them (micro-averaging)
or to compute the metrics across all the individual amino acid
predictions in the dataset (macro averaging). While macro
results are typically reported in the literature, it is recom-
mended to monitor both during development in order to
gain a fuller understanding of the model. For instance, this
will allow for better understanding the effect of protein size
on performance.

8. Overfitting occurs when the model too closely fits the training
data and generalizes to unseen data points poorly. This can be
observed by comparing the performance on the training and
validation datasets. A variety of techniques is available for com-
batting overfitting. Early stopping involves monitoring the
validation loss during hyperparameter tuning and stopping
the training process if the loss starts to increase. As this can
fluctuate, a patience hyperparameter can be used where training
is allowed to continue for a number of subsequent epochs and
halted if no improvement is seen. Regularization is a family of
techniques that includes adding penalties to the loss function
based on the size of the model weights. Large weights can
result in large updates to the network, a phenomenon known
as exploding gradients, which can result in “dead” neurons,
whereby they are shifted away from the training manifold.
Dropout is another technique, where subsets of neurons are
“switched off” randomly during each training epoch to encour-
age learning distributed internal representations and prevent
over-reliance on individual neurons.

9. Feature ablation studies involve training a model on restricted
subsets of the available features in order to interrogate their
usefulness and contribution to the final model performance.
This can also be used to perform feature selection. Due to the
curse of dimensionality (where the dimensionality of the

Deep Learning for PPI Sites 283

predictors is greater than n, the number of training examples)
which results in the training data space being very sparse,
identifying highly predictive features is important to improve
prediction accuracy and reduce overfitting to the training data.

Acknowledgments

ARJ is supported by a BBSRC DTP studentship. CC is funded by
DREAMCDT. TLB thanks the Wellcome Trust for an Investigator
Award (200814/Z/16/Z; 2016 -) for support of this research.

References

1. Zhang C, Freddolino PL, Zhang Y (2017)
COFACTOR: improved protein function
prediction by combining structure, sequence
and protein–protein interaction information.
Nucleic Acids Res 45(W1):W291–W299.
https://doi.org/10.1093/nar/gkx366

2. Jubb H, Higueruelo AP, Winter A et al
(2012) Structural biology and drug discovery
for protein–protein interactions. Trends Phar-
macol Sci 33(5):241–248. https://doi.org/
10.1016/j.tips.2012.03.006

3. Ito T, Chiba T, Ozawa R et al (2001) A
comprehensive two-hybrid analysis to explore
the yeast protein interactome. Proc Natl Acad
Sci U S A 98:4569–4574

4. Gavin A-C, Bösche M, Krause R et al (2002)
Functional organization of the yeast prote-
ome by systematic analysis of protein com-
plexes. Nature 415:141–147

5. Rigaut G, Shevchenko A, Rutz B et al (1999)
A generic protein purification method for
protein complex characterization and prote-
ome exploration. Nat Biotechnol
17:1030–1032

6. Zhu H, Bilgin M, Bangham R et al (2001)
Global analysis of protein activities using pro-
teome chips. Science 293:2101–2105

7. Shoemaker BA, Panchenko AR (2007) Deci-
phering protein–protein interactions. Part
I. Experimental techniques and databases.
PLoS Comput Biol 3(3):e42. https://doi.
org/10.1371/journal.pcbi.0030042

8. von Mering C, Krause R, Snel B et al (2002)
Comparative assessment of large-scale data
sets of protein-protein interactions. Nature
417:399–403

9. Yang J, Roy A, Zhang Y (2013) BioLiP: a
semi-manually curated database for biologi-
cally relevant ligand-protein interactions.
Nucleic Acids Res 41:D1096–D1103

10. Schaefer MH, Serrano L, Andrade-Navarro
MA (2015) Correcting for the study bias asso-
ciated with protein–protein interaction mea-
surements reveals differences between protein
degree distributions from different cancer
types. Front Genet 6:260. https://doi.org/
10.3389/fgene.2015.00260

11. Hou Q, Lensink MF, Heringa J et al (2016)
CLUB-MARTINI: selecting favourable inter-
actions amongst available candidates, a
coarse-grained simulation approach to scor-
ing docking decoys. PLoS One 11:e0155251

12. Hoskins J, Lovell S, Blundell TL (2006) An
algorithm for predicting protein-protein
interaction sites: abnormally exposed amino
acid residues and secondary structure ele-
ments. Protein Sci 15:1017–1029

13. Cumberworth A, Lamour G, Babu MM et al
(2013) Promiscuity as a functional trait:
intrinsically disordered regions as central
players of interactomes. Biochem J
454:361–369

14. Altschul SF, Madden TL, Sch€affer AA et al
(1997) Gapped BLAST and PSI-BLAST: a
new generation of protein database search
programs. Nucleic Acids Res 25:3389–3402

15. Katoh K, Misawa K, Kuma K-I et al (2002)
MAFFT: a novel method for rapid multiple
sequence alignment based on fast Fourier
transform. Nucleic Acids Res 30:3059–3066

16. Krogh A, Larsson B, von Heijne G et al
(2001) Predicting transmembrane protein
topology with a hidden Markov model: appli-
cation to complete genomes. J Mol Biol
305:567–580

17. Krissinel E, Henrick K (2007) Inference of
macromolecular assemblies from crystalline
state. J Mol Biol 372:774–797

284 Arian R. Jamasb et al.

https://doi.org/10.1093/nar/gkx366
https://doi.org/10.1016/j.tips.2012.03.006
https://doi.org/10.1016/j.tips.2012.03.006
https://doi.org/10.1371/journal.pcbi.0030042
https://doi.org/10.1371/journal.pcbi.0030042
https://doi.org/10.3389/fgene.2015.00260
https://doi.org/10.3389/fgene.2015.00260

18. Krissinel E (2012) Enhanced fold recognition
using efficient short fragment clustering. J
Mol Biochem 1:76–85

19. Davis IW, Leaver-Fay A, Chen VB et al (2007)
MolProbity: all-atom contacts and structure
validation for proteins and nucleic acids.
Nucleic Acids Res 35:W375–W383

20. Sali A, Blundell TL (1993) Comparative pro-
tein modelling by satisfaction of spatial
restraints. J Mol Biol 234:779–815

21. Zhang J, Kurgan L (2019) SCRIBER: accu-
rate and partner type-specific prediction of
protein-binding residues from proteins
sequences. Bioinformatics 35:i343–i353

22. Murakami Y, Mizuguchi K (2010) Applying
the Naı̈ve Bayes classifier with kernel density
estimation to the prediction of protein–pro-
tein interaction sites. Bioinformatics 26
(15):1841–1848. https://doi.org/10.1093/
bioinformatics/btq302

23. Li N, Sun Z, Jiang F (2008) Prediction of
protein-protein binding site by using core
interface residue and support vector machine.
BMC Bioinformatics 9:553

24. Sriwastava BK, Basu S, Maulik U (2015) Pro-
tein–protein interaction site prediction in
Homo sapiens and E. coli using an
interaction-affinity based membership func-
tion in fuzzy SVM. J Biosci 40(4):809–818.
https://doi.org/10.1007/s12038-015-
9564-y

25. Yan C, Dobbs D, Honavar V (2004) A
two-stage classifier for identification of
protein-protein interface residues. Bioinfor-
matics 20(Suppl 1):i371–i378

26. Hou Q, De Geest PFG, Vranken WF et al
(2017) Seeing the trees through the forest:
sequence-based homo- and heteromeric
protein-protein interaction sites prediction
using random forest. Bioinformatics
33:1479–1487

27. Northey TC, Barešić A, Martin ACR (2018)
IntPred: a structure-based predictor of pro-
tein–protein interaction sites. Bioinformatics
34(2):223–229. https://doi.org/10.1093/
bioinformatics/btx585

28. Wang X, Yu B, Ma A et al (2019) Protein–-
protein interaction sites prediction by ensem-
ble random forests with synthetic minority
oversampling technique. Bioinformatics 35
(14):2395–2402. https://doi.org/10.1093/
bioinformatics/bty995

29. Chen H, Zhou H-X (2005) Prediction of
interface residues in protein-protein com-
plexes by a consensus neural network method:
test against NMR data. Proteins 61:21–35

30. Fariselli P, Pazos F, Valencia A et al (2002)
Prediction of protein-protein interaction sites
in heterocomplexes with neural networks. Eur
J Biochem 269:1356–1361

31. Ofran Y, Rost B (2003) Predicted protein-
protein interaction sites from local sequence
information. FEBS Lett 544:236–239

32. Porollo A, Meller J (2007) Prediction-based
fingerprints of protein-protein interactions.
Proteins 66:630–645

33. Zeng M, Zhang F, Wu F-X et al (2020)
Protein-protein interaction site prediction
through combining local and global features
with deep neural networks. Bioinformatics
36:1114–1120

34. Zhang B, Li J, Quan L et al (2019) Sequence-
based prediction of protein-protein interac-
tion sites by simplified long short-term mem-
ory network. Neurocomputing 357. https://
doi.org/10.1016/j.neucom.2019.05.013

35. Li Y, Golding GB, Ilie L (2020) DELPHI:
accurate deep ensemble model for protein
interaction sites prediction. Bioinformatics
btaa750. https://doi.org/10.1101/2020.
01.31.929570. https://academic.oup.com/
bioinformatics/advance-article-abstract/
doi/10.1093/bioinformatics/btaa750/
5896983

36. Day B, Cangea C, Jamasb AR, Lió P (2020)
Message passing neural processes. https://
arxiv.org/abs/2009.13895

37. Gainza P, Sverrisson F, Monti F et al (2020)
Deciphering interaction fingerprints from
protein molecular surfaces using geometric
deep learning. Nat Methods 17:184–192

38. Fout A, Byrd J, Shariat B et al (2017) Protein
interface prediction using graph convolu-
tional networks. In: Proceedings of the 31st
international conference on neural informa-
tion processing systems. Curran Associates
Inc., Red Hook, NY, pp 6533–6542

39. Sanyal S, Anishchenko I, Dagar A et al (2020)
ProteinGCN: protein model quality assess-
ment using graph convolutional networks.
Bioinformatics btaa714. https://www.
biorxiv.org/content/10.1101/2020.04.06.
028266v1

40. Torng W, Altman RB (2019) Graph convolu-
tional neural networks for predicting drug-
target interactions. J Chem Inf Model
59:4131–4149

41. Zamora-Resendiz R, Crivelli S (2019) Struc-
tural learning of proteins using graph convo-
lutional neural networks. https://doi.org/10.
1101/610444

42. Spalević S, Veličković P, Kovačević JNikolić M
(2020) Hierarchical protein function

Deep Learning for PPI Sites 285

https://doi.org/10.1093/bioinformatics/btq302
https://doi.org/10.1093/bioinformatics/btq302
https://doi.org/10.1007/s12038-015-9564-y
https://doi.org/10.1007/s12038-015-9564-y
https://doi.org/10.1093/bioinformatics/btx585
https://doi.org/10.1093/bioinformatics/btx585
https://doi.org/10.1093/bioinformatics/bty995
https://doi.org/10.1093/bioinformatics/bty995
https://doi.org/10.1016/j.neucom.2019.05.013
https://doi.org/10.1016/j.neucom.2019.05.013
https://doi.org/10.1101/2020.01.31.929570
https://doi.org/10.1101/2020.01.31.929570
https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/btaa750/5896983
https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/btaa750/5896983
https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/btaa750/5896983
https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/btaa750/5896983
https://arxiv.org/abs/2009.13895
https://arxiv.org/abs/2009.13895
https://www.biorxiv.org/content/10.1101/2020.04.06.028266v1
https://www.biorxiv.org/content/10.1101/2020.04.06.028266v1
https://www.biorxiv.org/content/10.1101/2020.04.06.028266v1
https://doi.org/10.1101/610444
https://doi.org/10.1101/610444

prediction with tail-GNNs. https://arxiv.
org/abs/2007.12804

43. de Vries SJ, Bonvin AMJJ (2006) Intramolec-
ular surface contacts contain information
about protein-protein interface regions. Bio-
informatics 22:2094–2098

44. Martin J (2014) Benchmarking protein-
protein interface predictions: why you should
care about protein size. Proteins
82:1444–1452

45. Zhang J, Kurgan L (2018) Review and com-
parative assessment of sequence-based predic-
tors of protein-binding residues. Brief
Bioinform 19:821–837

46. Anaconda Software Distribution. Computer
software. Vers. 2-2.4.0. Anaconda, Nov
2016. https://www.anaconda.com/

47. Garreta R, Moncecchi G (2013) Learning
scikit-learn: machine learning in Python.
Packt Publishing Ltd, Birmingham

48. Paszke A, Gross S, Massa F et al (2019)
PyTorch: an imperative style, high-
performance deep learning library. In:
Wallach H, Larochelle H, Beygelzimer A
et al (eds) Advances in neural information
processing systems 32. Curran Associates
Inc, Red Hook, NY, pp 8026–8037

49. Abadi M, Agarwal A, Barham P Brevdo E,
Chen Z, Citro C, Corrado GS, Davis A,
Dean J, Devin M, Ghemawat S, Goodfellow
I, Harp A, Irving G, Isard M, Jia Y, Jozefo-
wicz R, Kaiser L, Kudlur M, Levenberg J,
Mane D, Monga R, Moore S, Murray D,
Olah C, Schuster M, Shlens J, Steiner B,
Sutskever I, Talwar K, Tucker P, Vanhoucke
V, Vasudevan V, Viegas F, Vinyals O, Warden
P, Wattenberg M, Wicke M, Yu Y, Zheng X
(2016) TensorFlow: large-scale machine
learning on heterogeneous distributed sys-
tems. http://tensorflow.org/

50. Al-Rfou R, Alain G, Almahairi A et al (2016)
Theano: a Python framework for fast compu-
tation of mathematical expressions. Comput
Sci. abs/1605.02688

51. Erickson BJ, Korfiatis P, Akkus Z et al (2017)
Toolkits and libraries for deep learning. J
Digit Imaging 30:400–405

52. Zhang J, Ma Z, Kurgan L (2019) Compre-
hensive review and empirical analysis of hall-
marks of DNA-, RNA- and protein-binding
residues in protein chains. Brief Bioinform
20:1250–1268

53. Hwang H, Pierce B, Mintseris J et al (2008)
Protein-protein docking benchmark version
3.0. Proteins 73:705–709

54. Dhole K, Singh G, Pai PP et al (2014)
Sequence-based prediction of protein–protein

interaction sites with L1-logreg classifier. J
Theor Biol 348:47–54. https://doi.org/10.
1016/j.jtbi.2014.01.028

55. Jones S, Thornton JM (1997) Prediction of
protein-protein interaction sites using patch
analysis. J Mol Biol 272:133–143

56. Li ZR, Lin HH, Han LY et al (2006) PRO-
FEAT: a web server for computing structural
and physicochemical features of proteins and
peptides from amino acid sequence. Nucleic
Acids Res 34:W32–W37

57. Zhang P, Tao L, Zeng X et al (2017) PRO-
FEAT update: a protein features web server
with added facility to compute network
descriptors for studying omics-derived net-
works. J Mol Biol 429:416–425

58. Cao D-S, Xu Q-S, Liang Y-Z (2013) Propy: a
tool to generate various modes of Chou’s
PseAAC. Bioinformatics 29(7):960–962.
https://doi.org/10.1093/bioinformatics/
btt072

59. Faraggi E, Zhou Y, Kloczkowski A (2014)
Accurate single-sequence prediction of sol-
vent accessible surface area using local and
global features. Proteins 82:3170–3176

60. Meiler J, Zeidler A, Schm€aschke F et al (2001)
Generation and evaluation of dimension-
reduced amino acid parameter representations
by artificial neural networks. J Mol Model
7:360–369. https://doi.org/10.1007/
s008940100038

61. Zimmermann L, Stephens A, Nam S-Z et al
(2018) A completely reimplemented MPI
bioinformatics toolkit with a new HHpred
server at its core. J Mol Biol 430:2237–2243

62. Remmert M, Biegert A, Hauser A et al (2012)
HHblits: lightning-fast iterative protein
sequence searching by HMM-HMM align-
ment. Nat Methods 9(2):173–175. https://
doi.org/10.1038/nmeth.1818

63. Henikoff S, Henikoff JG (1992) Amino acid
substitution matrices from protein blocks.
Proc Natl Acad Sci U S A 89:10915–10919

64. Li Y, Ilie L (2017) SPRINT: ultrafast protein-
protein interaction prediction of the entire
human interactome. BMC Bioinformatics
18:485

65. Dosztányi Z, Mészáros B, Simon I (2009)
ANCHOR: web server for predicting protein
binding regions in disordered proteins. Bioin-
formatics 25:2745–2746

66. Kyte J, Doolittle RF (1982) A simple method
for displaying the hydropathic character of a
protein. J Mol Biol 157:105–132

67. Asgari E, Mofrad MRK (2015) Continuous
distributed representation of biological

286 Arian R. Jamasb et al.

https://arxiv.org/abs/2007.12804
https://arxiv.org/abs/2007.12804
https://www.anaconda.com/
http://tensorflow.org/
https://doi.org/10.1016/j.jtbi.2014.01.028
https://doi.org/10.1016/j.jtbi.2014.01.028
https://doi.org/10.1093/bioinformatics/btt072
https://doi.org/10.1093/bioinformatics/btt072
https://doi.org/10.1007/s008940100038
https://doi.org/10.1007/s008940100038
https://doi.org/10.1038/nmeth.1818
https://doi.org/10.1038/nmeth.1818

sequences for deep proteomics and genomics.
PLoS One 10:e0141287

68. Alley EC, Khimulya G, Biswas S et al (2019)
Unified rational protein engineering with
sequence-based deep representation learning.
Nat Methods 16:1315–1322

69. Suzek BE, Wang Y, Huang H et al (2015)
UniRef clusters: a comprehensive and scalable
alternative for improving sequence similarity
searches. Bioinformatics 31:926–932

70. Rives A, Meier J, Sercu T , Goyal S, Lin Z, Liu
J, Guo D, Ott M, Zitnick CL, Ma J, Fergus R
(2021) Biological structure and function
emerge from scaling unsupervised learning
to 250 million protein sequences. Proc Natl
Acad Sci U S A 118(15):e2016239118.
https://doi.org/10.1073/pnas.
2016239118. https://www.pnas.org/con
tent/118/15/e2016239118. https://www.
biorxiv.org/content/10.1101/622803v3.
abstract

71. Joosten RP, te Beek TAH, Krieger E et al
(2011) A series of PDB related databases for
everyday needs. Nucleic Acids Res 39:
D411–D419

72. Kabsch W, Sander C (1983) Dictionary of
protein secondary structure: pattern recogni-
tion of hydrogen-bonded and geometrical
features. Biopolymers 22:2577–2637

73. Jamasb AR, Lió P, Blundell TL (2020) Gra-
phein—a Python library for geometric deep
learning and network analysis on protein
structures. https://www.biorxiv.org/con
tent/10.1101/2020.07.15.204701v1.
abstract

74. Armstrong DR, Berrisford JM, Conroy MJ
et al (2020) PDBe: improved findability of
macromolecular structure data in the PDB.
Nucleic Acids Res 48:D335–D343

75. Altschul SF, Gish W, Miller W et al (1990)
Basic local alignment search tool. J Mol Biol
215:403–410

76. Hubbard TJP, Ailey B, Brenner SE et al
(1999) SCOP: a structural classification of
proteins database. Nucleic Acids Res 28
(1):257–259. https://doi.org/10.1093/
nar/27.1.254

77. Orengo CA, Michie AD, Jones S et al (1997)
CATH—a hierarchic classification of protein
domain structures. Structure 5
(8):1093–1108. https://doi.org/10.1016/
s0969-2126(97)00260-8

78. Kinjo AR, Nishikawa K (2004) Eigenvalue
analysis of amino acid substitution matrices
reveals a sharp transition of the mode of
sequence conservation in proteins. Bioinfor-
matics 20:2504–2508

79. Rost B (1999) Twilight zone of protein
sequence alignments. Protein Eng 12
(2):85–94. https://doi.org/10.1093/pro
tein/12.2.85

80. Zhang B, Jaroszewski L, Rychlewski L et al
(1997) Similarities and differences between
nonhomologous proteins with similar folds:
evaluation of threading strategies. Fold Des
2:307–317

81. Torng W, Altman RB (2017) 3D deep con-
volutional neural networks for amino acid
environment similarity analysis. BMC Bioin-
formatics 18:302

82. Torng W, Altman RB (2019) High precision
protein functional site detection using 3D
convolutional neural networks. Bioinformat-
ics 35:1503–1512

83. Sato R, Ishida T (2019) Protein model accu-
racy estimation based on local structure qual-
ity assessment using 3D convolutional neural
network. PLoS One 14:e0221347

84. Jiménez J, Škalič M, Martı́nez-Rosell G et al
(2018) KDEEP: protein-ligand absolute
binding affinity prediction via
3D-convolutional neural networks. J Chem
Inf Model 58:287–296

85. Wallach I, Dzamba M, Heifets A (2015)
AtomNet: a deep convolutional neural net-
work for bioactivity prediction in structure-
based drug discovery. http://arxiv.org/abs/
1510.02855

86. Battaglia PW, Hamrick JB, Bapst V, Sanchez-
Gonzalez A, Zambaldi V, Malinowski M, Tac-
chetti A, Raposo D, Santoro A, Faulkner R,
Gulcehre C, Song F, Ballard A, Gilmer J, Dahl
G, Vaswani A, Allen K, Nash C, Langston V,
Dyer C, Heess N, Wierstra D, Kohli P, Botvi-
nick M, Vinyals O, Li Y, Pascanu R (2018)
Relational inductive biases, deep learning, and
graph networks. Front Artif Intell 4:618372

87. Glorot X, Bengio Y (2010) Understanding
the difficulty of training deep feedforward
neural networks

88. Chicco D, Jurman G (2020) The advantages
of the Matthews correlation coefficient
(MCC) over F1 score and accuracy in binary
classification evaluation. BMCGenomics 21:6

89. Ancona M, Ceolini E, Öztireli C, Gross M
(2019) Gradient-based attribution methods.
In: Samek W, Montavon G, Vedaldi A, Han-
sen LK, Müller K-R (eds) Explainable AI:
interpreting, explaining and visualizing deep
learning. Springer, Cham, pp 169–191.
ISBN: 978-3-030-28954-6. https://doi.
org/10.1007/978-3-030-28954-6_9

90. Vapnik V, Kotz S (2006) Estimation of depen-
dences based on empirical data: empirical

Deep Learning for PPI Sites 287

https://doi.org/10.1073/pnas.2016239118
https://doi.org/10.1073/pnas.2016239118
https://www.pnas.org/content/118/15/e2016239118
https://www.pnas.org/content/118/15/e2016239118
https://www.biorxiv.org/content/10.1101/622803v3.abstract
https://www.biorxiv.org/content/10.1101/622803v3.abstract
https://www.biorxiv.org/content/10.1101/622803v3.abstract
https://www.biorxiv.org/content/10.1101/2020.07.15.204701v1.abstract
https://www.biorxiv.org/content/10.1101/2020.07.15.204701v1.abstract
https://www.biorxiv.org/content/10.1101/2020.07.15.204701v1.abstract
https://doi.org/10.1093/nar/27.1.254
https://doi.org/10.1093/nar/27.1.254
https://doi.org/10.1016/s0969-2126(97)00260-8
https://doi.org/10.1016/s0969-2126(97)00260-8
https://doi.org/10.1093/protein/12.2.85
https://doi.org/10.1093/protein/12.2.85
http://arxiv.org/abs/1510.02855
http://arxiv.org/abs/1510.02855
https://doi.org/10.1007/978-3-030-28954-6_9
https://doi.org/10.1007/978-3-030-28954-6_9

inference science. Information science and
statistics. Springer, Berlin. ISBN:
0387308652. https://doi.org/10.1007/0-
387-34239-7

91. Abbasi WA, Asif A, Ben-Hur A et al (2018)
Learning protein binding affinity using
privileged information. BMC Bioinformatics
19:425

92. Chen I, Johansson FD, Sontag D (2018) Why
is my classifier discriminatory? https://arxiv.
org/abs/1805.12002

93. Amodei D, Olah C, Steinhardt J , Christiano
P, Schulman J, Mané D (2016) Concrete pro-
blems in AI safety . https://arxiv.org/abs/
1606.06565

94. Bernardo JM, Smith AFM (2009) Bayesian
theory. Wiley, Hoboken

95. Sverchkov Y, Craven M (2017) A review of
active learning approaches to experimental
design for uncovering biological networks.
PLoS Comput Biol 13:e1005466

96. Deac A, VeliČković P, Sormanni P (2019)
Attentive cross-modal paratope prediction. J
Comput Biol 26:536–545

97. Huang G, Li Y, Pleiss G, Liu Z, Hopcroft JE,
Weinberger KQ (2017) Snapshot ensembles:
train 1, get M for free. http://arxiv.org/abs/
1704.00109

98. Deng L, Guan J, Dong Q et al (2009) Predic-
tion of protein-protein interaction sites using
an ensemble method. BMC Bioinformatics
10:426

99. Pires DEV, Ascher DB, Blundell TL (2014)
mCSM: predicting the effects of mutations in
proteins using graph-based signatures. Bioin-
formatics 30:335–342

100. Pires DEV, Blundell TL, Ascher DB (2016)
mCSM-lig: quantifying the effects of muta-
tions on protein-small molecule affinity in
genetic disease and emergence of drug resis-
tance. Sci Rep 6:29575

101. Blagus R, Lusa L (2013) SMOTE for high-
dimensional class-imbalanced data. BMCBio-
informatics 14(1):106. https://doi.org/10.
1186/1471-2105-14-106

102. Kingma DP, Ba J (2017) Adam: a method for
stochastic optimization. http://arxiv.org/
abs/1412.6980

103. Goodfellow I, Bengio Y, Courville A (2016)
Deep learning. MIT Press, Cambridge

104. Sun R (2019) Optimization for deep
learning: theory and algorithms. http://
arxiv.org/abs/1912.08957

105. Bergstra J, Bengio Y (2012) Random search
for hyper-parameter optimization. J Mach
Learn Res 13:281–305

106. Snoek J, Larochelle H, Adams RP (2012)
Practical Bayesian optimization of machine
learning algorithms. In: Pereira F, Burges
CJC, Bottou L et al (eds) Advances in neural
information processing systems 25. Curran
Associates, Inc, Red Hook, NY, pp
2951–2959

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

288 Arian R. Jamasb et al.

https://doi.org/10.1007/0-387-34239-7
https://doi.org/10.1007/0-387-34239-7
https://arxiv.org/abs/1805.12002
https://arxiv.org/abs/1805.12002
https://arxiv.org/abs/1606.06565
https://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1704.00109
http://arxiv.org/abs/1704.00109
https://doi.org/10.1186/1471-2105-14-106
https://doi.org/10.1186/1471-2105-14-106
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1912.08957
http://arxiv.org/abs/1912.08957
http://creativecommons.org/licenses/by/4.0/

	Chapter 16: Deep Learning for Protein-Protein Interaction Site Prediction
	1 Introduction
	2 Materials
	2.1 Computing Resources
	2.1.1 Software Installations
	2.1.2 Machine Learning Frameworks

	2.2 Databases and Datasets
	2.3 Tools for Computing Features and Representations
	2.3.1 Sequence-Based
	2.3.2 Sequence Embeddings
	2.3.3 Structure-Based

	3 Methods
	3.1 Data
	3.1.1 Curation
	3.1.2 Train-Test Split Strategies
	3.1.3 Representation
	3.1.4 Input Features
	3.1.5 Pre-processing

	3.2 Model Evaluation
	3.2.1 Hyperparameter Tuning
	3.2.2 Evaluation Metrics
	3.2.3 Overfitting
	3.2.4 Attribution

	3.3 Alternative Training Regimes for Future Model Development
	3.3.1 Multi-modal Input
	3.3.2 Transfer Learning
	3.3.3 Multi-task Learning
	3.3.4 Learning Using Privileged Information
	3.3.5 Uncertainty Modeling and Active Learning
	3.3.6 Attention Mechanisms
	3.3.7 Ensembling

	4 Notes
	References

